Efecto de elicitores de origen biótico en la transcripción de algunos genes involucrados en los mecanismos de defensa del clavel Dianthus caryophyllus L. al patógeno Fusarium oxysporum f sp dianthi
The treatement effect of a biotic elicitor fraction from the pathogen Fusarium oxysporum f. sp. dianthi (Fod), in the transcription of some defense genes on carnation roots (Dianthus caryophyllus L.) was evaluated. In a first stage, reference genes were selected for transcriptional studies in this p...
- Autores:
-
Monroy Mena, Santiago
- Tipo de recurso:
- Work document
- Fecha de publicación:
- 2020
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/77930
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/77930
- Palabra clave:
- 540 - Química y ciencias afines
570 - Biología
580 - Plantas
histona
ARNr18s
ARNseq
aminociclopropilcarboxilato oxidasa
factor de respuesta al etileno
dianthus caryophyllus
histone
RNAr18s
RNAseq
aminocyclopropylcarboxylate oxidase
ethylene response factor
dianthus caryophyllus
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_003fa38def4a77a593f9a7d856d1aa31 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/77930 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Efecto de elicitores de origen biótico en la transcripción de algunos genes involucrados en los mecanismos de defensa del clavel Dianthus caryophyllus L. al patógeno Fusarium oxysporum f sp dianthi |
title |
Efecto de elicitores de origen biótico en la transcripción de algunos genes involucrados en los mecanismos de defensa del clavel Dianthus caryophyllus L. al patógeno Fusarium oxysporum f sp dianthi |
spellingShingle |
Efecto de elicitores de origen biótico en la transcripción de algunos genes involucrados en los mecanismos de defensa del clavel Dianthus caryophyllus L. al patógeno Fusarium oxysporum f sp dianthi 540 - Química y ciencias afines 570 - Biología 580 - Plantas histona ARNr18s ARNseq aminociclopropilcarboxilato oxidasa factor de respuesta al etileno dianthus caryophyllus histone RNAr18s RNAseq aminocyclopropylcarboxylate oxidase ethylene response factor dianthus caryophyllus |
title_short |
Efecto de elicitores de origen biótico en la transcripción de algunos genes involucrados en los mecanismos de defensa del clavel Dianthus caryophyllus L. al patógeno Fusarium oxysporum f sp dianthi |
title_full |
Efecto de elicitores de origen biótico en la transcripción de algunos genes involucrados en los mecanismos de defensa del clavel Dianthus caryophyllus L. al patógeno Fusarium oxysporum f sp dianthi |
title_fullStr |
Efecto de elicitores de origen biótico en la transcripción de algunos genes involucrados en los mecanismos de defensa del clavel Dianthus caryophyllus L. al patógeno Fusarium oxysporum f sp dianthi |
title_full_unstemmed |
Efecto de elicitores de origen biótico en la transcripción de algunos genes involucrados en los mecanismos de defensa del clavel Dianthus caryophyllus L. al patógeno Fusarium oxysporum f sp dianthi |
title_sort |
Efecto de elicitores de origen biótico en la transcripción de algunos genes involucrados en los mecanismos de defensa del clavel Dianthus caryophyllus L. al patógeno Fusarium oxysporum f sp dianthi |
dc.creator.fl_str_mv |
Monroy Mena, Santiago |
dc.contributor.advisor.spa.fl_str_mv |
Ardila Barrantes, Harold Duban Pinzón Velasco, Andres Mauricio |
dc.contributor.author.spa.fl_str_mv |
Monroy Mena, Santiago |
dc.contributor.corporatename.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.contributor.researchgroup.spa.fl_str_mv |
Estudio de actividades metabolicas vegetales |
dc.subject.ddc.spa.fl_str_mv |
540 - Química y ciencias afines 570 - Biología 580 - Plantas |
topic |
540 - Química y ciencias afines 570 - Biología 580 - Plantas histona ARNr18s ARNseq aminociclopropilcarboxilato oxidasa factor de respuesta al etileno dianthus caryophyllus histone RNAr18s RNAseq aminocyclopropylcarboxylate oxidase ethylene response factor dianthus caryophyllus |
dc.subject.proposal.spa.fl_str_mv |
histona ARNr18s ARNseq aminociclopropilcarboxilato oxidasa factor de respuesta al etileno dianthus caryophyllus |
dc.subject.proposal.eng.fl_str_mv |
histone RNAr18s RNAseq aminocyclopropylcarboxylate oxidase ethylene response factor dianthus caryophyllus |
description |
The treatement effect of a biotic elicitor fraction from the pathogen Fusarium oxysporum f. sp. dianthi (Fod), in the transcription of some defense genes on carnation roots (Dianthus caryophyllus L.) was evaluated. In a first stage, reference genes were selected for transcriptional studies in this plant-pathogen interaction, finding that genes coding for an H3 histone and for the 18s ribosomal subunit can be used for this purpose. Subsequently, an in vivo assay was carried out to verify that the application of this elicitor fraction reduce the incidence of Fod disease in the carnation-susceptible cultivar. In the transcriptomic analysis, it was found that the effect of elicitation at the root level, caused overexpression at constitutive level of 1551 genes, of which 347 were related to functions in response to stress. In this category, it was determined that among others, there are genes that code for proteins related to pathogenesis (PRs) such as β-1-3 endoglucanases and chitinases, enzymes involved in biosynthetic pathways of secondary metabolites, proteins associated with the recognition of PAMPs and MAMPs (molecular paterns associated with pathogens and microorganisms recognition, respectively) and transcription factors in response to ethylene. Finally, the transcriptional levels for 4 of these genes were compared during the pathogen inoculation, in treatments previously treated with the elicitor fraction and control treatments without elicitation. It was determined that elicitation potentiated the expression of an aminocyclopropylcarboxylate oxidase enzyme related to the biosynthesis of ethylene and of a protein acting as a response factor to this hormone. These results suggest that elicitation potentiates the signaling pathways associated with this hormone which may be important in the induction of resistance in this pathosystem. |
publishDate |
2020 |
dc.date.accessioned.spa.fl_str_mv |
2020-08-05T07:45:53Z |
dc.date.available.spa.fl_str_mv |
2020-08-05T07:45:53Z |
dc.date.issued.spa.fl_str_mv |
2020-02-14 |
dc.type.spa.fl_str_mv |
Documento de trabajo |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/workingPaper |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_8042 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/WP |
format |
http://purl.org/coar/resource_type/c_8042 |
status_str |
acceptedVersion |
dc.identifier.citation.spa.fl_str_mv |
Monroy Mena, S. (2020). Efecto de elicitores de origen biótico en la transcripción de algunos genes involucrados en los mecanismos de defensa del clavel Dianthus caryophyllus L. al patógeno Fusarium oxysporum f sp dianthi. Departamento de Quimica, Facultad de Ciencias, Universidad Nacional de Colombia. |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/77930 |
identifier_str_mv |
Monroy Mena, S. (2020). Efecto de elicitores de origen biótico en la transcripción de algunos genes involucrados en los mecanismos de defensa del clavel Dianthus caryophyllus L. al patógeno Fusarium oxysporum f sp dianthi. Departamento de Quimica, Facultad de Ciencias, Universidad Nacional de Colombia. |
url |
https://repositorio.unal.edu.co/handle/unal/77930 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Adie, B., Chico, J. M., Rubio-Somoza, I., & Solano, R. (2007). Modulation of plant defenses by ethylene. In Journal of Plant Growth Regulation (Vol. 26, Issue 2, pp. 160–177). https://doi.org/10.1007/s00344-007-0012-6 Agrios, G. N. (1995). Fitopatología. Editorial Limusa S.A. De C.V. https://books.google.com.co/books?id=6hVkNAAACAAJ Alba, Aguayo, D. R., & Rueda, A. (2013). Problema bioquímico. Determinación del ciclo umbral y la eficiencia para la PCR cuantitativa en tiempo real. Revista de Educación Bioquímica, 32(1), 36–39. Alexandersson, E., Mulugeta, T., Lankinen, Å., Liljeroth, E., & Andreasson, E. (2016). Plant resistance inducers against pathogens in Solanaceae species-from molecular mechanisms to field application. International Journal of Molecular Sciences, 17(10), 1–25. https://doi.org/10.3390/ijms17101673 Amil-Ruiz, F., Garrido-Gala, J., Blanco-Portales, R., Folta, K. M., Muñoz-Blanco, J., & Caballero, J. L. (2013). Identification and Validation of Reference Genes for Transcript Normalization in Strawberry (Fragaria × ananassa) Defense Responses. PLOS ONE, 8(8). https://doi.org/10.1371/journal.pone.0070603 Andersen, C. L., Ledet-Jensen, J., & Orntoft, T. F. (2004). Normalization of Real-Time quantitative reverse transcription- PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research, 64, 5245–5250. https://doi.org/10.1158/0008-5472.CAN-04-0496 Arbeláez, G., Guzmán, S., León, J., González, M., Molina, J. C., Parra, J., Ferney, J., & Darlo, J. (1993). Control Integrado Del Marchitamiento Vascular Del Clavel. Agron. Colombiana, 10(1), 68–89. Ardila-Barrantes, H. D. (2013). CONTRIBUCIÓN AL ESTUDIO DE ALGUNOS COMPONENTES BIOQUÍMICOS Y MOLECULARES DE LA RESISTENCIA DEL CLAVEL (Dianthus caryophyllus L) AL PATÓGENO Fusarium oxysporum f. sp. dianthi. Departamento de Quimica, Facultad de Ciencias,Universidad Nacional de Colombia. Ardila, H;Martinez, S, T;Baquero, B. (2007). Inducción de la actividad de la enzima fenilalanina amonio liasa en clavel (Dianthus caryophyllus L) por el hongo Fusarium oxysporum f. sp. Dianthi raza 2. Revista Colombiana de Quimica, 36(2), 151–167. Ardila, H. D., Martínez, S. T., & Higuera, B. L. (2013). Levels of constitutive flavonoid biosynthetic enzymes in carnation (Dianthus caryophyllus L.) cultivars with differential response to Fusarium oxysporum f. sp. dianthi. Acta Physiologiae Plantarum, 35(4), 1233–1245. https://doi.org/10.1007/s11738-012-1162-0 Ardila, H. D., Torres, A. M., Martínez, S. T., & Higuera, B. L. (2014). Biochemical and molecular evidence for the role of class III peroxidases in the resistance of carnation (Dianthus caryophyllus L) to Fusarium oxysporum f. sp. dianthi. Physiological and Molecular Plant Pathology, 85, 42–52. https://doi.org/10.1016/j.pmpp.2014.01.003 Baayen, R. P., & Elgersma, D. M. (1985). Colonization and histopathology of susceptible and resistant carnation cultivars infected with Fusarium oxysporum f. sp. dianthi. Netherlands Journal of Plant Pathology, 91(3), 119–135. https://doi.org/10.1007/BF01976386 Badawy, M. E. I., & Rabea, E. I. (2011). A Biopolymer Chitosan and Its Derivatives as Promising Antimicrobial Agents against Plant Pathogens and Their Applications in Crop Protection. International Journal of Carbohydrate Chemistry, 2011, 1–29. https://doi.org/10.1155/2011/460381 Barilli, E., Prats, E., & Rubiales, D. (2010). Benzothiadiazole and BABA improve resistance to Uromyces pisi (Pers.) Wint. in Pisum sativum L. with an enhancement of enzymatic activities and total phenolic content. European Journal of Plant Pathology, 128(4), 483–493. https://doi.org/10.1007/s10658-010-9678-x Bektas, Y., & Eulgem, T. (2015). Synthetic plant defense elicitors. Frontiers in Plant Science, 5(January), 1–17. https://doi.org/10.3389/fpls.2014.00804 Bent, A. F. (1996). Plant Disease Resistance Genes: Function Meets Structure. The Plant Cell, 8(10), 1757–1771. https://doi.org/10.1105/tpc.8.10.1757 Bent, A. F., & Mackey, D. (2007). Elicitors, Effectors, and R Genes: The New Paradigm and a Lifetime Supply of Questions. Annual Review of Phytopathology, 45(1), 399–436. https://doi.org/10.1146/annurev.phyto.45.062806.094427 Bergey, D. R., Kandel, R., Tyree, B. K., Dutt, M., & Dhekney, S. A. (2014). The Role of Calmodulin and Related Proteins in Plant Cell Function: An Ever-Thickening Plot. Springer Science Reviews, 2, 145–159. https://doi.org/10.1007/s40362-014-0025-z Boller, T., & Felix, G. (2009). A Renaissance of Elicitors: Perception of Microbe-Associated Molecular Patterns and Danger Signals by Pattern-Recognition Receptors. Annual Review of Plant Biology, 60(1), 379–406. https://doi.org/10.1146/annurev.arplant.57.032905.105346 Bolwell, G. P., Bindschedler, L. V., Blee, K. A., Butt, V. S., Davies, D. R., Gardner, S. L., Gerrish, C., & Minibayeva, F. (2002). The apoplastic oxidative burst in response to biotic stress in plants: A three-component system. Journal of Experimental Botany, 53(372), 1367–1376. https://doi.org/10.1093/jxb/53.372.1367 Burketova, L., Trda, L., Ott, P. G., & Valentova, O. (2015). Bio-based resistance inducers for sustainable plant protection against pathogens. Biotechnology Advances, 33(6), 994–1004. https://doi.org/10.1016/j.biotechadv.2015.01.004 Cevallos, J., Gonzales, D., & Arbelaez, G. (1990). Determinacion de las razas fisiologicas de Fusarium oxysporum f.sp. dianthi en clavel en la sabana de Bogota. Agron. Colombiana, 7, 40–46. Chen, F., Dong, M., Ge, M., Zhu, L., Ren, L., Liu, G., & Mu, R. (2013). The History and Advances of Reversible Terminators Used in New Generations of Sequencing Technology. Genomics, Proteomics and Bioinformatics, 11(1), 34–40. https://doi.org/10.1016/j.gpb.2013.01.003 Chen, Y. C., Wong, C. L., Muzzi, F., Vlaardingerbroek, I., Kidd, B. N., & Schenk, P. M. (2014). Root defense analysis against fusarium oxysporum reveals new regulators to confer resistance. Scientific Reports, 4, 1–10. https://doi.org/10.1038/srep05584 Chiocchetti, a, Bernardo, I., Daboussi, M. J., Garibaldi, a, Gullino, M. L., Langin, T., & Migheli, Q. (1999). Detection of Fusarium oxysporum f. sp. dianthi in Carnation Tissue by PCR Amplification of Transposon Insertions. Phytopathology, 89(12), 1169–1175. https://doi.org/10.1094/PHYTO.1999.89.12.1169 Choudhary, D. K., Prakash, A., & Johri, B. N. (2007). Induced systemic resistance (ISR) in plants: Mechanism of action. Indian Journal of Microbiology, 47(4), 289–297. https://doi.org/10.1007/s12088-007-0054-2 Conrath, U. (2011). Molecular aspects of defence priming. Trends in Plant Science, 16(10), 524–531. https://doi.org/10.1016/j.tplants.2011.06.004 Corpet, F. (1988). Multiple sequence alignment with hierarchical clustering. Nucleic Acids Research, 16(22), 10881–10890. https://doi.org/10.1093/nar/16.22.10881 Cuervo Plata, D. C. (2018). Estudio bioquímico y molécular de algunas enzimas asociadas al estres oxidativo en apoplasto de clavel (Dianthus caryophyllus L.) durante su interacción con Fusarium oxysporum f.sp. dianthi. In Tesis de Maestria. Departamento de Quimica, Facultad de Ciencias,Universidad Nacional de Colombia. Curir, P., Dolci, M., & Galeotti, F. (2005). A phytoalexin-like flavonol involved in the carnation (Dianthus caryophyllus)-Fusarium oxysporum f. sp. dianthi pathosystem. Journal of Phytopathology, 153(2), 65–67. https://doi.org/10.1111/j.1439-0434.2004.00916.x Czechowski, T., Stitt, M., Altmann, T., & Udvardi, M. K. (2005). Genome-wide identification and testing of superior reference genes for transcript normalization. Society, 139, 5–17. https://doi.org/10.1104/pp.105.063743.1 Davidson, N. M., & Oshlack, A. (2018). Necklace: combining reference and assembled transcriptomes for more comprehensive RNA-Seq analysis. GigaScience, 7(5), 1–6. https://doi.org/10.1093/gigascience/giy045 De Ascensao, A. R. D. C. F., & Dubery, I. A. (2000). Panama disease: Cell wall reinforcement in banana roots in response to elicitors from Fusarium oxysporum f. sp. cubense Race four. Phytopathology, 90(10), 1173–1180. https://doi.org/10.1094/PHYTO.2000.90.10.1173 De Cremer, K., Mathys, J., Vos, C., Froenicke, L., Michelmore, R. W., Cammue, B. P. A., & De Coninck, B. (2013). RNAseq-based transcriptome analysis of Lactuca sativa infected by the fungal necrotroph Botrytis cinerea. Plant, Cell and Environment, 36(11), 1992–2007. https://doi.org/10.1111/pce.12106 Di Pietro, A., Madrid, M. P., Caracuel, Z., Delgado-Jarana, J., & Roncero, M. I. G. (2003). Fusarium oxysporum: Exploring the molecular arsenal of a vascular wilt fungus. Molecular Plant Pathology, 4(5), 315–325. https://doi.org/10.1046/j.1364-3703.2003.00180.x Días Puentes, L. N. (2012). Systemic Acquired Resistance Induced By Salicylic Acid Resistência Sistêmica Adquirida. Biotecnología En El Sector Agropecuario y Agroindustrial Vol 10 No. 2 (257 - 267), 10(2), 257–267. Dodds, P. N., & Schwechheimer, C. (2002). A breakdown in defense signaling. The Plant Cell, 14 Suppl, S5–S8. https://doi.org/10.1105/tpc.141330 Doyle, J., & Doyle, J. (1986). A Rapid DNA Isolation Procedure from Small Quantities of Fresh Leaf Tissues. Phytochem Bull, 19. Erayman, M., Turktas, M., Akdogan, G., Gurkok, T., Inal, B., Ishakoglu, E., Ilhan, E., & Unver, T. (2015). Transcriptome analysis of wheat inoculated with Fusarium graminearum. Frontiers in Plant Science, 6(867), 1–17. https://doi.org/10.3389/fpls.2015.00867 Fang, Z., & Cui, X. (2011). Design and validation issues in RNA-seq experiments. Briefings in Bioinformatics, 12(3), 280–287. https://doi.org/10.1093/bib/bbr004 Felix, G., Duran, J. D., Volko, S., & Boller, T. (1999). Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant Journal, 18(3), 265–276. https://doi.org/10.1046/j.1365-313X.1999.00265.x Felsenfeld, G. (1992). Chromatin as an essential part of the transcriptional mechanim. Nature, 355(6357), 219–224. https://doi.org/10.1038/355219a0 Fitza, K. N. E., Payn, K. G., Steenkamp, E. T., Myburg, A. A., & Naidoo, S. (2013). South African Journal of Botany Chitosan application improves resistance to Fusarium circinatum in Pinus patula. 85, 70–78. Galindo-González, L., & Deyholos, M. K. (2016). RNA-seq Transcriptome Response of Flax (Linum usitatissimum L.) to the Pathogenic Fungus Fusarium oxysporum f. sp. lini. Frontiers in Plant Science, 7(1766), 1–22. https://doi.org/10.3389/fpls.2016.01766 Gamm, M., Héloir, M. C., Kelloniemi, J., Poinssot, B., Wendehenne, D., & Adrian, M. (2011). Identification of reference genes suitable for qRT-PCR in grapevine and application for the study of the expression of genes involved in pterostilbene synthesis. Molecular Genetics and Genomics, 285(4), 273–285. https://doi.org/10.1007/s00438-011-0607-2 Garber, M., Grabherr, M. G., Guttman, M., & Trapnell, C. (2011). Computational methods for transcriptome annotation and quantification using RNA-seq. Nature Methods, 8(6), 469–477. https://doi.org/10.1038/nmeth.1613 Glazebrook, J. (2005). Contrasting Mechanisms of Defense Against Biotrophic and Necrotrophic Pathogens. Annual Review of Phytopathology, 43(1), 205–227. https://doi.org/10.1146/annurev.phyto.43.040204.135923 Gómez-ariza, J., Campo, S., Rufat, M., Messeguer, J., Segundo, B. S., & Coca, M. (2007). Sucrose-Mediated Priming of Plant Defense Responses and Broad-Spectrum Disease Resistance by Overexpression of the Maize Pathogenesis-Related PRms Protein in Rice Plants. 20(7), 832–842. Gómez-Gómez, L. (2004). Plant perception systems for pathogen recognition and defence. Molecular Immunology, 41, 1055–1062. https://doi.org/10.1016/j.molimm.2004.06.008 González-Bosch, C. (2018). Priming plant resistance by activation of redox-sensitive genes. Free Radical Biology and Medicine, 122, 171–180. https://doi.org/10.1016/j.freeradbiomed.2017.12.028 Grabbe, C., & Dikic, I. (2009). Functional roles of ubiquitin-like domain (ULD) and ubiquitin-binding domain (UBD) containing proteins. Chemical Reviews, 109(4), 1481–1494. https://doi.org/10.1021/cr800413p Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren, B. W., Nusbaum, C., Lindblad-Toh, K., … Regev, A. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29(7), 644–652. https://doi.org/10.1038/nbt.1883 Graham, M. Y., Weidner, J., Wheeler, K., Pelow, M. J., & Graham, T. L. (2003). Induced expression of pathogenesis-related protein genes in soybean by wounding and the Phytophthora sojae cell wall glucan elicitor. 63, 141–149. https://doi.org/10.1016/j.pmpp.2003.11.002 Gullino, M. L., Daughtrey, M. L., Garibaldi, A., & Elmer, W. H. (2015). Fusarium wilts of ornamental crops and their management. Crop Protection, 73, 45–49. https://doi.org/10.1016/j.cropro.2015.01.003 Han, R., Takahashi, H., Nakamura, M., Bunsupa, S., Yoshimoto, N., Yamamoto, H., Suzuki, H., Shibata, D., Yamazaki, M., & Saito, K. (2015). Transcriptome analysis of nine tissues to discover genes involved in the biosynthesis of active ingredients in Sophora flavescens. Biological and Pharmaceutical Bulletin, 38(6), 876–883. https://doi.org/10.1248/bpb.b14-00834 Han, R., Takahashi, H., Nakamura, M., Yoshimoto, N., Suzuki, H., Shibata, D., Yamazaki, M., & Saito, K. (2015). Transcriptomic landscape of pueraria lobata demonstrates potential for phytochemical study. Frontiers in Plant Science, 6(JUNE), 1–10. https://doi.org/10.3389/fpls.2015.00426 Heyman, J., Canher, B., Bisht, A., Christiaens, F., & De Veylder, L. (2018). Emerging role of the plant ERF transcription factors in coordinating wound defense responses and repair. Journal of Cell Science, 131(2). https://doi.org/10.1242/jcs.208215 Hu, Y., & Lai, Y. (2015). Identification and expression analysis of rice histone genes. Plant Physiology and Biochemistry, 86, 55–65. https://doi.org/10.1016/j.plaphy.2014.11.012 Illumina. (2011). An Introduction to Next-Generation Sequencing Technology. Manual. https://doi.org/Pub No. 770-2012-008 Imbeaud, S., Graudens, E., Boulanger, V., Barlet, X., Zaborski, P., Eveno, E., Mueller, O., Schroeder, A., & Auffray, C. (2005). Towards standardization of RNA quality assessment using user-independent classifiers of microcapillary electrophoresis traces. Nucleic Acids Research, 33(6), 1–12. https://doi.org/10.1093/nar/gni054 Iwai, T., Miyasaka, A., Seo, S., & Ohashi, Y. (2006). Contribution of ethylene biosynthesis for resistance to blast fungus infection in young rice plants. Plant Physiology, 142(3), 1202–1215. https://doi.org/10.1104/pp.106.085258 Jin, S. L., Kyung, W. H., Bhargava, A., & Ellis, B. E. (2008). Comprehensive analysis of protein-protein interactions between Arabidopsis MAPKs and MAPK kinases helps define potential MAPK signalling modules. Plant Signaling and Behavior, 3(12), 1037–1041. https://doi.org/10.4161/psb.3.12.6848 Jongeneel, V., Estreicher, A., Baxevanis, A. D., Ouellette, B. F. F., Wolfsberg, T. G., Landsman, D., Wang, Z., Gerstein, M., Snyder, M., Baeck, G. W., Kim, J. W., Kim, K. H., & Jun, K. Y. (2001). EXPRESSED SEQUENCE TAGS (ESTs). Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins, 10(1), 57–63. https://doi.org/10.1038/nrg2484.RNA-Seq Kaku, H., Nishizawa, Y., Ishii-Minami, N., Akimoto-Tomiyama, C., Dohmae, N., Takio, K., Minami, E., & Shibuya, N. (2006). Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proceedings of the National Academy of Sciences, 103(29), 11086–11091. https://doi.org/10.1073/pnas.0508882103 Kim, J. H., Lee, Y. J., Kim, B. G., Lim, Y., & Ahn, J. H. (2008). Flavanone 3β-hydroxylases from rice: Key enzymes for favonol and anthocyanin biosynthesis. Molecules and Cells, 25(2), 312–316. Kitajima, S., Koyama, T., Ohme-takagi, M., & Shinshi, H. (2000). Characterization of Gene Expression of NsERFs , Transcription Factors of Basic PR Genes from Nicotiana sylvestris. 41(6), 817–824. Kong, W., Chen, N., Liu, T., Zhu, J., Wang, J., He, X., & Jin, Y. (2015). Large-scale transcriptome analysis of cucumber and botrytis cinerea during infection. PLoS ONE, 10(11), 1–16. https://doi.org/10.1371/journal.pone.0142221 Kruse, C. P. S., Basu, P., Luesse, D. R., & Wyatt, S. E. (2017). Transcriptome and proteome responses in RNAlater preserved tissue of Arabidopsis thaliana. PLoS ONE, 12(4), 1–10. https://doi.org/10.1371/journal.pone.0175943 Kunze, G. (2004). The N Terminus of Bacterial Elongation Factor Tu Elicits Innate Immunity in Arabidopsis Plants. The Plant Cell Online, 16(12), 3496–3507. https://doi.org/10.1105/tpc.104.026765 Lahey, K. A., Yuan, R., Burns, J. K., Ueng, P. P., Timmer, L. W., & Chung, K. R. (2004). Induction of phytohormones and differential gene expression in citrus flowers infected by the fungus Colletotrichum acutatum. Molecular Plant-Microbe Interactions, 17(12), 1394–1401. https://doi.org/10.1094/MPMI.2004.17.12.1394 Lee, J. K., Jin, H.-O., Hong, Y. J., Park, J.-A., Kim, J.-H., & Chang, Y. H. (2014). Comparison of three different kits for extraction of high-quality RNA from frozen blood. SpringerPlus, 3(1), 76. https://doi.org/10.1186/2193-1801-3-76 Li, G., & Yen, Y. (2008). Jasmonate and Ethylene Signaling Pathway May Mediate Fusarium Head Blight Resistance in Wheat. October, 1888–1896. https://doi.org/10.2135/cropsci2008.02.0097 Liu, L., Li, Y., Li, S., Hu, N., He, Y., Pong, R., Lin, D., Lu, L., & Law, M. (2012). Comparison of next-generation sequencing systems. Journal of Biomedicine and Biotechnology, 2012. https://doi.org/10.1155/2012/251364 Liu, Q., Wei, C., Zhang, M.-F., & Jia, G.-X. (2016). Evaluation of putative reference genes for quantitative real-time PCR normalization in Lilium regale during development and under stress. PeerJ, 4, e1837. https://doi.org/10.7717/peerj.1837 Liu, W., & Saint, D. A. (2002). A new quantitative method of real time reverse transcription polymerase chain reaction assay based on simulation of polymerase chain reaction kinetics. Analytical Biochemistry, 302(1), 52–59. https://doi.org/10.1006/abio.2001.5530 Liu, Y., Guo, Y., Ma, C., Zhang, D., Wang, C., & Yang, Q. (2016). Transcriptome analysis of maize resistance to Fusarium graminearum. BMC Genomics, 17(1), 477. https://doi.org/10.1186/s12864-016-2780-5 Lu, H., Rate, D. N., Song, J. T., & Greenberg, J. T. (2003). ACD6, a Novel Ankyrin Protein, Is a Regulator and an Effector of Salicylic Acid Signaling in the Arabidopsis Defense Response. Plant Cell, 15(10), 2408–2420. https://doi.org/10.1105/tpc.015412 MacKay, V. L., Li, X., Flory, M. R., Turcott, E., Law, G. L., Serikawa, K. A., Xu, X. L., Lee, H., Goodlett, D. R., Aebersold, R., Zhao, L. P., & Morris, D. R. (2004). Gene expression analyzed by high-resolution state array analysis and quantitative proteomics. Molecular and Cellular Proteomics, 3(5), 478–489. https://doi.org/10.1074/mcp.M300129-MCP200 Mahesh, H. M., Murali, M., Chandra, M. A., Melvin, P., & Sharada, M. S. (2017). Plant Physiology and Biochemistry Salicylic acid seed priming instigates defense mechanism by inducing PR-Proteins in Solanum melongena L . upon infection with Verticillium dahliae Kleb . Plant Physiology et Biochemistry, 117, 12–23. https://doi.org/10.1016/j.plaphy.2017.05.012 Martinez, A. P. (2019). Contribución al estudio de los Contribución al estudio de los fenómenos bioquímicos y fenómenos bioquímicos y moleculares del apoplasto de clavel moleculares del apoplasto de clavel ( Dianthus caryophyllus L) durante su durante su interacción con Fusarium. Departamento de Quimica, Facultad de Ciencias,Universidad Nacional de Colombia. Meng, X., Li, F., & Liu, C. (2010). Isolation and Characterization of an ERF Transcription Factor Gene from Cotton ( Gossypium barbadense L .). 176–183. https://doi.org/10.1007/s11105-009-0136-x Monaghan, J., & Zipfel, C. (2012). Plant pattern recognition receptor complexes at the plasma membrane. Current Opinion in Plant Biology, 15(4), 349–357. https://doi.org/10.1016/j.pbi.2012.05.006 Monroy-Mena, S., Chacon-Parra, A. L., Farfan-Angarita, J. P., Martinez-Peralta, S. T., & Ardila-Barrantes, H. D. (2019). Selección de genes de referencia para análisis transcripcionales en el modelo clavel (Dianthus caryophyllus L.) - Fusarium oxysporum f. sp. dianthi. Revista Colombiana de Química, 48(2), 5–14. https://doi.org/10.15446/rev.colomb.quim.v48n2.72771 Mueller, O., & Schroeder, A. (2004). RNA Integrity Number ( RIN ) – Standardization of RNA Quality Control Application. Nano, 1–8. https://doi.org/10.1101/gr.189621.115.7 Nedukha, O. M. (2015). Callose: Localization, functions, and synthesis in plant cells. Cytology and Genetics, 49(1), 49–57. https://doi.org/10.3103/S0095452715010090 Ng, D. W., Abeysinghe, J. K., & Kamali, M. (2018). Regulating the Regulators : The Control of Transcription Factors in Plant Defense Signaling. International Journal of Molecular Sciences, 19, 1–18. https://doi.org/10.3390/ijms19123737 Niemann, G. J., & Kerk, A. van der K. (1991). Free and cell wall-bound phenolics and other constituents from healthy and fungus-infected carnation (Dianthus caryophyllus) stems. Physiological and Molecular Plant Pathology, 38, 417–432. Odintsova, T. I., Slezina, M. P., Istomina, E. A., Korostyleva, T. V., Kasianov, A. S., Kovtun, A. S., Makeev, V. J., Shcherbakova, L. A., & Kudryavtsev, A. M. (2019). Defensin-like peptides in wheat analyzed by whole-transcriptome sequencing: A focus on structural diversity and role in induced resistance. PeerJ, 2019(1), 1–29. https://doi.org/10.7717/peerj.6125 Olbrich, M., Gerstner, E., Welzl, G., & Fleischmann, F. (2008). Quantification of mRNAs and Housekeeping Gene Selection for Quantitative Real-Time RT-PCR Normalization in European Beech ( Fagus sylvatica L .) during Abiotic and Biotic Stress. Z. Naturforsch., 63(c), 574–582. Oneto, C. D., Bossio, E., Faccio, P., Beznec, A., Blumwald, E., & Lewi, D. (2017). Validation of housekeeping genes for qPCR in maize during water deficit stress conditions at flowering time. Maydica, 62(2), 1–6. Oxley, S. J. P., & Walters, D. R. (2012). Control of light leaf spot (Pyrenopeziza brassicae) on winter oilseed rape (Brassica napus) with resistance elicitors. Crop Protection, 40, 59–62. https://doi.org/10.1016/j.cropro.2012.04.028 Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29(9), 45e – 45. https://doi.org/10.1093/nar/29.9.e45 Phukan, U. J., Jeena, G. S., Tripathi, V., & Shukla, R. K. (2017). Regulation of Apetala2 / Ethylene Response Factors in Plants. Frontiers in Plant Science, 8(February), 1–18. https://doi.org/10.3389/fpls.2017.00150 Rancour, D. M., Park, S., Knight, S. D., & Bednarek, S. Y. (2004). Plant UBX domain-containing protein 1, PUX1, regulates the oligomeric structure and activity of arabidopsis CDC48. Journal of Biological Chemistry, 279(52), 54264–54274. https://doi.org/10.1074/jbc.M405498200 Rattray, A. M. J., & Müller, B. (2012). The control of histone gene expression. Biochemical Society Transactions, 40(4), 880–885. https://doi.org/10.1042/BST20120065 Reddy, A. S. N., Ali, G. S., Celesnik, H., & Day, I. S. (2011). Coping with stresses: Roles of calcium- and calcium/calmodulin-regulated gene expression. Plant Cell, 23(6), 2010–2032. https://doi.org/10.1105/tpc.111.084988 Robertson, G., Schein, J., Chiu, R., Corbett, R., Field, M., Jackman, S. D., Mungall, K., Lee, S., Okada, H. M., Qian, J. Q., Griffith, M., Raymond, A., Thiessen, N., Cezard, T., Butterfield, Y. S., Newsome, R., Chan, S. K., She, R., Varhol, R., … Birol, I. (2010). De novo assembly and analysis of RNA-seq data. Nature Methods, 7(11), 909–912. https://doi.org/10.1038/nmeth.1517 Ruduś, I., Sasiak, M., & Kepczyński, J. (2013). Regulation of ethylene biosynthesis at the level of 1-aminocyclopropane-1-carboxylate oxidase (ACO) gene. Acta Physiologiae Plantarum, 35(2), 295–307. https://doi.org/10.1007/s11738-012-1096-6 Sánchez, G. R., Mercado, E. C., Peña, E. B., Reyes, H., & Cruz, D. (2010). El acido salicílico y su participacion en la resistencia a patógenos en plantas. Biologicas, 12(2), 90–95. Sillero, J. C., Rojas-Molina, M. M., Avila, C. M., & Rubiales, D. (2012). Induction of systemic acquired resistance against rust, ascochyta blight and broomrape in faba bean by exogenous application of salicylic acid and benzothiadiazole. Crop Protection, 34, 65–69. https://doi.org/10.1016/j.cropro.2011.12.001 Singh, V., Kaul, S. C., Wadhwa, R., & Pati, P. K. (2015). Evaluation and selection of candidate reference genes for normalization of quantitative RT-PCR in Withania somnifera (L.) Dunal. PLoS ONE, 10(3), 1–20. https://doi.org/10.1371/journal.pone.0118860 Stadnik, M. J., & Freitas, M. B. de. (2014). Algal polysaccharides as source of plant resistance inducers. Tropical Plant Pathology, 39(2), 111–118. https://doi.org/10.1590/S1982-56762014000200001 Tameling, W. I. L., & Joosten, M. H. A. J. (2007). The diverse roles of NB-LRR proteins in plants. Physiological and Molecular Plant Pathology, 71(4–6), 126–134. https://doi.org/10.1016/j.pmpp.2007.12.006 Tamm, L., Thürig, B., Fliessbach, A., Goltlieb, A. E., Karavani, S., & Cohen, Y. (2011). Elicitors and soil management to induce resistance against fungal plant diseases. NJAS - Wageningen Journal of Life Sciences, 58(3–4), 131–137. https://doi.org/10.1016/j.njas.2011.01.001 Tarazona, S., García, F., Ferrer, A., Dopazo, J., & Conesa, A. (2012). NOIseq: a RNA-seq differential expression method robust for sequencing depth biases. EMBnet.Journal, 17(B), 18. https://doi.org/10.14806/ej.17.b.265 Ton, J., Ent, S. Van Der, Hulten, M. Van, Pozo, M., van Oosten, V., van Loon, L. C., Mauch-Mani, B., Turlings, T. C. J., & Pieterse, C. M. J. (2009). Priming as a mechanism behind induced resistance against pathogens, insects and abiotic stress. IOBC/Wprs Bull, 44, 3–13. https://doi.org/IOBC/wprs Bulletin Trillas, M. I., Cotxarrera, L., Casanova, E., & Cortadellas, N. (2000). Ultrastructural changes and localization of chitin and callose in compatible and incompatible interactions between carnation callus and Fusarium oxysporum. Physiological and Molecular Plant Pathology, 56(3), 107–116. https://doi.org/10.1006/pmpp.1999.0254 Tristan, C., Shahani, N., Sedlak, T. W., & Sawa, A. (2011). The diverse functions of GAPDH: Views from different subcellular compartments. Cellular Signalling, 23(2), 317–323. https://doi.org/10.1016/j.cellsig.2010.08.003 Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B. C., Remm, M., & Rozen, S. G. (2012). Primer3-new capabilities and interfaces. Nucleic Acids Research, 40(15), 1–12. https://doi.org/10.1093/nar/gks596 Vandesompele, J., De Preter, K., Pattyn, ilip, Poppe, B., Van Roy, N., De Paepe, A., & Speleman, rank. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3(711), 34–1. https://doi.org/10.1186/gb-2002-3-7-research0034 Vanegas Cano, L. J. (2019). APROXIMACIÓN BIOQUÍMICA AL ESTUDIO DE LAS RUTAS DE SEÑALIZACIÓN INVOLUCRADAS EN LA RESISTENCIA DEL CLAVEL (Dianthus caryophyllus L.) AL PATÓGENO Fusarium oxysporum f. sp. dianthi. Departamento de Quimica, Facultad de Ciencias,Universidad Nacional de Colombia. Vanetten, H. D., Mansfield, J. W., Bailey, J. A., & Farmer, E. E. (1994). Two Classes of Plant Antibiotics: Phytoalexins versus “Phytoanticipins.” Plant Cell, 101, 1191–1192. Vechet, L., Burketova, L., & Sindelarova, M. (2009). A comparative study of the efficiency of several sources of induced resistance to powdery mildew (Blumeria graminis f. sp. tritici) in wheat under field conditions. Crop Protection, 28(2), 151–154. https://doi.org/10.1016/j.cropro.2008.09.009 Verhagen, B. W. M., Glazebrook, J., Zhu, T., Chang, H., Loon, L. C. Van, & Pieterse, C. M. J. (2004). The Transcriptome of Rhizobacteria-Induced Systemic Resistance in Arabidopsis. 17(8), 895–908. Vorwerk, S., Somerville, S., & Somerville, C. (2004). The role of plant cell wall polysaccharide composition in disease resistance. Trends in Plant Science, 9(4), 203–209. https://doi.org/10.1016/j.tplants.2004.02.005 Walters, D. R., Ratsep, J., & Havis, N. D. (2013). Controlling crop diseases using induced resistance : challenges for the future. 64(5), 1263–1280. https://doi.org/10.1093/jxb/ert026 Wei, Y., Liu, Q., Dong, H., Zhou, Z., Hao, Y., Chen, X., & Xu, L. (2016). Selection of reference genes for real-time quantitative PCR in pinus massoniana post nematode inoculation. PLoS ONE, 11(1), 1–14. https://doi.org/10.1371/journal.pone.0147224 White, R. F. (1979). Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology, 99(2), 410–412. https://doi.org/10.1016/0042-6822(79)90019-9 Wiesel, L., Newton, A. C., Elliott, I., Booty, D., Gilroy, E. M., Birch, P. R. J., & Hein, I. (2014). Molecular effects of resistance elicitors from biological origin and their potential for crop protection. Frontiers in Plant Science, 5(November), 1–13. https://doi.org/10.3389/fpls.2014.00655 Wilson, I. G., & Wilson, I. a N. G. (1997). Inhibition and Facilitation of Nucleic Acid Amplification Inhibition and Facilitation of Nucleic Acid Amplification. 63(10), 3741–3751. Wise, R. P., Moscou, M. J., Bogdanove, A. J., & Whitham, S. A. (2007). Transcript Profiling in Host–Pathogen Interactions. Annual Review of Phytopathology, 45(1), 329–369. https://doi.org/10.1146/annurev.phyto.45.011107.143944 Wrzaczek, M., Vainonen, J. P., Stael, S., Tsiatsiani, L., Help‐Rinta‐Rahko, H., Gauthier, A., Kaufholdt, D., Bollhöner, B., Lamminmäki, A., Staes, A., Gevaert, K., Tuominen, H., Van Breusegem, F., Helariutta, Y., & Kangasjärvi, J. (2015). GRIM REAPER peptide binds to receptor kinase PRK 5 to trigger cell death in Arabidopsis . The EMBO Journal, 34(1), 55–66. https://doi.org/10.15252/embj.201488582 Xiao, J., Jin, X., Jia, X., Wang, H., Cao, A., Zhao, W., Pei, H., Xue, Z., He, L., Chen, Q., & Wang, X. (2013). Transcriptome-based discovery of pathways and genes related to resistance against Fusarium head blight in wheat landrace Wangshuibai. BMC Genomics, 14(1), 1. https://doi.org/10.1186/1471-2164-14-197 Xu, C., Jiao, C., Sun, H., Cai, X., Wang, X., Ge, C., Zheng, Y., Liu, W., Sun, X., Xu, Y., Deng, J., Zhang, Z., Huang, S., Dai, S., Mou, B., Wang, Q., Fei, Z., & Wang, Q. (2017). Draft genome of spinach and transcriptome diversity of 120 Spinacia accessions. Nature Communications, 8(May), 1–10. https://doi.org/10.1038/ncomms15275 Xu, P., Narasimhan, M. L., Samson, T., Coca, M. A., Huh, G., Zhou, J., Martin, G. B., Hasegawa, P. M., & Bressan, R. A. (1998). A Nitrilase-Like Protein Interacts with GCC Box DNA-Binding Proteins Involved in Ethylene and Defense Responses 1. 867–874. Xu, Z. S., Chen, M., Li, L. C., & Ma, Y. Z. (2008). Functions of the ERF transcription factor family in plants. Botany, 86(9), 969–977. https://doi.org/10.1139/B08-041 Yagi, M., Kosugi, S., Hirakawa, H., Ohmiya, A., Tanase, K., Harada, T., Kishimoto, K., Nakayama, M., Ichimura, K., Onozaki, T., Yamaguchi, H., Sasaki, N., Miyahara, T., Nishizaki, Y., Ozeki, Y., Nakamura, N., Suzuki, T., Tanaka, Y., Sato, S., … Tabata, S. (2014). Sequence analysis of the genome of carnation (Dianthus caryophyllus L.). DNA Research, 21(3), 231–241. https://doi.org/10.1093/dnares/dst053 Yang, I. S., & Kim, S. (2015). Analysis of Whole Transcriptome Sequencing Data: Workflow and Software. Genomics & Informatics, 13(4), 119. https://doi.org/10.5808/GI.2015.13.4.119 Zipfel, C. (2009). Early molecular events in PAMP-triggered immunity. Current Opinion in Plant Biology, 12(4), 414–420. https://doi.org/10.1016/j.pbi.2009.06.003 Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E. J., Jones, J. D. G., Felix, G., & Boller, T. (2004). Bacterial disease resistance in Arabidopsis through flagellin perception. Nature, 428(6984), 764–767. https://doi.org/10.1038/nature02485 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.spa.spa.fl_str_mv |
Acceso abierto |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia Acceso abierto http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
130 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Bioquímica |
dc.publisher.department.spa.fl_str_mv |
Departamento de Química |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/77930/2/license.txt https://repositorio.unal.edu.co/bitstream/unal/77930/1/1031140642.2020.pdf https://repositorio.unal.edu.co/bitstream/unal/77930/3/license_rdf https://repositorio.unal.edu.co/bitstream/unal/77930/4/1031140642.2020.pdf.jpg |
bitstream.checksum.fl_str_mv |
6f3f13b02594d02ad110b3ad534cd5df 26ce1f969bc143543e12639194ac2b11 217700a34da79ed616c2feb68d4c5e06 50f5c0a09ad18564cc28e80da5642f83 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089593617645568 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos reservados - Universidad Nacional de ColombiaAcceso abiertohttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ardila Barrantes, Harold Duban31e17f3f-d386-4972-90f5-07d2addfe9d9-1Pinzón Velasco, Andres Mauricio51de7445-1b24-49fd-b3be-d3631cd6bf03-1Monroy Mena, Santiago8a19e55b-538e-462f-8bcb-22b2db27298aUniversidad Nacional de ColombiaEstudio de actividades metabolicas vegetales2020-08-05T07:45:53Z2020-08-05T07:45:53Z2020-02-14Monroy Mena, S. (2020). Efecto de elicitores de origen biótico en la transcripción de algunos genes involucrados en los mecanismos de defensa del clavel Dianthus caryophyllus L. al patógeno Fusarium oxysporum f sp dianthi. Departamento de Quimica, Facultad de Ciencias, Universidad Nacional de Colombia.https://repositorio.unal.edu.co/handle/unal/77930The treatement effect of a biotic elicitor fraction from the pathogen Fusarium oxysporum f. sp. dianthi (Fod), in the transcription of some defense genes on carnation roots (Dianthus caryophyllus L.) was evaluated. In a first stage, reference genes were selected for transcriptional studies in this plant-pathogen interaction, finding that genes coding for an H3 histone and for the 18s ribosomal subunit can be used for this purpose. Subsequently, an in vivo assay was carried out to verify that the application of this elicitor fraction reduce the incidence of Fod disease in the carnation-susceptible cultivar. In the transcriptomic analysis, it was found that the effect of elicitation at the root level, caused overexpression at constitutive level of 1551 genes, of which 347 were related to functions in response to stress. In this category, it was determined that among others, there are genes that code for proteins related to pathogenesis (PRs) such as β-1-3 endoglucanases and chitinases, enzymes involved in biosynthetic pathways of secondary metabolites, proteins associated with the recognition of PAMPs and MAMPs (molecular paterns associated with pathogens and microorganisms recognition, respectively) and transcription factors in response to ethylene. Finally, the transcriptional levels for 4 of these genes were compared during the pathogen inoculation, in treatments previously treated with the elicitor fraction and control treatments without elicitation. It was determined that elicitation potentiated the expression of an aminocyclopropylcarboxylate oxidase enzyme related to the biosynthesis of ethylene and of a protein acting as a response factor to this hormone. These results suggest that elicitation potentiates the signaling pathways associated with this hormone which may be important in the induction of resistance in this pathosystem.Se evaluó el efecto que tiene la aplicación de una fracción elicitora de origen biótico proveniente del patógeno Fusarium oxysporum f. sp. dianthi (Fod), en la transcripción de algunos genes de defensa en raíces del clavel (Dianthus caryophyllus L.). Para ello, en una primera etapa se encontró que los genes codificantes para una histona H3 y para la subunidad ribosomal 18s, pueden ser usados como genes de referencia para estudios transcripcionales en esta interacción planta patógeno. Posteriormente en un ensayo in vivo se verificó que la aplicación del elicitor, tiene un efecto en la disminución de la incidencia a la enfermedad causada por Fod en la variedad susceptible de clavel. Se determinó en el análisis transcriptómico preliminar que la elicitación, generó un aumento en los niveles de transcripción de 1551 genes de los cuales, 347 se encontraban relacionados a funciones como respuesta a estrés. En esta categoría, se encuentran genes que codifican para proteínas relacionadas con patogénesis como β-1-3 endoglucanasas y quitinasas, enzimas involucradas en rutas biosintéticas de metabolitos secundarios, proteínas asociadas con el reconocimiento de PAMPs y MAMPs (patrones moleculares asociados a patógenos y microorganismos, respectivamente) y factores de transcripción de respuesta al etileno. Finalmente se compararon los niveles transcripcionales durante la inoculación con el patógeno, de 4 de los genes con potencial expresión diferencial, en tratamientos con o sin elicitación. Se determinó que la elicitación potencializó la expresión de una enzima aminociclopropilcarboxilato oxidasa relacionada con la biosíntesis del etileno y de una proteína que actúa como factor de respuesta a esta hormona. Estos resultados sugieren que la elicitación potencializa las rutas de señalización asociadas con esta hormona la cual puede ser central en la inducción de resistencia en este patosistema.ColcienciasEstudio del uso de elicitores de origen biótico en el clavel (Dianthus caryophyllus L) para el control del marchitamiento vascular: Una alternativa al uso de fungicidas de origen sintético” (Código 110174558226)Línea de Investigación: Bioquímica de las Interacciones Hospedero-Patógeno.Maestría130application/pdfspa540 - Química y ciencias afines570 - Biología580 - PlantashistonaARNr18sARNseqaminociclopropilcarboxilato oxidasafactor de respuesta al etilenodianthus caryophyllushistoneRNAr18sRNAseqaminocyclopropylcarboxylate oxidaseethylene response factordianthus caryophyllusEfecto de elicitores de origen biótico en la transcripción de algunos genes involucrados en los mecanismos de defensa del clavel Dianthus caryophyllus L. al patógeno Fusarium oxysporum f sp dianthiDocumento de trabajoinfo:eu-repo/semantics/workingPaperinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_8042Texthttp://purl.org/redcol/resource_type/WPBogotá - Ciencias - Maestría en Ciencias - BioquímicaDepartamento de QuímicaUniversidad Nacional de Colombia - Sede BogotáAdie, B., Chico, J. M., Rubio-Somoza, I., & Solano, R. (2007). Modulation of plant defenses by ethylene. In Journal of Plant Growth Regulation (Vol. 26, Issue 2, pp. 160–177). https://doi.org/10.1007/s00344-007-0012-6Agrios, G. N. (1995). Fitopatología. Editorial Limusa S.A. De C.V. https://books.google.com.co/books?id=6hVkNAAACAAJAlba, Aguayo, D. R., & Rueda, A. (2013). Problema bioquímico. Determinación del ciclo umbral y la eficiencia para la PCR cuantitativa en tiempo real. Revista de Educación Bioquímica, 32(1), 36–39.Alexandersson, E., Mulugeta, T., Lankinen, Å., Liljeroth, E., & Andreasson, E. (2016). Plant resistance inducers against pathogens in Solanaceae species-from molecular mechanisms to field application. International Journal of Molecular Sciences, 17(10), 1–25. https://doi.org/10.3390/ijms17101673Amil-Ruiz, F., Garrido-Gala, J., Blanco-Portales, R., Folta, K. M., Muñoz-Blanco, J., & Caballero, J. L. (2013). Identification and Validation of Reference Genes for Transcript Normalization in Strawberry (Fragaria × ananassa) Defense Responses. PLOS ONE, 8(8). https://doi.org/10.1371/journal.pone.0070603Andersen, C. L., Ledet-Jensen, J., & Orntoft, T. F. (2004). Normalization of Real-Time quantitative reverse transcription- PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Research, 64, 5245–5250. https://doi.org/10.1158/0008-5472.CAN-04-0496Arbeláez, G., Guzmán, S., León, J., González, M., Molina, J. C., Parra, J., Ferney, J., & Darlo, J. (1993). Control Integrado Del Marchitamiento Vascular Del Clavel. Agron. Colombiana, 10(1), 68–89.Ardila-Barrantes, H. D. (2013). CONTRIBUCIÓN AL ESTUDIO DE ALGUNOS COMPONENTES BIOQUÍMICOS Y MOLECULARES DE LA RESISTENCIA DEL CLAVEL (Dianthus caryophyllus L) AL PATÓGENO Fusarium oxysporum f. sp. dianthi. Departamento de Quimica, Facultad de Ciencias,Universidad Nacional de Colombia.Ardila, H;Martinez, S, T;Baquero, B. (2007). Inducción de la actividad de la enzima fenilalanina amonio liasa en clavel (Dianthus caryophyllus L) por el hongo Fusarium oxysporum f. sp. Dianthi raza 2. Revista Colombiana de Quimica, 36(2), 151–167.Ardila, H. D., Martínez, S. T., & Higuera, B. L. (2013). Levels of constitutive flavonoid biosynthetic enzymes in carnation (Dianthus caryophyllus L.) cultivars with differential response to Fusarium oxysporum f. sp. dianthi. Acta Physiologiae Plantarum, 35(4), 1233–1245. https://doi.org/10.1007/s11738-012-1162-0Ardila, H. D., Torres, A. M., Martínez, S. T., & Higuera, B. L. (2014). Biochemical and molecular evidence for the role of class III peroxidases in the resistance of carnation (Dianthus caryophyllus L) to Fusarium oxysporum f. sp. dianthi. Physiological and Molecular Plant Pathology, 85, 42–52. https://doi.org/10.1016/j.pmpp.2014.01.003Baayen, R. P., & Elgersma, D. M. (1985). Colonization and histopathology of susceptible and resistant carnation cultivars infected with Fusarium oxysporum f. sp. dianthi. Netherlands Journal of Plant Pathology, 91(3), 119–135. https://doi.org/10.1007/BF01976386Badawy, M. E. I., & Rabea, E. I. (2011). A Biopolymer Chitosan and Its Derivatives as Promising Antimicrobial Agents against Plant Pathogens and Their Applications in Crop Protection. International Journal of Carbohydrate Chemistry, 2011, 1–29. https://doi.org/10.1155/2011/460381Barilli, E., Prats, E., & Rubiales, D. (2010). Benzothiadiazole and BABA improve resistance to Uromyces pisi (Pers.) Wint. in Pisum sativum L. with an enhancement of enzymatic activities and total phenolic content. European Journal of Plant Pathology, 128(4), 483–493. https://doi.org/10.1007/s10658-010-9678-xBektas, Y., & Eulgem, T. (2015). Synthetic plant defense elicitors. Frontiers in Plant Science, 5(January), 1–17. https://doi.org/10.3389/fpls.2014.00804Bent, A. F. (1996). Plant Disease Resistance Genes: Function Meets Structure. The Plant Cell, 8(10), 1757–1771. https://doi.org/10.1105/tpc.8.10.1757Bent, A. F., & Mackey, D. (2007). Elicitors, Effectors, and R Genes: The New Paradigm and a Lifetime Supply of Questions. Annual Review of Phytopathology, 45(1), 399–436. https://doi.org/10.1146/annurev.phyto.45.062806.094427Bergey, D. R., Kandel, R., Tyree, B. K., Dutt, M., & Dhekney, S. A. (2014). The Role of Calmodulin and Related Proteins in Plant Cell Function: An Ever-Thickening Plot. Springer Science Reviews, 2, 145–159. https://doi.org/10.1007/s40362-014-0025-zBoller, T., & Felix, G. (2009). A Renaissance of Elicitors: Perception of Microbe-Associated Molecular Patterns and Danger Signals by Pattern-Recognition Receptors. Annual Review of Plant Biology, 60(1), 379–406. https://doi.org/10.1146/annurev.arplant.57.032905.105346Bolwell, G. P., Bindschedler, L. V., Blee, K. A., Butt, V. S., Davies, D. R., Gardner, S. L., Gerrish, C., & Minibayeva, F. (2002). The apoplastic oxidative burst in response to biotic stress in plants: A three-component system. Journal of Experimental Botany, 53(372), 1367–1376. https://doi.org/10.1093/jxb/53.372.1367Burketova, L., Trda, L., Ott, P. G., & Valentova, O. (2015). Bio-based resistance inducers for sustainable plant protection against pathogens. Biotechnology Advances, 33(6), 994–1004. https://doi.org/10.1016/j.biotechadv.2015.01.004Cevallos, J., Gonzales, D., & Arbelaez, G. (1990). Determinacion de las razas fisiologicas de Fusarium oxysporum f.sp. dianthi en clavel en la sabana de Bogota. Agron. Colombiana, 7, 40–46.Chen, F., Dong, M., Ge, M., Zhu, L., Ren, L., Liu, G., & Mu, R. (2013). The History and Advances of Reversible Terminators Used in New Generations of Sequencing Technology. Genomics, Proteomics and Bioinformatics, 11(1), 34–40. https://doi.org/10.1016/j.gpb.2013.01.003Chen, Y. C., Wong, C. L., Muzzi, F., Vlaardingerbroek, I., Kidd, B. N., & Schenk, P. M. (2014). Root defense analysis against fusarium oxysporum reveals new regulators to confer resistance. Scientific Reports, 4, 1–10. https://doi.org/10.1038/srep05584Chiocchetti, a, Bernardo, I., Daboussi, M. J., Garibaldi, a, Gullino, M. L., Langin, T., & Migheli, Q. (1999). Detection of Fusarium oxysporum f. sp. dianthi in Carnation Tissue by PCR Amplification of Transposon Insertions. Phytopathology, 89(12), 1169–1175. https://doi.org/10.1094/PHYTO.1999.89.12.1169Choudhary, D. K., Prakash, A., & Johri, B. N. (2007). Induced systemic resistance (ISR) in plants: Mechanism of action. Indian Journal of Microbiology, 47(4), 289–297. https://doi.org/10.1007/s12088-007-0054-2Conrath, U. (2011). Molecular aspects of defence priming. Trends in Plant Science, 16(10), 524–531. https://doi.org/10.1016/j.tplants.2011.06.004Corpet, F. (1988). Multiple sequence alignment with hierarchical clustering. Nucleic Acids Research, 16(22), 10881–10890. https://doi.org/10.1093/nar/16.22.10881Cuervo Plata, D. C. (2018). Estudio bioquímico y molécular de algunas enzimas asociadas al estres oxidativo en apoplasto de clavel (Dianthus caryophyllus L.) durante su interacción con Fusarium oxysporum f.sp. dianthi. In Tesis de Maestria. Departamento de Quimica, Facultad de Ciencias,Universidad Nacional de Colombia.Curir, P., Dolci, M., & Galeotti, F. (2005). A phytoalexin-like flavonol involved in the carnation (Dianthus caryophyllus)-Fusarium oxysporum f. sp. dianthi pathosystem. Journal of Phytopathology, 153(2), 65–67. https://doi.org/10.1111/j.1439-0434.2004.00916.xCzechowski, T., Stitt, M., Altmann, T., & Udvardi, M. K. (2005). Genome-wide identification and testing of superior reference genes for transcript normalization. Society, 139, 5–17. https://doi.org/10.1104/pp.105.063743.1Davidson, N. M., & Oshlack, A. (2018). Necklace: combining reference and assembled transcriptomes for more comprehensive RNA-Seq analysis. GigaScience, 7(5), 1–6. https://doi.org/10.1093/gigascience/giy045De Ascensao, A. R. D. C. F., & Dubery, I. A. (2000). Panama disease: Cell wall reinforcement in banana roots in response to elicitors from Fusarium oxysporum f. sp. cubense Race four. Phytopathology, 90(10), 1173–1180. https://doi.org/10.1094/PHYTO.2000.90.10.1173De Cremer, K., Mathys, J., Vos, C., Froenicke, L., Michelmore, R. W., Cammue, B. P. A., & De Coninck, B. (2013). RNAseq-based transcriptome analysis of Lactuca sativa infected by the fungal necrotroph Botrytis cinerea. Plant, Cell and Environment, 36(11), 1992–2007. https://doi.org/10.1111/pce.12106Di Pietro, A., Madrid, M. P., Caracuel, Z., Delgado-Jarana, J., & Roncero, M. I. G. (2003). Fusarium oxysporum: Exploring the molecular arsenal of a vascular wilt fungus. Molecular Plant Pathology, 4(5), 315–325. https://doi.org/10.1046/j.1364-3703.2003.00180.xDías Puentes, L. N. (2012). Systemic Acquired Resistance Induced By Salicylic Acid Resistência Sistêmica Adquirida. Biotecnología En El Sector Agropecuario y Agroindustrial Vol 10 No. 2 (257 - 267), 10(2), 257–267.Dodds, P. N., & Schwechheimer, C. (2002). A breakdown in defense signaling. The Plant Cell, 14 Suppl, S5–S8. https://doi.org/10.1105/tpc.141330Doyle, J., & Doyle, J. (1986). A Rapid DNA Isolation Procedure from Small Quantities of Fresh Leaf Tissues. Phytochem Bull, 19.Erayman, M., Turktas, M., Akdogan, G., Gurkok, T., Inal, B., Ishakoglu, E., Ilhan, E., & Unver, T. (2015). Transcriptome analysis of wheat inoculated with Fusarium graminearum. Frontiers in Plant Science, 6(867), 1–17. https://doi.org/10.3389/fpls.2015.00867Fang, Z., & Cui, X. (2011). Design and validation issues in RNA-seq experiments. Briefings in Bioinformatics, 12(3), 280–287. https://doi.org/10.1093/bib/bbr004Felix, G., Duran, J. D., Volko, S., & Boller, T. (1999). Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant Journal, 18(3), 265–276. https://doi.org/10.1046/j.1365-313X.1999.00265.xFelsenfeld, G. (1992). Chromatin as an essential part of the transcriptional mechanim. Nature, 355(6357), 219–224. https://doi.org/10.1038/355219a0Fitza, K. N. E., Payn, K. G., Steenkamp, E. T., Myburg, A. A., & Naidoo, S. (2013). South African Journal of Botany Chitosan application improves resistance to Fusarium circinatum in Pinus patula. 85, 70–78.Galindo-González, L., & Deyholos, M. K. (2016). RNA-seq Transcriptome Response of Flax (Linum usitatissimum L.) to the Pathogenic Fungus Fusarium oxysporum f. sp. lini. Frontiers in Plant Science, 7(1766), 1–22. https://doi.org/10.3389/fpls.2016.01766Gamm, M., Héloir, M. C., Kelloniemi, J., Poinssot, B., Wendehenne, D., & Adrian, M. (2011). Identification of reference genes suitable for qRT-PCR in grapevine and application for the study of the expression of genes involved in pterostilbene synthesis. Molecular Genetics and Genomics, 285(4), 273–285. https://doi.org/10.1007/s00438-011-0607-2Garber, M., Grabherr, M. G., Guttman, M., & Trapnell, C. (2011). Computational methods for transcriptome annotation and quantification using RNA-seq. Nature Methods, 8(6), 469–477. https://doi.org/10.1038/nmeth.1613Glazebrook, J. (2005). Contrasting Mechanisms of Defense Against Biotrophic and Necrotrophic Pathogens. Annual Review of Phytopathology, 43(1), 205–227. https://doi.org/10.1146/annurev.phyto.43.040204.135923Gómez-ariza, J., Campo, S., Rufat, M., Messeguer, J., Segundo, B. S., & Coca, M. (2007). Sucrose-Mediated Priming of Plant Defense Responses and Broad-Spectrum Disease Resistance by Overexpression of the Maize Pathogenesis-Related PRms Protein in Rice Plants. 20(7), 832–842.Gómez-Gómez, L. (2004). Plant perception systems for pathogen recognition and defence. Molecular Immunology, 41, 1055–1062. https://doi.org/10.1016/j.molimm.2004.06.008González-Bosch, C. (2018). Priming plant resistance by activation of redox-sensitive genes. Free Radical Biology and Medicine, 122, 171–180. https://doi.org/10.1016/j.freeradbiomed.2017.12.028Grabbe, C., & Dikic, I. (2009). Functional roles of ubiquitin-like domain (ULD) and ubiquitin-binding domain (UBD) containing proteins. Chemical Reviews, 109(4), 1481–1494. https://doi.org/10.1021/cr800413pGrabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., di Palma, F., Birren, B. W., Nusbaum, C., Lindblad-Toh, K., … Regev, A. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology, 29(7), 644–652. https://doi.org/10.1038/nbt.1883Graham, M. Y., Weidner, J., Wheeler, K., Pelow, M. J., & Graham, T. L. (2003). Induced expression of pathogenesis-related protein genes in soybean by wounding and the Phytophthora sojae cell wall glucan elicitor. 63, 141–149. https://doi.org/10.1016/j.pmpp.2003.11.002Gullino, M. L., Daughtrey, M. L., Garibaldi, A., & Elmer, W. H. (2015). Fusarium wilts of ornamental crops and their management. Crop Protection, 73, 45–49. https://doi.org/10.1016/j.cropro.2015.01.003Han, R., Takahashi, H., Nakamura, M., Bunsupa, S., Yoshimoto, N., Yamamoto, H., Suzuki, H., Shibata, D., Yamazaki, M., & Saito, K. (2015). Transcriptome analysis of nine tissues to discover genes involved in the biosynthesis of active ingredients in Sophora flavescens. Biological and Pharmaceutical Bulletin, 38(6), 876–883. https://doi.org/10.1248/bpb.b14-00834Han, R., Takahashi, H., Nakamura, M., Yoshimoto, N., Suzuki, H., Shibata, D., Yamazaki, M., & Saito, K. (2015). Transcriptomic landscape of pueraria lobata demonstrates potential for phytochemical study. Frontiers in Plant Science, 6(JUNE), 1–10. https://doi.org/10.3389/fpls.2015.00426Heyman, J., Canher, B., Bisht, A., Christiaens, F., & De Veylder, L. (2018). Emerging role of the plant ERF transcription factors in coordinating wound defense responses and repair. Journal of Cell Science, 131(2). https://doi.org/10.1242/jcs.208215Hu, Y., & Lai, Y. (2015). Identification and expression analysis of rice histone genes. Plant Physiology and Biochemistry, 86, 55–65. https://doi.org/10.1016/j.plaphy.2014.11.012Illumina. (2011). An Introduction to Next-Generation Sequencing Technology. Manual. https://doi.org/Pub No. 770-2012-008Imbeaud, S., Graudens, E., Boulanger, V., Barlet, X., Zaborski, P., Eveno, E., Mueller, O., Schroeder, A., & Auffray, C. (2005). Towards standardization of RNA quality assessment using user-independent classifiers of microcapillary electrophoresis traces. Nucleic Acids Research, 33(6), 1–12. https://doi.org/10.1093/nar/gni054Iwai, T., Miyasaka, A., Seo, S., & Ohashi, Y. (2006). Contribution of ethylene biosynthesis for resistance to blast fungus infection in young rice plants. Plant Physiology, 142(3), 1202–1215. https://doi.org/10.1104/pp.106.085258Jin, S. L., Kyung, W. H., Bhargava, A., & Ellis, B. E. (2008). Comprehensive analysis of protein-protein interactions between Arabidopsis MAPKs and MAPK kinases helps define potential MAPK signalling modules. Plant Signaling and Behavior, 3(12), 1037–1041. https://doi.org/10.4161/psb.3.12.6848Jongeneel, V., Estreicher, A., Baxevanis, A. D., Ouellette, B. F. F., Wolfsberg, T. G., Landsman, D., Wang, Z., Gerstein, M., Snyder, M., Baeck, G. W., Kim, J. W., Kim, K. H., & Jun, K. Y. (2001). EXPRESSED SEQUENCE TAGS (ESTs). Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins, 10(1), 57–63. https://doi.org/10.1038/nrg2484.RNA-SeqKaku, H., Nishizawa, Y., Ishii-Minami, N., Akimoto-Tomiyama, C., Dohmae, N., Takio, K., Minami, E., & Shibuya, N. (2006). Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proceedings of the National Academy of Sciences, 103(29), 11086–11091. https://doi.org/10.1073/pnas.0508882103Kim, J. H., Lee, Y. J., Kim, B. G., Lim, Y., & Ahn, J. H. (2008). Flavanone 3β-hydroxylases from rice: Key enzymes for favonol and anthocyanin biosynthesis. Molecules and Cells, 25(2), 312–316.Kitajima, S., Koyama, T., Ohme-takagi, M., & Shinshi, H. (2000). Characterization of Gene Expression of NsERFs , Transcription Factors of Basic PR Genes from Nicotiana sylvestris. 41(6), 817–824.Kong, W., Chen, N., Liu, T., Zhu, J., Wang, J., He, X., & Jin, Y. (2015). Large-scale transcriptome analysis of cucumber and botrytis cinerea during infection. PLoS ONE, 10(11), 1–16. https://doi.org/10.1371/journal.pone.0142221Kruse, C. P. S., Basu, P., Luesse, D. R., & Wyatt, S. E. (2017). Transcriptome and proteome responses in RNAlater preserved tissue of Arabidopsis thaliana. PLoS ONE, 12(4), 1–10. https://doi.org/10.1371/journal.pone.0175943Kunze, G. (2004). The N Terminus of Bacterial Elongation Factor Tu Elicits Innate Immunity in Arabidopsis Plants. The Plant Cell Online, 16(12), 3496–3507. https://doi.org/10.1105/tpc.104.026765Lahey, K. A., Yuan, R., Burns, J. K., Ueng, P. P., Timmer, L. W., & Chung, K. R. (2004). Induction of phytohormones and differential gene expression in citrus flowers infected by the fungus Colletotrichum acutatum. Molecular Plant-Microbe Interactions, 17(12), 1394–1401. https://doi.org/10.1094/MPMI.2004.17.12.1394Lee, J. K., Jin, H.-O., Hong, Y. J., Park, J.-A., Kim, J.-H., & Chang, Y. H. (2014). Comparison of three different kits for extraction of high-quality RNA from frozen blood. SpringerPlus, 3(1), 76. https://doi.org/10.1186/2193-1801-3-76Li, G., & Yen, Y. (2008). Jasmonate and Ethylene Signaling Pathway May Mediate Fusarium Head Blight Resistance in Wheat. October, 1888–1896. https://doi.org/10.2135/cropsci2008.02.0097Liu, L., Li, Y., Li, S., Hu, N., He, Y., Pong, R., Lin, D., Lu, L., & Law, M. (2012). Comparison of next-generation sequencing systems. Journal of Biomedicine and Biotechnology, 2012. https://doi.org/10.1155/2012/251364Liu, Q., Wei, C., Zhang, M.-F., & Jia, G.-X. (2016). Evaluation of putative reference genes for quantitative real-time PCR normalization in Lilium regale during development and under stress. PeerJ, 4, e1837. https://doi.org/10.7717/peerj.1837Liu, W., & Saint, D. A. (2002). A new quantitative method of real time reverse transcription polymerase chain reaction assay based on simulation of polymerase chain reaction kinetics. Analytical Biochemistry, 302(1), 52–59. https://doi.org/10.1006/abio.2001.5530Liu, Y., Guo, Y., Ma, C., Zhang, D., Wang, C., & Yang, Q. (2016). Transcriptome analysis of maize resistance to Fusarium graminearum. BMC Genomics, 17(1), 477. https://doi.org/10.1186/s12864-016-2780-5Lu, H., Rate, D. N., Song, J. T., & Greenberg, J. T. (2003). ACD6, a Novel Ankyrin Protein, Is a Regulator and an Effector of Salicylic Acid Signaling in the Arabidopsis Defense Response. Plant Cell, 15(10), 2408–2420. https://doi.org/10.1105/tpc.015412MacKay, V. L., Li, X., Flory, M. R., Turcott, E., Law, G. L., Serikawa, K. A., Xu, X. L., Lee, H., Goodlett, D. R., Aebersold, R., Zhao, L. P., & Morris, D. R. (2004). Gene expression analyzed by high-resolution state array analysis and quantitative proteomics. Molecular and Cellular Proteomics, 3(5), 478–489. https://doi.org/10.1074/mcp.M300129-MCP200Mahesh, H. M., Murali, M., Chandra, M. A., Melvin, P., & Sharada, M. S. (2017). Plant Physiology and Biochemistry Salicylic acid seed priming instigates defense mechanism by inducing PR-Proteins in Solanum melongena L . upon infection with Verticillium dahliae Kleb . Plant Physiology et Biochemistry, 117, 12–23. https://doi.org/10.1016/j.plaphy.2017.05.012Martinez, A. P. (2019). Contribución al estudio de los Contribución al estudio de los fenómenos bioquímicos y fenómenos bioquímicos y moleculares del apoplasto de clavel moleculares del apoplasto de clavel ( Dianthus caryophyllus L) durante su durante su interacción con Fusarium. Departamento de Quimica, Facultad de Ciencias,Universidad Nacional de Colombia.Meng, X., Li, F., & Liu, C. (2010). Isolation and Characterization of an ERF Transcription Factor Gene from Cotton ( Gossypium barbadense L .). 176–183. https://doi.org/10.1007/s11105-009-0136-xMonaghan, J., & Zipfel, C. (2012). Plant pattern recognition receptor complexes at the plasma membrane. Current Opinion in Plant Biology, 15(4), 349–357. https://doi.org/10.1016/j.pbi.2012.05.006Monroy-Mena, S., Chacon-Parra, A. L., Farfan-Angarita, J. P., Martinez-Peralta, S. T., & Ardila-Barrantes, H. D. (2019). Selección de genes de referencia para análisis transcripcionales en el modelo clavel (Dianthus caryophyllus L.) - Fusarium oxysporum f. sp. dianthi. Revista Colombiana de Química, 48(2), 5–14. https://doi.org/10.15446/rev.colomb.quim.v48n2.72771Mueller, O., & Schroeder, A. (2004). RNA Integrity Number ( RIN ) – Standardization of RNA Quality Control Application. Nano, 1–8. https://doi.org/10.1101/gr.189621.115.7Nedukha, O. M. (2015). Callose: Localization, functions, and synthesis in plant cells. Cytology and Genetics, 49(1), 49–57. https://doi.org/10.3103/S0095452715010090Ng, D. W., Abeysinghe, J. K., & Kamali, M. (2018). Regulating the Regulators : The Control of Transcription Factors in Plant Defense Signaling. International Journal of Molecular Sciences, 19, 1–18. https://doi.org/10.3390/ijms19123737Niemann, G. J., & Kerk, A. van der K. (1991). Free and cell wall-bound phenolics and other constituents from healthy and fungus-infected carnation (Dianthus caryophyllus) stems. Physiological and Molecular Plant Pathology, 38, 417–432.Odintsova, T. I., Slezina, M. P., Istomina, E. A., Korostyleva, T. V., Kasianov, A. S., Kovtun, A. S., Makeev, V. J., Shcherbakova, L. A., & Kudryavtsev, A. M. (2019). Defensin-like peptides in wheat analyzed by whole-transcriptome sequencing: A focus on structural diversity and role in induced resistance. PeerJ, 2019(1), 1–29. https://doi.org/10.7717/peerj.6125Olbrich, M., Gerstner, E., Welzl, G., & Fleischmann, F. (2008). Quantification of mRNAs and Housekeeping Gene Selection for Quantitative Real-Time RT-PCR Normalization in European Beech ( Fagus sylvatica L .) during Abiotic and Biotic Stress. Z. Naturforsch., 63(c), 574–582.Oneto, C. D., Bossio, E., Faccio, P., Beznec, A., Blumwald, E., & Lewi, D. (2017). Validation of housekeeping genes for qPCR in maize during water deficit stress conditions at flowering time. Maydica, 62(2), 1–6.Oxley, S. J. P., & Walters, D. R. (2012). Control of light leaf spot (Pyrenopeziza brassicae) on winter oilseed rape (Brassica napus) with resistance elicitors. Crop Protection, 40, 59–62. https://doi.org/10.1016/j.cropro.2012.04.028Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29(9), 45e – 45. https://doi.org/10.1093/nar/29.9.e45Phukan, U. J., Jeena, G. S., Tripathi, V., & Shukla, R. K. (2017). Regulation of Apetala2 / Ethylene Response Factors in Plants. Frontiers in Plant Science, 8(February), 1–18. https://doi.org/10.3389/fpls.2017.00150Rancour, D. M., Park, S., Knight, S. D., & Bednarek, S. Y. (2004). Plant UBX domain-containing protein 1, PUX1, regulates the oligomeric structure and activity of arabidopsis CDC48. Journal of Biological Chemistry, 279(52), 54264–54274. https://doi.org/10.1074/jbc.M405498200Rattray, A. M. J., & Müller, B. (2012). The control of histone gene expression. Biochemical Society Transactions, 40(4), 880–885. https://doi.org/10.1042/BST20120065Reddy, A. S. N., Ali, G. S., Celesnik, H., & Day, I. S. (2011). Coping with stresses: Roles of calcium- and calcium/calmodulin-regulated gene expression. Plant Cell, 23(6), 2010–2032. https://doi.org/10.1105/tpc.111.084988Robertson, G., Schein, J., Chiu, R., Corbett, R., Field, M., Jackman, S. D., Mungall, K., Lee, S., Okada, H. M., Qian, J. Q., Griffith, M., Raymond, A., Thiessen, N., Cezard, T., Butterfield, Y. S., Newsome, R., Chan, S. K., She, R., Varhol, R., … Birol, I. (2010). De novo assembly and analysis of RNA-seq data. Nature Methods, 7(11), 909–912. https://doi.org/10.1038/nmeth.1517Ruduś, I., Sasiak, M., & Kepczyński, J. (2013). Regulation of ethylene biosynthesis at the level of 1-aminocyclopropane-1-carboxylate oxidase (ACO) gene. Acta Physiologiae Plantarum, 35(2), 295–307. https://doi.org/10.1007/s11738-012-1096-6Sánchez, G. R., Mercado, E. C., Peña, E. B., Reyes, H., & Cruz, D. (2010). El acido salicílico y su participacion en la resistencia a patógenos en plantas. Biologicas, 12(2), 90–95.Sillero, J. C., Rojas-Molina, M. M., Avila, C. M., & Rubiales, D. (2012). Induction of systemic acquired resistance against rust, ascochyta blight and broomrape in faba bean by exogenous application of salicylic acid and benzothiadiazole. Crop Protection, 34, 65–69. https://doi.org/10.1016/j.cropro.2011.12.001Singh, V., Kaul, S. C., Wadhwa, R., & Pati, P. K. (2015). Evaluation and selection of candidate reference genes for normalization of quantitative RT-PCR in Withania somnifera (L.) Dunal. PLoS ONE, 10(3), 1–20. https://doi.org/10.1371/journal.pone.0118860Stadnik, M. J., & Freitas, M. B. de. (2014). Algal polysaccharides as source of plant resistance inducers. Tropical Plant Pathology, 39(2), 111–118. https://doi.org/10.1590/S1982-56762014000200001Tameling, W. I. L., & Joosten, M. H. A. J. (2007). The diverse roles of NB-LRR proteins in plants. Physiological and Molecular Plant Pathology, 71(4–6), 126–134. https://doi.org/10.1016/j.pmpp.2007.12.006Tamm, L., Thürig, B., Fliessbach, A., Goltlieb, A. E., Karavani, S., & Cohen, Y. (2011). Elicitors and soil management to induce resistance against fungal plant diseases. NJAS - Wageningen Journal of Life Sciences, 58(3–4), 131–137. https://doi.org/10.1016/j.njas.2011.01.001Tarazona, S., García, F., Ferrer, A., Dopazo, J., & Conesa, A. (2012). NOIseq: a RNA-seq differential expression method robust for sequencing depth biases. EMBnet.Journal, 17(B), 18. https://doi.org/10.14806/ej.17.b.265Ton, J., Ent, S. Van Der, Hulten, M. Van, Pozo, M., van Oosten, V., van Loon, L. C., Mauch-Mani, B., Turlings, T. C. J., & Pieterse, C. M. J. (2009). Priming as a mechanism behind induced resistance against pathogens, insects and abiotic stress. IOBC/Wprs Bull, 44, 3–13. https://doi.org/IOBC/wprs BulletinTrillas, M. I., Cotxarrera, L., Casanova, E., & Cortadellas, N. (2000). Ultrastructural changes and localization of chitin and callose in compatible and incompatible interactions between carnation callus and Fusarium oxysporum. Physiological and Molecular Plant Pathology, 56(3), 107–116. https://doi.org/10.1006/pmpp.1999.0254Tristan, C., Shahani, N., Sedlak, T. W., & Sawa, A. (2011). The diverse functions of GAPDH: Views from different subcellular compartments. Cellular Signalling, 23(2), 317–323. https://doi.org/10.1016/j.cellsig.2010.08.003Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B. C., Remm, M., & Rozen, S. G. (2012). Primer3-new capabilities and interfaces. Nucleic Acids Research, 40(15), 1–12. https://doi.org/10.1093/nar/gks596Vandesompele, J., De Preter, K., Pattyn, ilip, Poppe, B., Van Roy, N., De Paepe, A., & Speleman, rank. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology, 3(711), 34–1. https://doi.org/10.1186/gb-2002-3-7-research0034Vanegas Cano, L. J. (2019). APROXIMACIÓN BIOQUÍMICA AL ESTUDIO DE LAS RUTAS DE SEÑALIZACIÓN INVOLUCRADAS EN LA RESISTENCIA DEL CLAVEL (Dianthus caryophyllus L.) AL PATÓGENO Fusarium oxysporum f. sp. dianthi. Departamento de Quimica, Facultad de Ciencias,Universidad Nacional de Colombia.Vanetten, H. D., Mansfield, J. W., Bailey, J. A., & Farmer, E. E. (1994). Two Classes of Plant Antibiotics: Phytoalexins versus “Phytoanticipins.” Plant Cell, 101, 1191–1192.Vechet, L., Burketova, L., & Sindelarova, M. (2009). A comparative study of the efficiency of several sources of induced resistance to powdery mildew (Blumeria graminis f. sp. tritici) in wheat under field conditions. Crop Protection, 28(2), 151–154. https://doi.org/10.1016/j.cropro.2008.09.009Verhagen, B. W. M., Glazebrook, J., Zhu, T., Chang, H., Loon, L. C. Van, & Pieterse, C. M. J. (2004). The Transcriptome of Rhizobacteria-Induced Systemic Resistance in Arabidopsis. 17(8), 895–908.Vorwerk, S., Somerville, S., & Somerville, C. (2004). The role of plant cell wall polysaccharide composition in disease resistance. Trends in Plant Science, 9(4), 203–209. https://doi.org/10.1016/j.tplants.2004.02.005Walters, D. R., Ratsep, J., & Havis, N. D. (2013). Controlling crop diseases using induced resistance : challenges for the future. 64(5), 1263–1280. https://doi.org/10.1093/jxb/ert026Wei, Y., Liu, Q., Dong, H., Zhou, Z., Hao, Y., Chen, X., & Xu, L. (2016). Selection of reference genes for real-time quantitative PCR in pinus massoniana post nematode inoculation. PLoS ONE, 11(1), 1–14. https://doi.org/10.1371/journal.pone.0147224White, R. F. (1979). Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology, 99(2), 410–412. https://doi.org/10.1016/0042-6822(79)90019-9Wiesel, L., Newton, A. C., Elliott, I., Booty, D., Gilroy, E. M., Birch, P. R. J., & Hein, I. (2014). Molecular effects of resistance elicitors from biological origin and their potential for crop protection. Frontiers in Plant Science, 5(November), 1–13. https://doi.org/10.3389/fpls.2014.00655Wilson, I. G., & Wilson, I. a N. G. (1997). Inhibition and Facilitation of Nucleic Acid Amplification Inhibition and Facilitation of Nucleic Acid Amplification. 63(10), 3741–3751.Wise, R. P., Moscou, M. J., Bogdanove, A. J., & Whitham, S. A. (2007). Transcript Profiling in Host–Pathogen Interactions. Annual Review of Phytopathology, 45(1), 329–369. https://doi.org/10.1146/annurev.phyto.45.011107.143944Wrzaczek, M., Vainonen, J. P., Stael, S., Tsiatsiani, L., Help‐Rinta‐Rahko, H., Gauthier, A., Kaufholdt, D., Bollhöner, B., Lamminmäki, A., Staes, A., Gevaert, K., Tuominen, H., Van Breusegem, F., Helariutta, Y., & Kangasjärvi, J. (2015). GRIM REAPER peptide binds to receptor kinase PRK 5 to trigger cell death in Arabidopsis . The EMBO Journal, 34(1), 55–66. https://doi.org/10.15252/embj.201488582Xiao, J., Jin, X., Jia, X., Wang, H., Cao, A., Zhao, W., Pei, H., Xue, Z., He, L., Chen, Q., & Wang, X. (2013). Transcriptome-based discovery of pathways and genes related to resistance against Fusarium head blight in wheat landrace Wangshuibai. BMC Genomics, 14(1), 1. https://doi.org/10.1186/1471-2164-14-197Xu, C., Jiao, C., Sun, H., Cai, X., Wang, X., Ge, C., Zheng, Y., Liu, W., Sun, X., Xu, Y., Deng, J., Zhang, Z., Huang, S., Dai, S., Mou, B., Wang, Q., Fei, Z., & Wang, Q. (2017). Draft genome of spinach and transcriptome diversity of 120 Spinacia accessions. Nature Communications, 8(May), 1–10. https://doi.org/10.1038/ncomms15275Xu, P., Narasimhan, M. L., Samson, T., Coca, M. A., Huh, G., Zhou, J., Martin, G. B., Hasegawa, P. M., & Bressan, R. A. (1998). A Nitrilase-Like Protein Interacts with GCC Box DNA-Binding Proteins Involved in Ethylene and Defense Responses 1. 867–874.Xu, Z. S., Chen, M., Li, L. C., & Ma, Y. Z. (2008). Functions of the ERF transcription factor family in plants. Botany, 86(9), 969–977. https://doi.org/10.1139/B08-041Yagi, M., Kosugi, S., Hirakawa, H., Ohmiya, A., Tanase, K., Harada, T., Kishimoto, K., Nakayama, M., Ichimura, K., Onozaki, T., Yamaguchi, H., Sasaki, N., Miyahara, T., Nishizaki, Y., Ozeki, Y., Nakamura, N., Suzuki, T., Tanaka, Y., Sato, S., … Tabata, S. (2014). Sequence analysis of the genome of carnation (Dianthus caryophyllus L.). DNA Research, 21(3), 231–241. https://doi.org/10.1093/dnares/dst053Yang, I. S., & Kim, S. (2015). Analysis of Whole Transcriptome Sequencing Data: Workflow and Software. Genomics & Informatics, 13(4), 119. https://doi.org/10.5808/GI.2015.13.4.119Zipfel, C. (2009). Early molecular events in PAMP-triggered immunity. Current Opinion in Plant Biology, 12(4), 414–420. https://doi.org/10.1016/j.pbi.2009.06.003Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E. J., Jones, J. D. G., Felix, G., & Boller, T. (2004). Bacterial disease resistance in Arabidopsis through flagellin perception. Nature, 428(6984), 764–767. https://doi.org/10.1038/nature02485LICENSElicense.txtlicense.txttext/plain; charset=utf-83991https://repositorio.unal.edu.co/bitstream/unal/77930/2/license.txt6f3f13b02594d02ad110b3ad534cd5dfMD52ORIGINAL1031140642.2020.pdf1031140642.2020.pdfapplication/pdf1529662https://repositorio.unal.edu.co/bitstream/unal/77930/1/1031140642.2020.pdf26ce1f969bc143543e12639194ac2b11MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.unal.edu.co/bitstream/unal/77930/3/license_rdf217700a34da79ed616c2feb68d4c5e06MD53THUMBNAIL1031140642.2020.pdf.jpg1031140642.2020.pdf.jpgGenerated Thumbnailimage/jpeg5279https://repositorio.unal.edu.co/bitstream/unal/77930/4/1031140642.2020.pdf.jpg50f5c0a09ad18564cc28e80da5642f83MD54unal/77930oai:repositorio.unal.edu.co:unal/779302024-07-09 23:20:02.436Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHBvciB1biBwbGF6byBkZSA1IGHDsW9zLCBxdWUgc2Vyw6FuIHByb3Jyb2dhYmxlcyBpbmRlZmluaWRhbWVudGUgcG9yIGVsIHRpZW1wbyBxdWUgZHVyZSBlbCBkZXJlY2hvIHBhdHJpbW9uaWFsIGRlbCBhdXRvci4gRWwgYXV0b3IgcG9kcsOhIGRhciBwb3IgdGVybWluYWRhIGxhIGxpY2VuY2lhIHNvbGljaXTDoW5kb2xvIGEgbGEgVW5pdmVyc2lkYWQgY29uIHVuYSBhbnRlbGFjacOzbiBkZSBkb3MgbWVzZXMgYW50ZXMgZGUgbGEgY29ycmVzcG9uZGllbnRlIHByw7Nycm9nYS4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCg== |