Zeta functions of singular curves over finite fields
Let X be a complete, geometrically irreducible, algebraic curve defined over a finite field Fq and let ς (X,t) be its zeta function [Ser1], If X is a singular curve, two other zeta functions exist. The first is the Dirichlet series Z(Ca(X), t) associated to the effective Cartier divisors on X; the s...
- Autores:
-
Zúñiga Galindo, Wilson Alvaro
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 1997
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/43675
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/43675
http://bdigital.unal.edu.co/33773/
- Palabra clave:
- Zeta functions
finite fields
singular curves
generalized Jacobians
compactified Jacobians
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | Let X be a complete, geometrically irreducible, algebraic curve defined over a finite field Fq and let ς (X,t) be its zeta function [Ser1], If X is a singular curve, two other zeta functions exist. The first is the Dirichlet series Z(Ca(X), t) associated to the effective Cartier divisors on X; the second is the Dirichlet series Z(Div(X),t) associated to the effective divisors on X, In this paper we generalize F. K. Schmidt's results on the rationality and functional equation of the zeta function ς(X, t) of a non-singular curve to the functions Z(Ca(X), t) and Z(Div(X), t) by means ofthe singular Riemann-Roch theorem. |
---|