Dosimetría en haces de radiación usados en la Radioterapia FLASH con haces de electrones de 7 MeV
ilustraciones, diagramas, fotografías, tablas
- Autores:
-
Avilés León, Valentina
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/86477
- Palabra clave:
- 530 - Física::539 - Física moderna
Radiometría
Radiometry
Radioterapia FLASH
radioterapia convencional
acelerador lineal de electrones
dosimetría
QA
PDD
PDD
output factors
FLASH Radiotherapy
conventional radiotherapy
electron linear accelerator
dosimetry
QA
output factors
Efectos de las radiaciones
Radiation effects
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_0098909c784cb83f9874bdbd873c0cd7 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/86477 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Dosimetría en haces de radiación usados en la Radioterapia FLASH con haces de electrones de 7 MeV |
dc.title.translated.eng.fl_str_mv |
Dosimetry in Radiation Beams Used in FLASH Radiotherapy with 7 MeV Electron Beams |
title |
Dosimetría en haces de radiación usados en la Radioterapia FLASH con haces de electrones de 7 MeV |
spellingShingle |
Dosimetría en haces de radiación usados en la Radioterapia FLASH con haces de electrones de 7 MeV 530 - Física::539 - Física moderna Radiometría Radiometry Radioterapia FLASH radioterapia convencional acelerador lineal de electrones dosimetría QA PDD PDD output factors FLASH Radiotherapy conventional radiotherapy electron linear accelerator dosimetry QA output factors Efectos de las radiaciones Radiation effects |
title_short |
Dosimetría en haces de radiación usados en la Radioterapia FLASH con haces de electrones de 7 MeV |
title_full |
Dosimetría en haces de radiación usados en la Radioterapia FLASH con haces de electrones de 7 MeV |
title_fullStr |
Dosimetría en haces de radiación usados en la Radioterapia FLASH con haces de electrones de 7 MeV |
title_full_unstemmed |
Dosimetría en haces de radiación usados en la Radioterapia FLASH con haces de electrones de 7 MeV |
title_sort |
Dosimetría en haces de radiación usados en la Radioterapia FLASH con haces de electrones de 7 MeV |
dc.creator.fl_str_mv |
Avilés León, Valentina |
dc.contributor.advisor.none.fl_str_mv |
Heinrich, Sophie Plazas de Pinzón, María Cristina |
dc.contributor.author.none.fl_str_mv |
Avilés León, Valentina |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo Fisica Medica Unalb |
dc.contributor.cvlac.spa.fl_str_mv |
Aviles, Valentina [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000128868] Aviles, Valentina [0000128868] |
dc.subject.ddc.spa.fl_str_mv |
530 - Física::539 - Física moderna |
topic |
530 - Física::539 - Física moderna Radiometría Radiometry Radioterapia FLASH radioterapia convencional acelerador lineal de electrones dosimetría QA PDD PDD output factors FLASH Radiotherapy conventional radiotherapy electron linear accelerator dosimetry QA output factors Efectos de las radiaciones Radiation effects |
dc.subject.decs.spa.fl_str_mv |
Radiometría |
dc.subject.decs.eng.fl_str_mv |
Radiometry |
dc.subject.proposal.spa.fl_str_mv |
Radioterapia FLASH radioterapia convencional acelerador lineal de electrones dosimetría QA PDD PDD output factors |
dc.subject.proposal.eng.fl_str_mv |
FLASH Radiotherapy conventional radiotherapy electron linear accelerator dosimetry QA output factors |
dc.subject.unesco.spa.fl_str_mv |
Efectos de las radiaciones |
dc.subject.unesco.eng.fl_str_mv |
Radiation effects |
description |
ilustraciones, diagramas, fotografías, tablas |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-07-16T19:51:58Z |
dc.date.available.none.fl_str_mv |
2024-07-16T19:51:58Z |
dc.date.issued.none.fl_str_mv |
2024-07-11 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/86477 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/86477 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Berry, R. J., Hall, E. J., Forster, D. W., Storr, T. H., & Goodman, M. J. (1969). Survival of mammalian cells exposed to x rays at ultra-high dose-rates. The British journal of radiology, 42(494), 102-107. Hochhaus, A., Druker, B., Sawyers, C., Guilhot, F., Schiffer, C. A., Cortes, J., ... & Kantarjian, H. M. (2008). Favorable long-term follow-up results over 6 years for response, survival, and safety with imatinib mesylate therapy in chronic-phase chronic myeloid leukemia after failure of interferon-α treatment. Blood, The Journal of the American Society of Hematology, 111(3), 1039-1043. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 71(3), 209- 249. Instituto Nacional de Cancerología (INC). (2022). Anuario estadístico. Bogotá, D. C., 19(1) Favaudon, V., Fouillade, C., & Vozenin, M. C. (2015). La radiothérapie FLASH pour épargner les tissus sains. médecine/sciences, 31(2), 121-123. Meijer, T. W., Kaanders, J. H., Span, P. N., & Bussink, J. (2012). Targeting hypoxia, HIF-1, and tumor glucose metabolism to improve radiotherapy efficacy. Clinical cancer research, 18(20), 5585-5594. Wu, Y., Zhu, K., Zhang, X., Du, W., Song, J., & Yang, H. (2023). Emerging Plasmonic Nanoparticles and Their Assemblies for Cancer Radiotherapy. Advanced Drug Delivery Reviews, 114710. Ponette, C. Le P´echoux, E. Deniaud-Alexandre, M. Fernet, N. Giocanti, H. Tourbez, V. Favaudon, V. (2000). Hyperfast, early cell response to ionizing radiation. International journal of radiation biology, 76(9), 1233-1243. Fernet, V. Ponette, E. Deniaud-Alexandre, J. M´enissier De-Murcia, G. De Murcia, N. Giocanti, F. Megnin-Chanet, V. Favaudon, M. (2000). Poly (ADP-ribose) polymerase, a major determinant of early cell response to ionizing radiation. International journal of radiation biology, 76(12), 1621-1629. Sharplin, J., & Franko, A. J. (1989). A quantitative histological study of straindependent differences in the effects of irradiation on mouse lung during the early phase. Radiation research, 119(1), 1-14. Favaudon, V., Fouillade, C., & Vozenin, M. C. (2015). Radiothérapie «flash» à très haut débit de dose: un moyen d’augmenter l’indice thérapeutique par minimisation des dommages aux tissus sains?. Cancer/Radiothérapie, 19(6-7), 526-531. Fouillade, C., Favaudon, V., Vozenin, M. C., Romeo, P. H., Bourhis, J., Verrelle, P., ... & Dutreix, M. (2017). Les promesses du haut d´ebit de dose en radioth´erapie. Bulletin du Cancer, 104(4), 380-384. Ferlay, J., Colombet, M., Soerjomataram, I., Parkin, D. M., Pi˜neros, M., Znaor, A., & Bray, F. (2021). Cancer statistics for the year 2020: An overview. International journal of cancer, 149(4), 778-789 Chhikara, B. S., & Parang, K. (2023). Global Cancer Statistics 2022: the trends projection analysis. Chemical Biology Letters, 10(1), 451-451. Globacan 2020, [En línea]. Available: https://gco.iarc.fr/today/data/factsheets/populations/170-colombia-fact-sheets.pdf [Último acceso: 02 01 2023] Chandra, R. A., Keane, F. K., Voncken, F. E., & Thomas, C. R. (2021). Contemporary radiotherapy: present and future. The Lancet, 398(10295), 171-184. Citrin, D. E. (2017). Recent developments in radiotherapy. New England journal of medicine, 377(11), 1065-1075. Abbas, Z., & Rehman, S. (2018). An overview of cancer treatment modalities. Neoplasm, 1, 139-157. Ojha, S., Bhusan Singh, R., Shukla, A., Chadha, H., & Mishra, S. (2024). Micro and Nano Robotics-assisted Targeted Drug Delivery, Surgery and Radiotherapy for Cancer Treatment. Current Cancer Therapy Reviews, 20(1), 18-25. Kim, M. M., & Zou, W. (2023). Ultra-high dose rate FLASH radiation therapy for cancer. Medical Physics. De Kruijff, R. M. (2020). FLASH radiotherapy: ultra-high dose rates to spare healthy tissue. International journal of radiation biology, 96(4), 419-423. Bos, A. J. (2011, May). Fundamentals of radiation dosimetry. In AIP Conference Proceedings (Vol. 1345, No. 1, pp. 5-23). American Institute of Physics. Brown, B. H., Smallwood, R. H., Barber, D. C., Lawford, P. V., & Hose, D. R. (2017). Medical Physics and Biomedical Engineering: Medical Science Series. CRC Press. Serway, R. A., & Jewett, J. W. (2009). Física para ciencias e ingeniería con física moderna. Cengage Learning Editores. del Castillo Belmonte, A., Jiménez, C. P., & Palmero, J. R. (2008). El nacimiento de la Física Médica: orígenes y desarrollo en el siglo XX. Llull: Revista de la Sociedad Española de Historia de las Ciencias y de las Técnicas, 31(68), 209-220. Koukourakis, I. M., & Koukourakis, M. I. (2021). Combining the past and present to advance immuno-radiotherapy of cancer. International Reviews of Immunology, 1- 17. Becquerel, H., & Curie, P. (1901). Action physiologique des rayons du radium. Compt. Rend. Acad. Sci, 132, 1289-1291. Beck, C. (1904). Rontgen ray diagnosis and therapy. D. Appleton. Freund, L. (1904). Elements of general radio-therapy for practitioners. Rebman. Reseña Histórica. (2020). Recuperado 7 de abril de 2022, de https://www.cancer.gov.co/somosinc/nuestra-institucion/resena-historica. Pinillos, L., Pinto, J. A., & Sarria, G. (2017). History of the development of radiotherapy in Latin America. ecancermedicalscience, 11. Instituto Nacional de Cancerología. (2021). Anuario Estadístico 2021. Recuperado 20 mayo de 2023, de https://cancer.micrositios.us/conozca-sobre-cancer-1/publicaciones/anuarioestadistico-2021. Ministerio de Salud y Protección Social. (2022). Anuario Estadístico 2022. Instituto Nacional de Cancerología. Recuperado 15 de diciembre de 2023, de: https://www.cancer.gov.co/conozca-sobre-cancer-1/publicaciones/anuario-estadistico2022. Dewey, D. L., & Boag, J. W. (1959). Modification of the oxygen effect when bacteria are given large pulses of radiation. Nature, 183, 1450-1451. Mayles, P., Nahum, A., & Rosenwald, J. C. (Eds.). (2007). Handbook of radiotherapy physics: theory and practice. CRC Press. Boyer, A. L., Goitein, M., Lomax, A. J., & Pedroni, E. S. (2002). Radiation in the treatment of cancer. Physics Today, 55(9), 34-36. Attix, F. H. (2008). Introduction to radiological physics and radiation dosimetry. John Wiley & Sons. Party, I. W., Thwaites, D. I., DuSautoy, A. R., Jordan, T., McEwen, M. R., Nisbet, A., ... & Pitchford, W. G. (2003). The IPEM code of practice for electron dosimetry for radiotherapy beams of initial energy from 4 to 25 MeV based on an absorbed dose to water calibration. Physics in Medicine & Biology, 48(18), 2929. Stelzer, H., & Voss, B. (2002). U.S. Patent No. 6,437,513. Washington, DC: U.S. Patent and Trademark Office. Boag, J. W. (1982). The recombination correction for an ionisation chamber exposed to pulsed radiation in a’swept beam’technique. I. Theory. Physics in Medicine & Biology, 27(2), 201. Burns, D. T., & McEwen, M. R. (1998). Ion recombination corrections for the NACP parallel-plate chamber in a pulsed electron beam. Physics in Medicine & Biology, 43(8), 2033. Gotz, M., Karsch, L., & Pawelke, J. (2017). A new model for volume recombination in plane-parallel chambers in pulsed fields of high dose-per-pulse. Physics in Medicine & Biology, 62(22), 8634. Brede, H. J., Greif, K. D., Hecker, O., Heeg, P., Heese, J., Jones, D. T. L., ... & Schardt, D. (2006). Absorbed dose to water determination with ionization chamber dosimetry and calorimetry in restricted neutron, photon, proton and heavy-ion radiation fields. Physics in Medicine & Biology, 51(15), 3667. Hohlfeld, K. (1988). The standard DIN 6800: Procedures for absorbed dose determination in radiology by the ionization method. In Dosimetry in radiotherapy Musolino, S. V. (2001). Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water; technical reports series No. 398. Karsch, L., & Pawelke, J. (2014). Theoretische Untersuchung der S¨attigungskorrektion von Ionisationskammern in gepulsten Strahlungsfeldern bei beliebiger Pulsdauer. Zeitschrift fur Medizinische Physik, 24(3), 201-210. Rossomme, S., Horn, J., Brons, S., Jakel, O., Mairani, A., Ciocca, M., ... y Palmans, H. (2017). Factor de corrección de recombinación iónica en haces de iones de luz barridos para la medición de dosis absoluta utilizando cámaras de ionización plano-paralelas. Física en Medicina y Biología, 62(13), 5365. Bourhis, J., Montay-Gruel, P., Jorge, P. G., Bailat, C., Petit, B., Ollivier, J., ... & Vozenin, M. C. (2019). Clinical translation of FLASH radiotherapy: Why and how?. Radiotherapy and oncology, 139, 11-17. Dewey, D. L., & Boag, J. W. (1959). Modification of the oxygen effect when bacteria are given large pulses of radiation. Nature, 183(4673), 1450-1451. Dewey, D. L., & Boag, J. W. (1960). INACTIVATION OF BACTERIA BY MEANS OF A SINGLE ELECTRON PULSE. Zeitschrift fuer Naturforschung (West Germany) Divided into Z. Nautrforsch., A, and Z. Naturforsch., B: Anorg. Chem., Org. Chem., Biochem., Biophys.,, 15. Town, C. D. (1967). Effect of high dose rates on survival of mammalian cells. Nature, 215(5103), 847-848. Hendry JH, Moore J V, Hodgson BW, Keene JP. The Constant Low Oxygen Concentration in All the Target Cells for Mouse Tail Radionecrosis. Radiat Res. 1982;92(1):172- 81. Epp, E. R., Weiss, H., & Santomasso, A. (1968). The oxygen effect in bacterial cells irradiated with high-intensity pulsed electrons. Radiation research, 34(2), 320-325. Field, S. B., & Bewley, D. K. (1974). Effects of dose-rate on the radiation response of rat skin. International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine, 26(3), 259-267. Hornsey, S., & Bewley, D. K. (1971). Hypoxia in mouse intestine induced by electron irradiation at high dose-rates. International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine, 19(5), 479-483. Berry, R. J., & Stedeford, J. B. H. (1972). Reproductive survival of mammalian cells after irradiation at ultra-high dose-rates: further observations and their importance for radiotherapy. The British Journal of Radiology, 45(531), 171-177. Cygler, J., Klassen, N. V., Ross, C. K., Bichay, T. J., & Raaphorst, G. P. (1994). The survival of aerobic and anoxic human glioma and melanoma cells after irradiation at ultrahigh and clinical dose rates. Radiation research, 140(1), 79-84. Nias, A. H. W., Swallow, A. J., Keene, J. P., & Hodgson, B. W. (1970). Survival of HeLa cells from 10 nanosecond pulses of electrons. International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine, 17(6), 595-598. Zackrisson, B., Nyström, U. H., & Östbergh, P. (1991). Biological Response, in vitro, to Pulsed High-dose Rate Electrons from a Clinical Accelerator. Acta Oncologica, 30(6), 747-751. Vozenin, M. C., Bourhis, J., & Durante, M. (2022). Towards clinical translation of FLASH radiotherapy. Nature Reviews Clinical Oncology, 19(12), 791-803. Favaudon, V., Caplier, L., Monceau, V., Pouzoulet, F., Sayarath, M., Fouillade, C., ... & Vozenin, M. C. (2014). Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Science translational medicine, 6(245), 245ra93-245ra93. Montay-Gruel, P., Petersson, K., Jaccard, M., Boivin, G., Germond, J. F., Petit, B., ... & Vozenin, M. C. (2017). Irradiation in a flash: Unique sparing of memory in mice after whole brain irradiation with dose rates above 100 Gy/s. Radiotherapy and Oncology, 124(3), 365-369. Montay-Gruel, P., Bouchet, A., Jaccard, M., Patin, D., Serduc, R., Aim, W., ... & Vozenin, M. C. (2018). X-rays can trigger the FLASH effect: Ultra-high dose-rate synchrotron light source prevents normal brain injury after whole brain irradiation in mice. Radiotherapy and Oncology, 129(3), 582-588. Wilson, J. D., Hammond, E. M., Higgins, G. S., & Petersson, K. (2020). Ultra-high dose rate (FLASH) radiotherapy: silver bullet or fool’s gold?. Frontiers in oncology, 9, 1563. Simmons, D. A., Lartey, F. M., Sch¨uler, E., Rafat, M., King, G., Kim, A., ... & Loo Jr, B. W. (2019). Reduced cognitive deficits after FLASH irradiation of whole mouse brain are associated with less hippocampal dendritic spine loss and neuroinflammation. Radiotherapy and Oncology, 139, 4-10. Esplen, N., Mendonca, M. S., & Bazalova-Carter, M. (2020). Physics and biology of ultrahigh dose-rate (FLASH) radiotherapy: a topical review. Physics in Medicine & Biology, 65(23), 23TR03 Montay-Gruel, P., Acharya, M. M., Gon¸calves Jorge, P., Petit, B., Petridis, I. G., Fuchs, P., ... & Vozenin, M. C. (2021). Hypofractionated FLASH-RT as an effective treatment against glioblastoma that reduces neurocognitive side effects in mice. Clinical Cancer Research, 27(3), 775-784. Chabi, S., Van To, T. H., Leavitt, R., Poglio, S., Jorge, P. G., Jaccard, M., ... & Uzan, B. (2021). Ultra-high-dose-rate FLASH and conventional-dose-rate irradiation differentially affect human acute lymphoblastic leukemia and normal hematopoiesis. International Journal of Radiation Oncology Biology Physics, 109(3), 819-829. Vozenin, M. C., De Fornel, P., Petersson, K., Favaudon, V., Jaccard, M., Germond, J. F., ... & Bourhis, J. (2019). The advantage of FLASH radiotherapy confirmed in mini-pig and cat-cancer patients. Clinical Cancer Research, 25(1), 35-42. Gaide, O., Herrera, F., Sozzi, W. J., Jorge, P. G., Kinj, R., Bailat, C., ... & Bourhis, J. (2022). Comparison of ultra-high versus conventional dose rate radiotherapy in a patient with cutaneous lymphoma. Radiotherapy and Oncology, 174, 87-91. Mascia, A. E., Daugherty, E. C., Zhang, Y., Lee, E., Xiao, Z., Sertorio, M., ... & Breneman, J. C. (2023). Proton FLASH radiotherapy for the treatment of symptomatic bone metastases: The FAST-01 nonrandomized trial. JAMA oncology, 9(1), 62-69. Bourhis, J., Sozzi, W. J., Jorge, P. G., Gaide, O., Bailat, C., Duclos, F., ... & Vozenin, M. C. (2019). Treatment of a first patient with FLASH-radiotherapy. Radiotherapy and oncology, 139, 18-22. Montay-Gruel P, Acharya MM, Jorge PG, Petit B, Petridis IG, Fuchs P, et al. Hypofractionated FLASH-RT as an effective treatment against glioblastoma that reduces neurocognitive side effects in mice. Clinical Cancer Research. 2021;27(3):775-84. Lansonneur, P., Favaudon, V., Heinrich, S., Fouillade, C., Verrelle, P., & De Marzi, L. (2019). Simulation and experimental validation of a prototype electron beam linear accelerator for preclinical studies. Physica Medica, 60, 50-57. Jaccard, M., Dur´an, M. T., Petersson, K., Germond, J. F., Liger, P., Vozenin, M. C., ... & Bailat, C. (2018). High dose-per-pulse electron beam dosimetry: commissioning of the Oriatron eRT6 prototype linear accelerator for preclinical use. Medical physics, 45(2), 863-874. Petersson, K., Jaccard, M., Germond, J. F., Buchillier, T., Bochud, F., Bourhis, J., ... & Bailat, C. (2017). High dose-per-pulse electron beam dosimetry-a model to correct for the ion recombination in the Advanced Markus ionization chamber. Medical physics, 44(3), 1157-1167. Schüler, E., Trovati, S., King, G., Lartey, F., Rafat, M., Villegas, M., ... & Maxim, P. G. (2017). Experimental platform for ultra-high dose rate FLASH irradiation of small animals using a clinical linear accelerator. International Journal of Radiation Oncology Biology Physics, 97(1), 195-203. Lempart, M., Blad, B., Adrian, G., Bäck, S., Knöös, T., Ceberg, C., & Petersson, K. (2019). Modifying a clinical linear accelerator for delivery of ultra-high dose rate irradiation. Radiotherapy and Oncology, 139, 40-45 Rahman, M., Ashraf, M. R., Zhang, R., Bruza, P., Dexter, C. A., Thompson, L., ... & Gladstone, D. J. (2021). Electron FLASH delivery at treatment room isocenter for efficient reversible conversion of a clinical LINAC. International Journal of Radiation Oncology Biology Physics, 110(3), 872-882. Felici, G., Barca, P., Barone, S., Bortoli, E., Borgheresi, R., De Stefano, S., ... & Di Martino, F. (2020). Transforming an IORT linac into a FLASH research machine: procedure and dosimetric characterization. Frontiers in Physics, 8, 374. Di Martino, F., Barca, P., Barone, S., Bortoli, E., Borgheresi, R., De Stefano, S., ... & Felici, G. (2020). FLASH radiotherapy with electrons: issues related to the production, monitoring, and dosimetric characterization of the beam. Frontiers in Physics, 8, 570697. Giuliano, L., Franciosini, G., Palumbo, L., Aggar, L., Dutreix, M., Faillace, L., ... & Heinrich, S. (2023). Characterization of Ultra-High-Dose Rate Electron Beams with ElectronFlash Linac. Applied Sciences, 13(1), 631. Moeckli, R., Gonçalves Jorge, P., Grilj, V., Oesterle, R., Cherbuin, N., Bourhis, J., ... & Bailat, C. (2021). Commissioning of an ultra‐high dose rate pulsed electron beam medical LINAC for FLASH RT preclinical animal experiments and future clinical human protocols. Medical physics, 48(6), 3134-3142. Konradsson, E. (2023). Radiotherapy in a FLASH: Towards clinical translation of ultra-high dose rate electron therapy. Jorge, P. G., Jaccard, M., Petersson, K., Gondré, M., Durán, M. T., Desorgher, L., ... & Bailat, C. (2019). Dosimetric and preparation procedures for irradiating biological models with pulsed electron beam at ultra-high dose-rate. Radiotherapy and Oncology, 139, 34-39 Petersson, K., Adrian, G., Butterworth, K., & McMahon, S. J. (2020). A quantitative analysis of the role of oxygen tension in FLASH radiation therapy. International Journal of Radiation Oncology* Biology* Physics, 107(3), 539-547. Weiss, H., Epp, E. R., Heslin, J. M., Ling, C. C., & Santomasso, A. (1974). Oxygen depletion in cells irradiated at ultra-high dose-rates and at conventional dose-rates. International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine, 26(1), 17-29 Pratx, G., & Kapp, D. S. (2019). A computational model of radiolytic oxygen depletion during FLASH irradiation and its effect on the oxygen enhancement ratio. Physics in Medicine & Biology, 64(18), 185005. Schüller, A., Heinrich, S., Fouillade, C., Subiel, A., De Marzi, L., Romano, F., ... & Vozenin, M. C. (2020). The European Joint Research Project UHDpulse–Metrology for advanced radiotherapy using particle beams with ultra-high pulse dose rates. Physica Medica, 80, 134-150. Petersson, K., Jaccard, M., Germond, J. F., Buchillier, T., Bochud, F., Bourhis, J., ... & Bailat, C. (2017). High dose‐per‐pulse electron beam dosimetry—a model to correct for the ion recombination in the Advanced Markus ionization chamber. Medical physics, 44(3), 1157-1167. Rossomme, S., Horn, J., Brons, S., Jäkel, O., Mairani, A., Ciocca, M., ... & Palmans, H. (2017). Ion recombination correction factor in scanned light-ion beams for absolute dose measurement using plane-parallel ionisation chambers. Physics in Medicine & Biology, 62(13), 5365. Wuensch, W. (2021, December). The CHUV-CERN facility for FLASH treatment of large, deep-seated tumors: the DEFT (Deep Electron FLASH Therapy) facility. In Proceedings of the FLASH Radiotherapy & Particle Therapy Conference, Barcelona, Spain (pp. 1-3). Maxim, P. G., Tantawi, S. G., & Loo Jr, B. W. (2019). PHASER: A platform for clinical translation of FLASH cancer radiotherapy. Radiotherapy and Oncology, 139, 28-33. Johnston, J., Comello, R. J., Vealé, B. L., & Killion, J. (2010). Radiation exposure dose trends and radiation dose reduction strategies in medical imaging. Journal of Medical Imaging and Radiation Sciences, 41(3), 137-144 Timins JK. 2011. Communication of benefits and risks of medical radiation: a historical perspective. Health Phys. 101(5):562–565. Muller, H. J. (1927). Artificial transmutation of the gene. Science, 66(1699), 84-87 Lipshutz, G. S., Brennan, T. V., & Warren, R. S. (2002). Neoplasia hepática inducida por Thorotrast: una revisión colectiva. Revista del Colegio Americano de Cirujanos, 195(5), 713-718. Folley, J. H., Borges, W., & Yamawaki, T. (1952). Incidence of leukemia in survivors of the atomic bomb in Hiroshima and Nagasaki, Japan. The American journal of medicine, 13(3), 311-321 Hsu, W. L., Preston, D. L., Soda, M., Sugiyama, H., Funamoto, S., Kodama, K., ... & Mabuchi, K. (2013). The incidence of leukemia, lymphoma and multiple myeloma among atomic bomb survivors: 1950–2001. Radiation research, 179(3), 361-382. Fowler, J. F., Bewley, D. K., Morgan, R. L., Ann Silvester, J., ALPER, T., & HORNSEY, S. (1963). Dose-effect relationships for radiation damage to organized tissues. Nature (London), 199(4890). Williams, J. P., & Newhauser, W. (2018). Normal tissue damage: its importance, history and challenges for the future. The British journal of radiology, 92(1093), 20180048 Michalowski, A. (1984). A critical appraisal of clonogenic survival assays in the evaluation of radiation damage to normal tissues. Radiotherapy and Oncology, 1(3), 241-246 Rubin, P., & Casarett, G. W. (1968). Clinical radiation pathology as applied to curative radiotherapy. Cancer, 22(4), 767-778 Spear, F. G., & Grimmett, L. G. (1933). The biological response to gamma rays of radium as a function of the intensity of radiation. The British Journal of Radiology, 6(67), 387-403. Orton, C. G. (2001). High-dose-rate brachytherapy may be radiobiologically superior to low-dose rate due to slow repair of late-responding normal tissue cells. International Journal of Radiation Oncology* Biology* Physics, 49(1), 183-189. King, C. R. (2002). LDR vs. HDR brachytherapy for localized prostate cancer: the view from radiobiological models. Brachytherapy, 1(4), 219-226. Hornsey, S., & Alper, T. (1966). Unexpected dose-rate effect in the killing of mice by radiation. Nature, 210(5032), 212-213 Hendry, J. H., Moore, J. V., Hodgson, B. W., & Keene, J. P. (1982). The constant low oxygen concentration in all the target cells for mouse tail radionecrosis. Radiation research, 92(1), 172-181 Disponible en línea: https://www.soiort.com/flash-rt-technology/ (accedido el 5 de octubre de 2023). Disponible en line: https://curie.fr/actualite/radiotherapie/radiotherapie-flash- leffervescence-dun-tournant-prometteur (accedido el 20 de octubre de 2023). Disponible en linea: https://www.teledynelecroy.com/oscilloscope/oscilloscopemodel.aspx?modelid=11 385 (accedido el 8 de octubre de 2023). Recommendations for a dosimetry protocol (Code of Practice) for traceable absorbed dose measurement in ultra-high pulse dose rate electron beams under reference conditions Disponible en linea: https://www.ptwdosimetry.com/en/products/flashdiamond- detector (accedido octubre 2023). Disponible en linea: EBT-XD SPECIFICATION AND USER GUIDE, http://www.gafchromic.com/gafchromic-film/radiotherapy-films/EBT/index.asp. (accedido octubre 2023). Palmer, A. L., Dimitriadis, A., Nisbet, A., & Clark, C. H. (2015). Evaluation of Gafchromic EBT-XD film, with comparison to EBT3 film, and application in high dose radiotherapy verification. Physics in Medicine & Biology, 60(22), 8741 Manual del Electon-Flash 4000 Manual del electrometro de PTW Lara, R. (2001). HISTORIA DE LA RADIOTERAPIA EN LATINOAMÉRICA, 1º edición, España, ARÁN ediciones s.l.. Wang, Y., Easterling, S. B., & Ting, J. Y. (2012). Ion recombination corrections of ionization chambers in flattening filter‐free photon radiation. Journal of applied clinical medical physics, 13(5), 262-268. Disponible en linea: https://www- pub.iaea.org/MTCD/Publications/PDF/TRS_398s_Web.pdf (accedido septiembre de 2023). Chow, J. C., & Ruda, H. E. (2023). Flash radiotherapy: Innovative cancer treatment. Encyclopedia, 3(3), 808-823. Ursino, S., Gadducci, G., Giannini, N., Gonnelli, A., Fuentes, T., Di Martino, F., & Paiar, F. (2023). Nuevos conocimientos sobre las perspectivas clínicas de la radioterapia FLASH: de baja a muy alta energía de electrones. Fronteras en Oncología, 13. Disponible en línea: www.gafchromic.com, consultado el 30 de diciembre de 2022. . Hornsey, S., & Alper, T. (1966). Unexpected dose-rate effect in the killing of mice by radiation. Nature, 210(5032), 212-213. Favaudon, V., Caplier, L., Monceau, V., Pouzoulet, F., Sayarath, M., Fouillade, C., ... & Vozenin, M. C. (2014). Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Science translational medicine, 6(245), 245ra93-245ra93. Fouillade C, Curras-Alonso S, Giuranno L, Quelennec E, Heinrich S, Bonnet- Boissinot S, Beddok A, Leboucher S, Karakurt HU, Bohec M, Baulande S, Vooijs M, Verrelle P, Dutreix M, LondoEœ no-Vallejo A, Favaudon V. FLASH irradiation spares lung ¨ progenitor cells and limits the incidence of radio-induced senescence. Clin Cancer Res 2019. https://doi.org/10.1158/1078-0432.CCR-19-1440. clincanres.1440.2019 Levy K, Natarajan S, Wang J, Chow S, Eggold J, Loo P, Manjappa R, Lartey FM, Schüler E, Skinner L, Rafat M, Ko R, Kim A, Al Rawi D, von Eyben R, Dorigo O, Casey KM, Graves EE, Bush K, Yu AS, Koong AC, Maxim PG, Loo BW, Rankin EB. FLASH irradiation enhances the therapeutic index of abdominal radiotherapy in mice 2019;bioRxiv 2019(12). https://doi.org/10.1101/2019.12.12.873414. 12.873414. Montay-Gruel P, Petersson K, Jaccard M, Boivin G, Germond J-F, Petit B, Doenlen R, Favaudon V, Bochud F, Bailat C, Bourhis J, Vozenin M-C. Irradiation in a flash: Unique sparing of memory in mice after whole brain irradiation with dose rates above 100Gy/s. Radiother Oncol 2017;124(3):365-9. https://doi.org/10.1016/j.radonc.2017.05.003. ISSN 0167-8140. Schüler E, Trovati S, King G, Lartey F, Rafat M, Loo B, Maxim P. TU-H-CAMPUS-TeP2-02: FLASH Irradiation Improves the Therapeutic Index Following GI Tract Irradiation. Med Phys 2016;43(6Part37):3783. https://doi.org/10.1118/1.4957690. ISSN 0094-2405. Vozenin, M. C., Hendry, J. H., & Limoli, C. L. (2019). Biological benefits of ultrahigh dose rate FLASH radiotherapy: sleeping beauty awoken. Clinical oncology, 31(7), 407-415. Vozenin, M. C., De Fornel, P., Petersson, K., Favaudon, V., Jaccard, M., Germond, J. F., ... & Bourhis, J. (2019). The advantage of FLASH radiotherapy confirmed in mini-pig and cat-cancer patients. Clinical Cancer Research, 25(1), 35-42. Bourhis, J., Sozzi, W. J., Jorge, P. G., Gaide, O., Bailat, C., Duclos, F., ... & Vozenin, M. C. (2019). Treatment of a first patient with FLASH-radiotherapy. Radiotherapy and oncology, 139, 18-22. Sch¨uller, A., Heinrich, S., Fouillade, C., Subiel, A., De Marzi, L., Romano, F., ... & Vozenin, M. C. (2020). The European Joint Research Project UHDpulse − Metrology for advanced radiotherapy using particle beams with ultra-high pulse dose rates. Physica Medica, 80, 134-150. Kokurewicz, K., Sch¨uller, A., Brunetti, E., Subiel, A., Kranzer, R., Hackel, T., ... & Jaroszynski, D. A. (2020). Dosimetry for new radiation therapy approaches using high energy electron accelerators. Frontiers in Physics, 8, 568302. Marinelli, M., Felici, G., Galante, F., Gasparini, A., Giuliano, L., Heinrich, S., ... & Verona Rinati, G. (2022). Design, realization, and characterization of a novel diamond detector prototype for FLASH radiotherapy dosimetry. Medical Physics, 49(3), 1902- 1910. |
dc.rights.spa.fl_str_mv |
Derechos reservados al autor, 2024 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados al autor, 2024 http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xv, 79 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Física Médica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/86477/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/86477/2/1075544942.2024.pdf https://repositorio.unal.edu.co/bitstream/unal/86477/3/1075544942.2024.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 7373ab4ab6429e10c7013b31d23a3725 b246021c9313cb6d8c6ea5dc1b615a7f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089880142086144 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados al autor, 2024http://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Heinrich, Sophie16a285428134284e03e12e83afdc5972Plazas de Pinzón, María Cristina2d91ad85f28aa72577a96576b0fa8084Avilés León, Valentina6b1b1d4dbcf3c65c601ae093487f716bGrupo Fisica Medica UnalbAviles, Valentina [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000128868]Aviles, Valentina [0000128868]2024-07-16T19:51:58Z2024-07-16T19:51:58Z2024-07-11https://repositorio.unal.edu.co/handle/unal/86477Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografías, tablasEl fenómeno radiobiológico conocido como efecto FLASH ha despertado considerable interés en la comunidad científica mundial. Estudios preclínicos han resaltado su notable capacidad para mitigar los efectos colaterales en tejidos sanos mientras mantiene la eficacia en tejidos tumorales. Este procedimiento juega un papel crucial en la expansión de las posibilidades terapéuticas y en mejorar la efectividad de la radioterapia al administrar dosis altas de radiación en intervalos de tiempo extremadamente corto, con tasas de dosis promedio excepcionalmente altas que superan los 40 Gy/s. Es importante destacar que la irradiación instantánea con dosis de energía ultra alta asociada con la Radioterapia FLASH presenta desafíos significativos en la medición y cuantificación de la dosis. La escasez de literatura, protocolos y orientación en este campo es uno de los desafíos que enfrenta esta área de investigación. A pesar de numerosos estudios sobre dosimetría en radioterapia FLASH, sigue existiendo una brecha considerable en el conocimiento de física médica. Además, considerar la relación entre parámetros temporales del haz de radiación, como la tasa de dosis, dosis por pulso y tasa de dosis promedio dentro del pulso, sigue siendo un desafío significativo. En este trabajo final de maestría, se llevarán a cabo mediciones dosimétricas de haces de electrones de 5 y 7 MeV, tanto en modalidades convencionales como FLASH. Este enfoque jugará un papel crucial en la comprensión de la dosimetría en la Radioterapia FLASH. Se anticipa que procedimientos como la determinación de curvas de PDD, controles de calidad diarios tanto para modalidades FLASH como convencionales, la evaluación de la dosis por pulso [Gy/pulso] en relación con la longitud real del pulso [µs], y la determinación de los output factors, entre otras medidas dosimétricos incorporados en este estudio, contribuirán significativamente a la caracterización precisa del haz de electrones para ambas energías. Este enriquecimiento se traducirá en una comprensión más profunda de la dosimetría para haces de electrones de ultra alta energía, fortaleciendo la base de conocimientos esencial para su aplicación en protocolos de aseguramiento de calidad de haces de radiación. (Texto tomado de la fuente)The radiobiological phenomenon known as the FLASH effect has sparked considerable interest in the global scientific community. Preclinical studies have highlighted its remarkable ability to mitigate adverse effects on healthy tissues while maintaining efficacy in tumor tissues. This procedure plays a crucial role in expanding therapeutic possibilities and improving the effectiveness of radiotherapy by delivering high-energy doses in brief time intervals, with exceptionally high average dose rates exceeding 40 Gy/s. It is noteworthy that instantaneous irradiation with ultra-high energy doses associated with FLASH Radiotherapy poses significant challenges in measuring and quantifying the dose. The scarcity of literature, protocols, and guidance in this field is one of the challenges facing this research area. Despite numerous studies on dosimetry in FLASH radiotherapy, there remains a considerable gap in medical physics knowledge. Additionally, considering the relationship betweentemporal parameters of the radiation beam, such as dose rate, dose per pulse, and average dose rate within the pulse, remains a significant challenge. In this final master’s thesis proposal, dosimetric measurements of 5 and 7 MeV electron beams will be conducted, both in conventional and FLASH modes. This approach will play a crucial role in understanding dosimetry in FLASH Radiotherapy. It is anticipated that procedures such as determining PDD curves, daily quality controls for both FLASH and conventional modalities, evaluating the dose per pulse [Gy/pulse] in relation to the actual pulse length [µs], and determining output factors, among other dosimetric tests incorporated in this study, will significantly contribute to the precise characterization of the electron beam for both energies. This enrichment will translate into a deeper understanding of dosimetry for ultra-high-energy electron beams, strengthening the essential knowledge base for their application in radiation beam quality assurance protocols.MaestríaMagíster en Física MédicaRadioterapia FLASHxv, 79 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Física MédicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá530 - Física::539 - Física modernaRadiometríaRadiometryRadioterapia FLASHradioterapia convencionalacelerador lineal de electronesdosimetríaQAPDDPDDoutput factorsFLASH Radiotherapyconventional radiotherapyelectron linear acceleratordosimetryQAoutput factorsEfectos de las radiacionesRadiation effectsDosimetría en haces de radiación usados en la Radioterapia FLASH con haces de electrones de 7 MeVDosimetry in Radiation Beams Used in FLASH Radiotherapy with 7 MeV Electron BeamsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBerry, R. J., Hall, E. J., Forster, D. W., Storr, T. H., & Goodman, M. J. (1969). Survival of mammalian cells exposed to x rays at ultra-high dose-rates. The British journal of radiology, 42(494), 102-107.Hochhaus, A., Druker, B., Sawyers, C., Guilhot, F., Schiffer, C. A., Cortes, J., ... & Kantarjian, H. M. (2008). Favorable long-term follow-up results over 6 years for response, survival, and safety with imatinib mesylate therapy in chronic-phase chronic myeloid leukemia after failure of interferon-α treatment. Blood, The Journal of the American Society of Hematology, 111(3), 1039-1043.Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 71(3), 209- 249.Instituto Nacional de Cancerología (INC). (2022). Anuario estadístico. Bogotá, D. C., 19(1)Favaudon, V., Fouillade, C., & Vozenin, M. C. (2015). La radiothérapie FLASH pour épargner les tissus sains. médecine/sciences, 31(2), 121-123.Meijer, T. W., Kaanders, J. H., Span, P. N., & Bussink, J. (2012). Targeting hypoxia, HIF-1, and tumor glucose metabolism to improve radiotherapy efficacy. Clinical cancer research, 18(20), 5585-5594.Wu, Y., Zhu, K., Zhang, X., Du, W., Song, J., & Yang, H. (2023). Emerging Plasmonic Nanoparticles and Their Assemblies for Cancer Radiotherapy. Advanced Drug Delivery Reviews, 114710.Ponette, C. Le P´echoux, E. Deniaud-Alexandre, M. Fernet, N. Giocanti, H. Tourbez, V. Favaudon, V. (2000). Hyperfast, early cell response to ionizing radiation. International journal of radiation biology, 76(9), 1233-1243.Fernet, V. Ponette, E. Deniaud-Alexandre, J. M´enissier De-Murcia, G. De Murcia, N. Giocanti, F. Megnin-Chanet, V. Favaudon, M. (2000). Poly (ADP-ribose) polymerase, a major determinant of early cell response to ionizing radiation. International journal of radiation biology, 76(12), 1621-1629.Sharplin, J., & Franko, A. J. (1989). A quantitative histological study of straindependent differences in the effects of irradiation on mouse lung during the early phase. Radiation research, 119(1), 1-14.Favaudon, V., Fouillade, C., & Vozenin, M. C. (2015). Radiothérapie «flash» à très haut débit de dose: un moyen d’augmenter l’indice thérapeutique par minimisation des dommages aux tissus sains?. Cancer/Radiothérapie, 19(6-7), 526-531.Fouillade, C., Favaudon, V., Vozenin, M. C., Romeo, P. H., Bourhis, J., Verrelle, P., ... & Dutreix, M. (2017). Les promesses du haut d´ebit de dose en radioth´erapie. Bulletin du Cancer, 104(4), 380-384.Ferlay, J., Colombet, M., Soerjomataram, I., Parkin, D. M., Pi˜neros, M., Znaor, A., & Bray, F. (2021). Cancer statistics for the year 2020: An overview. International journal of cancer, 149(4), 778-789Chhikara, B. S., & Parang, K. (2023). Global Cancer Statistics 2022: the trends projection analysis. Chemical Biology Letters, 10(1), 451-451.Globacan 2020, [En línea]. Available: https://gco.iarc.fr/today/data/factsheets/populations/170-colombia-fact-sheets.pdf [Último acceso: 02 01 2023]Chandra, R. A., Keane, F. K., Voncken, F. E., & Thomas, C. R. (2021). Contemporary radiotherapy: present and future. The Lancet, 398(10295), 171-184.Citrin, D. E. (2017). Recent developments in radiotherapy. New England journal of medicine, 377(11), 1065-1075.Abbas, Z., & Rehman, S. (2018). An overview of cancer treatment modalities. Neoplasm, 1, 139-157.Ojha, S., Bhusan Singh, R., Shukla, A., Chadha, H., & Mishra, S. (2024). Micro and Nano Robotics-assisted Targeted Drug Delivery, Surgery and Radiotherapy for Cancer Treatment. Current Cancer Therapy Reviews, 20(1), 18-25.Kim, M. M., & Zou, W. (2023). Ultra-high dose rate FLASH radiation therapy for cancer. Medical Physics.De Kruijff, R. M. (2020). FLASH radiotherapy: ultra-high dose rates to spare healthy tissue. International journal of radiation biology, 96(4), 419-423.Bos, A. J. (2011, May). Fundamentals of radiation dosimetry. In AIP Conference Proceedings (Vol. 1345, No. 1, pp. 5-23). American Institute of Physics.Brown, B. H., Smallwood, R. H., Barber, D. C., Lawford, P. V., & Hose, D. R. (2017). Medical Physics and Biomedical Engineering: Medical Science Series. CRC Press.Serway, R. A., & Jewett, J. W. (2009). Física para ciencias e ingeniería con física moderna. Cengage Learning Editores.del Castillo Belmonte, A., Jiménez, C. P., & Palmero, J. R. (2008). El nacimiento de la Física Médica: orígenes y desarrollo en el siglo XX. Llull: Revista de la Sociedad Española de Historia de las Ciencias y de las Técnicas, 31(68), 209-220.Koukourakis, I. M., & Koukourakis, M. I. (2021). Combining the past and present to advance immuno-radiotherapy of cancer. International Reviews of Immunology, 1- 17.Becquerel, H., & Curie, P. (1901). Action physiologique des rayons du radium. Compt. Rend. Acad. Sci, 132, 1289-1291.Beck, C. (1904). Rontgen ray diagnosis and therapy. D. Appleton.Freund, L. (1904). Elements of general radio-therapy for practitioners. Rebman.Reseña Histórica. (2020). Recuperado 7 de abril de 2022, de https://www.cancer.gov.co/somosinc/nuestra-institucion/resena-historica.Pinillos, L., Pinto, J. A., & Sarria, G. (2017). History of the development of radiotherapy in Latin America. ecancermedicalscience, 11.Instituto Nacional de Cancerología. (2021). Anuario Estadístico 2021. Recuperado 20 mayo de 2023, de https://cancer.micrositios.us/conozca-sobre-cancer-1/publicaciones/anuarioestadistico-2021.Ministerio de Salud y Protección Social. (2022). Anuario Estadístico 2022. Instituto Nacional de Cancerología. Recuperado 15 de diciembre de 2023, de: https://www.cancer.gov.co/conozca-sobre-cancer-1/publicaciones/anuario-estadistico2022.Dewey, D. L., & Boag, J. W. (1959). Modification of the oxygen effect when bacteria are given large pulses of radiation. Nature, 183, 1450-1451.Mayles, P., Nahum, A., & Rosenwald, J. C. (Eds.). (2007). Handbook of radiotherapy physics: theory and practice. CRC Press.Boyer, A. L., Goitein, M., Lomax, A. J., & Pedroni, E. S. (2002). Radiation in the treatment of cancer. Physics Today, 55(9), 34-36.Attix, F. H. (2008). Introduction to radiological physics and radiation dosimetry. John Wiley & Sons.Party, I. W., Thwaites, D. I., DuSautoy, A. R., Jordan, T., McEwen, M. R., Nisbet, A., ... & Pitchford, W. G. (2003). The IPEM code of practice for electron dosimetry for radiotherapy beams of initial energy from 4 to 25 MeV based on an absorbed dose to water calibration. Physics in Medicine & Biology, 48(18), 2929.Stelzer, H., & Voss, B. (2002). U.S. Patent No. 6,437,513. Washington, DC: U.S. Patent and Trademark Office.Boag, J. W. (1982). The recombination correction for an ionisation chamber exposed to pulsed radiation in a’swept beam’technique. I. Theory. Physics in Medicine & Biology, 27(2), 201.Burns, D. T., & McEwen, M. R. (1998). Ion recombination corrections for the NACP parallel-plate chamber in a pulsed electron beam. Physics in Medicine & Biology, 43(8), 2033.Gotz, M., Karsch, L., & Pawelke, J. (2017). A new model for volume recombination in plane-parallel chambers in pulsed fields of high dose-per-pulse. Physics in Medicine & Biology, 62(22), 8634.Brede, H. J., Greif, K. D., Hecker, O., Heeg, P., Heese, J., Jones, D. T. L., ... & Schardt, D. (2006). Absorbed dose to water determination with ionization chamber dosimetry and calorimetry in restricted neutron, photon, proton and heavy-ion radiation fields. Physics in Medicine & Biology, 51(15), 3667.Hohlfeld, K. (1988). The standard DIN 6800: Procedures for absorbed dose determination in radiology by the ionization method. In Dosimetry in radiotherapyMusolino, S. V. (2001). Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water; technical reports series No. 398.Karsch, L., & Pawelke, J. (2014). Theoretische Untersuchung der S¨attigungskorrektion von Ionisationskammern in gepulsten Strahlungsfeldern bei beliebiger Pulsdauer. Zeitschrift fur Medizinische Physik, 24(3), 201-210.Rossomme, S., Horn, J., Brons, S., Jakel, O., Mairani, A., Ciocca, M., ... y Palmans, H. (2017). Factor de corrección de recombinación iónica en haces de iones de luz barridos para la medición de dosis absoluta utilizando cámaras de ionización plano-paralelas. Física en Medicina y Biología, 62(13), 5365.Bourhis, J., Montay-Gruel, P., Jorge, P. G., Bailat, C., Petit, B., Ollivier, J., ... & Vozenin, M. C. (2019). Clinical translation of FLASH radiotherapy: Why and how?. Radiotherapy and oncology, 139, 11-17.Dewey, D. L., & Boag, J. W. (1959). Modification of the oxygen effect when bacteria are given large pulses of radiation. Nature, 183(4673), 1450-1451.Dewey, D. L., & Boag, J. W. (1960). INACTIVATION OF BACTERIA BY MEANS OF A SINGLE ELECTRON PULSE. Zeitschrift fuer Naturforschung (West Germany) Divided into Z. Nautrforsch., A, and Z. Naturforsch., B: Anorg. Chem., Org. Chem., Biochem., Biophys.,, 15.Town, C. D. (1967). Effect of high dose rates on survival of mammalian cells. Nature, 215(5103), 847-848.Hendry JH, Moore J V, Hodgson BW, Keene JP. The Constant Low Oxygen Concentration in All the Target Cells for Mouse Tail Radionecrosis. Radiat Res. 1982;92(1):172- 81.Epp, E. R., Weiss, H., & Santomasso, A. (1968). The oxygen effect in bacterial cells irradiated with high-intensity pulsed electrons. Radiation research, 34(2), 320-325.Field, S. B., & Bewley, D. K. (1974). Effects of dose-rate on the radiation response of rat skin. International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine, 26(3), 259-267.Hornsey, S., & Bewley, D. K. (1971). Hypoxia in mouse intestine induced by electron irradiation at high dose-rates. International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine, 19(5), 479-483.Berry, R. J., & Stedeford, J. B. H. (1972). Reproductive survival of mammalian cells after irradiation at ultra-high dose-rates: further observations and their importance for radiotherapy. The British Journal of Radiology, 45(531), 171-177.Cygler, J., Klassen, N. V., Ross, C. K., Bichay, T. J., & Raaphorst, G. P. (1994). The survival of aerobic and anoxic human glioma and melanoma cells after irradiation at ultrahigh and clinical dose rates. Radiation research, 140(1), 79-84.Nias, A. H. W., Swallow, A. J., Keene, J. P., & Hodgson, B. W. (1970). Survival of HeLa cells from 10 nanosecond pulses of electrons. International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine, 17(6), 595-598.Zackrisson, B., Nyström, U. H., & Östbergh, P. (1991). Biological Response, in vitro, to Pulsed High-dose Rate Electrons from a Clinical Accelerator. Acta Oncologica, 30(6), 747-751.Vozenin, M. C., Bourhis, J., & Durante, M. (2022). Towards clinical translation of FLASH radiotherapy. Nature Reviews Clinical Oncology, 19(12), 791-803.Favaudon, V., Caplier, L., Monceau, V., Pouzoulet, F., Sayarath, M., Fouillade, C., ... & Vozenin, M. C. (2014). Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Science translational medicine, 6(245), 245ra93-245ra93.Montay-Gruel, P., Petersson, K., Jaccard, M., Boivin, G., Germond, J. F., Petit, B., ... & Vozenin, M. C. (2017). Irradiation in a flash: Unique sparing of memory in mice after whole brain irradiation with dose rates above 100 Gy/s. Radiotherapy and Oncology, 124(3), 365-369.Montay-Gruel, P., Bouchet, A., Jaccard, M., Patin, D., Serduc, R., Aim, W., ... & Vozenin, M. C. (2018). X-rays can trigger the FLASH effect: Ultra-high dose-rate synchrotron light source prevents normal brain injury after whole brain irradiation in mice. Radiotherapy and Oncology, 129(3), 582-588.Wilson, J. D., Hammond, E. M., Higgins, G. S., & Petersson, K. (2020). Ultra-high dose rate (FLASH) radiotherapy: silver bullet or fool’s gold?. Frontiers in oncology, 9, 1563.Simmons, D. A., Lartey, F. M., Sch¨uler, E., Rafat, M., King, G., Kim, A., ... & Loo Jr, B. W. (2019). Reduced cognitive deficits after FLASH irradiation of whole mouse brain are associated with less hippocampal dendritic spine loss and neuroinflammation. Radiotherapy and Oncology, 139, 4-10.Esplen, N., Mendonca, M. S., & Bazalova-Carter, M. (2020). Physics and biology of ultrahigh dose-rate (FLASH) radiotherapy: a topical review. Physics in Medicine & Biology, 65(23), 23TR03Montay-Gruel, P., Acharya, M. M., Gon¸calves Jorge, P., Petit, B., Petridis, I. G., Fuchs, P., ... & Vozenin, M. C. (2021). Hypofractionated FLASH-RT as an effective treatment against glioblastoma that reduces neurocognitive side effects in mice. Clinical Cancer Research, 27(3), 775-784.Chabi, S., Van To, T. H., Leavitt, R., Poglio, S., Jorge, P. G., Jaccard, M., ... & Uzan, B. (2021). Ultra-high-dose-rate FLASH and conventional-dose-rate irradiation differentially affect human acute lymphoblastic leukemia and normal hematopoiesis. International Journal of Radiation Oncology Biology Physics, 109(3), 819-829.Vozenin, M. C., De Fornel, P., Petersson, K., Favaudon, V., Jaccard, M., Germond, J. F., ... & Bourhis, J. (2019). The advantage of FLASH radiotherapy confirmed in mini-pig and cat-cancer patients. Clinical Cancer Research, 25(1), 35-42.Gaide, O., Herrera, F., Sozzi, W. J., Jorge, P. G., Kinj, R., Bailat, C., ... & Bourhis, J. (2022). Comparison of ultra-high versus conventional dose rate radiotherapy in a patient with cutaneous lymphoma. Radiotherapy and Oncology, 174, 87-91.Mascia, A. E., Daugherty, E. C., Zhang, Y., Lee, E., Xiao, Z., Sertorio, M., ... & Breneman, J. C. (2023). Proton FLASH radiotherapy for the treatment of symptomatic bone metastases: The FAST-01 nonrandomized trial. JAMA oncology, 9(1), 62-69.Bourhis, J., Sozzi, W. J., Jorge, P. G., Gaide, O., Bailat, C., Duclos, F., ... & Vozenin, M. C. (2019). Treatment of a first patient with FLASH-radiotherapy. Radiotherapy and oncology, 139, 18-22.Montay-Gruel P, Acharya MM, Jorge PG, Petit B, Petridis IG, Fuchs P, et al. Hypofractionated FLASH-RT as an effective treatment against glioblastoma that reduces neurocognitive side effects in mice. Clinical Cancer Research. 2021;27(3):775-84.Lansonneur, P., Favaudon, V., Heinrich, S., Fouillade, C., Verrelle, P., & De Marzi, L. (2019). Simulation and experimental validation of a prototype electron beam linear accelerator for preclinical studies. Physica Medica, 60, 50-57.Jaccard, M., Dur´an, M. T., Petersson, K., Germond, J. F., Liger, P., Vozenin, M. C., ... & Bailat, C. (2018). High dose-per-pulse electron beam dosimetry: commissioning of the Oriatron eRT6 prototype linear accelerator for preclinical use. Medical physics, 45(2), 863-874.Petersson, K., Jaccard, M., Germond, J. F., Buchillier, T., Bochud, F., Bourhis, J., ... & Bailat, C. (2017). High dose-per-pulse electron beam dosimetry-a model to correct for the ion recombination in the Advanced Markus ionization chamber. Medical physics, 44(3), 1157-1167.Schüler, E., Trovati, S., King, G., Lartey, F., Rafat, M., Villegas, M., ... & Maxim, P. G. (2017). Experimental platform for ultra-high dose rate FLASH irradiation of small animals using a clinical linear accelerator. International Journal of Radiation Oncology Biology Physics, 97(1), 195-203.Lempart, M., Blad, B., Adrian, G., Bäck, S., Knöös, T., Ceberg, C., & Petersson, K. (2019). Modifying a clinical linear accelerator for delivery of ultra-high dose rate irradiation. Radiotherapy and Oncology, 139, 40-45Rahman, M., Ashraf, M. R., Zhang, R., Bruza, P., Dexter, C. A., Thompson, L., ... & Gladstone, D. J. (2021). Electron FLASH delivery at treatment room isocenter for efficient reversible conversion of a clinical LINAC. International Journal of Radiation Oncology Biology Physics, 110(3), 872-882.Felici, G., Barca, P., Barone, S., Bortoli, E., Borgheresi, R., De Stefano, S., ... & Di Martino, F. (2020). Transforming an IORT linac into a FLASH research machine: procedure and dosimetric characterization. Frontiers in Physics, 8, 374.Di Martino, F., Barca, P., Barone, S., Bortoli, E., Borgheresi, R., De Stefano, S., ... & Felici, G. (2020). FLASH radiotherapy with electrons: issues related to the production, monitoring, and dosimetric characterization of the beam. Frontiers in Physics, 8, 570697.Giuliano, L., Franciosini, G., Palumbo, L., Aggar, L., Dutreix, M., Faillace, L., ... & Heinrich, S. (2023). Characterization of Ultra-High-Dose Rate Electron Beams with ElectronFlash Linac. Applied Sciences, 13(1), 631.Moeckli, R., Gonçalves Jorge, P., Grilj, V., Oesterle, R., Cherbuin, N., Bourhis, J., ... & Bailat, C. (2021). Commissioning of an ultra‐high dose rate pulsed electron beam medical LINAC for FLASH RT preclinical animal experiments and future clinical human protocols. Medical physics, 48(6), 3134-3142.Konradsson, E. (2023). Radiotherapy in a FLASH: Towards clinical translation of ultra-high dose rate electron therapy.Jorge, P. G., Jaccard, M., Petersson, K., Gondré, M., Durán, M. T., Desorgher, L., ... & Bailat, C. (2019). Dosimetric and preparation procedures for irradiating biological models with pulsed electron beam at ultra-high dose-rate. Radiotherapy and Oncology, 139, 34-39Petersson, K., Adrian, G., Butterworth, K., & McMahon, S. J. (2020). A quantitative analysis of the role of oxygen tension in FLASH radiation therapy. International Journal of Radiation Oncology* Biology* Physics, 107(3), 539-547.Weiss, H., Epp, E. R., Heslin, J. M., Ling, C. C., & Santomasso, A. (1974). Oxygen depletion in cells irradiated at ultra-high dose-rates and at conventional dose-rates. International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine, 26(1), 17-29Pratx, G., & Kapp, D. S. (2019). A computational model of radiolytic oxygen depletion during FLASH irradiation and its effect on the oxygen enhancement ratio. Physics in Medicine & Biology, 64(18), 185005.Schüller, A., Heinrich, S., Fouillade, C., Subiel, A., De Marzi, L., Romano, F., ... & Vozenin, M. C. (2020). The European Joint Research Project UHDpulse–Metrology for advanced radiotherapy using particle beams with ultra-high pulse dose rates. Physica Medica, 80, 134-150.Petersson, K., Jaccard, M., Germond, J. F., Buchillier, T., Bochud, F., Bourhis, J., ... & Bailat, C. (2017). High dose‐per‐pulse electron beam dosimetry—a model to correct for the ion recombination in the Advanced Markus ionization chamber. Medical physics, 44(3), 1157-1167.Rossomme, S., Horn, J., Brons, S., Jäkel, O., Mairani, A., Ciocca, M., ... & Palmans, H. (2017). Ion recombination correction factor in scanned light-ion beams for absolute dose measurement using plane-parallel ionisation chambers. Physics in Medicine & Biology, 62(13), 5365.Wuensch, W. (2021, December). The CHUV-CERN facility for FLASH treatment of large, deep-seated tumors: the DEFT (Deep Electron FLASH Therapy) facility. In Proceedings of the FLASH Radiotherapy & Particle Therapy Conference, Barcelona, Spain (pp. 1-3).Maxim, P. G., Tantawi, S. G., & Loo Jr, B. W. (2019). PHASER: A platform for clinical translation of FLASH cancer radiotherapy. Radiotherapy and Oncology, 139, 28-33.Johnston, J., Comello, R. J., Vealé, B. L., & Killion, J. (2010). Radiation exposure dose trends and radiation dose reduction strategies in medical imaging. Journal of Medical Imaging and Radiation Sciences, 41(3), 137-144Timins JK. 2011. Communication of benefits and risks of medical radiation: a historical perspective. Health Phys. 101(5):562–565.Muller, H. J. (1927). Artificial transmutation of the gene. Science, 66(1699), 84-87Lipshutz, G. S., Brennan, T. V., & Warren, R. S. (2002). Neoplasia hepática inducida por Thorotrast: una revisión colectiva. Revista del Colegio Americano de Cirujanos, 195(5), 713-718.Folley, J. H., Borges, W., & Yamawaki, T. (1952). Incidence of leukemia in survivors of the atomic bomb in Hiroshima and Nagasaki, Japan. The American journal of medicine, 13(3), 311-321Hsu, W. L., Preston, D. L., Soda, M., Sugiyama, H., Funamoto, S., Kodama, K., ... & Mabuchi, K. (2013). The incidence of leukemia, lymphoma and multiple myeloma among atomic bomb survivors: 1950–2001. Radiation research, 179(3), 361-382.Fowler, J. F., Bewley, D. K., Morgan, R. L., Ann Silvester, J., ALPER, T., & HORNSEY, S. (1963). Dose-effect relationships for radiation damage to organized tissues. Nature (London), 199(4890).Williams, J. P., & Newhauser, W. (2018). Normal tissue damage: its importance, history and challenges for the future. The British journal of radiology, 92(1093), 20180048Michalowski, A. (1984). A critical appraisal of clonogenic survival assays in the evaluation of radiation damage to normal tissues. Radiotherapy and Oncology, 1(3), 241-246Rubin, P., & Casarett, G. W. (1968). Clinical radiation pathology as applied to curative radiotherapy. Cancer, 22(4), 767-778Spear, F. G., & Grimmett, L. G. (1933). The biological response to gamma rays of radium as a function of the intensity of radiation. The British Journal of Radiology, 6(67), 387-403.Orton, C. G. (2001). High-dose-rate brachytherapy may be radiobiologically superior to low-dose rate due to slow repair of late-responding normal tissue cells. International Journal of Radiation Oncology* Biology* Physics, 49(1), 183-189.King, C. R. (2002). LDR vs. HDR brachytherapy for localized prostate cancer: the view from radiobiological models. Brachytherapy, 1(4), 219-226.Hornsey, S., & Alper, T. (1966). Unexpected dose-rate effect in the killing of mice by radiation. Nature, 210(5032), 212-213Hendry, J. H., Moore, J. V., Hodgson, B. W., & Keene, J. P. (1982). The constant low oxygen concentration in all the target cells for mouse tail radionecrosis. Radiation research, 92(1), 172-181Disponible en línea: https://www.soiort.com/flash-rt-technology/ (accedido el 5 de octubre de 2023).Disponible en line: https://curie.fr/actualite/radiotherapie/radiotherapie-flash- leffervescence-dun-tournant-prometteur (accedido el 20 de octubre de 2023).Disponible en linea: https://www.teledynelecroy.com/oscilloscope/oscilloscopemodel.aspx?modelid=11 385 (accedido el 8 de octubre de 2023).Recommendations for a dosimetry protocol (Code of Practice) for traceable absorbed dose measurement in ultra-high pulse dose rate electron beams under reference conditionsDisponible en linea: https://www.ptwdosimetry.com/en/products/flashdiamond- detector (accedido octubre 2023).Disponible en linea: EBT-XD SPECIFICATION AND USER GUIDE, http://www.gafchromic.com/gafchromic-film/radiotherapy-films/EBT/index.asp. (accedido octubre 2023).Palmer, A. L., Dimitriadis, A., Nisbet, A., & Clark, C. H. (2015). Evaluation of Gafchromic EBT-XD film, with comparison to EBT3 film, and application in high dose radiotherapy verification. Physics in Medicine & Biology, 60(22), 8741Manual del Electon-Flash 4000Manual del electrometro de PTWLara, R. (2001). HISTORIA DE LA RADIOTERAPIA EN LATINOAMÉRICA, 1º edición, España, ARÁN ediciones s.l..Wang, Y., Easterling, S. B., & Ting, J. Y. (2012). Ion recombination corrections of ionization chambers in flattening filter‐free photon radiation. Journal of applied clinical medical physics, 13(5), 262-268.Disponible en linea: https://www- pub.iaea.org/MTCD/Publications/PDF/TRS_398s_Web.pdf (accedido septiembre de 2023).Chow, J. C., & Ruda, H. E. (2023). Flash radiotherapy: Innovative cancer treatment. Encyclopedia, 3(3), 808-823.Ursino, S., Gadducci, G., Giannini, N., Gonnelli, A., Fuentes, T., Di Martino, F., & Paiar, F. (2023). Nuevos conocimientos sobre las perspectivas clínicas de la radioterapia FLASH: de baja a muy alta energía de electrones. Fronteras en Oncología, 13.Disponible en línea: www.gafchromic.com, consultado el 30 de diciembre de 2022.. Hornsey, S., & Alper, T. (1966). Unexpected dose-rate effect in the killing of mice by radiation. Nature, 210(5032), 212-213.Favaudon, V., Caplier, L., Monceau, V., Pouzoulet, F., Sayarath, M., Fouillade, C., ... & Vozenin, M. C. (2014). Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Science translational medicine, 6(245), 245ra93-245ra93.Fouillade C, Curras-Alonso S, Giuranno L, Quelennec E, Heinrich S, Bonnet- Boissinot S, Beddok A, Leboucher S, Karakurt HU, Bohec M, Baulande S, Vooijs M, Verrelle P, Dutreix M, LondoEœ no-Vallejo A, Favaudon V. FLASH irradiation spares lung ¨ progenitor cells and limits the incidence of radio-induced senescence. Clin Cancer Res 2019. https://doi.org/10.1158/1078-0432.CCR-19-1440. clincanres.1440.2019Levy K, Natarajan S, Wang J, Chow S, Eggold J, Loo P, Manjappa R, Lartey FM, Schüler E, Skinner L, Rafat M, Ko R, Kim A, Al Rawi D, von Eyben R, Dorigo O, Casey KM, Graves EE, Bush K, Yu AS, Koong AC, Maxim PG, Loo BW, Rankin EB. FLASH irradiation enhances the therapeutic index of abdominal radiotherapy in mice 2019;bioRxiv 2019(12). https://doi.org/10.1101/2019.12.12.873414. 12.873414.Montay-Gruel P, Petersson K, Jaccard M, Boivin G, Germond J-F, Petit B, Doenlen R, Favaudon V, Bochud F, Bailat C, Bourhis J, Vozenin M-C. Irradiation in a flash: Unique sparing of memory in mice after whole brain irradiation with dose rates above 100Gy/s. Radiother Oncol 2017;124(3):365-9. https://doi.org/10.1016/j.radonc.2017.05.003. ISSN 0167-8140.Schüler E, Trovati S, King G, Lartey F, Rafat M, Loo B, Maxim P. TU-H-CAMPUS-TeP2-02: FLASH Irradiation Improves the Therapeutic Index Following GI Tract Irradiation. Med Phys 2016;43(6Part37):3783. https://doi.org/10.1118/1.4957690. ISSN 0094-2405.Vozenin, M. C., Hendry, J. H., & Limoli, C. L. (2019). Biological benefits of ultrahigh dose rate FLASH radiotherapy: sleeping beauty awoken. Clinical oncology, 31(7), 407-415.Vozenin, M. C., De Fornel, P., Petersson, K., Favaudon, V., Jaccard, M., Germond, J. F., ... & Bourhis, J. (2019). The advantage of FLASH radiotherapy confirmed in mini-pig and cat-cancer patients. Clinical Cancer Research, 25(1), 35-42.Bourhis, J., Sozzi, W. J., Jorge, P. G., Gaide, O., Bailat, C., Duclos, F., ... & Vozenin, M. C. (2019). Treatment of a first patient with FLASH-radiotherapy. Radiotherapy and oncology, 139, 18-22.Sch¨uller, A., Heinrich, S., Fouillade, C., Subiel, A., De Marzi, L., Romano, F., ... & Vozenin, M. C. (2020). The European Joint Research Project UHDpulse − Metrology for advanced radiotherapy using particle beams with ultra-high pulse dose rates. Physica Medica, 80, 134-150.Kokurewicz, K., Sch¨uller, A., Brunetti, E., Subiel, A., Kranzer, R., Hackel, T., ... & Jaroszynski, D. A. (2020). Dosimetry for new radiation therapy approaches using high energy electron accelerators. Frontiers in Physics, 8, 568302.Marinelli, M., Felici, G., Galante, F., Gasparini, A., Giuliano, L., Heinrich, S., ... & Verona Rinati, G. (2022). Design, realization, and characterization of a novel diamond detector prototype for FLASH radiotherapy dosimetry. Medical Physics, 49(3), 1902- 1910.EstudiantesInvestigadoresPadres y familiasPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86477/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1075544942.2024.pdf1075544942.2024.pdfTesis de Maestría en Física Médicaapplication/pdf11296967https://repositorio.unal.edu.co/bitstream/unal/86477/2/1075544942.2024.pdf7373ab4ab6429e10c7013b31d23a3725MD52THUMBNAIL1075544942.2024.pdf.jpg1075544942.2024.pdf.jpgGenerated Thumbnailimage/jpeg5102https://repositorio.unal.edu.co/bitstream/unal/86477/3/1075544942.2024.pdf.jpgb246021c9313cb6d8c6ea5dc1b615a7fMD53unal/86477oai:repositorio.unal.edu.co:unal/864772024-08-26 23:10:55.963Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |