Simulación molecular del efecto de la adición de polielectrólitos catiónicos en la cohesión de láminas de C-S-H

Resumen: En este trabajo se estudió la variación en la cohesión de la fase principal del cemento endurecido (C-S-H) por efecto de la adición de polielectrólitos catiónicos (las aminas cuaternarias espermina y norespermidina). El estudio de la cohesión se realiza mediante técnicas de simulación molec...

Full description

Autores:
Zuluaga Hernández , Edison Albert
Tipo de recurso:
Fecha de publicación:
2013
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/19978
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/19978
http://bdigital.unal.edu.co/10187/
Palabra clave:
66 Ingeniería química y Tecnologías relacionadas/ Chemical engineering
Cohesión del cemento
Simulación molecular
PolielectrÓlitos catiónicos
Presión osmótica
Modelo primitivo
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:Resumen: En este trabajo se estudió la variación en la cohesión de la fase principal del cemento endurecido (C-S-H) por efecto de la adición de polielectrólitos catiónicos (las aminas cuaternarias espermina y norespermidina). El estudio de la cohesión se realiza mediante técnicas de simulación molecular (Monte Carlo) para el cálculo de la presión osmótica entre dos láminas de C-S-H en condiciones similares al cemento endurecido. El procedimiento teórico desarrollado durante la tesis permite tener en cuenta efectos no considerados en anteriores trabajos, como la influencia del tamaño iónico de cada partícula y la adición de un polielectrólito con mayor carga y diferentes longitudes de enlaces entre cada una de las cargas de la molécula. Para el cálculo de la energía del sistema, la presión osmótica y los perfiles de densidad de las especies, se implementaron diferentes simulaciones Monte Carlo en el ensamble Canónico (NVT). Para describir las interacciones del sistema se utilizó el modelo primitivo y el potencial de Lennard-Jones, los parámetros utilizados para el modelo fueron tomados del campo de fuerza CLAYFF. Los resultados obtenidos en las simulaciones muestran que el modelo primitivo desarrollado permite describir adecuadamente las interacciones electroestáticas entre las láminas de C-S-H y la solución electrolítica, corroborando que las interacciones electroestáticas son las responsables de la cohesión del cemento endurecido. Se encontró que cuando no hay presencia de polielectrólitos catiónicos, la cohesión se pierde cuando las láminas de C-S-H se encuentran a separaciones mayores de 1 nm. La adición de polielectrólitos catiónicos genera que los iones hidróxido se distribuyan alrededor de las cargas de los polielectrólitos, lo que a su vez, mediante atracción electrostática, facilita la distribución de los iones de calcio y de sodio en todo el espacio de separación entre las placas de C-S-H, esto permite que las fuerzas de cohesión existan a mayores distancias de separación entre las superficies. En presencia de la espermina se produce una mayor fuerza neta de cohesión y un efecto de mayor alcance que con la presencia de norespermidina