Zeta functions of singular curves over finite fields

Let X be a complete, geometrically irreducible, algebraic curve defined over a finite field Fq and let ς (X,t) be its zeta function [Ser1], If X is a singular curve, two other zeta functions exist. The first is the Dirichlet series Z(Ca(X), t) associated to the effective Cartier divisors on X; the s...

Full description

Autores:
Zúñiga Galindo, Wilson Alvaro
Tipo de recurso:
Article of journal
Fecha de publicación:
1997
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/43675
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/43675
http://bdigital.unal.edu.co/33773/
Palabra clave:
Zeta functions
finite fields
singular curves
generalized Jacobians
compactified Jacobians
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:Let X be a complete, geometrically irreducible, algebraic curve defined over a finite field Fq and let ς (X,t) be its zeta function [Ser1], If X is a singular curve, two other zeta functions exist. The first is the Dirichlet series Z(Ca(X), t) associated to the effective Cartier divisors on X; the second is the Dirichlet series Z(Div(X),t) associated to the effective divisors on X, In this paper we generalize F. K. Schmidt's results on the rationality and functional equation of the zeta function ς(X, t) of a non-singular curve to the functions Z(Ca(X), t) and Z(Div(X), t) by means ofthe singular Riemann-Roch theorem.