Decomposition of the Laplace-Beltrami operator on riemannian manifolds

Ilustraciones

Autores:
Estévez Joya, Lizeth Alexandra
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80138
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80138
https://repositorio.unal.edu.co/
Palabra clave:
510 - Matemáticas::516 - Geometría
Variables diferenciables
Differential manifolds
Variedades de Riemann
Riemann manifolds
Differential equations
Ecuaciones diferenciales
Laplace-Beltrami operator
Manifolds with indefinite metrics
Existence problems for PDEs
Polar actions
Variedades con métricas indefinidas
Problemas de existencia para EDPs
Operador de Laplace-Beltrami
Acciones polares
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional
id UNACIONAL2_0043c91db269d90d481429c9d26c04ff
oai_identifier_str oai:repositorio.unal.edu.co:unal/80138
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Decomposition of the Laplace-Beltrami operator on riemannian manifolds
dc.title.translated.spa.fl_str_mv Descomposición del operador Laplace-Beltrami sobre variedades riemannianas
title Decomposition of the Laplace-Beltrami operator on riemannian manifolds
spellingShingle Decomposition of the Laplace-Beltrami operator on riemannian manifolds
510 - Matemáticas::516 - Geometría
Variables diferenciables
Differential manifolds
Variedades de Riemann
Riemann manifolds
Differential equations
Ecuaciones diferenciales
Laplace-Beltrami operator
Manifolds with indefinite metrics
Existence problems for PDEs
Polar actions
Variedades con métricas indefinidas
Problemas de existencia para EDPs
Operador de Laplace-Beltrami
Acciones polares
title_short Decomposition of the Laplace-Beltrami operator on riemannian manifolds
title_full Decomposition of the Laplace-Beltrami operator on riemannian manifolds
title_fullStr Decomposition of the Laplace-Beltrami operator on riemannian manifolds
title_full_unstemmed Decomposition of the Laplace-Beltrami operator on riemannian manifolds
title_sort Decomposition of the Laplace-Beltrami operator on riemannian manifolds
dc.creator.fl_str_mv Estévez Joya, Lizeth Alexandra
dc.contributor.advisor.none.fl_str_mv Becerra Rojas, Edward Samuel
dc.contributor.author.none.fl_str_mv Estévez Joya, Lizeth Alexandra
dc.subject.ddc.spa.fl_str_mv 510 - Matemáticas::516 - Geometría
topic 510 - Matemáticas::516 - Geometría
Variables diferenciables
Differential manifolds
Variedades de Riemann
Riemann manifolds
Differential equations
Ecuaciones diferenciales
Laplace-Beltrami operator
Manifolds with indefinite metrics
Existence problems for PDEs
Polar actions
Variedades con métricas indefinidas
Problemas de existencia para EDPs
Operador de Laplace-Beltrami
Acciones polares
dc.subject.lemb.none.fl_str_mv Variables diferenciables
Differential manifolds
Variedades de Riemann
Riemann manifolds
Differential equations
Ecuaciones diferenciales
dc.subject.proposal.eng.fl_str_mv Laplace-Beltrami operator
Manifolds with indefinite metrics
Existence problems for PDEs
Polar actions
dc.subject.proposal.spa.fl_str_mv Variedades con métricas indefinidas
Problemas de existencia para EDPs
Operador de Laplace-Beltrami
Acciones polares
description Ilustraciones
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-09-08T21:44:10Z
dc.date.available.none.fl_str_mv 2021-09-08T21:44:10Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80138
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80138
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.none.fl_str_mv P. Ahmadi and S. Kashani. Cohomogeneity one Minkowski space R^n_1. Publicationes mathematicae, 78, 02 2011
P. Ahmadi, S. Safari, and M. Hassani. A classification of cohomogeneity one actions on the Minkowski space R. Bulletin of the Iranian Mathematical Society, 10 2020
N. M. Alba, J. Galvis, and E. Becerra. On polar actions invariant solutions of semilinear equations on manifolds. arXiv:1802.08625, 2018
M.M. Alexandrino and R.G. Bettiol. Lie groups and geometric aspects of isometric actions. Springer International Publishing, 2015
J.K. Beem, P. Ehrlich, and K. Easley. Global Lorentzian geometry, second edition. Chapman & Hall/CRC Pure and Applied Mathematics. Taylor & Francis, 1996
J. Berndt, S. Console, and C.E. Olmos. Submanifolds and holonomy. Chapman & Hall/CRC Monographs and Research Notes in Mathematics. CRC Press, second edition, 2016
C. Bär. Lorentzian Geometry. Lecture Notes, Summer Term 2004. Universit at Potsdam, 2020.
C. Bär, N. Ginoux, and F. Pf a e. Wave equations on Lorentzian manifolds and quantization. European Mathematical Society., 2007.
José Díaz-Ramos. Proper isometric actions. 12 2008.
Paul Ehrlich, Yoon-Tae Jung, Jeong-Sik Kim, and Seon-Bu Kim. Jacobians and volume comparison for Lorentzian warped products. Contemporary Mathematics, "Recent Advances in Riemannian and Lorentzian Geometries", pages 39{52, 01 2003.
F. Flaherty and M.P. do Carmo. Riemannian geometry. Mathematics: Theory & Applications. Birkh auser Boston, 2013.
S. Helgason. Differential operators on homogeneous spaces. Acta Math., 102(3-4):239-299 1959.
S. Helgason. Di erential geometry and symmetric spaces. Pure and Applied Mathematics. Elsevier Science, 1962.
S. Helgason. A formula for the radial part of the Laplace-Beltrami operator. Journal of Differential Geometry, 6(3):411-419, 1972.
S. Helgason. Groups and geometric analysis: integral geometry, invariant di erential operators, and spherical functions. Pure and applied mathematics. Academic Press, 1984.
S. Helgason. The Radon transform. Progress in Mathematics. Birkh auser Boston, 1999.
J. Jost. Riemannian geometry and geometric analysis. Universitext. Springer Berlin Heidelberg, 2011.
J. Lee. Introduction to smooth manifolds. Graduate Texts in Mathematics. Springer New York, 2012.
J.M. Lee. Riemannian manifolds: An introduction to curvature. Graduate Texts in Mathematics. Springer New York, 2006.
J.M. Lee. Introduction to Riemannian manifolds. Graduate Texts in Mathematics. Springer International Publishing, 2019.
B. O'Neill. Semi-Riemannian geometry with applications to relativity. Pure and Applied Mathematics. Elsevier Science, 1983.
T. Sakai. Riemannian geometry. Fields Institute Communications. American Mathematical Soc., 1996.
R.A. Wijsman. Invariant measures on groups and their use in statistics. IMS Lecture Notes. Institute of Mathematical Statistics, 1990.
Joseph A. Wolf. Spaces of constant curvature. sixth edition. AMS, 2011.
Hongtao Xue and Xigao Shao. Existence of positive entire solutions of a semilinear elliptic problem with a gradient term. Nonlinear Analysis: Theory, Methods & Applications, 71(7):3113-3118, 2009.
Q.S. Zhang. Sobolev inequalities, heat kernels under Ricci flow, and the Poincare conjecture. CRC Press, 2010.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv ix, 95 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Matemáticas
dc.publisher.department.spa.fl_str_mv Departamento de Matemáticas
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80138/4/1049627183.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/80138/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80138/5/1049627183.2021.pdf.jpg
bitstream.checksum.fl_str_mv 69e5159438fb9cdd745b02bfac1ba318
cccfe52f796b7c63423298c2d3365fc6
44301c13a010088b24c4bc710466819b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090150623313920
spelling Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Becerra Rojas, Edward Samuel9a9d39ad891fd65c4cf1bb2e325e446aEstévez Joya, Lizeth Alexandra51b2b50790f951f77d0ce9839e4871c32021-09-08T21:44:10Z2021-09-08T21:44:10Z2021https://repositorio.unal.edu.co/handle/unal/80138Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/IlustracionesThe goal of this work is to study the geometric conditions required on a pseudo-Riemannian manifold M to guarantee the existence of solutions of a second order partial differential equation posed on M. We closely follow the basic ideas in [3], where the considerations are carried out in the presence of a Riemannian metric and it is used the decomposition of the Laplace-Beltrami operator given by Helgason in [14]. In the indefinite case, the geometry of the manifold changes significantly and there are various pitfalls to watch out for. However, conditions for Helgason's results, in a certain sense, can be naturally set. Hence, we consider M as a globally hyperbolic Lorentzian manifold because a one dimensional submanifold \Sigma transversal to the orbits of a given group action is easily recognisable. This means M is endowed with a polar action and thus the equation can be reduced on \Sigma as in the Riemannian case. Then the solutions are obtained in such a way that these are constant along the orbits of the action. Finally, we propose an extension of our considerations to Lorentzian warped products.En este trabajo estudiamos las condiciones geométricas requeridas sobre una variedad pseudo-Riemanniana M para garantizar la existencia de soluciones de una ecuación diferencial parcial de segundo orden planteada sobre M. Seguimos de cerca las ideas principales expuestas en [3], donde las consideraciones se llevan a cabo en presencia de una métrica Riemanniana y se usa la descomposición del operador Laplace-Beltrami dada por Helgason en [14]. A pesar de que en el caso indefinido la geometría de la variedad cambia significativamente y hay varios obstáculos a los que prestar atención, las condiciones para los resultados de Helgason se pueden encontrar naturalmente. En vista de esto, consideramos M como una variedad Lorentziana globalmente hiperbólica, pues en este contexto se puede identificar fácilmente una subvariedad unidimensional \Sigma transversal a las órbitas de una acción de grupo dada. Esto significa que M está dotada de una acción polar y así la ecuación se puede reducir sobre \Sigma como en el caso Riemanniano. Entonces las soluciones se obtienen de tal manera que resultan ser constantes a largo de las órbitas de la acción. Por último, proponemos una extensión de nuestras consideraciones a productos warped Lorentzianos. (Texto tomado de la fuente).MaestríaMagíster en Ciencias - MatemáticasDifferential Geometryix, 95 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - MatemáticasDepartamento de MatemáticasFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá510 - Matemáticas::516 - GeometríaVariables diferenciablesDifferential manifoldsVariedades de RiemannRiemann manifoldsDifferential equationsEcuaciones diferencialesLaplace-Beltrami operatorManifolds with indefinite metricsExistence problems for PDEsPolar actionsVariedades con métricas indefinidasProblemas de existencia para EDPsOperador de Laplace-BeltramiAcciones polaresDecomposition of the Laplace-Beltrami operator on riemannian manifoldsDescomposición del operador Laplace-Beltrami sobre variedades riemannianasTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMP. Ahmadi and S. Kashani. Cohomogeneity one Minkowski space R^n_1. Publicationes mathematicae, 78, 02 2011P. Ahmadi, S. Safari, and M. Hassani. A classification of cohomogeneity one actions on the Minkowski space R. Bulletin of the Iranian Mathematical Society, 10 2020N. M. Alba, J. Galvis, and E. Becerra. On polar actions invariant solutions of semilinear equations on manifolds. arXiv:1802.08625, 2018M.M. Alexandrino and R.G. Bettiol. Lie groups and geometric aspects of isometric actions. Springer International Publishing, 2015J.K. Beem, P. Ehrlich, and K. Easley. Global Lorentzian geometry, second edition. Chapman & Hall/CRC Pure and Applied Mathematics. Taylor & Francis, 1996J. Berndt, S. Console, and C.E. Olmos. Submanifolds and holonomy. Chapman & Hall/CRC Monographs and Research Notes in Mathematics. CRC Press, second edition, 2016C. Bär. Lorentzian Geometry. Lecture Notes, Summer Term 2004. Universit at Potsdam, 2020.C. Bär, N. Ginoux, and F. Pf a e. Wave equations on Lorentzian manifolds and quantization. European Mathematical Society., 2007.José Díaz-Ramos. Proper isometric actions. 12 2008.Paul Ehrlich, Yoon-Tae Jung, Jeong-Sik Kim, and Seon-Bu Kim. Jacobians and volume comparison for Lorentzian warped products. Contemporary Mathematics, "Recent Advances in Riemannian and Lorentzian Geometries", pages 39{52, 01 2003.F. Flaherty and M.P. do Carmo. Riemannian geometry. Mathematics: Theory & Applications. Birkh auser Boston, 2013.S. Helgason. Differential operators on homogeneous spaces. Acta Math., 102(3-4):239-299 1959.S. Helgason. Di erential geometry and symmetric spaces. Pure and Applied Mathematics. Elsevier Science, 1962.S. Helgason. A formula for the radial part of the Laplace-Beltrami operator. Journal of Differential Geometry, 6(3):411-419, 1972.S. Helgason. Groups and geometric analysis: integral geometry, invariant di erential operators, and spherical functions. Pure and applied mathematics. Academic Press, 1984.S. Helgason. The Radon transform. Progress in Mathematics. Birkh auser Boston, 1999.J. Jost. Riemannian geometry and geometric analysis. Universitext. Springer Berlin Heidelberg, 2011.J. Lee. Introduction to smooth manifolds. Graduate Texts in Mathematics. Springer New York, 2012.J.M. Lee. Riemannian manifolds: An introduction to curvature. Graduate Texts in Mathematics. Springer New York, 2006.J.M. Lee. Introduction to Riemannian manifolds. Graduate Texts in Mathematics. Springer International Publishing, 2019.B. O'Neill. Semi-Riemannian geometry with applications to relativity. Pure and Applied Mathematics. Elsevier Science, 1983.T. Sakai. Riemannian geometry. Fields Institute Communications. American Mathematical Soc., 1996.R.A. Wijsman. Invariant measures on groups and their use in statistics. IMS Lecture Notes. Institute of Mathematical Statistics, 1990.Joseph A. Wolf. Spaces of constant curvature. sixth edition. AMS, 2011.Hongtao Xue and Xigao Shao. Existence of positive entire solutions of a semilinear elliptic problem with a gradient term. Nonlinear Analysis: Theory, Methods & Applications, 71(7):3113-3118, 2009.Q.S. Zhang. Sobolev inequalities, heat kernels under Ricci flow, and the Poincare conjecture. CRC Press, 2010.EstudiantesInvestigadoresPúblico generalORIGINAL1049627183.2021.pdf1049627183.2021.pdfTesis de Maestría en Ciencias - Matemáticasapplication/pdf724232https://repositorio.unal.edu.co/bitstream/unal/80138/4/1049627183.2021.pdf69e5159438fb9cdd745b02bfac1ba318MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80138/3/license.txtcccfe52f796b7c63423298c2d3365fc6MD53THUMBNAIL1049627183.2021.pdf.jpg1049627183.2021.pdf.jpgGenerated Thumbnailimage/jpeg3839https://repositorio.unal.edu.co/bitstream/unal/80138/5/1049627183.2021.pdf.jpg44301c13a010088b24c4bc710466819bMD55unal/80138oai:repositorio.unal.edu.co:unal/801382024-07-29 00:00:04.903Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==