Application of Time-Frequency Transformations in Polarimetric Ultra-Wideband MIMO-GPR signals for Detection of Colombian Improvised Explosive Devices

Abstract. In this thesis, a new radar technique for GPR detection and discrimination of Improvised Explosive Devices is presented and validated. Data processing, consisting of adaptive filters and time-frequency transformations, are applied to polarimetric GPR data, in order to construct feature vec...

Full description

Autores:
Gutiérrez Duarte, Sergio Alonso
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2019
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/76613
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/76613
http://bdigital.unal.edu.co/73192/
Palabra clave:
Classification of improvised explosive devices
Landmine detection
Ground penetrating radar
Feature extraction
Polarimetric measurements
Support vector machines
Ultra-wideband MIMO radar
Polarimetric radar
Machine learning
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_00c6a535c6536cba329542bc6394f2d7
oai_identifier_str oai:repositorio.unal.edu.co:unal/76613
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Application of Time-Frequency Transformations in Polarimetric Ultra-Wideband MIMO-GPR signals for Detection of Colombian Improvised Explosive Devices
title Application of Time-Frequency Transformations in Polarimetric Ultra-Wideband MIMO-GPR signals for Detection of Colombian Improvised Explosive Devices
spellingShingle Application of Time-Frequency Transformations in Polarimetric Ultra-Wideband MIMO-GPR signals for Detection of Colombian Improvised Explosive Devices
Classification of improvised explosive devices
Landmine detection
Ground penetrating radar
Feature extraction
Polarimetric measurements
Support vector machines
Ultra-wideband MIMO radar
Polarimetric radar
Machine learning
title_short Application of Time-Frequency Transformations in Polarimetric Ultra-Wideband MIMO-GPR signals for Detection of Colombian Improvised Explosive Devices
title_full Application of Time-Frequency Transformations in Polarimetric Ultra-Wideband MIMO-GPR signals for Detection of Colombian Improvised Explosive Devices
title_fullStr Application of Time-Frequency Transformations in Polarimetric Ultra-Wideband MIMO-GPR signals for Detection of Colombian Improvised Explosive Devices
title_full_unstemmed Application of Time-Frequency Transformations in Polarimetric Ultra-Wideband MIMO-GPR signals for Detection of Colombian Improvised Explosive Devices
title_sort Application of Time-Frequency Transformations in Polarimetric Ultra-Wideband MIMO-GPR signals for Detection of Colombian Improvised Explosive Devices
dc.creator.fl_str_mv Gutiérrez Duarte, Sergio Alonso
dc.contributor.author.spa.fl_str_mv Gutiérrez Duarte, Sergio Alonso
dc.contributor.spa.fl_str_mv Vega Stavro, José Félix
dc.subject.proposal.spa.fl_str_mv Classification of improvised explosive devices
Landmine detection
Ground penetrating radar
Feature extraction
Polarimetric measurements
Support vector machines
Ultra-wideband MIMO radar
Polarimetric radar
Machine learning
topic Classification of improvised explosive devices
Landmine detection
Ground penetrating radar
Feature extraction
Polarimetric measurements
Support vector machines
Ultra-wideband MIMO radar
Polarimetric radar
Machine learning
description Abstract. In this thesis, a new radar technique for GPR detection and discrimination of Improvised Explosive Devices is presented and validated. Data processing, consisting of adaptive filters and time-frequency transformations, are applied to polarimetric GPR data, in order to construct feature vectors of the targets. These vectors are used as inputs of a support vector machine algorithm, in order to discriminate buried targets either as improvised explosive device (IED) or clutter. The main contributions of this thesis are as follows. First, the permittivity of improvised ANFO explosives is measured. This information is used for manufacturing inert surrogates of IEDs. Second, we proposed the construction of target feature vectors (TFVs) from polarimetric GPR measurements. Third, recursive algorithms and background removal are combined to improve the clutter removal. Data processing methods are assembled, combining clutter removal stage, time-frequency transformation and singular value decomposition. In total, eight data processing methods are proposed. Moreover, for every method, 13 TFVs are assembled. Then, the TFVs are used to train and test support vector machines (SVM) under a binary classification approach. Classification results are validated by using the leave-two-out cross-validation. Accuracy of 87.02% in the best classifier was obtained. The main conclusion of this thesis is that combining polarimetric GPR measurements, feature extraction using time-frequency transformations, and SVM classifications allows obtaining discriminating features that improve the IED detection rates compared with metal detector performance. Furthermore, the proposed approach can be implemented in a hand-held detection device and to be used in a humanitarian demining scenario. Keywords: Classification of improvised explosive devices, feature extraction, ground penetrating radar, permittivity of explosives, polarimetric measurements, support vector machines, ultra-wideband MIMO radar.
publishDate 2019
dc.date.issued.spa.fl_str_mv 2019-08-15
dc.date.accessioned.spa.fl_str_mv 2020-03-30T06:23:16Z
dc.date.available.spa.fl_str_mv 2020-03-30T06:23:16Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/76613
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/73192/
url https://repositorio.unal.edu.co/handle/unal/76613
http://bdigital.unal.edu.co/73192/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería Eléctrica y Electrónica
Departamento de Ingeniería Eléctrica y Electrónica
dc.relation.haspart.spa.fl_str_mv 62 Ingeniería y operaciones afines / Engineering
dc.relation.references.spa.fl_str_mv Gutiérrez Duarte, Sergio Alonso (2019) Application of Time-Frequency Transformations in Polarimetric Ultra-Wideband MIMO-GPR signals for Detection of Colombian Improvised Explosive Devices. Doctorado thesis, Universidad Nacional de Colombia - Sede Bogotá.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/76613/1/74080984.2019.pdf
https://repositorio.unal.edu.co/bitstream/unal/76613/2/74080984.2019.pdf.jpg
bitstream.checksum.fl_str_mv ef735e18521433c6d6700eeb6e50611a
33fedb9292a03dfa76cc635d86649ea0
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089626485260288
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Vega Stavro, José FélixGutiérrez Duarte, Sergio Alonsoc587d19b-fa41-4abb-ad38-6c968f4002413002020-03-30T06:23:16Z2020-03-30T06:23:16Z2019-08-15https://repositorio.unal.edu.co/handle/unal/76613http://bdigital.unal.edu.co/73192/Abstract. In this thesis, a new radar technique for GPR detection and discrimination of Improvised Explosive Devices is presented and validated. Data processing, consisting of adaptive filters and time-frequency transformations, are applied to polarimetric GPR data, in order to construct feature vectors of the targets. These vectors are used as inputs of a support vector machine algorithm, in order to discriminate buried targets either as improvised explosive device (IED) or clutter. The main contributions of this thesis are as follows. First, the permittivity of improvised ANFO explosives is measured. This information is used for manufacturing inert surrogates of IEDs. Second, we proposed the construction of target feature vectors (TFVs) from polarimetric GPR measurements. Third, recursive algorithms and background removal are combined to improve the clutter removal. Data processing methods are assembled, combining clutter removal stage, time-frequency transformation and singular value decomposition. In total, eight data processing methods are proposed. Moreover, for every method, 13 TFVs are assembled. Then, the TFVs are used to train and test support vector machines (SVM) under a binary classification approach. Classification results are validated by using the leave-two-out cross-validation. Accuracy of 87.02% in the best classifier was obtained. The main conclusion of this thesis is that combining polarimetric GPR measurements, feature extraction using time-frequency transformations, and SVM classifications allows obtaining discriminating features that improve the IED detection rates compared with metal detector performance. Furthermore, the proposed approach can be implemented in a hand-held detection device and to be used in a humanitarian demining scenario. Keywords: Classification of improvised explosive devices, feature extraction, ground penetrating radar, permittivity of explosives, polarimetric measurements, support vector machines, ultra-wideband MIMO radar.Resumen En esta tesis, se presenta y valida una nueva técnica de radar para realizar mediciones GPR. Se proponen estructuras de procesamiento de datos GPR que utilizan filtros adaptativos y transformaciones tiempo-frecuencia como parte de la construcción de vectores de características de los objetos. Estos vectores son utilizados como entradas de un algoritmo de máquinas de soporte vectorial para discriminar los objetos enterrados como un artefacto explosivo improvisado (IED) o como un objeto aleatorio (Non-IED). Los principales aportes de esta tesis son los siguientes. Primero, se mide y se reporta la permitividad de explosivos improvisados de tipo ANFO, información que posteriormente es usada para la fabricación de objetos inertes sustitutos de los IEDs. Segundo, se propone utilizar medidas polarimétricas GPR de objetos enterrados para la construcción de vectores de características (TFVs). Tercero, dentro de las técnicas de procesamiento de las medidas polarimétricas, se propone combinar los algoritmos recursivos y la supresión de señales de fondo para mejorar la eliminación de las señales no deseadas (clutter). Además, se ensamblan ocho métodos diferentes de procesamiento de señales, los cuales combinan la fase de eliminación del clutter, transformadas de tiempo-frecuencia y la descomposición de valores singulares. Adicionalmente, para cada método, se ensamblaron 13 TFVs. Posteriormente, se utilizan estos TFVs para entrenar y probar máquinas de soporte vectorial que funcionan bajo una estructura de clasificación binaria. Los resultados de clasificación son corroborados utilizando la validación cruzada leave-two-out (“dejar dos fuera”). El mejor clasificador que se obtuvo tiene una exactitud de 87.02%. La principal conclusión de esta tesis es que al combinar las medidas GPR polarimétricas, la extracción de características mediante transformaciones tiempo-frecuencia y las máquinas de soporte vectorial, se pueden obtener características discriminatorias que mejoran las tasas de detección de IEDs, en comparación con un detector de metales. Adicionalmente, el enfoque propuesto puede ser implementado en un dispositivo de detección portátil y usarse en un escenario de desminado humanitario. Palabras clave: Clasificación de artefactos explosivos improvisados, extracción de características, radar de penetración terrestre, permitividad de explosivos, máquinas de soporte vectorial, medidas polarimétricas, radar MIMO de banda ultra ancha.Doctoradoapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería Eléctrica y ElectrónicaDepartamento de Ingeniería Eléctrica y Electrónica62 Ingeniería y operaciones afines / EngineeringGutiérrez Duarte, Sergio Alonso (2019) Application of Time-Frequency Transformations in Polarimetric Ultra-Wideband MIMO-GPR signals for Detection of Colombian Improvised Explosive Devices. Doctorado thesis, Universidad Nacional de Colombia - Sede Bogotá.Application of Time-Frequency Transformations in Polarimetric Ultra-Wideband MIMO-GPR signals for Detection of Colombian Improvised Explosive DevicesTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDClassification of improvised explosive devicesLandmine detectionGround penetrating radarFeature extractionPolarimetric measurementsSupport vector machinesUltra-wideband MIMO radarPolarimetric radarMachine learningORIGINAL74080984.2019.pdfapplication/pdf4830753https://repositorio.unal.edu.co/bitstream/unal/76613/1/74080984.2019.pdfef735e18521433c6d6700eeb6e50611aMD51THUMBNAIL74080984.2019.pdf.jpg74080984.2019.pdf.jpgGenerated Thumbnailimage/jpeg5381https://repositorio.unal.edu.co/bitstream/unal/76613/2/74080984.2019.pdf.jpg33fedb9292a03dfa76cc635d86649ea0MD52unal/76613oai:repositorio.unal.edu.co:unal/766132024-07-14 01:02:58.725Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co