Caracterización de cepas bacterianas obtenidas de trips (Thysanoptera: Thripidae) que afectan cultivos de aguacate (Persea americana Mill) en Antioquia: Actividad antagonista y Quorum Sensing.

ilustraciones, tablas

Autores:
Pereira Bazurdo, Angie Natalia
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80505
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80505
https://repositorio.unal.edu.co/
Palabra clave:
580 - Plantas
660 - Ingeniería química
Aguacate - Enfermedades y plagas
Bacteria, phytopathogenic
Bacterias fitopatógenas
Patología vegetal
Actividad antifúngica,
Actividad antibacteriana
AHLs
Diketopiperazinas
Antifungal activity
Antibacterial activity
Diketopiperazines
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_00767eb3925ad65418aaae772ecc4f23
oai_identifier_str oai:repositorio.unal.edu.co:unal/80505
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Caracterización de cepas bacterianas obtenidas de trips (Thysanoptera: Thripidae) que afectan cultivos de aguacate (Persea americana Mill) en Antioquia: Actividad antagonista y Quorum Sensing.
dc.title.translated.fra.fl_str_mv Characterization of bacterial strains obtained from thrips (Thysanoptera: Thripidae) that affect avocado crops (Persea americana Mill) in Antioquia: Antagonist activity and Quorum Sensing.
title Caracterización de cepas bacterianas obtenidas de trips (Thysanoptera: Thripidae) que afectan cultivos de aguacate (Persea americana Mill) en Antioquia: Actividad antagonista y Quorum Sensing.
spellingShingle Caracterización de cepas bacterianas obtenidas de trips (Thysanoptera: Thripidae) que afectan cultivos de aguacate (Persea americana Mill) en Antioquia: Actividad antagonista y Quorum Sensing.
580 - Plantas
660 - Ingeniería química
Aguacate - Enfermedades y plagas
Bacteria, phytopathogenic
Bacterias fitopatógenas
Patología vegetal
Actividad antifúngica,
Actividad antibacteriana
AHLs
Diketopiperazinas
Antifungal activity
Antibacterial activity
Diketopiperazines
title_short Caracterización de cepas bacterianas obtenidas de trips (Thysanoptera: Thripidae) que afectan cultivos de aguacate (Persea americana Mill) en Antioquia: Actividad antagonista y Quorum Sensing.
title_full Caracterización de cepas bacterianas obtenidas de trips (Thysanoptera: Thripidae) que afectan cultivos de aguacate (Persea americana Mill) en Antioquia: Actividad antagonista y Quorum Sensing.
title_fullStr Caracterización de cepas bacterianas obtenidas de trips (Thysanoptera: Thripidae) que afectan cultivos de aguacate (Persea americana Mill) en Antioquia: Actividad antagonista y Quorum Sensing.
title_full_unstemmed Caracterización de cepas bacterianas obtenidas de trips (Thysanoptera: Thripidae) que afectan cultivos de aguacate (Persea americana Mill) en Antioquia: Actividad antagonista y Quorum Sensing.
title_sort Caracterización de cepas bacterianas obtenidas de trips (Thysanoptera: Thripidae) que afectan cultivos de aguacate (Persea americana Mill) en Antioquia: Actividad antagonista y Quorum Sensing.
dc.creator.fl_str_mv Pereira Bazurdo, Angie Natalia
dc.contributor.advisor.none.fl_str_mv Moreno Herrera, Claudia Ximena
Arango Isaza, Rafael Eduardo
dc.contributor.author.none.fl_str_mv Pereira Bazurdo, Angie Natalia
dc.contributor.researchgroup.spa.fl_str_mv Microbiodiversidad y Bioprospección
dc.subject.ddc.spa.fl_str_mv 580 - Plantas
660 - Ingeniería química
topic 580 - Plantas
660 - Ingeniería química
Aguacate - Enfermedades y plagas
Bacteria, phytopathogenic
Bacterias fitopatógenas
Patología vegetal
Actividad antifúngica,
Actividad antibacteriana
AHLs
Diketopiperazinas
Antifungal activity
Antibacterial activity
Diketopiperazines
dc.subject.lemb.none.fl_str_mv Aguacate - Enfermedades y plagas
Bacteria, phytopathogenic
Bacterias fitopatógenas
Patología vegetal
dc.subject.proposal.spa.fl_str_mv Actividad antifúngica,
Actividad antibacteriana
AHLs
Diketopiperazinas
dc.subject.proposal.eng.fl_str_mv Antifungal activity
Antibacterial activity
Diketopiperazines
description ilustraciones, tablas
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-10-12T13:09:30Z
dc.date.available.none.fl_str_mv 2021-10-12T13:09:30Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80505
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80505
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Alcaraz, M. L., & Hormaza, J. I. (2007). Molecular characterization and genetic diversity in an avocado collection of cultivars and local Spanish genotypes using SSRs. Hereditas, 144(6), 244–253. https://doi.org/10.1111/j.2007.0018-0661.02019x
Amaíz, L., Vargas, R., Medina, L., Izzeddin, N., & Valbuena, O. (2015). Evaluación del efecto antagonista de un consorcio bacteriano sobre Rhizoctonia solani Kühn en cultivos de arroz. Revista Latinoamericana de Biotecnología Ambiental y Algal, 6(1), 1–12.
Araújo, R. G., Rodriguez-Jasso, R. M., Ruiz, H. A., Pintado, M. M. E., & Aguilar, C. N. (2018). Avocado by-products: Nutritional and functional properties. Trends in Food Science & Technology, 80, 51–60. https://doi.org/https://doi.org/10.1016/j.tifs.2018.07.027
Arévalo, P., Quintero, F., & Correa, L. (2003). Survey of thrips (Insecta: Thysanoptera) in flower crops at three localities of the municipality of Medellín, Antioquia (Colombia). Revista Colombiana de Entomología, 29(2), 169–175.
Armbruster, C. E., Hong, W., Pang, B., Weimer, K. E. D., Juneau, R. A., Turner, J., & Edward Swords, W. (2010). Indirect pathogenicity of Haemophilus influenzae and Moraxella catarrhalis in Polymicrobial Otitis media occurs via interspecies quorum signaling. MBio, 1(3), 1–9. https://doi.org/10.1128/mBio.00102-10
Arrebola, E., Jacobs, R., & Korsten, L. (2010). Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. Journal of Applied Microbiology, 108(2), 386–395. https://doi.org/10.1111/j.1365-2672.2009.04438.x
Baumann, P. (2005). Biology of Bacteriocyte-Associated Endosymbionts of Plant Sap-Sucking Insects. Annual Review of Microbiology, 59(1), 155–189. https://doi.org/10.1146/annurev.micro.59.030804.121041
Borthwick, A. D. (2012). 2,5-diketopiperazines: Synthesis, reactions, medicinal chemistry, and bioactive natural products. Chemical Reviews, 112(7), 3641–3716. https://doi.org/10.1021/cr200398y
Boyen, F., Eeckhaut, V., Van Immerseel, F., Pasmans, F., Ducatelle, R., & Haesebrouck, F. (2009). Quorum sensing in veterinary pathogens: mechanisms, clinical importance and future perspectives. Veterinary Microbiology, 135(3–4), 187–195
Buckman, R. S., Mound, L. A., & Whiting, M. F. (2012). Phylogeny of thrips (Insecta: Thysanoptera) based on five molecular loci. Systematic Entomology, 38(1), 123–133. https://doi.org/10.1111/j.1365-3113.2012.00650.x
Cabra, T., Rodriguez, C. A., & Villota, C. P. (2014). Capacidad antagónica y quitinolítica de microorganismos aislados de residuos de higuerilla (ricinus communis). Biotecnología En El Sector Agropecuario y Agroindustrial, 12(1), 56–61.
Camara de Comercio de Medellín. (2012). Cadena del aguacate en Antioquia. Informes de Estudios Economicos, 104. Retrieved from http://www.camaramedellin.com.co/site/Portals/0/Documentos/2017/Publicaciones regionales/1 Aguacates_Oct19.pdf%0Ahttp://www.camaramedellin.com.co/site/Portals/0/Documentos/2017/Publicaciones regionales/6 Cacao_Oct19.pdf
Campbell, J., Lin, Q., Geske, G. D., & Blackwell, H. E. (2009). New and unexpected insights into the modulation of LuxR-type quorum sensing by cyclic dipeptides. ACS Chemical Biology, 4(12), 1051–1059. https://doi.org/10.1021/cb900165y
Cano Calle, D. (2020). Caracterización Molecular de trips (Thysanoptera: Thripidae) procedentes de cultivos comerciales de aguacate (Persea americana Mill) del oriente antioqueño y estudio de la diversidad microbiana asociada. Universidad Nacional de Colombia.
Cano Calle, D., Saldamando Benjumea, C. I., Vivero Gómez, R. J., Moreno Herrera, C. X., & Arango Isaza, R. E. (2021). Two New Strains of Wolbachia Affecting Natural Avocado Thrips. Indian Journal of Microbiology, 61, 348–354.
Carmona-Hernandez, S., Reyes-Pérez, J. J., Chiquito-Contreras, R. G., Rincon-Enriquez, G., Cerdan-Cabrera, C. R., & Hernandez-Montiel, L. G. (2019). Biocontrol of postharvest fruit fungal diseases by bacterial antagonists: A review. Agronomy, 9(3). https://doi.org/10.3390/agronomy9030121
Chalupowicz, L., Manulis-Sasson, S., Itkin, M., Sacher, A., Sessa, G., & Barash, I. (2008). Quorum-sensing system affects gall development incited by Pantoea agglomerans pv. gypsophilae. Molecular Plant-Microbe Interactions, 21(8), 1094–1105.
Chaudhary, D. K., & Kim, J. (2017). Sphingomonas olei sp. nov., with the ability to degrade aliphatic hydrocarbons, isolated from oil-contaminated soil. International Journal of Systematic and Evolutionary Microbiology, 67(8), 2731–2738. https://doi.org/10.1099/ijsem.0.002010
Chen, X., Zhang, Y., Fu, X., Li, Y., & Wang, Q. (2016). Isolation and characterization of Bacillus amyloliquefaciens PG12 for the biological control of apple ring rot. Postharvest Biology and Technology, 115, 113–121. https://doi.org/10.1016/j.postharvbio.2015.12.021
Cimmino, A., Puopolo, G., Perazzolli, M., Andolfi, A., Melck, D., Pertot, I., & Evidente, A. (2014). Cyclo(L-Pro-L-Tyr), the fungicide isolated from Lysobacter capsici AZ78: A structure-activity relationship study. Chemistry of Heterocyclic Compounds, 50(2), 290–295. https://doi.org/10.1007/s10593-014-1475-6
Dagher, F., Olishevska, S., Philion, V., Zheng, J., & Déziel, E. (2020). Development of a novel biological control agent targeting the phytopathogen Erwinia amylovora. Heliyon, 6(10). https://doi.org/10.1016/j.heliyon.2020.e05222
Das, B., & Patra, S. (2017). Chapter 1 - Antimicrobials: Meeting the Challenges of Antibiotic Resistance Through Nanotechnology. In A. Ficai & A. M. B. T.-N. for A. T. Grumezescu (Eds.), Micro and Nano Technologies (pp. 1–22). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-323-46152-8.00001-9
De Almeida, L. G., De Moraes, L. A. B., Trigo, J. R., Omoto, C., & Cônsoli, F. L. (2017). The gut microbiota of insecticide-resistant insects houses insecticide-degrading bacteria: A potential source for biotechnological exploitation. PLoS ONE, 12(3), 1–19. https://doi.org/10.1371/journal.pone.0174754
de Kievit, T. R., & Iglewski, B. H. (2002). Bacterial Quorum Sensing in Pathogenic Relationships. Infection and Immunity, 68(9), 4839–4849. https://doi.org/10.1128/iai.68.9.4839-4849.2000
de la Luz Sánchez-Pérez, J. (1999). Recursos genéticos de aguacate (Persea americana Mill.) y especies afines en México. Revista Chapingo Serie Horticultura, 5, 7–18.
de Pedro-Jové, R., Puigvert, M., Sebastià, P., Macho, A. P., Monteiro, J. S., Coll, N. S., … Valls, M. (2021). Dynamic expression of Ralstonia solanacearum virulence factors and metabolism-controlling genes during plant infection. BMC Genomics, 22(1), 1–18. https://doi.org/10.1186/s12864-021-07457-w
de Vries, E. J., van der Wurff, A. W. G., Jacobs, G., & Breeuwer, J. A. J. (2008). Onion Thrips, Thrips tabaci , Have Gut Bacteria That are Closely Related to the Symbionts of the Western Flower Thrips, Frankliniella occidentalis. Journal of Insect Science, 8(23), 1–11. https://doi.org/10.1673/031.008.2301
Degrassi, G., Aguilar, C., Bosco, M., Zahariev, S., Pongor, S., & Venturi, V. (2002). Plant growth-promoting Pseudomonas putida WCS358 produces and secretes four cyclic dipeptides: Cross-talk with quorum sensing bacterial sensors. Current Microbiology, 45(4), 250–254. https://doi.org/10.1007/s00284-002-3704-y
Dickey, A. M., Trease, A. J., Jara-Cavieres, A., Kumar, V., Christenson, M. K., Potluri, La.-P., … Davis, P. H. (2014). Estimating bacterial diversity in Scirtothrips dorsalis (Thysanoptera: Thripidae) via next generation sequencing. The Florida Entomologist, 97(2), 362.
Dukare, A. S., Paul, S., Nambi, V. E., Gupta, R. K., Singh, R., Sharma, K., & Vishwakarma, R. K. (2019). Exploitation of microbial antagonists for the control of postharvest diseases of fruits: a review. Critical Reviews in Food Science and Nutrition, 59(9), 1498–1513. https://doi.org/10.1080/10408398.2017.1417235
Echeverri Florez, F., Loaiza Marín, C., & Cano Ortíz, M. del P. (2004). Reconocimiento e identificacion de trips fitofagos (Thysanoptera: thripidae) y depredadores (Thysanoptera: phlaeothripidae) asociados a cultivos comerciales de aguacate persea spp. en los departamentos de caldas y risaralda (Colombia). Revista Facultad Nacional de Agronomía.
El-Sayed, A. K., Hothersall, J., & Thomas, C. M. (2001). Quorum-sensing-dependent regulation of biosynthesis of the polyketide antiobiotic mupirocin in Pseudomonas fluorescens NCIMB 10586. Microbiology, 147(8), 2127–2139. https://doi.org/10.1099/00221287-147-8-2127
El-Wakeil, N., Saleh, M., & Abu-hashim, M. (2020). Cottage Industry of Biocontrol Agents and Their Applications. Cottage Industry of Biocontrol Agents and Their Applications. https://doi.org/10.1007/978-3-030-33161-0
Engel, P., & Moran, N. A. (2013). The gut microbiota of insects - diversity in structure and function. FEMS Microbiology Reviews, 37(5), 699–735. https://doi.org/10.1111/1574-6976.12025
Enomoto, S., Chari, A., Dale, C., & City, S. L. (2017). Quorum sensing attenuates virulence in Sodalis praecaptivus. Cell Host & Microbe, 21(5), 629–636. https://doi.org/10.1016/j.chom.2017.04.003.Quorum
FAO (Food and Agriculture Organization of the United Nations). (2021). FAOSTAT Statistics Database. Retrieved August 20, 2004, from http://www.fao.org/faostat/en/#home
Fletcher, M. P., Diggle, S. P., Cámara, M., & Williams, P. (2007). Biosensor-based assays for PQS, HHQ and related 2-alkyl-4-quinolone quorum sensing signal molecules. Nature Protocols, 2(5), 1254.
Fuqua, W. C., Winans, S. C., & Greenberg, E. P. (1994). Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. Journal of Bacteriology, 176(2), 269–275. https://doi.org/10.1128/jb.176.2.269-275.1994
Gañán, L., Álvarez, E., & Castaño Zapata, J. (2015). Identificación genética de aislamientos de Colletotrichum spp. causantes de antracnosis en frutos de aguacate, banano, mango y tomate de árbol. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 39(152), 339. https://doi.org/10.18257/raccefyn.192
Gil, J. G. R., Sánchez, D. A. C., & Osorio, J. G. M. (2014). Estudios etiológicos de la marchitez del aguacate en Antioquia-Colombia. Revista Ceres, 61(1), 50–61. https://doi.org/10.1590/S0034-737X2014000100007
Golonka, R., Yeoh, B. S., & Vijay-Kumar, M. (2019). The Iron Tug-of-War between Bacterial Siderophores and Innate Immunity. Journal of Innate Immunity, 11(3), 249–262. https://doi.org/10.1159/000494627
Guerrero-Barajas, C., Constantino-Salinas, E. A., Amora-Lazcano, E., Tlalapango-Ángeles, D., Mendoza-Figueroa, J. S., Cruz-Maya, J. A., & Jan-Roblero, J. (2020). Bacillus mycoides A1 and Bacillus tequilensis A3 inhibit the growth of a member of the phytopathogen Colletotrichum gloeosporioides species complex in avocado. Journal of the Science of Food and Agriculture, 100(10), 4049–4056. https://doi.org/10.1002/jsfa.10450
Guevara-Avendaño, E., Carrillo, J. D., Ndinga-Muniania, C., Moreno, K., Méndez-Bravo, A., Guerrero-Analco, J. A., Reverchon, F. (2018). Antifungal activity of avocado rhizobacteria against Fusarium euwallaceae and Graphium spp., associated with Euwallacea spp. nr. fornicatus, and Phytophthora cinnamomi. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 111(4), 563–572. https://doi.org/10.1007/s10482-017-0977-5
Hameeda, B., Rupela, O. P., Reddy, G., & Satyavani, K. (2006). Application of plant growth-promoting bacteria associated with composts and macrofauna for growth promotion of Pearl millet (Pennisetum glaucum L.). Biology and Fertility of Soils, 43(2), 221–227.
Hernández-Lauzardo, A. N., Bautista-Baños, S., Velázquez-del Valle, M. G., & Hernández-Rodríguez, A. (2007). Uso de microorganismos antagonistas en el control de enfermedades postcosecha en frutos. Revista Mexicana de Fitopatología, 25(1), 66–74.
Holden, M. T. G., Chhabra, S. R., De Nys, R., Stead, P., Bainton, N. J., Hill, P. J., … Williams, P. (1999). Quorum-sensing cross talk: Isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other Gram-negative bacteria. Molecular Microbiology, 33(6), 1254–1266. https://doi.org/10.1046/j.1365-2958.1999.01577.x
Horinouchi, S., Ueda, K., Nakayama, J., & Ikeda, T. (2010). Cell-to-cell communications among microorganisms. Comprehensive Natural Products II: Chemistry and Biology, 4, 283–337. https://doi.org/10.1016/b978-008045382-8.00098-8
Huang, J., Shi, Y., Zeng, G., Gu, Y., Chen, G., Shi, L., … Zhou, J. (2016). Acyl-homoserine lactone-based quorum sensing and quorum quenching hold promise to determine the performance of biological wastewater treatments: An overview. Chemosphere, 157, 137–151. https://doi.org/10.1016/j.chemosphere.2016.05.032
Hurtado F, E., Fernández, A., & Carrasco, A. (2018). Avocado fruit—Persea americana. In S. Rodrigues, E. de Oliveira Silva, & E. S. B. T.-E. F. de Brito (Eds.) (pp. 37–48). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-803138-4.00001-0
Inam-Ul-Haq, M., Gowen, S. R., Javed, N., Shahina, F., Izhar-Ul-Haq, M., Humayoon, N., & Pembroke, B. (2007). Antagonistic potential of bacterial isolates associated with entomopathogenic nematodes against tomato wilt caused by Fusarium oxysporum f.sp., lycopersici under greenhouse conditions. Pakistan Journal of Botany, 39(1), 279–283.
Indiragandhi, P., Anandham, R., Madhaiyan, M., & Sa, T. M. (2008). Characterization of plant growth-promoting traits of bacteria isolated from larval guts of Diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Current Microbiology, 56(4), 327–333. https://doi.org/10.1007/s00284-007-9086-4
Instituto Colombiano de Agricultura (ICA). (2012). Manejo fitosanitario del cultivo del aguacate (Persea americana Mill.). Medidas para la temporada invernal. LLinea Agrícola. Instituto Colombiano Agropecuario ICA Bogotá DC, Colombia.
Jaenike, J., Unckless, R., Cockburn, S. N., Boelio, L. M., & Perlman, S. J. (2010). Adaptation via symbiosis: Recent spread of a drosophila defensive symbiont. Science, 329(5988), 212–215. https://doi.org/10.1126/science.1188235
Jiang, J., Wu, S., Wang, J., & Feng, Y. (2015). AHL-type quorum sensing and its regulation on symplasmata formation in Pantoea agglomerans YS19. Journal of Basic Microbiology, 55(5), 607–616. https://doi.org/10.1002/jobm.201400472
Kalbe, C., Marten, P., & Berg, G. (1996). Strains of the genus Serratia as beneficial rhizobacteria of oilseed rape with antifungal properties. Microbiological Research, 151(4), 433–439. https://doi.org/10.1016/S0944-5013(96)80014-0
Kalia, V. C., & Purohit, H. J. (2011). Quenching the quorum sensing system: Potential antibacterial drug targets. Critical Reviews in Microbiology, 37(2), 121–140. https://doi.org/10.3109/1040841X.2010.53247
Khrueayu, D., & Pilantanapak, Apiradee. (2012). Antifungal activity of bioactive compound from endophytic fungi isolated from mangrove leaves. 1st Mae Fah Luang University International Conference, 7, 1–25.
Kim, S.-R., & Yeon, K.-M. (2018). Quorum Sensing as Language of Chemical Signals. In Comprehensive Analytical Chemistry (Vol. 81, pp. 57–94). Elsevier.
Kim, S. R., & Yeon, K. M. (2018). Quorum Sensing as Language of Chemical Signals. Comprehensive Analytical Chemistry (1st ed., Vol. 81). Elsevier B.V. https://doi.org/10.1016/bs.coac.2018.03.010
Kong, Q., Shan, S., Liu, Q., Wang, X., & Yu, F. (2010). Biocontrol of Aspergillus flavus on peanut kernels by use of a strain of marine Bacillus megaterium. International Journal of Food Microbiology, 139(1–2), 31–35. https://doi.org/10.1016/j.ijfoodmicro.2010.01.036
Koolivand, A., Abtahi, H., Parhamfar, M., Didehdar, M., Saeedi, R., & Fahimirad, S. (2019). Biodegradation of high concentrations of petroleum compounds by using indigenous bacteria isolated from petroleum hydrocarbons-rich sludge: Effective scale-up from liquid medium to composting process. Journal of Environmental Management, 248(July), 109228. https://doi.org/10.1016/j.jenvman.2019.06.129
Labbate, M., Queck, S. Y., Koh, K. S., Rice, S. A., Givskov, M., & Kjelleberg, S. (2004). Quorum Sensing-Controlled Biofilm Development in Serratia liquefaciens MG1. Journal of Bacteriology, 186(3), 692–698. https://doi.org/10.1128/JB.186.3.692-698.2004
Leyton, A., Urrutia, H., Vidal, J. M., de la Fuente, M., Alarcón, M., Aroca, G., Sossa, K. (2015). Actividad inhibitoria del sobrenadante de la bacteria Antartica Pseudomonas sp. M19B en la formación de biopeliculas de Flavobacterium psychrophilum 19749. Revista de Biologia Marina y Oceanografia, 50(2), 375–381. https://doi.org/10.4067/S0718-19572015000300016
Li, S. Bin, Fang, M., Zhou, R. C., & Huang, J. (2012). Characterization and evaluation of the endophyte Bacillus B014 as a potential biocontrol agent for the control of Xanthomonas axonopodis pv. dieffenbachiae - Induced blight of Anthurium. Biological Control, 63(1), 9–16. https://doi.org/10.1016/j.biocontrol.2012.06.002
Li, Y. H., & Tian, X. (2012). Quorum sensing and bacterial social interactions in biofilms. Sensors, 12(3), 2519–2538. https://doi.org/10.3390/s120302519
Lim, S. M., Yoon, M. Y., Choi, G. J., Choi, Y. H., Jang, K. S., Shin, T. S., Kim, J. C. (2017). Diffusible and volatile antifungal compounds produced by an antagonistic Bacillus velezensis G341 against various phytopathogenic fungi. Plant Pathology Journal, 33(5), 488–498. https://doi.org/10.5423/PPJ.OA.04.2017.0073
Lima, É. F. B., & Mound, L. A. (2016). Systematic relationships of the Thripidae subfamily Sericothripinae (Insecta: Thysanoptera). Zoologischer Anzeiger - A Journal of Comparative Zoology, 263, 24–32. https://doi.org/https://doi.org/10.1016/j.jcz.2016.03.001
Lopes, L. P., Oliveira Jr, A. G., Beranger, J. P. O., Góis, C. G., Vasconcellos, F. C. S., Martin, J. A. B. S., … Andrade, G. (2012). Activity of extracellular compounds of Pseudomonas sp. against Xanthomonas axonopodis in vitro and bacterial leaf blight in eucalyptus . Tropical Plant Pathology . scielo .
March Rosselló, G. A., & Eiros Bouza, J. M. (2013). Quorum sensing en bacterias y levaduras. Medicina Clinica, 141(8), 353–357. https://doi.org/10.1016/j.medcli.2013.02.031
Marinas, M., Sa, E., Rojas, M. M., Moalem, M., Urbano, F. J., Guillou, C., & Rallo, L. (2010). A nuclear magnetic resonance ( 1 H and 13 C ) and isotope ratio mass spectrometry ( d 13 C , d 2 H and d 18 O ) study of Andalusian olive oils. Rapid Communications in Mass Spectrometry, 24, 1457–1466. https://doi.org/10.1002/rcm
Martín del campo, C., Gómez, H., & Alaníz, R. (2008). Bacterias ácido lácticas con capacidad antagónica y actividad bacteriocinogénica aisladas de quesos frescos. E-Gnosis, 6, 1–17.
Miller, C., & Gilmore, J. (2020). Detection of quorum-sensing molecules for pathogenic molecules using cell-based and cell-free biosensors. Antibiotics, 9(5). https://doi.org/10.3390/antibiotics9050259
Mishra, A. K., Choi, J., Choi, S. J., & Baek, K. H. (2017). Cyclodipeptides: An overview of their biosynthesis and biological activity. Molecules, 22(10), 1–13. https://doi.org/10.3390/molecules22101796
Mohammadi, P., Tozlu, E., Kotan, R., & Şenol Kotan, M. (2017). Potential of some bacteria for biological control of postharvest citrus green mould caused by Penicillium digitatum. Plant Protection Science, 53(3), 134–143. https://doi.org/10.17221/55/2016-PPS
Mound, L., & Morris, D. (2007). The insect Order Thysanoptera: Classification versus Systematics. Zootaxa (Vol. 1668).
Myo, E. M., Liu, B., Ma, J., Shi, L., Jiang, M., Zhang, K., & Ge, B. (2019). Evaluation of Bacillus velezensis NKG-2 for bio-control activities against fungal diseases and potential plant growth promotion. Biological Control, 134(December 2018), 23–31. https://doi.org/10.1016/j.biocontrol.2019.03.017
Nealson, K. H., Platt, T., & Hastings, J. W. (1970). Cellular control of the synthesis and activity of the bacterial luminescent system. Journal of Bacteriology, 104(1), 313–322.
Nwuche, C. O. (2013). Isolation of Bacteriocin – Producing Lactic Acid Bacteria from ‘ Ugba ’ and ‘ Okpiye ’ , Two Locally Fermented Nigerian Food Condiments ., 56(February), 101–106.
Observatory of Economic Complexity, (OEC). (2019). Aguacate Fescos o Secos. Retrieved from https://oec.world/es/visualize/tree_map/hs92/export/col/all/20804/2019/
Oliver, K. M., Moran, N. A., & Hunter, M. S. (2005). Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proceedings of the National Academy of Sciences of the United States of America, 102(36), 12795–12800. https://doi.org/10.1073/pnas.0506131102
Ortiz Castro, R., Campos García, J., & López Bucio, J. (2012). Comunicación planta-bacteria basada en ciclodipéptidos de origen microbiano con actividad auxínica, (56), 59–74. Retrieved from https://www.cic.cn.umich.mx/index.php/cn/article/viewFile/110/33
Ortori, C. A., Dubern, J.-F., Chhabra, S. R., Cámara, M., Hardie, K., Williams, P., & Barrett, D. A. (2011). Simultaneous quantitative profiling of N-acyl-L-homoserine lactone and 2-alkyl-4 (1H)-quinolone families of quorum-sensing signaling molecules using LC-MS/MS. Analytical and Bioanalytical Chemistry, 399(2), 839–850.
Ortori, C. A., Halliday, N., Cámara, M., Williams, P., & Barrett, D. A. (2014). LC-MS/MS quantitative analysis of quorum sensing signal molecules. In Pseudomonas Methods and Protocols (pp. 255–270). Springer.
Park, D. K., Lee, K. E., Baek, C. H., Kim, I. H., Kwon, J. H., Lee, W. K., … Kim, K. S. (2006). Cyclo(Phe-Pro) modulates the expression of ompU in Vibrio spp. Journal of Bacteriology, 188(6), 2214–2221. https://doi.org/10.1128/JB.188.6.2214-2221.2006
Pérez, R., Terrón, T. S., & Muñoz-Rojas, J. (2014). Antagonismo microbiano asociado a cepas bacterianas provenientes de jitomate (Lycopersicum esculentum Mill) y maíz (Zea Mays). Revista Iberoamericana Dde Ciencias.
Pesci, E. C., Milbank, J. B. J., Pearson, J. P., Mcknight, S., Kende, A. S., Greenberg, E. P., & Iglewski, B. H. (1999). Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America, 96(20), 11229–11234. https://doi.org/10.1073/pnas.96.20.11229
Pomini, A. M., Paccola-Meirelles, L. D., & Marsaioli, A. J. (2007). Acyl-homoserine lactones produced by Pantoea sp. Isolated from the “maize white spot” foliar disease. Journal of Agricultural and Food Chemistry, 55(4), 1200–1204. https://doi.org/10.1021/jf063136a
Pontes, M. H., Babst, M., Lochhead, R., Oakeson, K., Smith, K., & Dale, C. (2008). Quorum sensing primes the oxidative stress response in the insect endosymbiont, Sodalis glossinidius. PLoS ONE, 3(10). https://doi.org/10.1371/journal.pone.0003541
Poppe, L., Vanhoutte, S., & Höfte, M. (2003). Modes of action of Pantoea agglomerans CPA-2, an antagonist of postharvest pathogens on fruits. European Journal of Plant Pathology, 109(9), 963–973. https://doi.org/10.1023/B:EJPP.0000003747.41051.9f
Rabbee, M. F., Sarafat Ali, M., Choi, J., Hwang, B. S., Jeong, S. C., & Baek, K. hyun. (2019). Bacillus velezensis: A valuable member of bioactive molecules within plant microbiomes. Molecules, 24(6), 1–13. https://doi.org/10.3390/molecules24061046
Reller, L. B., Weinstein, M., Jorgensen, J. H., & Ferraro, M. J. (2009). Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clinical Infectious Diseases, 49(11), 1749–1755.
Retana, A., García, O., Cantu, M., & Carvajal, C. (2010). Thrips (Thysanoptera) of avocado (Persea americana) in Nayarit, Mexico. Revista Colombiana de Entomología, 36(1), 47–51.
RIKEN MSn spectral database for phytochemicals(ReSpect). (2008). Cyclo(Pro-Phe). Retrieved from https://mona.fiehnlab.ucdavis.edu/spectra/display/PM014413
Rotenberg, D., Jacobson, A. L., Schneweis, D. J., & Whitfield, A. E. (2015). Thrips transmission of tospoviruses. Current Opinion in Virology, 15, 80–89.
Ruttkies, C., Schymanski, E. L., Wolf, S., Hollender, J., & Neumann, S. (2016). MetFrag relaunched : incorporating strategies beyond in silico fragmentation. Journal of Cheminformatics, 1–16. https://doi.org/10.1186/s13321-016-0115-9
Saeb, A. T. M. (2016). Presence of Bacterial Virulence Gene Homologues in the dibenzo-p-dioxins degrading bacterium Sphingomonas wittichii. Bioinformation, 12(4), 241–248. https://doi.org/10.6026/97320630012241
Sanaei, E., Charlat, S., & Engelstädter, J. (2021). Wolbachia host shifts: routes, mechanisms, constraints and evolutionary consequences. Biological Reviews, 96(2), 433–453. https://doi.org/10.1111/brv.12663
Sansinenea, E., Salazar, F., Jiménez, J., Mendoza, Á., & Ortiz, A. (2016). Diketopiperazines derivatives isolated from Bacillus thuringiensis and Bacillus endophyticus, establishment of their configuration by X-ray and their synthesis. Tetrahedron Letters, 57(24), 2604–2607. https://doi.org/10.1016/j.tetlet.2016.04.117
Scarborough, C. L., Ferrari, J., & Godfray, H. C. (2005). Aphid Protected from Pathogen. Science, 310(December), 2005. Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16357252
Schaefer, A. L., Hanzelka, B. L., Parsek, M. R., & Greenberg, E. P. (2000). Detection, purification, and structural elucidation of the acylhomoserine lactone inducer of Vibrio fischeri luminescence and other related molecules. Methods in Enzymology, 305(1995), 288–301. https://doi.org/10.1016/s0076-6879(00)05495-1
Senol, M., Nadaroglu, H., Dikbas, N., & Kotan, R. (2014). Purification of Chitinase enzymes from Bacillus subtilis bacteria TV-125, investigation of kinetic properties and antifungal activity against Fusarium culmorum. Annals of Clinical Microbiology and Antimicrobials, 13(1), 1–7. https://doi.org/10.1186/s12941-014-0035-3
Sharma, D., Kaur, T., Chadha, B. S., & Manhas, R. K. (2011). Antimicrobial activity of actinomycetes against multidrug resistant Staphylococcus aureus, E. coli and various other pathogens. Tropical Journal of Pharmaceutical Research, 10(6), 801–808. https://doi.org/10.4314/tjpr.v10i6.14
Singh, D., & Kumar Yadav, D. (2016). Potential of Bacillus amyloliquefaciens for Biocontrol of Bacterial Wilt of Tomato Incited by Ralstonia solanacearum. Journal of Plant Pathology & Microbiology, 07(01). https://doi.org/10.4172/2157-7471.1000327
Soto-Rodríguez, G. A., Rodríguez-Arrieta, J. A., González Muñoz, C., Cambero-Campos, J., & Retana-Salazar, A. P. (2017). Clave para la identificación de géneros de Thrips (Insecta: Thysanoptera) comúnmente asociados a plantas ornamentales en Centroamérica. Acta Zoológica Mexicana. scielomx.
Steindler, L., & Venturi, V. (2007). Detection of quorum-sensing N-acyl homoserine lactone signal molecules by bacterial biosensors. FEMS Microbiology Letters, 266(1), 1–9. https://doi.org/10.1111/j.1574-6968.2006.00501.x
Ström, K., Sjögren, J., Broberg, A., & Schnürer, J. (2002). Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo(L-Phe-L-Pro) and cyclo(L-Phe-trans-4-OH-L-Pro) and 3-phenyllactic acid. Applied and Environmental Microbiology, 68(9), 4322–4327. https://doi.org/10.1128/AEM.68.9.4322-4327.2002
Tamayo Molano, P. J. (2007). Enfermedades del aguacate. Revista Politécnica, (4), 51–70.
Tecon, R., & Leveau, J. H. J. (2016). Symplasmata are a clonal, conditional, and reversible type of bacterial multicellularity. Scientific Reports, 6, 1–10. https://doi.org/10.1038/srep31914
Thissera, B., Alhadrami, H. A., Hassan, M. H. A., Hassan, H. M., Behery, F. A., Bawazeer, M., … Rateb, M. E. (2020). Induction of cryptic antifungal pulicatin derivatives from Pantoea agglomerans by microbial co-culture. Biomolecules, 10(2). https://doi.org/10.3390/biom10020268
Tremocoldi, M. A., Rosalen, P. L., Franchin, M., Massarioli, A. P., Denny, C., Daiuto, É. R., de Alencar, S. M. (2018). Exploration of avocado by-products as natural sources of bioactive compounds. PloS One, 13(2), e0192577
Vallejo Pérez, M. R., Téliz Ortiz, D., De La Torre Almaraz, R., López Martinez, J. O., & Nieto Ángel, D. (2017). Avocado sunblotch viroid: Pest risk and potential impact in México. Crop Protection, 99, 118–127. https://doi.org/10.1016/j.cropro.2017.05.015
Varón, E. H. (2015). Reconocimiento y manejo de insectos plaga en aguacate (Persea americana), 1–44. Retrieved from http://www.anglogoldashanticolombia.com/wp-content/uploads/2015/11/4-manejo-integrado-de-plagas-de-aguacate3.pdf
Vorburger, C., Gehrer, L., & Rodriguez, P. (2010). A strain of the bacterial symbiont Regiella insecticola protects aphids against parasitoids. Biology Letters, 6(1), 109–111. https://doi.org/10.1098/rsbl.2009.0642
Wang, N., Wang, L., Zhu, K., Hou, S., Chen, L., Mi, D., Guo, J. H. (2019). Plant root exudates are involved in Bacillus cereus AR156 mediated biocontrol against Ralstonia solanacearum. Frontiers in Microbiology, 10(JAN), 1–14. https://doi.org/10.3389/fmicb.2019.00098
Waters, C. M., & Bassler, B. L. (2005). QUORUM SENSING: Cell-to-Cell Communication in Bacteria. Annual Review of Cell and Developmental Biology, 21(1), 319–346. https://doi.org/10.1146/annurev.cellbio.21.012704.131001
Wattana-Amorn, P., Charoenwongsa, W., Williams, C., Crump, M. P., & Apichaisataienchote, B. (2016). Antibacterial activity of cyclo(L-Pro-L-Tyr) and cyclo(D-Pro-L-Tyr) from Streptomyces sp. strain 22-4 against phytopathogenic bacteria. Natural Product Research, 30(17), 1980–1983. https://doi.org/10.1080/14786419.2015.1095747
Whiley, A. W., Schaffer, B., & Wolstenholme, B. N. (2002). The Avocado: Botany, Production, and Uses. CABI. Retrieved from https://books.google.es/books?id=CxmvpAYkL54C
Winson, M. K., Swift, S., Fish, L., Throup, J. P., Jørgensen, F., Chhabra, S. R., … Stewart, G. S. A. B. (1998). Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acyl homoserine lactone-mediated quorum sensing. FEMS Microbiology Letters, 163(2), 185–192. https://doi.org/10.1016/S0378-1097(98)00172-4
Wright, S. A. I., Zumoff, C. H., Schneider, L., & Beer, S. V. (2001). Pantoea agglomerans strain-EH318 produces two antibiotics that inhibit Erwinia amylovora in vitro. Applied and Environmental Microbiology, 67(1), 284–292. https://doi.org/10.1128/AEM.67.1.284-292.2001
Wu, S., Tang, L., Zhang, X., Xing, Z., Lei, Z., & Gao, Y. (2018). A decade of a thrips invasion in China: lessons learned. Ecotoxicology, 27(7), 1032–1038.
Yang, W., Xu, Q., Liu, H. X., Wang, Y. P., Wang, Y. M., Yang, H. T., & Guo, J. H. (2012). Evaluation of biological control agents against Ralstonia wilt on ginger. Biological Control, 62(3), 144–151. https://doi.org/10.1016/j.biocontrol.2012.05.001
Yang, X. (2014). Moraxellaceae. Encyclopedia of Food Microbiology: Second Edition, 2, 826–833. https://doi.org/10.1016/B978-0-12-384730-0.00441-9
Yonezawa, K., Yamada, K., & Kouno, I. (2011). New diketopiperazine derivatives isolated from sea urchin-derived Bacillus sp. Chemical and Pharmaceutical Bulletin, 59(1), 106–108. https://doi.org/10.1248/cpb.59.106
Zafar, T., & Sidhu, J. S. (2011). Avocado: Production, Quality, and Major Processed Products. In Handbook of Vegetables and Vegetable Processing (pp. 525–543). https://doi.org/10.1002/9780470958346.ch26
Zhang, H., Mahunu, G. K., Castoria, R., Apaliya, M. T., & Yang, Q. (2017). Augmentation of biocontrol agents with physical methods against postharvest diseases of fruits and vegetables. Trends in Food Science and Technology, 69, 36–45. https://doi.org/10.1016/j.tifs.2017.08.020
Zhao, J., Quan, C., Jin, L., & Chen, M. (2018). Production, detection and application perspectives of quorum sensing autoinducer-2 in bacteria. Journal of Biotechnology.
Zhou, J. W., Ruan, L. Y., Chen, H. J., Luo, H. Z., Jiang, H., Wang, J. S., & Jia, A. Q. (2019). Inhibition of Quorum Sensing and Virulence in Serratia marcescens by Hordenine. Journal of Agricultural and Food Chemistry, 67, 784–795. research-article. https://doi.org/10.1021/acs.jafc.8b05922
Zhu, H., Sun, S. wei, Li, H., Chang, A., Liu, Y. chen, Qian, J., & Shen, Y. ling. (2019). Significantly improved production of Welan gum by Sphingomonas sp. WG through a novel quorum-sensing-interfering dipeptide cyclo(L-Pro-L-Phe). International Journal of Biological Macromolecules, 126, 118–122. https://doi.org/10.1016/j.ijbiomac.2018.12.189
Zientz, E., Dandekar, T., & Gross, R. (2004). Metabolic Interdependence of Obligate Intracellular Bacteria and Their Insect Hosts. Microbiology and Molecular Biology Reviews, 68(4), 745 LP – 770. https://doi.org/10.1128/MMBR.68.4.745-770.2004
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 96 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.city.none.fl_str_mv Antioquia, Colombia
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Ciencias - Maestría en Ciencias - Biotecnología
dc.publisher.department.spa.fl_str_mv Escuela de biociencias
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80505/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80505/4/1019088590.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/80505/5/1019088590.2021.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
2dcf8b14ebc53c52f533ea1d4e11d8d1
64de077908806f0a76f46020eb7da628
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089573841502208
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Moreno Herrera, Claudia Ximena9e9b1162df5ae71da22de0e7cd708bd6Arango Isaza, Rafael Eduardob7e61322453072ebf7408a0f587e39c1Pereira Bazurdo, Angie Natalia99052070e1a529c24b1a6388cc847dc3Microbiodiversidad y Bioprospección2021-10-12T13:09:30Z2021-10-12T13:09:30Z2021https://repositorio.unal.edu.co/handle/unal/80505Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, tablasEl control de plagas y enfermedades del aguacate depende en gran medida del uso de pesticidas. Nuevas alternativas de control, tales como el uso de sustancias bioactivas inhibidoras contra fitopatógenos producidas por microorganismos, brindan una opción viable para contrarrestar las pérdidas por plagas y enfermedades. La exploración de nuevas fuentes de microorganismos se ha ampliado a especies que no habían sido consideradas. El presente estudio tuvo como objetivo caracterizar la capacidad antagonista in vitro contra microorganismos fitopatógenos y la producción de moléculas de señalización ‘Quórum Sensing’ (QS) en cepas bacterianas aisladas de trips de aguacate. La actividad antagonista de diez aislados bacterianos fueron seleccionadas y evaluadas contra siete fitopatógenos (hongos, oomiceto y bacterias) por cultivo dual, difusión y ensayo en placa; las moléculas de señalización (QS) producidas por las cepas Gram negativas se detectaron a través de bioensayo con placas de cromatografía fina (TLC) y biosensores bacterianos específicos (psB401, psB1142 y pqsA-lux). Las pruebas de cultivo dual mostraron que cuatro cepas pertenecientes a los géneros Bacillus, Pantoea, y Serratia, antagonizaron la mayoría de los hongos y el oomiceto, limitando el normal crecimiento de las colonias y generando zonas de inhibición. Adicionalmente, a través de biosensores se detectaron moléculas AHL y AHQ como 3-Oxo-C12-HSL(OdDHL), 3-Oxo-C6-HSL (OHHL) y 2-heptil-4-quinolona (HHQ). Trazas de OdDHL y HHQ, y el hallazgo de dos ciclopéptidos Ciclo(L-Phe-L-Pro) y Ciclo(L-Pro-L-Tyr) por Cromatografía Líquida de Ultra Alto Rendimiento y Espectrometría de Masas (UHPLC/MS) en los extractos de las cepas Gram negativas, podrían explicar la actividad antifúngica detectada en las dos cepas de Pantoea sp., y Serratia sp., ya que estas moléculas se caracterizan por estar relacionadas con los sistemas de QS y poseen una variedad amplia de actividad biológica. Hasta donde sabemos, este sería uno de los primeros reportes sobre el potencial antagonista y la detección de moléculas de señalización QS en cepas aisladas de trips de aguacate. (Texto tomado de la fuente)The control of avocado pests and diseases depends largely on the use of various types of pesticides, most of which are either strictly monitored or not accepted internationally. New alternatives such as inhibitory bioactive substances against phytopathogens produced by microorganisms provide an excellent alternative for the biocontrol of pests and diseases, and the exploration of new sources of these microorganisms has been extended to organisms previously not considered. This study aims to characterize the antagonistic capacity in vitro against phytopathogenic microorganisms and the production of Quorum Sensing (QS) signaling molecules from bacterial strains isolated from avocado thrips. The antagonist activity of ten bacterial isolates of thrips was evaluated against seven phytopathogens (fungi, oomycetes, and bacteria) by dual culture, diffusion, and plate assay; signaling molecules (QS) produced by Gram negative strains were detected through bioassay with fine chromatography plates (TLC) and specific bacterial biosensors (psB401, psB1142 and pqsA-lux). Dual culture tests showed that four strains belonging to the genera Bacillus sp., Pantoea sp., and Serratia sp., antagonized most of the fungi and the oomycete, limiting the normal growth of the hyphae and generating zones of inhibition. Additionally, AHL and AHQ molecules such as 3-Oxo-C12-HSL (OdDHL), 3-Oxo-C6-HSL (OHHL), and 2-heptyl-4-quinolone (HHQ) were detected through biosensors. Traces of OdDHL and HHQ, and the finding of two cyclopeptides Cycle(L-Phe-L-Pro) and Cycle(L-Pro-L-Tyr) by Ultra-High-Performance Liquid Chromatography and Mass Spectrometry (UHPLC / MS) in the extracts of the Gram negative strains could explain the antifungal activity detected in the two strains of Pantoea sp., and Serratia sp., since these molecules are characterized by being related to QS systems and possess a variety of biological activities including antimicrobial. To our knowledge, this would be one of the first reports on the antagonistic potential and the detection of QS signaling molecules in isolated strains of avocado thrips.MaestríaMagíster en Ciencias - BiotecnologíaBioprospección96 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias - Maestría en Ciencias - BiotecnologíaEscuela de biocienciasFacultad de CienciasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín580 - Plantas660 - Ingeniería químicaAguacate - Enfermedades y plagasBacteria, phytopathogenicBacterias fitopatógenasPatología vegetalActividad antifúngica,Actividad antibacterianaAHLsDiketopiperazinasAntifungal activityAntibacterial activityDiketopiperazinesCaracterización de cepas bacterianas obtenidas de trips (Thysanoptera: Thripidae) que afectan cultivos de aguacate (Persea americana Mill) en Antioquia: Actividad antagonista y Quorum Sensing.Characterization of bacterial strains obtained from thrips (Thysanoptera: Thripidae) that affect avocado crops (Persea americana Mill) in Antioquia: Antagonist activity and Quorum Sensing.Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAntioquia, ColombiaAlcaraz, M. L., & Hormaza, J. I. (2007). Molecular characterization and genetic diversity in an avocado collection of cultivars and local Spanish genotypes using SSRs. Hereditas, 144(6), 244–253. https://doi.org/10.1111/j.2007.0018-0661.02019xAmaíz, L., Vargas, R., Medina, L., Izzeddin, N., & Valbuena, O. (2015). Evaluación del efecto antagonista de un consorcio bacteriano sobre Rhizoctonia solani Kühn en cultivos de arroz. Revista Latinoamericana de Biotecnología Ambiental y Algal, 6(1), 1–12.Araújo, R. G., Rodriguez-Jasso, R. M., Ruiz, H. A., Pintado, M. M. E., & Aguilar, C. N. (2018). Avocado by-products: Nutritional and functional properties. Trends in Food Science & Technology, 80, 51–60. https://doi.org/https://doi.org/10.1016/j.tifs.2018.07.027Arévalo, P., Quintero, F., & Correa, L. (2003). Survey of thrips (Insecta: Thysanoptera) in flower crops at three localities of the municipality of Medellín, Antioquia (Colombia). Revista Colombiana de Entomología, 29(2), 169–175.Armbruster, C. E., Hong, W., Pang, B., Weimer, K. E. D., Juneau, R. A., Turner, J., & Edward Swords, W. (2010). Indirect pathogenicity of Haemophilus influenzae and Moraxella catarrhalis in Polymicrobial Otitis media occurs via interspecies quorum signaling. MBio, 1(3), 1–9. https://doi.org/10.1128/mBio.00102-10Arrebola, E., Jacobs, R., & Korsten, L. (2010). Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. Journal of Applied Microbiology, 108(2), 386–395. https://doi.org/10.1111/j.1365-2672.2009.04438.xBaumann, P. (2005). Biology of Bacteriocyte-Associated Endosymbionts of Plant Sap-Sucking Insects. Annual Review of Microbiology, 59(1), 155–189. https://doi.org/10.1146/annurev.micro.59.030804.121041Borthwick, A. D. (2012). 2,5-diketopiperazines: Synthesis, reactions, medicinal chemistry, and bioactive natural products. Chemical Reviews, 112(7), 3641–3716. https://doi.org/10.1021/cr200398yBoyen, F., Eeckhaut, V., Van Immerseel, F., Pasmans, F., Ducatelle, R., & Haesebrouck, F. (2009). Quorum sensing in veterinary pathogens: mechanisms, clinical importance and future perspectives. Veterinary Microbiology, 135(3–4), 187–195Buckman, R. S., Mound, L. A., & Whiting, M. F. (2012). Phylogeny of thrips (Insecta: Thysanoptera) based on five molecular loci. Systematic Entomology, 38(1), 123–133. https://doi.org/10.1111/j.1365-3113.2012.00650.xCabra, T., Rodriguez, C. A., & Villota, C. P. (2014). Capacidad antagónica y quitinolítica de microorganismos aislados de residuos de higuerilla (ricinus communis). Biotecnología En El Sector Agropecuario y Agroindustrial, 12(1), 56–61.Camara de Comercio de Medellín. (2012). Cadena del aguacate en Antioquia. Informes de Estudios Economicos, 104. Retrieved from http://www.camaramedellin.com.co/site/Portals/0/Documentos/2017/Publicaciones regionales/1 Aguacates_Oct19.pdf%0Ahttp://www.camaramedellin.com.co/site/Portals/0/Documentos/2017/Publicaciones regionales/6 Cacao_Oct19.pdfCampbell, J., Lin, Q., Geske, G. D., & Blackwell, H. E. (2009). New and unexpected insights into the modulation of LuxR-type quorum sensing by cyclic dipeptides. ACS Chemical Biology, 4(12), 1051–1059. https://doi.org/10.1021/cb900165yCano Calle, D. (2020). Caracterización Molecular de trips (Thysanoptera: Thripidae) procedentes de cultivos comerciales de aguacate (Persea americana Mill) del oriente antioqueño y estudio de la diversidad microbiana asociada. Universidad Nacional de Colombia.Cano Calle, D., Saldamando Benjumea, C. I., Vivero Gómez, R. J., Moreno Herrera, C. X., & Arango Isaza, R. E. (2021). Two New Strains of Wolbachia Affecting Natural Avocado Thrips. Indian Journal of Microbiology, 61, 348–354.Carmona-Hernandez, S., Reyes-Pérez, J. J., Chiquito-Contreras, R. G., Rincon-Enriquez, G., Cerdan-Cabrera, C. R., & Hernandez-Montiel, L. G. (2019). Biocontrol of postharvest fruit fungal diseases by bacterial antagonists: A review. Agronomy, 9(3). https://doi.org/10.3390/agronomy9030121Chalupowicz, L., Manulis-Sasson, S., Itkin, M., Sacher, A., Sessa, G., & Barash, I. (2008). Quorum-sensing system affects gall development incited by Pantoea agglomerans pv. gypsophilae. Molecular Plant-Microbe Interactions, 21(8), 1094–1105.Chaudhary, D. K., & Kim, J. (2017). Sphingomonas olei sp. nov., with the ability to degrade aliphatic hydrocarbons, isolated from oil-contaminated soil. International Journal of Systematic and Evolutionary Microbiology, 67(8), 2731–2738. https://doi.org/10.1099/ijsem.0.002010Chen, X., Zhang, Y., Fu, X., Li, Y., & Wang, Q. (2016). Isolation and characterization of Bacillus amyloliquefaciens PG12 for the biological control of apple ring rot. Postharvest Biology and Technology, 115, 113–121. https://doi.org/10.1016/j.postharvbio.2015.12.021Cimmino, A., Puopolo, G., Perazzolli, M., Andolfi, A., Melck, D., Pertot, I., & Evidente, A. (2014). Cyclo(L-Pro-L-Tyr), the fungicide isolated from Lysobacter capsici AZ78: A structure-activity relationship study. Chemistry of Heterocyclic Compounds, 50(2), 290–295. https://doi.org/10.1007/s10593-014-1475-6Dagher, F., Olishevska, S., Philion, V., Zheng, J., & Déziel, E. (2020). Development of a novel biological control agent targeting the phytopathogen Erwinia amylovora. Heliyon, 6(10). https://doi.org/10.1016/j.heliyon.2020.e05222Das, B., & Patra, S. (2017). Chapter 1 - Antimicrobials: Meeting the Challenges of Antibiotic Resistance Through Nanotechnology. In A. Ficai & A. M. B. T.-N. for A. T. Grumezescu (Eds.), Micro and Nano Technologies (pp. 1–22). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-323-46152-8.00001-9De Almeida, L. G., De Moraes, L. A. B., Trigo, J. R., Omoto, C., & Cônsoli, F. L. (2017). The gut microbiota of insecticide-resistant insects houses insecticide-degrading bacteria: A potential source for biotechnological exploitation. PLoS ONE, 12(3), 1–19. https://doi.org/10.1371/journal.pone.0174754de Kievit, T. R., & Iglewski, B. H. (2002). Bacterial Quorum Sensing in Pathogenic Relationships. Infection and Immunity, 68(9), 4839–4849. https://doi.org/10.1128/iai.68.9.4839-4849.2000de la Luz Sánchez-Pérez, J. (1999). Recursos genéticos de aguacate (Persea americana Mill.) y especies afines en México. Revista Chapingo Serie Horticultura, 5, 7–18.de Pedro-Jové, R., Puigvert, M., Sebastià, P., Macho, A. P., Monteiro, J. S., Coll, N. S., … Valls, M. (2021). Dynamic expression of Ralstonia solanacearum virulence factors and metabolism-controlling genes during plant infection. BMC Genomics, 22(1), 1–18. https://doi.org/10.1186/s12864-021-07457-wde Vries, E. J., van der Wurff, A. W. G., Jacobs, G., & Breeuwer, J. A. J. (2008). Onion Thrips, Thrips tabaci , Have Gut Bacteria That are Closely Related to the Symbionts of the Western Flower Thrips, Frankliniella occidentalis. Journal of Insect Science, 8(23), 1–11. https://doi.org/10.1673/031.008.2301Degrassi, G., Aguilar, C., Bosco, M., Zahariev, S., Pongor, S., & Venturi, V. (2002). Plant growth-promoting Pseudomonas putida WCS358 produces and secretes four cyclic dipeptides: Cross-talk with quorum sensing bacterial sensors. Current Microbiology, 45(4), 250–254. https://doi.org/10.1007/s00284-002-3704-yDickey, A. M., Trease, A. J., Jara-Cavieres, A., Kumar, V., Christenson, M. K., Potluri, La.-P., … Davis, P. H. (2014). Estimating bacterial diversity in Scirtothrips dorsalis (Thysanoptera: Thripidae) via next generation sequencing. The Florida Entomologist, 97(2), 362.Dukare, A. S., Paul, S., Nambi, V. E., Gupta, R. K., Singh, R., Sharma, K., & Vishwakarma, R. K. (2019). Exploitation of microbial antagonists for the control of postharvest diseases of fruits: a review. Critical Reviews in Food Science and Nutrition, 59(9), 1498–1513. https://doi.org/10.1080/10408398.2017.1417235Echeverri Florez, F., Loaiza Marín, C., & Cano Ortíz, M. del P. (2004). Reconocimiento e identificacion de trips fitofagos (Thysanoptera: thripidae) y depredadores (Thysanoptera: phlaeothripidae) asociados a cultivos comerciales de aguacate persea spp. en los departamentos de caldas y risaralda (Colombia). Revista Facultad Nacional de Agronomía.El-Sayed, A. K., Hothersall, J., & Thomas, C. M. (2001). Quorum-sensing-dependent regulation of biosynthesis of the polyketide antiobiotic mupirocin in Pseudomonas fluorescens NCIMB 10586. Microbiology, 147(8), 2127–2139. https://doi.org/10.1099/00221287-147-8-2127El-Wakeil, N., Saleh, M., & Abu-hashim, M. (2020). Cottage Industry of Biocontrol Agents and Their Applications. Cottage Industry of Biocontrol Agents and Their Applications. https://doi.org/10.1007/978-3-030-33161-0Engel, P., & Moran, N. A. (2013). The gut microbiota of insects - diversity in structure and function. FEMS Microbiology Reviews, 37(5), 699–735. https://doi.org/10.1111/1574-6976.12025Enomoto, S., Chari, A., Dale, C., & City, S. L. (2017). Quorum sensing attenuates virulence in Sodalis praecaptivus. Cell Host & Microbe, 21(5), 629–636. https://doi.org/10.1016/j.chom.2017.04.003.QuorumFAO (Food and Agriculture Organization of the United Nations). (2021). FAOSTAT Statistics Database. Retrieved August 20, 2004, from http://www.fao.org/faostat/en/#homeFletcher, M. P., Diggle, S. P., Cámara, M., & Williams, P. (2007). Biosensor-based assays for PQS, HHQ and related 2-alkyl-4-quinolone quorum sensing signal molecules. Nature Protocols, 2(5), 1254.Fuqua, W. C., Winans, S. C., & Greenberg, E. P. (1994). Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. Journal of Bacteriology, 176(2), 269–275. https://doi.org/10.1128/jb.176.2.269-275.1994Gañán, L., Álvarez, E., & Castaño Zapata, J. (2015). Identificación genética de aislamientos de Colletotrichum spp. causantes de antracnosis en frutos de aguacate, banano, mango y tomate de árbol. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 39(152), 339. https://doi.org/10.18257/raccefyn.192Gil, J. G. R., Sánchez, D. A. C., & Osorio, J. G. M. (2014). Estudios etiológicos de la marchitez del aguacate en Antioquia-Colombia. Revista Ceres, 61(1), 50–61. https://doi.org/10.1590/S0034-737X2014000100007Golonka, R., Yeoh, B. S., & Vijay-Kumar, M. (2019). The Iron Tug-of-War between Bacterial Siderophores and Innate Immunity. Journal of Innate Immunity, 11(3), 249–262. https://doi.org/10.1159/000494627Guerrero-Barajas, C., Constantino-Salinas, E. A., Amora-Lazcano, E., Tlalapango-Ángeles, D., Mendoza-Figueroa, J. S., Cruz-Maya, J. A., & Jan-Roblero, J. (2020). Bacillus mycoides A1 and Bacillus tequilensis A3 inhibit the growth of a member of the phytopathogen Colletotrichum gloeosporioides species complex in avocado. Journal of the Science of Food and Agriculture, 100(10), 4049–4056. https://doi.org/10.1002/jsfa.10450Guevara-Avendaño, E., Carrillo, J. D., Ndinga-Muniania, C., Moreno, K., Méndez-Bravo, A., Guerrero-Analco, J. A., Reverchon, F. (2018). Antifungal activity of avocado rhizobacteria against Fusarium euwallaceae and Graphium spp., associated with Euwallacea spp. nr. fornicatus, and Phytophthora cinnamomi. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 111(4), 563–572. https://doi.org/10.1007/s10482-017-0977-5Hameeda, B., Rupela, O. P., Reddy, G., & Satyavani, K. (2006). Application of plant growth-promoting bacteria associated with composts and macrofauna for growth promotion of Pearl millet (Pennisetum glaucum L.). Biology and Fertility of Soils, 43(2), 221–227.Hernández-Lauzardo, A. N., Bautista-Baños, S., Velázquez-del Valle, M. G., & Hernández-Rodríguez, A. (2007). Uso de microorganismos antagonistas en el control de enfermedades postcosecha en frutos. Revista Mexicana de Fitopatología, 25(1), 66–74.Holden, M. T. G., Chhabra, S. R., De Nys, R., Stead, P., Bainton, N. J., Hill, P. J., … Williams, P. (1999). Quorum-sensing cross talk: Isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other Gram-negative bacteria. Molecular Microbiology, 33(6), 1254–1266. https://doi.org/10.1046/j.1365-2958.1999.01577.xHorinouchi, S., Ueda, K., Nakayama, J., & Ikeda, T. (2010). Cell-to-cell communications among microorganisms. Comprehensive Natural Products II: Chemistry and Biology, 4, 283–337. https://doi.org/10.1016/b978-008045382-8.00098-8Huang, J., Shi, Y., Zeng, G., Gu, Y., Chen, G., Shi, L., … Zhou, J. (2016). Acyl-homoserine lactone-based quorum sensing and quorum quenching hold promise to determine the performance of biological wastewater treatments: An overview. Chemosphere, 157, 137–151. https://doi.org/10.1016/j.chemosphere.2016.05.032Hurtado F, E., Fernández, A., & Carrasco, A. (2018). Avocado fruit—Persea americana. In S. Rodrigues, E. de Oliveira Silva, & E. S. B. T.-E. F. de Brito (Eds.) (pp. 37–48). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-803138-4.00001-0Inam-Ul-Haq, M., Gowen, S. R., Javed, N., Shahina, F., Izhar-Ul-Haq, M., Humayoon, N., & Pembroke, B. (2007). Antagonistic potential of bacterial isolates associated with entomopathogenic nematodes against tomato wilt caused by Fusarium oxysporum f.sp., lycopersici under greenhouse conditions. Pakistan Journal of Botany, 39(1), 279–283.Indiragandhi, P., Anandham, R., Madhaiyan, M., & Sa, T. M. (2008). Characterization of plant growth-promoting traits of bacteria isolated from larval guts of Diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Current Microbiology, 56(4), 327–333. https://doi.org/10.1007/s00284-007-9086-4Instituto Colombiano de Agricultura (ICA). (2012). Manejo fitosanitario del cultivo del aguacate (Persea americana Mill.). Medidas para la temporada invernal. LLinea Agrícola. Instituto Colombiano Agropecuario ICA Bogotá DC, Colombia.Jaenike, J., Unckless, R., Cockburn, S. N., Boelio, L. M., & Perlman, S. J. (2010). Adaptation via symbiosis: Recent spread of a drosophila defensive symbiont. Science, 329(5988), 212–215. https://doi.org/10.1126/science.1188235Jiang, J., Wu, S., Wang, J., & Feng, Y. (2015). AHL-type quorum sensing and its regulation on symplasmata formation in Pantoea agglomerans YS19. Journal of Basic Microbiology, 55(5), 607–616. https://doi.org/10.1002/jobm.201400472Kalbe, C., Marten, P., & Berg, G. (1996). Strains of the genus Serratia as beneficial rhizobacteria of oilseed rape with antifungal properties. Microbiological Research, 151(4), 433–439. https://doi.org/10.1016/S0944-5013(96)80014-0Kalia, V. C., & Purohit, H. J. (2011). Quenching the quorum sensing system: Potential antibacterial drug targets. Critical Reviews in Microbiology, 37(2), 121–140. https://doi.org/10.3109/1040841X.2010.53247Khrueayu, D., & Pilantanapak, Apiradee. (2012). Antifungal activity of bioactive compound from endophytic fungi isolated from mangrove leaves. 1st Mae Fah Luang University International Conference, 7, 1–25.Kim, S.-R., & Yeon, K.-M. (2018). Quorum Sensing as Language of Chemical Signals. In Comprehensive Analytical Chemistry (Vol. 81, pp. 57–94). Elsevier.Kim, S. R., & Yeon, K. M. (2018). Quorum Sensing as Language of Chemical Signals. Comprehensive Analytical Chemistry (1st ed., Vol. 81). Elsevier B.V. https://doi.org/10.1016/bs.coac.2018.03.010Kong, Q., Shan, S., Liu, Q., Wang, X., & Yu, F. (2010). Biocontrol of Aspergillus flavus on peanut kernels by use of a strain of marine Bacillus megaterium. International Journal of Food Microbiology, 139(1–2), 31–35. https://doi.org/10.1016/j.ijfoodmicro.2010.01.036Koolivand, A., Abtahi, H., Parhamfar, M., Didehdar, M., Saeedi, R., & Fahimirad, S. (2019). Biodegradation of high concentrations of petroleum compounds by using indigenous bacteria isolated from petroleum hydrocarbons-rich sludge: Effective scale-up from liquid medium to composting process. Journal of Environmental Management, 248(July), 109228. https://doi.org/10.1016/j.jenvman.2019.06.129Labbate, M., Queck, S. Y., Koh, K. S., Rice, S. A., Givskov, M., & Kjelleberg, S. (2004). Quorum Sensing-Controlled Biofilm Development in Serratia liquefaciens MG1. Journal of Bacteriology, 186(3), 692–698. https://doi.org/10.1128/JB.186.3.692-698.2004Leyton, A., Urrutia, H., Vidal, J. M., de la Fuente, M., Alarcón, M., Aroca, G., Sossa, K. (2015). Actividad inhibitoria del sobrenadante de la bacteria Antartica Pseudomonas sp. M19B en la formación de biopeliculas de Flavobacterium psychrophilum 19749. Revista de Biologia Marina y Oceanografia, 50(2), 375–381. https://doi.org/10.4067/S0718-19572015000300016Li, S. Bin, Fang, M., Zhou, R. C., & Huang, J. (2012). Characterization and evaluation of the endophyte Bacillus B014 as a potential biocontrol agent for the control of Xanthomonas axonopodis pv. dieffenbachiae - Induced blight of Anthurium. Biological Control, 63(1), 9–16. https://doi.org/10.1016/j.biocontrol.2012.06.002Li, Y. H., & Tian, X. (2012). Quorum sensing and bacterial social interactions in biofilms. Sensors, 12(3), 2519–2538. https://doi.org/10.3390/s120302519Lim, S. M., Yoon, M. Y., Choi, G. J., Choi, Y. H., Jang, K. S., Shin, T. S., Kim, J. C. (2017). Diffusible and volatile antifungal compounds produced by an antagonistic Bacillus velezensis G341 against various phytopathogenic fungi. Plant Pathology Journal, 33(5), 488–498. https://doi.org/10.5423/PPJ.OA.04.2017.0073Lima, É. F. B., & Mound, L. A. (2016). Systematic relationships of the Thripidae subfamily Sericothripinae (Insecta: Thysanoptera). Zoologischer Anzeiger - A Journal of Comparative Zoology, 263, 24–32. https://doi.org/https://doi.org/10.1016/j.jcz.2016.03.001Lopes, L. P., Oliveira Jr, A. G., Beranger, J. P. O., Góis, C. G., Vasconcellos, F. C. S., Martin, J. A. B. S., … Andrade, G. (2012). Activity of extracellular compounds of Pseudomonas sp. against Xanthomonas axonopodis in vitro and bacterial leaf blight in eucalyptus . Tropical Plant Pathology . scielo .March Rosselló, G. A., & Eiros Bouza, J. M. (2013). Quorum sensing en bacterias y levaduras. Medicina Clinica, 141(8), 353–357. https://doi.org/10.1016/j.medcli.2013.02.031Marinas, M., Sa, E., Rojas, M. M., Moalem, M., Urbano, F. J., Guillou, C., & Rallo, L. (2010). A nuclear magnetic resonance ( 1 H and 13 C ) and isotope ratio mass spectrometry ( d 13 C , d 2 H and d 18 O ) study of Andalusian olive oils. Rapid Communications in Mass Spectrometry, 24, 1457–1466. https://doi.org/10.1002/rcmMartín del campo, C., Gómez, H., & Alaníz, R. (2008). Bacterias ácido lácticas con capacidad antagónica y actividad bacteriocinogénica aisladas de quesos frescos. E-Gnosis, 6, 1–17.Miller, C., & Gilmore, J. (2020). Detection of quorum-sensing molecules for pathogenic molecules using cell-based and cell-free biosensors. Antibiotics, 9(5). https://doi.org/10.3390/antibiotics9050259Mishra, A. K., Choi, J., Choi, S. J., & Baek, K. H. (2017). Cyclodipeptides: An overview of their biosynthesis and biological activity. Molecules, 22(10), 1–13. https://doi.org/10.3390/molecules22101796Mohammadi, P., Tozlu, E., Kotan, R., & Şenol Kotan, M. (2017). Potential of some bacteria for biological control of postharvest citrus green mould caused by Penicillium digitatum. Plant Protection Science, 53(3), 134–143. https://doi.org/10.17221/55/2016-PPSMound, L., & Morris, D. (2007). The insect Order Thysanoptera: Classification versus Systematics. Zootaxa (Vol. 1668).Myo, E. M., Liu, B., Ma, J., Shi, L., Jiang, M., Zhang, K., & Ge, B. (2019). Evaluation of Bacillus velezensis NKG-2 for bio-control activities against fungal diseases and potential plant growth promotion. Biological Control, 134(December 2018), 23–31. https://doi.org/10.1016/j.biocontrol.2019.03.017Nealson, K. H., Platt, T., & Hastings, J. W. (1970). Cellular control of the synthesis and activity of the bacterial luminescent system. Journal of Bacteriology, 104(1), 313–322.Nwuche, C. O. (2013). Isolation of Bacteriocin – Producing Lactic Acid Bacteria from ‘ Ugba ’ and ‘ Okpiye ’ , Two Locally Fermented Nigerian Food Condiments ., 56(February), 101–106.Observatory of Economic Complexity, (OEC). (2019). Aguacate Fescos o Secos. Retrieved from https://oec.world/es/visualize/tree_map/hs92/export/col/all/20804/2019/Oliver, K. M., Moran, N. A., & Hunter, M. S. (2005). Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proceedings of the National Academy of Sciences of the United States of America, 102(36), 12795–12800. https://doi.org/10.1073/pnas.0506131102Ortiz Castro, R., Campos García, J., & López Bucio, J. (2012). Comunicación planta-bacteria basada en ciclodipéptidos de origen microbiano con actividad auxínica, (56), 59–74. Retrieved from https://www.cic.cn.umich.mx/index.php/cn/article/viewFile/110/33Ortori, C. A., Dubern, J.-F., Chhabra, S. R., Cámara, M., Hardie, K., Williams, P., & Barrett, D. A. (2011). Simultaneous quantitative profiling of N-acyl-L-homoserine lactone and 2-alkyl-4 (1H)-quinolone families of quorum-sensing signaling molecules using LC-MS/MS. Analytical and Bioanalytical Chemistry, 399(2), 839–850.Ortori, C. A., Halliday, N., Cámara, M., Williams, P., & Barrett, D. A. (2014). LC-MS/MS quantitative analysis of quorum sensing signal molecules. In Pseudomonas Methods and Protocols (pp. 255–270). Springer.Park, D. K., Lee, K. E., Baek, C. H., Kim, I. H., Kwon, J. H., Lee, W. K., … Kim, K. S. (2006). Cyclo(Phe-Pro) modulates the expression of ompU in Vibrio spp. Journal of Bacteriology, 188(6), 2214–2221. https://doi.org/10.1128/JB.188.6.2214-2221.2006Pérez, R., Terrón, T. S., & Muñoz-Rojas, J. (2014). Antagonismo microbiano asociado a cepas bacterianas provenientes de jitomate (Lycopersicum esculentum Mill) y maíz (Zea Mays). Revista Iberoamericana Dde Ciencias.Pesci, E. C., Milbank, J. B. J., Pearson, J. P., Mcknight, S., Kende, A. S., Greenberg, E. P., & Iglewski, B. H. (1999). Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America, 96(20), 11229–11234. https://doi.org/10.1073/pnas.96.20.11229Pomini, A. M., Paccola-Meirelles, L. D., & Marsaioli, A. J. (2007). Acyl-homoserine lactones produced by Pantoea sp. Isolated from the “maize white spot” foliar disease. Journal of Agricultural and Food Chemistry, 55(4), 1200–1204. https://doi.org/10.1021/jf063136aPontes, M. H., Babst, M., Lochhead, R., Oakeson, K., Smith, K., & Dale, C. (2008). Quorum sensing primes the oxidative stress response in the insect endosymbiont, Sodalis glossinidius. PLoS ONE, 3(10). https://doi.org/10.1371/journal.pone.0003541Poppe, L., Vanhoutte, S., & Höfte, M. (2003). Modes of action of Pantoea agglomerans CPA-2, an antagonist of postharvest pathogens on fruits. European Journal of Plant Pathology, 109(9), 963–973. https://doi.org/10.1023/B:EJPP.0000003747.41051.9fRabbee, M. F., Sarafat Ali, M., Choi, J., Hwang, B. S., Jeong, S. C., & Baek, K. hyun. (2019). Bacillus velezensis: A valuable member of bioactive molecules within plant microbiomes. Molecules, 24(6), 1–13. https://doi.org/10.3390/molecules24061046Reller, L. B., Weinstein, M., Jorgensen, J. H., & Ferraro, M. J. (2009). Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clinical Infectious Diseases, 49(11), 1749–1755.Retana, A., García, O., Cantu, M., & Carvajal, C. (2010). Thrips (Thysanoptera) of avocado (Persea americana) in Nayarit, Mexico. Revista Colombiana de Entomología, 36(1), 47–51.RIKEN MSn spectral database for phytochemicals(ReSpect). (2008). Cyclo(Pro-Phe). Retrieved from https://mona.fiehnlab.ucdavis.edu/spectra/display/PM014413Rotenberg, D., Jacobson, A. L., Schneweis, D. J., & Whitfield, A. E. (2015). Thrips transmission of tospoviruses. Current Opinion in Virology, 15, 80–89.Ruttkies, C., Schymanski, E. L., Wolf, S., Hollender, J., & Neumann, S. (2016). MetFrag relaunched : incorporating strategies beyond in silico fragmentation. Journal of Cheminformatics, 1–16. https://doi.org/10.1186/s13321-016-0115-9Saeb, A. T. M. (2016). Presence of Bacterial Virulence Gene Homologues in the dibenzo-p-dioxins degrading bacterium Sphingomonas wittichii. Bioinformation, 12(4), 241–248. https://doi.org/10.6026/97320630012241Sanaei, E., Charlat, S., & Engelstädter, J. (2021). Wolbachia host shifts: routes, mechanisms, constraints and evolutionary consequences. Biological Reviews, 96(2), 433–453. https://doi.org/10.1111/brv.12663Sansinenea, E., Salazar, F., Jiménez, J., Mendoza, Á., & Ortiz, A. (2016). Diketopiperazines derivatives isolated from Bacillus thuringiensis and Bacillus endophyticus, establishment of their configuration by X-ray and their synthesis. Tetrahedron Letters, 57(24), 2604–2607. https://doi.org/10.1016/j.tetlet.2016.04.117Scarborough, C. L., Ferrari, J., & Godfray, H. C. (2005). Aphid Protected from Pathogen. Science, 310(December), 2005. Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16357252Schaefer, A. L., Hanzelka, B. L., Parsek, M. R., & Greenberg, E. P. (2000). Detection, purification, and structural elucidation of the acylhomoserine lactone inducer of Vibrio fischeri luminescence and other related molecules. Methods in Enzymology, 305(1995), 288–301. https://doi.org/10.1016/s0076-6879(00)05495-1Senol, M., Nadaroglu, H., Dikbas, N., & Kotan, R. (2014). Purification of Chitinase enzymes from Bacillus subtilis bacteria TV-125, investigation of kinetic properties and antifungal activity against Fusarium culmorum. Annals of Clinical Microbiology and Antimicrobials, 13(1), 1–7. https://doi.org/10.1186/s12941-014-0035-3Sharma, D., Kaur, T., Chadha, B. S., & Manhas, R. K. (2011). Antimicrobial activity of actinomycetes against multidrug resistant Staphylococcus aureus, E. coli and various other pathogens. Tropical Journal of Pharmaceutical Research, 10(6), 801–808. https://doi.org/10.4314/tjpr.v10i6.14Singh, D., & Kumar Yadav, D. (2016). Potential of Bacillus amyloliquefaciens for Biocontrol of Bacterial Wilt of Tomato Incited by Ralstonia solanacearum. Journal of Plant Pathology & Microbiology, 07(01). https://doi.org/10.4172/2157-7471.1000327Soto-Rodríguez, G. A., Rodríguez-Arrieta, J. A., González Muñoz, C., Cambero-Campos, J., & Retana-Salazar, A. P. (2017). Clave para la identificación de géneros de Thrips (Insecta: Thysanoptera) comúnmente asociados a plantas ornamentales en Centroamérica. Acta Zoológica Mexicana. scielomx.Steindler, L., & Venturi, V. (2007). Detection of quorum-sensing N-acyl homoserine lactone signal molecules by bacterial biosensors. FEMS Microbiology Letters, 266(1), 1–9. https://doi.org/10.1111/j.1574-6968.2006.00501.xStröm, K., Sjögren, J., Broberg, A., & Schnürer, J. (2002). Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo(L-Phe-L-Pro) and cyclo(L-Phe-trans-4-OH-L-Pro) and 3-phenyllactic acid. Applied and Environmental Microbiology, 68(9), 4322–4327. https://doi.org/10.1128/AEM.68.9.4322-4327.2002Tamayo Molano, P. J. (2007). Enfermedades del aguacate. Revista Politécnica, (4), 51–70.Tecon, R., & Leveau, J. H. J. (2016). Symplasmata are a clonal, conditional, and reversible type of bacterial multicellularity. Scientific Reports, 6, 1–10. https://doi.org/10.1038/srep31914Thissera, B., Alhadrami, H. A., Hassan, M. H. A., Hassan, H. M., Behery, F. A., Bawazeer, M., … Rateb, M. E. (2020). Induction of cryptic antifungal pulicatin derivatives from Pantoea agglomerans by microbial co-culture. Biomolecules, 10(2). https://doi.org/10.3390/biom10020268Tremocoldi, M. A., Rosalen, P. L., Franchin, M., Massarioli, A. P., Denny, C., Daiuto, É. R., de Alencar, S. M. (2018). Exploration of avocado by-products as natural sources of bioactive compounds. PloS One, 13(2), e0192577Vallejo Pérez, M. R., Téliz Ortiz, D., De La Torre Almaraz, R., López Martinez, J. O., & Nieto Ángel, D. (2017). Avocado sunblotch viroid: Pest risk and potential impact in México. Crop Protection, 99, 118–127. https://doi.org/10.1016/j.cropro.2017.05.015Varón, E. H. (2015). Reconocimiento y manejo de insectos plaga en aguacate (Persea americana), 1–44. Retrieved from http://www.anglogoldashanticolombia.com/wp-content/uploads/2015/11/4-manejo-integrado-de-plagas-de-aguacate3.pdfVorburger, C., Gehrer, L., & Rodriguez, P. (2010). A strain of the bacterial symbiont Regiella insecticola protects aphids against parasitoids. Biology Letters, 6(1), 109–111. https://doi.org/10.1098/rsbl.2009.0642Wang, N., Wang, L., Zhu, K., Hou, S., Chen, L., Mi, D., Guo, J. H. (2019). Plant root exudates are involved in Bacillus cereus AR156 mediated biocontrol against Ralstonia solanacearum. Frontiers in Microbiology, 10(JAN), 1–14. https://doi.org/10.3389/fmicb.2019.00098Waters, C. M., & Bassler, B. L. (2005). QUORUM SENSING: Cell-to-Cell Communication in Bacteria. Annual Review of Cell and Developmental Biology, 21(1), 319–346. https://doi.org/10.1146/annurev.cellbio.21.012704.131001Wattana-Amorn, P., Charoenwongsa, W., Williams, C., Crump, M. P., & Apichaisataienchote, B. (2016). Antibacterial activity of cyclo(L-Pro-L-Tyr) and cyclo(D-Pro-L-Tyr) from Streptomyces sp. strain 22-4 against phytopathogenic bacteria. Natural Product Research, 30(17), 1980–1983. https://doi.org/10.1080/14786419.2015.1095747Whiley, A. W., Schaffer, B., & Wolstenholme, B. N. (2002). The Avocado: Botany, Production, and Uses. CABI. Retrieved from https://books.google.es/books?id=CxmvpAYkL54CWinson, M. K., Swift, S., Fish, L., Throup, J. P., Jørgensen, F., Chhabra, S. R., … Stewart, G. S. A. B. (1998). Construction and analysis of luxCDABE-based plasmid sensors for investigating N-acyl homoserine lactone-mediated quorum sensing. FEMS Microbiology Letters, 163(2), 185–192. https://doi.org/10.1016/S0378-1097(98)00172-4Wright, S. A. I., Zumoff, C. H., Schneider, L., & Beer, S. V. (2001). Pantoea agglomerans strain-EH318 produces two antibiotics that inhibit Erwinia amylovora in vitro. Applied and Environmental Microbiology, 67(1), 284–292. https://doi.org/10.1128/AEM.67.1.284-292.2001Wu, S., Tang, L., Zhang, X., Xing, Z., Lei, Z., & Gao, Y. (2018). A decade of a thrips invasion in China: lessons learned. Ecotoxicology, 27(7), 1032–1038.Yang, W., Xu, Q., Liu, H. X., Wang, Y. P., Wang, Y. M., Yang, H. T., & Guo, J. H. (2012). Evaluation of biological control agents against Ralstonia wilt on ginger. Biological Control, 62(3), 144–151. https://doi.org/10.1016/j.biocontrol.2012.05.001Yang, X. (2014). Moraxellaceae. Encyclopedia of Food Microbiology: Second Edition, 2, 826–833. https://doi.org/10.1016/B978-0-12-384730-0.00441-9Yonezawa, K., Yamada, K., & Kouno, I. (2011). New diketopiperazine derivatives isolated from sea urchin-derived Bacillus sp. Chemical and Pharmaceutical Bulletin, 59(1), 106–108. https://doi.org/10.1248/cpb.59.106Zafar, T., & Sidhu, J. S. (2011). Avocado: Production, Quality, and Major Processed Products. In Handbook of Vegetables and Vegetable Processing (pp. 525–543). https://doi.org/10.1002/9780470958346.ch26Zhang, H., Mahunu, G. K., Castoria, R., Apaliya, M. T., & Yang, Q. (2017). Augmentation of biocontrol agents with physical methods against postharvest diseases of fruits and vegetables. Trends in Food Science and Technology, 69, 36–45. https://doi.org/10.1016/j.tifs.2017.08.020Zhao, J., Quan, C., Jin, L., & Chen, M. (2018). Production, detection and application perspectives of quorum sensing autoinducer-2 in bacteria. Journal of Biotechnology.Zhou, J. W., Ruan, L. Y., Chen, H. J., Luo, H. Z., Jiang, H., Wang, J. S., & Jia, A. Q. (2019). Inhibition of Quorum Sensing and Virulence in Serratia marcescens by Hordenine. Journal of Agricultural and Food Chemistry, 67, 784–795. research-article. https://doi.org/10.1021/acs.jafc.8b05922Zhu, H., Sun, S. wei, Li, H., Chang, A., Liu, Y. chen, Qian, J., & Shen, Y. ling. (2019). Significantly improved production of Welan gum by Sphingomonas sp. WG through a novel quorum-sensing-interfering dipeptide cyclo(L-Pro-L-Phe). International Journal of Biological Macromolecules, 126, 118–122. https://doi.org/10.1016/j.ijbiomac.2018.12.189Zientz, E., Dandekar, T., & Gross, R. (2004). Metabolic Interdependence of Obligate Intracellular Bacteria and Their Insect Hosts. Microbiology and Molecular Biology Reviews, 68(4), 745 LP – 770. https://doi.org/10.1128/MMBR.68.4.745-770.2004Universidad Nacional de ColombiaColcienciasInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80505/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL1019088590.2021.pdf1019088590.2021.pdfTesis de Maestría en Ciencias - Biotecnologíaapplication/pdf2337778https://repositorio.unal.edu.co/bitstream/unal/80505/4/1019088590.2021.pdf2dcf8b14ebc53c52f533ea1d4e11d8d1MD54THUMBNAIL1019088590.2021.pdf.jpg1019088590.2021.pdf.jpgGenerated Thumbnailimage/jpeg5708https://repositorio.unal.edu.co/bitstream/unal/80505/5/1019088590.2021.pdf.jpg64de077908806f0a76f46020eb7da628MD55unal/80505oai:repositorio.unal.edu.co:unal/805052023-07-29 23:03:41.499Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==