Zeta functions of singular curves over finite fields
Let X be a complete, geometrically irreducible, algebraic curve defined over a finite field Fq and let ς (X,t) be its zeta function [Ser1], If X is a singular curve, two other zeta functions exist. The first is the Dirichlet series Z(Ca(X), t) associated to the effective Cartier divisors on X; the s...
- Autores:
-
Zúñiga Galindo, Wilson Alvaro
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 1997
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/43675
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/43675
http://bdigital.unal.edu.co/33773/
- Palabra clave:
- Zeta functions
finite fields
singular curves
generalized Jacobians
compactified Jacobians
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_01436496916d65ffb01eb3f18dfea3d0 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/43675 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Zúñiga Galindo, Wilson Alvarodb235a38-2db6-48de-9fb3-ed4aa245582b3002019-06-28T12:17:40Z2019-06-28T12:17:40Z1997https://repositorio.unal.edu.co/handle/unal/43675http://bdigital.unal.edu.co/33773/Let X be a complete, geometrically irreducible, algebraic curve defined over a finite field Fq and let ς (X,t) be its zeta function [Ser1], If X is a singular curve, two other zeta functions exist. The first is the Dirichlet series Z(Ca(X), t) associated to the effective Cartier divisors on X; the second is the Dirichlet series Z(Div(X),t) associated to the effective divisors on X, In this paper we generalize F. K. Schmidt's results on the rationality and functional equation of the zeta function ς(X, t) of a non-singular curve to the functions Z(Ca(X), t) and Z(Div(X), t) by means ofthe singular Riemann-Roch theorem.application/pdfspaUniversidad Nacuional de Colombia; Sociedad Colombiana de matemáticashttp://revistas.unal.edu.co/index.php/recolma/article/view/33674Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de MatemáticasRevista Colombiana de MatemáticasRevista Colombiana de Matemáticas; Vol. 31, núm. 2 (1997); 115-124 0034-7426Zúñiga Galindo, Wilson Alvaro (1997) Zeta functions of singular curves over finite fields. Revista Colombiana de Matemáticas; Vol. 31, núm. 2 (1997); 115-124 0034-7426 .Zeta functions of singular curves over finite fieldsArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTZeta functionsfinite fieldssingular curvesgeneralized Jacobianscompactified JacobiansORIGINAL33674-125557-1-PB.pdfapplication/pdf4001388https://repositorio.unal.edu.co/bitstream/unal/43675/1/33674-125557-1-PB.pdf350f69dc5ceea9adb6682bda0527823eMD51THUMBNAIL33674-125557-1-PB.pdf.jpg33674-125557-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg6826https://repositorio.unal.edu.co/bitstream/unal/43675/2/33674-125557-1-PB.pdf.jpg818e861220201bf0a5ab2d4732e0b4b3MD52unal/43675oai:repositorio.unal.edu.co:unal/436752024-02-11 23:18:50.108Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |
dc.title.spa.fl_str_mv |
Zeta functions of singular curves over finite fields |
title |
Zeta functions of singular curves over finite fields |
spellingShingle |
Zeta functions of singular curves over finite fields Zeta functions finite fields singular curves generalized Jacobians compactified Jacobians |
title_short |
Zeta functions of singular curves over finite fields |
title_full |
Zeta functions of singular curves over finite fields |
title_fullStr |
Zeta functions of singular curves over finite fields |
title_full_unstemmed |
Zeta functions of singular curves over finite fields |
title_sort |
Zeta functions of singular curves over finite fields |
dc.creator.fl_str_mv |
Zúñiga Galindo, Wilson Alvaro |
dc.contributor.author.spa.fl_str_mv |
Zúñiga Galindo, Wilson Alvaro |
dc.subject.proposal.spa.fl_str_mv |
Zeta functions finite fields singular curves generalized Jacobians compactified Jacobians |
topic |
Zeta functions finite fields singular curves generalized Jacobians compactified Jacobians |
description |
Let X be a complete, geometrically irreducible, algebraic curve defined over a finite field Fq and let ς (X,t) be its zeta function [Ser1], If X is a singular curve, two other zeta functions exist. The first is the Dirichlet series Z(Ca(X), t) associated to the effective Cartier divisors on X; the second is the Dirichlet series Z(Div(X),t) associated to the effective divisors on X, In this paper we generalize F. K. Schmidt's results on the rationality and functional equation of the zeta function ς(X, t) of a non-singular curve to the functions Z(Ca(X), t) and Z(Div(X), t) by means ofthe singular Riemann-Roch theorem. |
publishDate |
1997 |
dc.date.issued.spa.fl_str_mv |
1997 |
dc.date.accessioned.spa.fl_str_mv |
2019-06-28T12:17:40Z |
dc.date.available.spa.fl_str_mv |
2019-06-28T12:17:40Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/43675 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/33773/ |
url |
https://repositorio.unal.edu.co/handle/unal/43675 http://bdigital.unal.edu.co/33773/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
http://revistas.unal.edu.co/index.php/recolma/article/view/33674 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Matemáticas Revista Colombiana de Matemáticas |
dc.relation.ispartofseries.none.fl_str_mv |
Revista Colombiana de Matemáticas; Vol. 31, núm. 2 (1997); 115-124 0034-7426 |
dc.relation.references.spa.fl_str_mv |
Zúñiga Galindo, Wilson Alvaro (1997) Zeta functions of singular curves over finite fields. Revista Colombiana de Matemáticas; Vol. 31, núm. 2 (1997); 115-124 0034-7426 . |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacuional de Colombia; Sociedad Colombiana de matemáticas |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/43675/1/33674-125557-1-PB.pdf https://repositorio.unal.edu.co/bitstream/unal/43675/2/33674-125557-1-PB.pdf.jpg |
bitstream.checksum.fl_str_mv |
350f69dc5ceea9adb6682bda0527823e 818e861220201bf0a5ab2d4732e0b4b3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089886960975872 |