Estadística multivariada: inferencia y métodos

Tablas e ilustraciones

Autores:
Díaz Monroy, Luis Guillermo
Tipo de recurso:
Book
Fecha de publicación:
2007
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79907
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79907
https://repositorio.unal.edu.co/
Palabra clave:
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
Diseño experimental
Estadística matemática
Probabilidades
Análisis estadístico multivariable
Distribuciones multivariantes
Inferencia
Conceptos estadísticos
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_018c361fec87c07c2cc252b92c644db8
oai_identifier_str oai:repositorio.unal.edu.co:unal/79907
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Estadística multivariada: inferencia y métodos
title Estadística multivariada: inferencia y métodos
spellingShingle Estadística multivariada: inferencia y métodos
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
Diseño experimental
Estadística matemática
Probabilidades
Análisis estadístico multivariable
Distribuciones multivariantes
Inferencia
Conceptos estadísticos
title_short Estadística multivariada: inferencia y métodos
title_full Estadística multivariada: inferencia y métodos
title_fullStr Estadística multivariada: inferencia y métodos
title_full_unstemmed Estadística multivariada: inferencia y métodos
title_sort Estadística multivariada: inferencia y métodos
dc.creator.fl_str_mv Díaz Monroy, Luis Guillermo
dc.contributor.author.none.fl_str_mv Díaz Monroy, Luis Guillermo
dc.contributor.other.none.fl_str_mv Hernández Quitián, Margoth
dc.contributor.graphicaldesigner.none.fl_str_mv Kratzer, Andrea
dc.subject.ddc.spa.fl_str_mv 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
topic 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
Diseño experimental
Estadística matemática
Probabilidades
Análisis estadístico multivariable
Distribuciones multivariantes
Inferencia
Conceptos estadísticos
dc.subject.lemb.spa.fl_str_mv Diseño experimental
Estadística matemática
Probabilidades
Análisis estadístico multivariable
dc.subject.proposal.spa.fl_str_mv Distribuciones multivariantes
Inferencia
Conceptos estadísticos
description Tablas e ilustraciones
publishDate 2007
dc.date.issued.none.fl_str_mv 2007
dc.date.accessioned.none.fl_str_mv 2021-08-10T17:01:26Z
dc.date.available.none.fl_str_mv 2021-08-10T17:01:26Z
dc.type.spa.fl_str_mv Libro
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/book
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_2f33
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/LIB
format http://purl.org/coar/resource_type/c_2f33
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79907
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/79907
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartofseries.none.fl_str_mv Colección textos;
dc.relation.citationedition.spa.fl_str_mv Segunda edición
dc.relation.references.spa.fl_str_mv Alfenderfer, Mark S., and Blashfield, Roger., Cluster Analysis, Series: Quantitative Applications in the Social Sciences, Sage Publications, Inc., Beverly Hills, (1984).
Anderson, T. W., An Introduction to Multivariate Statistical Analysis, John Wiley and Sons., New York, 1984.
Anderson, T. W., Asymptotic Theory for Principal Component Analysis, The Annals of Mathematical Statistics, Vol. 34, 122-148, 1963.
Andrews, D. F., Plots of high-dimensional data, Biometrics, Vol. 28, 125-136, 1972.
Andrews, D. F., Gnanadesikan, R., and Warner, J. L., Methods for Assessing Multivariate Normality. In P. R. Kishnaiah (Ed.) Multivariate Analysis, Vol. III, 95-116, Academic Press, New York, 1973.
Arnold, Steven F., The Theory of Linear Models and Multivariate Analysis, John Wiley and Sons, 1981.
Bartlett, M. S., Properties of Sufficiency and Statistical Tests, Proceedings of the Royal Society of London, Vol. 160, 268-282, 1937.
Bartlett, M. S., A note on test of significance in multivariate analysis, Proceedings of the Cambridge Philosophical Society, Vol. 35, 180-185, 1939.
Bartlett, M. S., Anote on multiplying factors for various chi-squared approximations, Journal of the Royal Statistical Society, Series B, Vol. 16, 296-298, 1954.
Benzecri, J. P., Cours de Linguistique Mathématique, Publication multigraphiée, (Faculté des Sciences de Rennes). 1964.
Benzecri, J. P., L’Analyse des Données, Tomo 1: La Taxinomie, Tomo 2: L’Analyse des Correspondances, Dunod, Paris, 1973.
Benzecri, J. P., Histoire et Préhistoire de l’Analyse des Données L’Analyse des Données., Les Cahiers de Analyse des Donées Dunod, Paris, 1976.
Biscay, R., Valdes, P. and Pascual, R., Modified Fisher’s linear discriminant function with reduction of dimensionality, Journal of Statistical Computation and simulation, Vol. 36, 1-8, 1990.
Borg, Ingwer., and Groenen, Patrick, Modern Multidimensional Scaling, Springer, New York. 1997.
Box, G. E. P., A general distribution theory for a class of likelihood criteria, Biometrika, Vol. 36, 317-346, 1949.
Box, G. E. P. and Cox, D. R., An analysis of transformations, Journal of the Royal Statistical Society, Series B, Vol. 26,211-252, 1964.
Buck, S. F. A., A Method of estimation of missing values in multivariate data suitable for use with an electronic computer, Journal of the Royal Statistics Society, Series B, Vol. 22, 302-307, 1960.
Catell, R. B., The screen test for the number of factors, Multivariate Behavioral Research, Vol. 1, 140-161, 1966.
Chatfield, C. and Collins, A. J., Introduction to Multivariate Analysis Chapman and Hall, New York. 1986.
Cherkassky, Vladimir., Friedman, Jerome H. and Wechsler, Harry. From Statistics to Neural Networks, Theory and Pattern Recognition Applications, Springer, Berlin, 1993.
Chernoff, Herman., Using faces to represent points in k-dimensional space graphically, Journal of the American Statistics Association, Vol. 68, 361-368, 1973.
Clifford, H. and Stephenson, W., Introduction to Numerical Taxonomic, Academic Press, New York. 1975.
[23] Crisci, Jorge Víctor y López, María Fernanda., Introducción a la Teoría y Práctica de la Taxonomía Numérica, Secretaría General de la OEA, Washington, D. C., 1983.
Cox, Trevor F. and Cox, Michael A. A., Multidimensional Scaling, Chapman and Hall, London. 1994.
Crowder, M. J. and Hand, D. J., Analysis of Repeated Measures, Chapman and Hall, New York. 1990.
D’agostino, R. B. and Pearson, E. S., Test for deperture from Normality. Empirical Results for the Distributions of b2 and √b1, Biometrika, Vol. 60, 613-622; correction 61, 647, 1973.
Díaz, Luis Guillermo y López, Luis Alberto, Tamaño de muestra en diseño experimental, Memorias III Simposio de Estadística Muestreo, Universidad Nacional de Colombia, Santafé de Bogotá, D. C., 132- 154, 1992.
[28] Dillon, William R. and Goldstein, Matthew., Multivariate Analysis, Methods and Applications John Wiley and Sons, New York, 1984.
Diday, E., Optimisation en classification automatique et reconnnaisance des formes, Revue Française de Recherche Opérationnelle, Vol. 3, 61-96, 1972.
Diday, E., Classification automatique séquentielle pour grands tableaux, Revue Française de Recherche Opérationnelle, Vol. 9, 1- 29, 1974.
Efron, B. and Tibshirani, R., An Introduction to the Bootstrap, Chapman and Hall, London, 1993.
Escofier, Brigitte. et Pages, Jérome., Analyses factorielles simples et multiples, Dunod, Paris, 1990.
Everitt, Brian S., Cluster Analysis, Heineman Educational Books, London, 1980.
Everitt, Brian S. and Dunn, Graham., Applied Multivariate Data Analysis, Edward Arnold Books, New York, 1991.
Forgy, E. W., Cluster analysis of multivariate data: efficiency versus interpretability of classifications, Biometrics, 768, Vol. 21, 1965.
Freund, Rudolf J., Litell, Ramon C. and Spector, Philip C., SAS system for linear models, SAS Institute Inc., Cary, NC., 1986.
Giri, Narayan C., Multivariate Statistical Inference, Academic Press, New York, 1977.
Gnanadesikan, R. Methods for Statistical Analysis of Multivariate Observations, John Wiley and Sons, New York., 1997.
Gnanadesikan, R. and Kattenring, J. R., Robust stimates, residulas and outlier detection with multiresponse data, Biometrics, 81-124, 1972.
Gordon, A. D., A Review of hierarchical Classification, Series A Journal of the Royal Statistical Society, 150-119, 1937.
Graybill, Franklyn A., Theory and Application of the Linear Model, Duxbury Press, Massachusetts, 1976.
Gorsuch, Richard L., Factor Analysis, Lawrence Erlbaum Associates, Publishers, London, 1983.
Harville, David A., Introduction to Matrix Algebra from a Statistician’s Perspective, Springer, New York, 1997.
Hogg, Robert V. and Craig, Allent T., Introduction to Mathematical Statistics, Macmillan Publishing Co. Inc., New York, 1978.
Hotelling, H., The generalization of Student’s ratio, Annals of Mathematical Statistics, Vol. 2, 360-378, 1931.
Jobson, J. D., Applied Multivariate Data Analysis, Volume I: Regression and Experimental Design, Springer, New York, 1992.
Jobson, J. D., Applied Multivariate Data Analysis, Volume II: Categorical and Multivariate Methods, Springer, New York, 1992.
Johnson, Richard and Wicher, Dean W., Applied Multivariate Statistical Analysis, Prentice Hall, Inc., New Jersey, 1998.
Jöreskog, K. G., Some contributions to maximum likelihood factor analysis, Psychometrika, Vol. 32,443-482, 1967.
Kaiser, K. G., The varimax criteriom for analytic rotation in factor analysis, Psychometrika, Vol. 23, 187-200,1958.
Kaiser, K. G., Some contributions to maximum likelihood factor analysis, Psychometrika, Vol. 32, 443-482, 1967.
Kruskal, J. B., and Wish, M., Multidimensional Scaling, Sage Publications, Beverly Hills, CA., 1978.
Krzanowski, W. J. and Marriot, F. H. C., Multivariate Analysis. Part 1 Distributions, Ordination and Inference, Edward Arnold, London, 1994.
Krzanowski, W. J. and Marriot, F. H. C., Multivariate Analysis. Part 2 Classification, covariance structures and repeated measurements, Edward Arnold, London, 1995.
Lawley, D. N., A generalization of Fisher’s z test, Biometrika, Vol. 30, 180-187, 1938.
Lawley, D. N., Some new results in maximum likelihood factor analysis, Proceedings of the Royal Society of Education, Vol. 67, 256-264, 1967.
Lebart, Ludovic, Morineau, Alan, Fénelon, Jean-Pierre, Tratamiento Estadístico de Datos, Marcombo-Boixareu Editores, Barcelona. 1985.
Lebart, Ludovic, Morineau, Alan, Piron, Marie, Statistique Exploratoire Multidimensionnelle, Dunod, Paris, 1995.
Lebart, Ludovic, Morineau, Alan, and Warwick, Kenneth M., Multivariate Descriptive Statistical Analysis, John Wiley and Sons, New York, 1984.
Lee, Kerry L., Multivariate Test for Cluster, Journal of the American Statistical Association, Vol. 74, 708-714, 1979.
Little, R. J. A. and Rubin, D. B., Statistical Analysis with Missing Data John Wiley and Sons, New York, 1987.
Lou, Sheldon., Jiang, Jiong., and Keng, Kenneth, Clustering Objects Generated by Linear Regression Models, Journal of the American Statistical Association, Vol. 88, 1356-1362, 1993.
Maclachlan, Geoffrey J., Discriminant Analysis and Statistical Pattern Recognition, John Wiley and Sons, New York, 1992.
Manly, Bryan F. J., Multivariate Statistical Methods, A primer, Chapman and Hall, New York, 2000.
Mardia, K. V., Measures of multivariate skewness and kurtosis with applications, Biometrika, Vol. 57, 519-530, 1970.
Mardia, K. V., Applications of some measures of multivariate skewness and kurtosis in testing normality and robustness studies, Sankhya B, Vol. 36, 115-128, 1974.
Mardia, K. V., Kent, J. T., and Bibby, J. M., Multivariate Analysis, Academic Press, New York, 1979.
Mason, R. L., Tracy, N. D. and Young, J. C., Decomposition of T2 for multivariate control chart interpretation, Journal of Quality Technology, Vol. 27 (2), 157-158, 1995.
Mijares, Tito A., The normal approximation to the Bartlett- NandaPillai trace test in multivariate analysis, Biometrika, Vol. 77, 230- 233, 1990.
Milligan, G. W. and Cooper, M. C., An examination of procedures for determining the number of cluster, Psychometrika, Vol. 50, 159-179, 1985.
Mood, Alexander M., Graybill, Franklyn A. and Boes, Duane C., Introduction to the Theory of Statistics, Mc Graw Hill Book Company, 1982.
Morrison, Donald F., Multivariate Statistical Methods, Mc Graw Hill Book Company, New York, 1990.
Muirhead, Robb J. Aspects of Multivariate Statistical Theory, John Wiley and Sons, New York, 1982.
Nagarsenker, B. N. and Pillai, K. C. S., Distribution of the likelihood ratio for testing Σ=Σ0, μ = μ0, Journal of multivariate analysis,114-122, Vol. 4, 1974.
Nanda, D. N., Distribution of the sum of roots of the determinant equation under a certain condition, Annals of Mathematical Statistics, Vol. 21, 432-439, 1950.
Pardo, Campo Elías., Análisis de la Aplicación del Método de Ward de Clasificación Jerárquica al Caso de Variables Cualitativas, Universidad Nacional de Colombia. Tesis de Magister en Estadística, Santafé de Bogotá, D. C., 1992.
Peck, Roger., Fisher, Lloyd., and Van, John., Approximate confidence intervals for the number of cluster, Journal of the American Statistical Association, Vol. 84, 184-191, 1989.
Peña S., Daniel, Estadística modelos y métodos. Fundamentos, Alianza Universitaria Textos, Madrid, 1998.
Pillai, K. C. S., Some new test criteria in multivariate analysis, Annals of Mathematical Statistics, Vol. 26, 117-121, 1955.
Pla, Laura E., Análisis Multivariado: Método de Componentes Principales, Secretaría General de la OEA, Washington, D. C., 1986.
Rencher, Alvin C., Methods of Multivariate Analysis, John Wiley and Sons, New York, 1995.
Rencher, Alvin C., Multivariate Statistical Inference and Applications, John Wiley and Sons, New York, 1998.
Rohatgi, Vijay K., Statistical Inference, John Wiley and Sons, New York, 1984.
Roussas, George G., A First Course in Mathematical Statistics, Addison-Wesley Publishing Company, Massachusetts, 1973.
Roy, S. N., On a heuristic method of test construction and its use in multivariate analysis, Annals of Mathematical Statistics, Vol. 24, 220-238, 1953.
Roy, S. N., Some Aspects of multivariate Analysis, John Wiley and Sons, New York, 1957. [87] Ruiz-Velazco, S., Asympototic efficiency of logistic regression relative to linear discriminant analysis, Biometrika, Vol. 78, 235-243, 1991.
Saporta, Gilbert., Probabilités Analyse des Données et Statistique, Technip, Paris, 1990.
SAS Institute Inc., SAS/STAT User’s Guide, SAS Institute Inc., Cary N. C., 2001.
Schott, James R., A test for a specific principal component of a correlation matrix, Journal of the American Statistical Association, Vol. 86, 747-751, 1991.
Searle, S. R., Matrix Algebra Useful for Statistics, John Wiley and Sons, New York. 1990.
Seber, G.A.F., Multivariate observations, Jonhn Wiley and Sons, New York, 1984.
Sharma, Subhash, Applied Multivariate Techniques, Jonhn Wiley and Sons, New York, 1996.
Silverman, B. W. Density Estimation for Statistics and Data Analysis, Chapman and Hall, New York, 1986.
Sokal, R. and Michener, C. D., A statistical method for evaluating systematic relationship, University of Kansas Scientific Bulletin, 1958.
Takane, Y., Young, F. W., and Leeuw, J., Nonmetric individual differences multidimensional scaling: an alternating least squares method with optimal scaling features, Psychometrika, Vol. 42, 7-67, 1977.
Thompson, Paul A., Correspondence analysis in statistical package programs, The American Statistician, Vol. 49, 310-316, 1995.
Tiku, M. L., Tables of the power of the F-test, Journal of the American Statistical Association, Vol. 62, 525-539, 1967.
Torres, Luz Gloria, Ni˜no, Luis F. y Hern´andez, Germ´an., Redes Neuronales, X Coloquio Distrital de Matem´aticas y Estad´ıstica, Santaf´e de Bogot´a, 1993.
Tukey, J. W., On the Comparative Anatomy of Transformations, Annals of Mathematical Statistics, Vol. 28, 602-632, 1957.
Velilla, S., and Barrio, J. A., A discriminant rule under transformation, Technometrics, Vol. 36, 348-353, 1994.
Ward, J., Approximate confidence intervals for the number of cluster, Journal of the American Statistical Association, Vol. 58, 236-224, 1963.
Welch, B. L., The significance of the difference between two means when the population variances are unequal, Biometrika, Vol. 29, 350- 360,1937.
Welch, B. L., The generalization of “Student” problem when several different population variances are involved, Biometrika, Vol. 34, 28- 35, 1947.
Wilcox, Rand R. Introduction to Robust Stimation and Hipothesis Testing, Academic Press, New York, 1997.
Yager, R. R., Ovchinnikov, S., Togn, R. M., and Nguyen, H. T., Fuzzy Sets and Applications. Selected Papers by L. A. Zadeh, John Wiley and Sons, New York, 1987.
Yan, S. S., and Lee, Y., Identification of a multivariate outlier, Annual Meeting of the American Statistical Association, 1987.
Yeo, In-Know and Johnson, Richard A. A new family of power transformations to improve normality or symmetry, Biometrika, 2000.
Zadeh, Lotfi A., Fuzzy Sets, Information and Control, 338-353, 1965.
dc.rights.spa.fl_str_mv Derechos Reservados al Autor, 2007
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
Derechos Reservados al Autor, 2007
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xvii, 570 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.department.spa.fl_str_mv Sede Bogotá
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79907/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79907/2/Estad%c3%adstica%20Multivariada%209789587011951.pdf
https://repositorio.unal.edu.co/bitstream/unal/79907/3/Estad%c3%adstica%20Multivariada%209789587011951.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
fcdeebf91ffafed854162f718b11f4a2
8aed8a6773fccc3493de903f69b2ac30
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089453066518528
spelling Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos Reservados al Autor, 2007http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Díaz Monroy, Luis Guillermo3efc00220cfd299ea4420a319834eeadHernández Quitián, MargothKratzer, Andrea2021-08-10T17:01:26Z2021-08-10T17:01:26Z2007https://repositorio.unal.edu.co/handle/unal/79907Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Tablas e ilustracionesLa segunda edición tiene en cuenta al lector para quien se pensó debe ir dirigido, es decir cualquier persona que posea conocimientos básicos de matemáticas y estadística. Aunque se ha mantenido la estructura de la primera edición, ésta ha sido sometida a una revisión exhaustiva, cuyo resultado ha permitido la detección y corrección de algunas ambigüedades, la corrección de errores ortográficos y de edición, los cuales fueron advertidos al autor por juiciosos lectores. Algunos ejemplos fueron desarrollados con más detalle y sencillez. Para cada uno de los once capítulos y los dos anexos se ha incluido la sintaxis del paquete estadístico R, con el cual se desarrollan los cálculos, las tablas y las gráficas de algunos de los ejemplos contenidos en el respectivo capitulo. (Texto tomado de la fuente).ISBN de la versión impresa 9789587011951Segunda ediciónxvii, 570 páginasapplication/pdfspaUniversidad Nacional de ColombiaSede BogotáBogotá, ColombiaColección textos;Segunda ediciónAlfenderfer, Mark S., and Blashfield, Roger., Cluster Analysis, Series: Quantitative Applications in the Social Sciences, Sage Publications, Inc., Beverly Hills, (1984).Anderson, T. W., An Introduction to Multivariate Statistical Analysis, John Wiley and Sons., New York, 1984.Anderson, T. W., Asymptotic Theory for Principal Component Analysis, The Annals of Mathematical Statistics, Vol. 34, 122-148, 1963.Andrews, D. F., Plots of high-dimensional data, Biometrics, Vol. 28, 125-136, 1972.Andrews, D. F., Gnanadesikan, R., and Warner, J. L., Methods for Assessing Multivariate Normality. In P. R. Kishnaiah (Ed.) Multivariate Analysis, Vol. III, 95-116, Academic Press, New York, 1973.Arnold, Steven F., The Theory of Linear Models and Multivariate Analysis, John Wiley and Sons, 1981.Bartlett, M. S., Properties of Sufficiency and Statistical Tests, Proceedings of the Royal Society of London, Vol. 160, 268-282, 1937.Bartlett, M. S., A note on test of significance in multivariate analysis, Proceedings of the Cambridge Philosophical Society, Vol. 35, 180-185, 1939.Bartlett, M. S., Anote on multiplying factors for various chi-squared approximations, Journal of the Royal Statistical Society, Series B, Vol. 16, 296-298, 1954.Benzecri, J. P., Cours de Linguistique Mathématique, Publication multigraphiée, (Faculté des Sciences de Rennes). 1964.Benzecri, J. P., L’Analyse des Données, Tomo 1: La Taxinomie, Tomo 2: L’Analyse des Correspondances, Dunod, Paris, 1973.Benzecri, J. P., Histoire et Préhistoire de l’Analyse des Données L’Analyse des Données., Les Cahiers de Analyse des Donées Dunod, Paris, 1976.Biscay, R., Valdes, P. and Pascual, R., Modified Fisher’s linear discriminant function with reduction of dimensionality, Journal of Statistical Computation and simulation, Vol. 36, 1-8, 1990.Borg, Ingwer., and Groenen, Patrick, Modern Multidimensional Scaling, Springer, New York. 1997.Box, G. E. P., A general distribution theory for a class of likelihood criteria, Biometrika, Vol. 36, 317-346, 1949.Box, G. E. P. and Cox, D. R., An analysis of transformations, Journal of the Royal Statistical Society, Series B, Vol. 26,211-252, 1964.Buck, S. F. A., A Method of estimation of missing values in multivariate data suitable for use with an electronic computer, Journal of the Royal Statistics Society, Series B, Vol. 22, 302-307, 1960.Catell, R. B., The screen test for the number of factors, Multivariate Behavioral Research, Vol. 1, 140-161, 1966.Chatfield, C. and Collins, A. J., Introduction to Multivariate Analysis Chapman and Hall, New York. 1986.Cherkassky, Vladimir., Friedman, Jerome H. and Wechsler, Harry. From Statistics to Neural Networks, Theory and Pattern Recognition Applications, Springer, Berlin, 1993.Chernoff, Herman., Using faces to represent points in k-dimensional space graphically, Journal of the American Statistics Association, Vol. 68, 361-368, 1973.Clifford, H. and Stephenson, W., Introduction to Numerical Taxonomic, Academic Press, New York. 1975.[23] Crisci, Jorge Víctor y López, María Fernanda., Introducción a la Teoría y Práctica de la Taxonomía Numérica, Secretaría General de la OEA, Washington, D. C., 1983.Cox, Trevor F. and Cox, Michael A. A., Multidimensional Scaling, Chapman and Hall, London. 1994.Crowder, M. J. and Hand, D. J., Analysis of Repeated Measures, Chapman and Hall, New York. 1990.D’agostino, R. B. and Pearson, E. S., Test for deperture from Normality. Empirical Results for the Distributions of b2 and √b1, Biometrika, Vol. 60, 613-622; correction 61, 647, 1973.Díaz, Luis Guillermo y López, Luis Alberto, Tamaño de muestra en diseño experimental, Memorias III Simposio de Estadística Muestreo, Universidad Nacional de Colombia, Santafé de Bogotá, D. C., 132- 154, 1992.[28] Dillon, William R. and Goldstein, Matthew., Multivariate Analysis, Methods and Applications John Wiley and Sons, New York, 1984.Diday, E., Optimisation en classification automatique et reconnnaisance des formes, Revue Française de Recherche Opérationnelle, Vol. 3, 61-96, 1972.Diday, E., Classification automatique séquentielle pour grands tableaux, Revue Française de Recherche Opérationnelle, Vol. 9, 1- 29, 1974.Efron, B. and Tibshirani, R., An Introduction to the Bootstrap, Chapman and Hall, London, 1993.Escofier, Brigitte. et Pages, Jérome., Analyses factorielles simples et multiples, Dunod, Paris, 1990.Everitt, Brian S., Cluster Analysis, Heineman Educational Books, London, 1980.Everitt, Brian S. and Dunn, Graham., Applied Multivariate Data Analysis, Edward Arnold Books, New York, 1991.Forgy, E. W., Cluster analysis of multivariate data: efficiency versus interpretability of classifications, Biometrics, 768, Vol. 21, 1965.Freund, Rudolf J., Litell, Ramon C. and Spector, Philip C., SAS system for linear models, SAS Institute Inc., Cary, NC., 1986.Giri, Narayan C., Multivariate Statistical Inference, Academic Press, New York, 1977.Gnanadesikan, R. Methods for Statistical Analysis of Multivariate Observations, John Wiley and Sons, New York., 1997.Gnanadesikan, R. and Kattenring, J. R., Robust stimates, residulas and outlier detection with multiresponse data, Biometrics, 81-124, 1972.Gordon, A. D., A Review of hierarchical Classification, Series A Journal of the Royal Statistical Society, 150-119, 1937.Graybill, Franklyn A., Theory and Application of the Linear Model, Duxbury Press, Massachusetts, 1976.Gorsuch, Richard L., Factor Analysis, Lawrence Erlbaum Associates, Publishers, London, 1983.Harville, David A., Introduction to Matrix Algebra from a Statistician’s Perspective, Springer, New York, 1997.Hogg, Robert V. and Craig, Allent T., Introduction to Mathematical Statistics, Macmillan Publishing Co. Inc., New York, 1978.Hotelling, H., The generalization of Student’s ratio, Annals of Mathematical Statistics, Vol. 2, 360-378, 1931.Jobson, J. D., Applied Multivariate Data Analysis, Volume I: Regression and Experimental Design, Springer, New York, 1992.Jobson, J. D., Applied Multivariate Data Analysis, Volume II: Categorical and Multivariate Methods, Springer, New York, 1992.Johnson, Richard and Wicher, Dean W., Applied Multivariate Statistical Analysis, Prentice Hall, Inc., New Jersey, 1998.Jöreskog, K. G., Some contributions to maximum likelihood factor analysis, Psychometrika, Vol. 32,443-482, 1967.Kaiser, K. G., The varimax criteriom for analytic rotation in factor analysis, Psychometrika, Vol. 23, 187-200,1958.Kaiser, K. G., Some contributions to maximum likelihood factor analysis, Psychometrika, Vol. 32, 443-482, 1967.Kruskal, J. B., and Wish, M., Multidimensional Scaling, Sage Publications, Beverly Hills, CA., 1978.Krzanowski, W. J. and Marriot, F. H. C., Multivariate Analysis. Part 1 Distributions, Ordination and Inference, Edward Arnold, London, 1994.Krzanowski, W. J. and Marriot, F. H. C., Multivariate Analysis. Part 2 Classification, covariance structures and repeated measurements, Edward Arnold, London, 1995.Lawley, D. N., A generalization of Fisher’s z test, Biometrika, Vol. 30, 180-187, 1938.Lawley, D. N., Some new results in maximum likelihood factor analysis, Proceedings of the Royal Society of Education, Vol. 67, 256-264, 1967.Lebart, Ludovic, Morineau, Alan, Fénelon, Jean-Pierre, Tratamiento Estadístico de Datos, Marcombo-Boixareu Editores, Barcelona. 1985.Lebart, Ludovic, Morineau, Alan, Piron, Marie, Statistique Exploratoire Multidimensionnelle, Dunod, Paris, 1995.Lebart, Ludovic, Morineau, Alan, and Warwick, Kenneth M., Multivariate Descriptive Statistical Analysis, John Wiley and Sons, New York, 1984.Lee, Kerry L., Multivariate Test for Cluster, Journal of the American Statistical Association, Vol. 74, 708-714, 1979.Little, R. J. A. and Rubin, D. B., Statistical Analysis with Missing Data John Wiley and Sons, New York, 1987.Lou, Sheldon., Jiang, Jiong., and Keng, Kenneth, Clustering Objects Generated by Linear Regression Models, Journal of the American Statistical Association, Vol. 88, 1356-1362, 1993.Maclachlan, Geoffrey J., Discriminant Analysis and Statistical Pattern Recognition, John Wiley and Sons, New York, 1992.Manly, Bryan F. J., Multivariate Statistical Methods, A primer, Chapman and Hall, New York, 2000.Mardia, K. V., Measures of multivariate skewness and kurtosis with applications, Biometrika, Vol. 57, 519-530, 1970.Mardia, K. V., Applications of some measures of multivariate skewness and kurtosis in testing normality and robustness studies, Sankhya B, Vol. 36, 115-128, 1974.Mardia, K. V., Kent, J. T., and Bibby, J. M., Multivariate Analysis, Academic Press, New York, 1979.Mason, R. L., Tracy, N. D. and Young, J. C., Decomposition of T2 for multivariate control chart interpretation, Journal of Quality Technology, Vol. 27 (2), 157-158, 1995.Mijares, Tito A., The normal approximation to the Bartlett- NandaPillai trace test in multivariate analysis, Biometrika, Vol. 77, 230- 233, 1990.Milligan, G. W. and Cooper, M. C., An examination of procedures for determining the number of cluster, Psychometrika, Vol. 50, 159-179, 1985.Mood, Alexander M., Graybill, Franklyn A. and Boes, Duane C., Introduction to the Theory of Statistics, Mc Graw Hill Book Company, 1982.Morrison, Donald F., Multivariate Statistical Methods, Mc Graw Hill Book Company, New York, 1990.Muirhead, Robb J. Aspects of Multivariate Statistical Theory, John Wiley and Sons, New York, 1982.Nagarsenker, B. N. and Pillai, K. C. S., Distribution of the likelihood ratio for testing Σ=Σ0, μ = μ0, Journal of multivariate analysis,114-122, Vol. 4, 1974.Nanda, D. N., Distribution of the sum of roots of the determinant equation under a certain condition, Annals of Mathematical Statistics, Vol. 21, 432-439, 1950.Pardo, Campo Elías., Análisis de la Aplicación del Método de Ward de Clasificación Jerárquica al Caso de Variables Cualitativas, Universidad Nacional de Colombia. Tesis de Magister en Estadística, Santafé de Bogotá, D. C., 1992.Peck, Roger., Fisher, Lloyd., and Van, John., Approximate confidence intervals for the number of cluster, Journal of the American Statistical Association, Vol. 84, 184-191, 1989.Peña S., Daniel, Estadística modelos y métodos. Fundamentos, Alianza Universitaria Textos, Madrid, 1998.Pillai, K. C. S., Some new test criteria in multivariate analysis, Annals of Mathematical Statistics, Vol. 26, 117-121, 1955.Pla, Laura E., Análisis Multivariado: Método de Componentes Principales, Secretaría General de la OEA, Washington, D. C., 1986.Rencher, Alvin C., Methods of Multivariate Analysis, John Wiley and Sons, New York, 1995.Rencher, Alvin C., Multivariate Statistical Inference and Applications, John Wiley and Sons, New York, 1998.Rohatgi, Vijay K., Statistical Inference, John Wiley and Sons, New York, 1984.Roussas, George G., A First Course in Mathematical Statistics, Addison-Wesley Publishing Company, Massachusetts, 1973.Roy, S. N., On a heuristic method of test construction and its use in multivariate analysis, Annals of Mathematical Statistics, Vol. 24, 220-238, 1953.Roy, S. N., Some Aspects of multivariate Analysis, John Wiley and Sons, New York, 1957. [87] Ruiz-Velazco, S., Asympototic efficiency of logistic regression relative to linear discriminant analysis, Biometrika, Vol. 78, 235-243, 1991.Saporta, Gilbert., Probabilités Analyse des Données et Statistique, Technip, Paris, 1990.SAS Institute Inc., SAS/STAT User’s Guide, SAS Institute Inc., Cary N. C., 2001.Schott, James R., A test for a specific principal component of a correlation matrix, Journal of the American Statistical Association, Vol. 86, 747-751, 1991.Searle, S. R., Matrix Algebra Useful for Statistics, John Wiley and Sons, New York. 1990.Seber, G.A.F., Multivariate observations, Jonhn Wiley and Sons, New York, 1984.Sharma, Subhash, Applied Multivariate Techniques, Jonhn Wiley and Sons, New York, 1996.Silverman, B. W. Density Estimation for Statistics and Data Analysis, Chapman and Hall, New York, 1986.Sokal, R. and Michener, C. D., A statistical method for evaluating systematic relationship, University of Kansas Scientific Bulletin, 1958.Takane, Y., Young, F. W., and Leeuw, J., Nonmetric individual differences multidimensional scaling: an alternating least squares method with optimal scaling features, Psychometrika, Vol. 42, 7-67, 1977.Thompson, Paul A., Correspondence analysis in statistical package programs, The American Statistician, Vol. 49, 310-316, 1995.Tiku, M. L., Tables of the power of the F-test, Journal of the American Statistical Association, Vol. 62, 525-539, 1967.Torres, Luz Gloria, Ni˜no, Luis F. y Hern´andez, Germ´an., Redes Neuronales, X Coloquio Distrital de Matem´aticas y Estad´ıstica, Santaf´e de Bogot´a, 1993.Tukey, J. W., On the Comparative Anatomy of Transformations, Annals of Mathematical Statistics, Vol. 28, 602-632, 1957.Velilla, S., and Barrio, J. A., A discriminant rule under transformation, Technometrics, Vol. 36, 348-353, 1994.Ward, J., Approximate confidence intervals for the number of cluster, Journal of the American Statistical Association, Vol. 58, 236-224, 1963.Welch, B. L., The significance of the difference between two means when the population variances are unequal, Biometrika, Vol. 29, 350- 360,1937.Welch, B. L., The generalization of “Student” problem when several different population variances are involved, Biometrika, Vol. 34, 28- 35, 1947.Wilcox, Rand R. Introduction to Robust Stimation and Hipothesis Testing, Academic Press, New York, 1997.Yager, R. R., Ovchinnikov, S., Togn, R. M., and Nguyen, H. T., Fuzzy Sets and Applications. Selected Papers by L. A. Zadeh, John Wiley and Sons, New York, 1987.Yan, S. S., and Lee, Y., Identification of a multivariate outlier, Annual Meeting of the American Statistical Association, 1987.Yeo, In-Know and Johnson, Richard A. A new family of power transformations to improve normality or symmetry, Biometrika, 2000.Zadeh, Lotfi A., Fuzzy Sets, Information and Control, 338-353, 1965.510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasDiseño experimentalEstadística matemáticaProbabilidadesAnálisis estadístico multivariableDistribuciones multivariantesInferenciaConceptos estadísticosEstadística multivariada: inferencia y métodosLibroinfo:eu-repo/semantics/bookinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_2f33Texthttp://purl.org/redcol/resource_type/LIBGeneralLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79907/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINALEstadística Multivariada 9789587011951.pdfEstadística Multivariada 9789587011951.pdfLibro del Departamento de Estadísticaapplication/pdf3046396https://repositorio.unal.edu.co/bitstream/unal/79907/2/Estad%c3%adstica%20Multivariada%209789587011951.pdffcdeebf91ffafed854162f718b11f4a2MD52THUMBNAILEstadística Multivariada 9789587011951.pdf.jpgEstadística Multivariada 9789587011951.pdf.jpgGenerated Thumbnailimage/jpeg6335https://repositorio.unal.edu.co/bitstream/unal/79907/3/Estad%c3%adstica%20Multivariada%209789587011951.pdf.jpg8aed8a6773fccc3493de903f69b2ac30MD53unal/79907oai:repositorio.unal.edu.co:unal/799072024-07-27 00:14:26.718Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==