Desarrollo de un nanomaterial de Óxidos de Zinc modificado superficialmente con Bromuro de Hexadeciltrimetil Amonio (CTAB) para inhibir la migración de finos

Ilustraciones

Autores:
Carreño Hernandez, Jhon Harvey
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86864
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86864
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines
Nanotecnología
Materiales de nanoestructuras
Nanopartículas
Daño de formación
Migración de finos
Nanotecnología
ZnO
Formation damage
Fines migration
Nanotechnology
ZnO
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_0030d702b1a50357df15e5aefe3dd859
oai_identifier_str oai:repositorio.unal.edu.co:unal/86864
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Desarrollo de un nanomaterial de Óxidos de Zinc modificado superficialmente con Bromuro de Hexadeciltrimetil Amonio (CTAB) para inhibir la migración de finos
dc.title.translated.eng.fl_str_mv Development of a Zinc Oxide nanomaterial surface modified with Hexadecyltrimethyl Ammonium Bromide (CTAB) to inhibit fines migration
title Desarrollo de un nanomaterial de Óxidos de Zinc modificado superficialmente con Bromuro de Hexadeciltrimetil Amonio (CTAB) para inhibir la migración de finos
spellingShingle Desarrollo de un nanomaterial de Óxidos de Zinc modificado superficialmente con Bromuro de Hexadeciltrimetil Amonio (CTAB) para inhibir la migración de finos
620 - Ingeniería y operaciones afines
Nanotecnología
Materiales de nanoestructuras
Nanopartículas
Daño de formación
Migración de finos
Nanotecnología
ZnO
Formation damage
Fines migration
Nanotechnology
ZnO
title_short Desarrollo de un nanomaterial de Óxidos de Zinc modificado superficialmente con Bromuro de Hexadeciltrimetil Amonio (CTAB) para inhibir la migración de finos
title_full Desarrollo de un nanomaterial de Óxidos de Zinc modificado superficialmente con Bromuro de Hexadeciltrimetil Amonio (CTAB) para inhibir la migración de finos
title_fullStr Desarrollo de un nanomaterial de Óxidos de Zinc modificado superficialmente con Bromuro de Hexadeciltrimetil Amonio (CTAB) para inhibir la migración de finos
title_full_unstemmed Desarrollo de un nanomaterial de Óxidos de Zinc modificado superficialmente con Bromuro de Hexadeciltrimetil Amonio (CTAB) para inhibir la migración de finos
title_sort Desarrollo de un nanomaterial de Óxidos de Zinc modificado superficialmente con Bromuro de Hexadeciltrimetil Amonio (CTAB) para inhibir la migración de finos
dc.creator.fl_str_mv Carreño Hernandez, Jhon Harvey
dc.contributor.advisor.none.fl_str_mv Cortés, Farid Bernardo
dc.contributor.author.none.fl_str_mv Carreño Hernandez, Jhon Harvey
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines
topic 620 - Ingeniería y operaciones afines
Nanotecnología
Materiales de nanoestructuras
Nanopartículas
Daño de formación
Migración de finos
Nanotecnología
ZnO
Formation damage
Fines migration
Nanotechnology
ZnO
dc.subject.lemb.none.fl_str_mv Nanotecnología
Materiales de nanoestructuras
Nanopartículas
dc.subject.proposal.spa.fl_str_mv Daño de formación
Migración de finos
Nanotecnología
ZnO
dc.subject.proposal.eng.fl_str_mv Formation damage
Fines migration
Nanotechnology
ZnO
description Ilustraciones
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-09-25T18:47:23Z
dc.date.available.none.fl_str_mv 2024-09-25T18:47:23Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86864
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86864
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv LaReferencia
dc.relation.references.spa.fl_str_mv Abhishek Singh, T., Sharma, A., Tejwan, N., Ghosh, N., Das, J., & Sil, P. (2021). A estate of the art review on the syntheis, antibacterial, antioxidant, antidiabetic and tissue regeneration activities of zinc oxide nanoparticles. Advances in Colloid and Interface Science, 295, 102495. doi:https://doi.org/10.1016/j.cis.2021.102495
Ahmadi, M., & Chen, Z. (2020). Molecular interactions between asphaltene and surfactants in a hydrocarbon solvent: application to asphaltene dispersion. Symmetry, 11, 12. doi: https://doi.org/10.3390/sym12111767
Ahmadi, M., Habibi, A., Pourafshy, P., & Ayatollahi, S. (2011, September). Zeta potential investigation and mathematical modeling of nanoparticles deposited on the rock surface to reduce fine migration. SPE Middle East Oil and Gas Show and Conference, (pp. SPE-142633)
Alakbari, F. S., Mohyaldinn, M. E., Muhsan, A. S., Hassan, N., & Ganat, T. (2020). Chemical sand consolidation: form polymers to nanoparticles. Polymers, 12(5), 1069. doi:https://doi.org/10.3390/polym12051069
Ali, A. S., Salem, A., & Attia, A. M. (2022). Mitigation of fines migration by using nano-fluid to alleviate formarion damage in Abu-Rawash G. Petroleum and Coal, 64(2), 304 - 312.
Alias, S. S., & Mohamad, A. A. (2014). Synthesis of zinc oxide by sol-gel method for photoelectrochemical cells. Singapore: Springer . doi:DOI 10.1007/978-981-4560-77-1
Almutari, A., Saira, S., Wang, Y., & Le-Hussain, F. (2023). Effect of fines migrarion on oil recovery from carbonate rocks. Advances in Geo-Energy Research, 8(1), 61 -70. doi:https://doi.org/10.46690/ager.2023.04.06
Aquino, P., Osorio, A. M., Ninán, E., & Torres, F. (2018). aracterización de nanopartículas de ZnO sintetizadas por el método de precipitación y su evaluación en la incorporación en pinturas esmalte. Revista de la Sociedad Química del Perú, 84(1), 5-17
Arab, D., & Pourasfshary, P. (2013). Nanoparticles-assisted surface charge modification of the porous medium to treat colloidal particles migration induced by low salinity water flooding. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 436, 803-814. doi:https://doi.org/10.1016/j.colsurfa.2013.08.022
Belcher, C., Seth, K., Hollier, R., & Paternostro, B. (2010). Maximizing production life with the use of nanotechnology to prevent fines migration. SPE International Oil and Gas Conference and Exhibition in China, SPE-132152. doi:https://doi.org/10.2118/132152-MS
Berne, B. J., & Pecora, R. (2000). Dynamic light scattering with applications to chemistry, biology and physics. Mineola, USA: Courier Corporation.
Betancur, S., Carrasco-Marín, F., Franco, C., & Cortés, F. (2018). Development of composite materials base on the interaction between nanoparticles and surfactants for application on chemical enhanced oil recovery. Ind. Eng. Chem. Res., 57, 12367– 12377. doi:https://doi.org/10.1021/acs.iecr.8b02200
Céspedes Chávarro, C. (2015). Desarrollo de un nanofluido para la estabilización de finos en la formación Barco del campo Cupiagua. [Tesis de maestría] Departamento de procesos y energía - Universidad Nacional de Colombia, 95.
Civan, F. (2007). Reservoir formation damage fundamentals, modelling, assesment and mitigation (2 ed.). Oxford, UK: Gulf Professional Publishing.
Clark, R. M. (1987). Evaluating the cost and performance of field-escale granular activated carbon system. Enviromental Science & Technology, 21(6), 573 - 580. doi:https://doi.org/10.1021/es00160a008
Díez, R., Medina, O., Giraldo, L., Cortés , F., & Franco, C. (2020). Development of nanofluids for the inhibition of formation damage caused by fines migration: effect of the interaction of quaternary amine (CTAB) and MgO nanoparticles. Nanomaterials, 10(5), 928. doi:https://doi.org/10.3390/nano10050928
Echeverry, M., Giraldo, L. F., & Lopéz, B. L. (2007). Síntesis y funcionalización de nanopartículas de sílica con morfología esférica. Scientia et technica, 36
Franco, C. A., Montoya, T., Nassar, N. N., & Cortés, F. B. (2014). NiO and PdO on fumed silica nanoparticles for adsorption and catalytic steam gasification of colombian C7 asphaltenes. Handbook on Oil Production Research; Nova Science Publishers: Hauppauge, NY, USA, 101-145
Franco, C. A., Zabala, R., & Cortés, F. B. (2017). Nanotechnology to the enhancement of oil and gas productivity and recovery of Colombian fields. Journal of Petroleum Science and Engineering, 157, 39-5. doi:DOI: 10.1016/j.petrol.2017.07.004
Franco, C., Guzman-Calle, J. D., & Cortés-Correa, F. B. (2016). Adsortion and catalytic oxidation of asphaltenes in fumed silica nanoparticles: Effect of the surface acidity. Revista DYNA, 83(198), 171-179. doi:https://doi.org/10.15446/dyna.v83n198.56106
Fuentes, J., Montes, D., Lucas, E., Montes-Páez, E.-G., Szklo, A., & Guerreo-Martin, C. (2022). Nanotechnology applied to the inhibition and remediation of formation damage by fines migration and deposition: A comprehensive review. Journal of Petroleum Science and Engineering, 216, 110767. doi:https://doi.org/10.1016/j.petrol.2022.110767
Ghumare, A. K., Mallick, M., & Rama, M. S. (2018). Patent No. 10093846. Patent and Trademark Office.
Giraldo, J., Benjumea, P., Lopera, S., Cortés, F., & Ruiz, M. (2013). Wettability alteration of sandstone cores by alumina-based nanofluids. Energy&Fuels, 27(7), 3659-3665. doi:https://doi.org/10.1021/ef4002956
Giraldo, J., Nassar, N. N., Benjumea, P. N., Pereira-Almao, P. R., & Cortés, F. (2013). Modeling and prediction of asphaltene adsortion isotherms using Polanyi's modified theory. Energy&Fuels, 27(6), 2908-2914. doi:https://doi.org/10.1021/ef4000837
Giraldo, L., Diez, R., Acevedo, S., Cortés, F., & Franco, C. (2021). The effects of chemical composition of fines and nanoparticles on inhibition of formation damage caused by fines migration: insights through a simplex -centroid mixture desing of experiments. Journal of Petroleum Science and Engineering, 108494. doi:https://doi.org/10.1016/j.petrol.2021.108494
Habibi, A., Ahmadi, M., Pourafshary, P., & Ayatollahi, S. (2014). Fines migration control in sandstone formation by improving silica suface zeta potential using nanoparticle coating process. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 36(21), 2376–2382. doi:https://doi.org/10.1080/15567036.2011.569836
Habibi, A., Heidari, M. A., Al-Hadrami, H., Al-Ajmi, A., Al-Wahaibi, Y., & Ayatollahi, S. (2012). Effect of nanofluid injection on fines mitigation to remediate formation damage: A microscopic view. Journal of Advanced Microscopy Research, 7(2), 140 - 144. doi:https://doi.org/10.1166/jamr.2012.1107
Habibi, A., Heidari, M., Al-Hadrami, H., Al-Ajmi, A., Al-Wahaibi, Y., & Ayatollahi, S. (2012). Effect of MgO nanofluid injection into water sensitive formation to prevent the water shock permeability impairment. ESP International oilfield nanotechnology conference held in Noordwijk, The Netherlands, SPE 157106. doi:https://doi.org/10.2118/157106-MS
Hurtado, Y., Beltran, C., Zabala, R., Lopera, S., Franco, C., Nassar, N., & Cortés, F. (2018). Effects of surface acidity and polarity of SiO2 nanoparticles on the foam stabilization applied to natural gas flooding in tight gas-condensate reservoir. Energy&Fuels, 32(5), 5824-5833. doi:https://doi.org/10.1021/acs.energyfuels.8b00665
Jaramillo- Paez, C., Sánchez-Cid, P., Navío, J. A., & Hidalgo, M. C. (2018). A comparative assesment of the UV-photocatalytic activities of ZnO synthesized by different routes. Journal of Envaironmental Chemical Engineering, 6, 7161-7171. doi:https://doi.org/10.1016/j.jece.2018.11.004
Karimi, M. A., Mozaheb, M. A., Hatefi-Mehrjardi, A., Tavallali, H., Attaran, A. M., & Shamsi, R. (2015). A new simple method for determining the critical micelle concetrations of surfactants using surface plasmon resonance of silver nanoparticles. Journal of Analytics Science and Technology, 6, 1-8. doi:DOI 10.1186/s40543-015-0077-y
Khilar, K., & Fogler, S. (1998). Migration of fines in porus media (Vol. 12). Bombay Mumbai: Springer. doi:DOI 10.1007/978-94-015-9074-7
Loi, G., Nguyen, C., Chequer, L., Russell, T., Zeinijahromi, A., & Bedrikovetsky, P. (2023). Tretment of oil production data under fines migration and productivity decline. Energies, 16(8), 3523. doi: https://doi.org/10.3390/en16083523
Lopéz Vazquez, A. (2015). Crecimiento de nanoalambres de óxido de zinc verticalmente alineados usando el método sol-gel hidrotermal (Tesis de licenciatura). Benémerita Universidad Autónoma de Puebla, Facultad de Ciencias Físico-Matermáticas, Colegio de Física. doi:https://hdl.handle.net/20.500.12371/8774
López, D., Zabala, R. D., Cárdenas, J. C., Lopera, S. H., Masoud, R., Franco, C. A., & Cortés, F. B. (2020). A novel desing of silica-based completion nanofluids for heavy oil reservoirs. Journal of Petroleum Science and Engineering, 194, 107483. doi:https://doi.org/10.1016/j.petrol.2020.107483
Lopéz-Cuenca, S., Aguilar-Martinez, J., Rabelero-Velasco, M., Hernandez-Ibarra, F., Lopez-Ureta, L., & Pedroza-Toscano, M. (2019). Nanopartículas esféricas de óxido de zinc sintetizadas por un método de precipitación semicontinua a bajas temperaturas. Revista Mexicana de Ingeniería Química, 18(3), 1179-1187
Mansour, M., Eleraki, M., Noah, A., & Moustafa, E.-A. (2020). Using nanotechnology to prevent fines migration while production. Petroleum, 7(2), 168 - 177. doi:https://doi.org/10.1016/j.petlm.2020.09.003
Mansour, M., Moustafa, E.-A., Eleraki, M., & Noah, A. (2020). A novel aproach of fines migration control using nanoparticle through zeta potential measurements. Petroleum and Coal, 62(3), 691 - 793. Obtenido de https://scholar.googleusercontent.com/scholar?q=cache:2HTtKqiN-f8J:scholar.google.com/&hl=en&as_sdt=0,5
Martinez, A., & Chaves, C. (2018). Inmovilización de la proteína fotoactiva bacteriorodopsina sobre óxido de zinc Aplicación en Celdas Solares Bio-Sensibilizadas. Revista Tecnología en Marcha, 31(4), 49-62. doi:http://dx.doi.org/10.18845/tm.v31i4.3959
Mohd Shafian, S., Mohd Saaid, I., Razali, N., Khalida Salleh, I., & Irawan, S. (2021). Experimental investigation of colloidal silica nanoparticles (C-SNPs) for fines migration control application. Applied Nanoscience, 11, 1993-2008. doi:https://doi.org/10.1007/s13204-021-01894-5
Montoya, T., Coral, D., Franco, C., Nassar, N., & Cortés, F. (2014). A novel solid-liquid equilibrium model for describing the adsortion of associating asphaltene molecules onto solid surfaces based on the "Chemical Theory". Energy&Fuels, 28(8), 4963-4975. doi:https://doi.org/10.1021/ef501020d
Mora, C., Franco, C., & Cortes, F. (2013). Uso de nanopartículas de sílice para la estabilización de finos en lechos empacados de arena Ottawa. Informador técnico, 77(1), 27 - 34. doi:https://doi.org/10.23850/22565035.42
Muneer, R., Hashmet, M., & Pourafshary, P. (2020). Fine migration control in sandstone: surface force analysis and application of DVLO theory. ACS Omega, 5(49), 31624-31639. doi:https://doi.org/10.1021/acsomega.0c03943
Naranjo, E., & Pereira, J. (2021). Procesos en el medio poroso causante de la migración de finos durante la etapa de producción de petróleo. Revista Ciencia e Ingeniería, 42(2), 229-238
Nashaat, N., Cortés, F., & Franco, C. (2021). Nanoparticles: An emerging technology for oil production and processing applications. Cham, Germany: Springer Nature Switzerland AG. doi:https://doi.org/10.1007/978-3-319-12051-5
Ngata, M. R., Yang, B., Aminu, M. D., Emmanuely, B. L., Said, A. A., Kalibwami, D. C., . . . Nyakilla, E. E. (2022). Minireview of formation damage control through nanotechnology utilization at fieldwork conditions. Energy&Fuels, 36(8), 4174-4185. doi:https://doi.org/10.1021/acs.energyfuels.2c00210
Ogolo, N. A., Achor, T., & Onyekonwu, M. O. (2022). Effect of aluminum oxide powder and nanoparticles on kaolinite mobilization in sand. Computational Engineering and Physical Modeling, 5(4), 67-78. doi:10.22115/CEPM.2023.381797.1229
Ogolo, N. A., Olafuyi, O. A., & Onyekonwu, M. O. (2013). Impact of hidrocarbon oon the performance of nanoparticles in control of fines migration. In SPE Nigeria Annual International Conference and Exhibition, SPE-167503
Ogolo, N., Olafuyi, O., & Onyekonwu, M. (2012). Effect of nanoparticles on migrating fines in formarions. In SPE International Oilfield Nanotechnology Conference and Exhibition, SPE-155213. doi:https://doi.org/10.2118/155213-MS
Omar, F. M., Aziz, H. A., & Stoll, S. (2014). Aggregation and disaggregation of ZnO nanoparticles: Influence of pH and adsortion of Suwannee River humic acid. Science of the Total Environment, 468, 195-201. doi:https://doi.org/10.1016/j.scitotenv.2013.08.044
Pourrahimi, A., Liu, D., Pallon, L., Andersson, R., Martínez Abad, A., Lagarón, J.-M., . . . Olsson, R. (2014). Water-based synthesis and cleaning methods for high purity ZnO nanoparticles - comparing acetate, chloride, sulphate and nitrate zinc salt precursors. RSC Advances, 4(67), 35568-35577. doi:https://doi.org/10.1039/C4RA06651K
Ramírez Barrón, S. N. (2013). Estudio del efecto antimicrobiano y citotóxico de nanopartículas de ZnO con y sin tratamiento superficial en nanocompuestos para uso médico (Trabajo de maestría). Centro de Investigación en Química Aplicada, Programa de maestría en técnología de polímeros.
Rani, S., Suri, P., Shishodia, P. K., & Mehra, R. M. (2008). Synthsis of nanocrystalline ZnO powder via sol-gel route for dye-sentized solar cells. Solar Energy Materials & Solar Cells, 92, 1639 - 1645. doi:https://doi.org/10.1016/j.solmat.2008.07.015
Rodríguez-Estupiñan, P., Giraldo, L., & Moreno-Piraján, J. C. (2019). Isotherms models, kinetics study and thermodynamic parameters of asphaltenes adsortion on activated carbons prepared from corncobs waste form toluene solutions. Journal of Thermal Analysis and Calorimetry, 138, 2577-2595. doi:https://doi.org/10.1007/s10973-019-08549-2
Russell, T., Pham, D., Tavakkoli Neishaboor, M., Badalyan, A., Behr, A., Genolet, L., . . . Zeinijahromi, A. (2017). Effect of kaolinite on rocks on fines migration. Journal of Natural Gas Science and Engineering, 45, 243 - 255. doi:https://doi.org/10.1016/j.jngse.2017.05.020
Salwa Alias, S., & Azmin Mohamad, A. (2014). Synthesis of zinc oxide by sol-gel method for photoelectro-chemical cells. Singapure: Springer.
Samir Ali, A., Salem, A., & Mahmoud Attia, A. (2022). Mitigation of fines migration by using nano-fluid to alliviate formation damage in Abu Rawash G. Petroleum and Coal, 64(2), 304-312
Savi, B., Rodrigues, L., & Bernardin, A. (2012). Síntesis de nanopartículas de ZnO por el proceso sol - gel. Qualicer, 12, 1 - 9
Shakiba, M., Khamehchi, E., Fahimifar, A., & Dabir, B. (2020). A mechanistic study of smart water injection in the presence of nanoparticles for sand production control in unconsolidated sandstone reservoirs. Journal of Molecular Liquids, 319, 114210. doi:https://doi.org/10.1016/j.molliq.2020.114210
Valencia Rios, J., & Castellar Ortega, G. (2013). Predicción de las curvas de ruptura para la remoción de plomo (II) en disolución acuosa sobre carbón activado en una columna empacada. Revista Facultad de Ingeniería Universidad de Antioquia(66), 141-158
Wahab, R., Ansari, S. G., Kim, S. Y., Song, M., & Shin, H.-S. (2009). The role of pH variation on the grow of zinc oxide nanostructures. Applied Suface Science, 255, 4891 - 4896. doi:https://doi.org/10.1016/j.apsusc.2008.12.037
Wang, C., Montero Pallares, J., Haftani, M., & Nouri, A. (2020). Developing a methodology to characterize formation damage (pore plugging) due to fines migration in sand control test. Journal of Petroleum Science and Engineering, 186, 106793. doi:https://doi.org/10.1016/j.petrol.2019.106793
Yang, S., Russelll, T., Baldayan, A., Schacht, U., Woolley, M., & Bedrikovetsky, P. (2019). Characterizartion of fines migration system using laboratory pressure measurements. Journal of Natural Gas Science and Engineering, 65, 108-124. doi:https://doi.org/10.1016/j.jngse.2019.02.005
Yasaman, A., Arab, D., & Pourafshary, P. (2014). Application of nanofluid to control fines migration to improve the performance of low salinity water flooding and alkaline flooding. Journal of Petroleum Science and Engineering, 124, 331-340. doi:https://doi.org/10.1016/j.petrol.2014.09.023
Zabala Romero, R. D. (2016). Modelo fenomenológico para escalar a yacimiento el impacto sobre producción de hidrocarburos del daño de formación por migración de finos. Fuentes, el reventón energético, 14(1), 103-114. doi:https://doi.org/10.18273/revfue.v14n1-2016009
Zheng, X., Perreault, F., & Jang, J. (2018). Fines adsortion on nanoparticle-coated surface. Acta Geotechnica, 13, 219 - 226. doi:https://doi.org/10.1007/s11440-017-0528-2
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 75 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Ingeniería de Petróleos
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86864/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86864/2/1098681773.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86864/3/1098681773.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
f4e6b00f11806953709b3b105207ae00
4c5c1c58e203928797a41681eaca7826
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1812169694220648448
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cortés, Farid Bernardo9831934f8b8b3a059b356c8b7f7c23deCarreño Hernandez, Jhon Harvey31b16d212a84d8af4bb6da5d122a02722024-09-25T18:47:23Z2024-09-25T18:47:23Z2024https://repositorio.unal.edu.co/handle/unal/86864Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/IlustracionesLa migración de finos en el medio poroso es una causa inherente a las altas tasas de flujo y cambios en el pH (Russell, y otros, 2017). Estos finos bloquean las gargantas de poro reduciendo así su permeabilidad y por ende la productividad (Loi, y otros, 2023). La industria ha abordado este problema con diferentes estrategias de remediación, donde la más empleada ha sido la acidificación matricial la cual ataca el problema de una manera directa. Sin embargo, esta técnica induce alteraciones en la matriz, aumentando la desconsolidación (Fuentes, y otros, 2022). La nanotecnología se ha establecido en sí misma, como una tecnología emergente ya que las nanopartículas pueden alterar las cargas superficiales de los finos y la arena incrementando la fuerza de atracción y así inhibir su movilización a través del medio poroso (Franco, Zabala, & Cortés, 2017). En este estudio, se evaluó el efecto sobre la morfología y tamaño de tres nanopartículas de ZnO que fueron sintetizadas por el método sol gel a diferentes a pH (6, 8 y 11), la interacción de las nanopartículas de ZnO cuando son funcionalizadas con CTAB y su efectividad para inhibir la migración de caolinita en lechos empacados de arena Ottawa de tamaño 20/40 cuando están dopando el medio poroso por medio de la cuantificación de los efluentes. Los resultados muestran que se presenta un incremento en las fuerzas superficiales cuando las nanopartículas y nanocompuesto está recubriendo el medio poroso, llevando a una mejora de 2 veces el volumen desplazado de referencia sin llegar a la saturación total del medio poroso comparado con el caso de referencia. Así mismo, cuando el medio poroso esta humectado al agua, el nanomaterial funcionalizado evidenció una mejora en del 150% en los finos retenidos con respecto al caso de referencia cuando se han Contenido VII desplazado 12 volúmenes y 67% de retención de finos cuando es comparado con el lecho impregnado con nanopartículas de ZnO a una concentración de 1000 ppm y se han desplazado 24 volúmenes porosos. Por el contrario, cuando el medio esta humectado por aceite no se presenta ninguna diferenciación relevante en cuanto a los finos retenidos cuando este es impregnado por nanopartículas o el nanocompuesto funcionalizado. (Tomado de la fuente)Fines migration in porous media is an inherent formation damage issue due to high flow rates in oil wells and changes in pH in production water. These fines obstruct pore throats, thereby reducing permeability and consequently productivity. The industry has addressed this issue through various remediation strategies, with matrix acidification being the most employed, which directly targets the problem. However, this technique induces alterations in the matrix, leading to disintegration. Nanotechnology has emerged as a consolidated technology in the industry, as nanoparticles can modify the surface charges of fines and sand, increasing attraction forces and thus inhibiting their mobilization through porous media. This study evaluated the effect on morphology and size of three ZnO nanoparticles synthesized via the sol-gel method at different pH levels (6, 8, and 11), the interaction of those ZnO nanoparticles when functionalized with CTAB, and their effectiveness in inhibiting kaolinite migration in packed beds of Ottawa 20/40 sand through quantification of effluents concentration. Results indicate an increase in surface forces when nanoparticles and nanocomposites coat the porous medium, leading to a 2-fold improvement in displaced volume without reaching total saturation of the porous medium. Additionally, the functionalization process demonstrated an enhancement in nanoparticles, achieving an additional 150% compared to the reference medium when 12 pore volumes have been displaced; and 67% compared to the medium imbedded with ZnO nanoparticles at a concentration of 1000 ppm and 24 pore volumes have been displaced; both in a water-wetted medium. Conversely, when the medium is oil-wetted, no significant differentiation is observed between nanoparticle doping and nanocomposite.MaestríaMagister en Ingeniería - Ingeniería de petróleosIngeniería Química E Ingeniería De Petróleos.Sede Medellín75 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Ingeniería de PetróleosFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afinesNanotecnologíaMateriales de nanoestructurasNanopartículasDaño de formaciónMigración de finosNanotecnologíaZnOFormation damageFines migrationNanotechnologyZnODesarrollo de un nanomaterial de Óxidos de Zinc modificado superficialmente con Bromuro de Hexadeciltrimetil Amonio (CTAB) para inhibir la migración de finosDevelopment of a Zinc Oxide nanomaterial surface modified with Hexadecyltrimethyl Ammonium Bromide (CTAB) to inhibit fines migrationTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMLaReferenciaAbhishek Singh, T., Sharma, A., Tejwan, N., Ghosh, N., Das, J., & Sil, P. (2021). A estate of the art review on the syntheis, antibacterial, antioxidant, antidiabetic and tissue regeneration activities of zinc oxide nanoparticles. Advances in Colloid and Interface Science, 295, 102495. doi:https://doi.org/10.1016/j.cis.2021.102495Ahmadi, M., & Chen, Z. (2020). Molecular interactions between asphaltene and surfactants in a hydrocarbon solvent: application to asphaltene dispersion. Symmetry, 11, 12. doi: https://doi.org/10.3390/sym12111767Ahmadi, M., Habibi, A., Pourafshy, P., & Ayatollahi, S. (2011, September). Zeta potential investigation and mathematical modeling of nanoparticles deposited on the rock surface to reduce fine migration. SPE Middle East Oil and Gas Show and Conference, (pp. SPE-142633)Alakbari, F. S., Mohyaldinn, M. E., Muhsan, A. S., Hassan, N., & Ganat, T. (2020). Chemical sand consolidation: form polymers to nanoparticles. Polymers, 12(5), 1069. doi:https://doi.org/10.3390/polym12051069Ali, A. S., Salem, A., & Attia, A. M. (2022). Mitigation of fines migration by using nano-fluid to alleviate formarion damage in Abu-Rawash G. Petroleum and Coal, 64(2), 304 - 312.Alias, S. S., & Mohamad, A. A. (2014). Synthesis of zinc oxide by sol-gel method for photoelectrochemical cells. Singapore: Springer . doi:DOI 10.1007/978-981-4560-77-1Almutari, A., Saira, S., Wang, Y., & Le-Hussain, F. (2023). Effect of fines migrarion on oil recovery from carbonate rocks. Advances in Geo-Energy Research, 8(1), 61 -70. doi:https://doi.org/10.46690/ager.2023.04.06Aquino, P., Osorio, A. M., Ninán, E., & Torres, F. (2018). aracterización de nanopartículas de ZnO sintetizadas por el método de precipitación y su evaluación en la incorporación en pinturas esmalte. Revista de la Sociedad Química del Perú, 84(1), 5-17Arab, D., & Pourasfshary, P. (2013). Nanoparticles-assisted surface charge modification of the porous medium to treat colloidal particles migration induced by low salinity water flooding. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 436, 803-814. doi:https://doi.org/10.1016/j.colsurfa.2013.08.022Belcher, C., Seth, K., Hollier, R., & Paternostro, B. (2010). Maximizing production life with the use of nanotechnology to prevent fines migration. SPE International Oil and Gas Conference and Exhibition in China, SPE-132152. doi:https://doi.org/10.2118/132152-MSBerne, B. J., & Pecora, R. (2000). Dynamic light scattering with applications to chemistry, biology and physics. Mineola, USA: Courier Corporation.Betancur, S., Carrasco-Marín, F., Franco, C., & Cortés, F. (2018). Development of composite materials base on the interaction between nanoparticles and surfactants for application on chemical enhanced oil recovery. Ind. Eng. Chem. Res., 57, 12367– 12377. doi:https://doi.org/10.1021/acs.iecr.8b02200Céspedes Chávarro, C. (2015). Desarrollo de un nanofluido para la estabilización de finos en la formación Barco del campo Cupiagua. [Tesis de maestría] Departamento de procesos y energía - Universidad Nacional de Colombia, 95.Civan, F. (2007). Reservoir formation damage fundamentals, modelling, assesment and mitigation (2 ed.). Oxford, UK: Gulf Professional Publishing.Clark, R. M. (1987). Evaluating the cost and performance of field-escale granular activated carbon system. Enviromental Science & Technology, 21(6), 573 - 580. doi:https://doi.org/10.1021/es00160a008Díez, R., Medina, O., Giraldo, L., Cortés , F., & Franco, C. (2020). Development of nanofluids for the inhibition of formation damage caused by fines migration: effect of the interaction of quaternary amine (CTAB) and MgO nanoparticles. Nanomaterials, 10(5), 928. doi:https://doi.org/10.3390/nano10050928Echeverry, M., Giraldo, L. F., & Lopéz, B. L. (2007). Síntesis y funcionalización de nanopartículas de sílica con morfología esférica. Scientia et technica, 36Franco, C. A., Montoya, T., Nassar, N. N., & Cortés, F. B. (2014). NiO and PdO on fumed silica nanoparticles for adsorption and catalytic steam gasification of colombian C7 asphaltenes. Handbook on Oil Production Research; Nova Science Publishers: Hauppauge, NY, USA, 101-145Franco, C. A., Zabala, R., & Cortés, F. B. (2017). Nanotechnology to the enhancement of oil and gas productivity and recovery of Colombian fields. Journal of Petroleum Science and Engineering, 157, 39-5. doi:DOI: 10.1016/j.petrol.2017.07.004Franco, C., Guzman-Calle, J. D., & Cortés-Correa, F. B. (2016). Adsortion and catalytic oxidation of asphaltenes in fumed silica nanoparticles: Effect of the surface acidity. Revista DYNA, 83(198), 171-179. doi:https://doi.org/10.15446/dyna.v83n198.56106Fuentes, J., Montes, D., Lucas, E., Montes-Páez, E.-G., Szklo, A., & Guerreo-Martin, C. (2022). Nanotechnology applied to the inhibition and remediation of formation damage by fines migration and deposition: A comprehensive review. Journal of Petroleum Science and Engineering, 216, 110767. doi:https://doi.org/10.1016/j.petrol.2022.110767Ghumare, A. K., Mallick, M., & Rama, M. S. (2018). Patent No. 10093846. Patent and Trademark Office.Giraldo, J., Benjumea, P., Lopera, S., Cortés, F., & Ruiz, M. (2013). Wettability alteration of sandstone cores by alumina-based nanofluids. Energy&Fuels, 27(7), 3659-3665. doi:https://doi.org/10.1021/ef4002956Giraldo, J., Nassar, N. N., Benjumea, P. N., Pereira-Almao, P. R., & Cortés, F. (2013). Modeling and prediction of asphaltene adsortion isotherms using Polanyi's modified theory. Energy&Fuels, 27(6), 2908-2914. doi:https://doi.org/10.1021/ef4000837Giraldo, L., Diez, R., Acevedo, S., Cortés, F., & Franco, C. (2021). The effects of chemical composition of fines and nanoparticles on inhibition of formation damage caused by fines migration: insights through a simplex -centroid mixture desing of experiments. Journal of Petroleum Science and Engineering, 108494. doi:https://doi.org/10.1016/j.petrol.2021.108494Habibi, A., Ahmadi, M., Pourafshary, P., & Ayatollahi, S. (2014). Fines migration control in sandstone formation by improving silica suface zeta potential using nanoparticle coating process. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 36(21), 2376–2382. doi:https://doi.org/10.1080/15567036.2011.569836Habibi, A., Heidari, M. A., Al-Hadrami, H., Al-Ajmi, A., Al-Wahaibi, Y., & Ayatollahi, S. (2012). Effect of nanofluid injection on fines mitigation to remediate formation damage: A microscopic view. Journal of Advanced Microscopy Research, 7(2), 140 - 144. doi:https://doi.org/10.1166/jamr.2012.1107Habibi, A., Heidari, M., Al-Hadrami, H., Al-Ajmi, A., Al-Wahaibi, Y., & Ayatollahi, S. (2012). Effect of MgO nanofluid injection into water sensitive formation to prevent the water shock permeability impairment. ESP International oilfield nanotechnology conference held in Noordwijk, The Netherlands, SPE 157106. doi:https://doi.org/10.2118/157106-MSHurtado, Y., Beltran, C., Zabala, R., Lopera, S., Franco, C., Nassar, N., & Cortés, F. (2018). Effects of surface acidity and polarity of SiO2 nanoparticles on the foam stabilization applied to natural gas flooding in tight gas-condensate reservoir. Energy&Fuels, 32(5), 5824-5833. doi:https://doi.org/10.1021/acs.energyfuels.8b00665Jaramillo- Paez, C., Sánchez-Cid, P., Navío, J. A., & Hidalgo, M. C. (2018). A comparative assesment of the UV-photocatalytic activities of ZnO synthesized by different routes. Journal of Envaironmental Chemical Engineering, 6, 7161-7171. doi:https://doi.org/10.1016/j.jece.2018.11.004Karimi, M. A., Mozaheb, M. A., Hatefi-Mehrjardi, A., Tavallali, H., Attaran, A. M., & Shamsi, R. (2015). A new simple method for determining the critical micelle concetrations of surfactants using surface plasmon resonance of silver nanoparticles. Journal of Analytics Science and Technology, 6, 1-8. doi:DOI 10.1186/s40543-015-0077-yKhilar, K., & Fogler, S. (1998). Migration of fines in porus media (Vol. 12). Bombay Mumbai: Springer. doi:DOI 10.1007/978-94-015-9074-7Loi, G., Nguyen, C., Chequer, L., Russell, T., Zeinijahromi, A., & Bedrikovetsky, P. (2023). Tretment of oil production data under fines migration and productivity decline. Energies, 16(8), 3523. doi: https://doi.org/10.3390/en16083523Lopéz Vazquez, A. (2015). Crecimiento de nanoalambres de óxido de zinc verticalmente alineados usando el método sol-gel hidrotermal (Tesis de licenciatura). Benémerita Universidad Autónoma de Puebla, Facultad de Ciencias Físico-Matermáticas, Colegio de Física. doi:https://hdl.handle.net/20.500.12371/8774López, D., Zabala, R. D., Cárdenas, J. C., Lopera, S. H., Masoud, R., Franco, C. A., & Cortés, F. B. (2020). A novel desing of silica-based completion nanofluids for heavy oil reservoirs. Journal of Petroleum Science and Engineering, 194, 107483. doi:https://doi.org/10.1016/j.petrol.2020.107483Lopéz-Cuenca, S., Aguilar-Martinez, J., Rabelero-Velasco, M., Hernandez-Ibarra, F., Lopez-Ureta, L., & Pedroza-Toscano, M. (2019). Nanopartículas esféricas de óxido de zinc sintetizadas por un método de precipitación semicontinua a bajas temperaturas. Revista Mexicana de Ingeniería Química, 18(3), 1179-1187Mansour, M., Eleraki, M., Noah, A., & Moustafa, E.-A. (2020). Using nanotechnology to prevent fines migration while production. Petroleum, 7(2), 168 - 177. doi:https://doi.org/10.1016/j.petlm.2020.09.003Mansour, M., Moustafa, E.-A., Eleraki, M., & Noah, A. (2020). A novel aproach of fines migration control using nanoparticle through zeta potential measurements. Petroleum and Coal, 62(3), 691 - 793. Obtenido de https://scholar.googleusercontent.com/scholar?q=cache:2HTtKqiN-f8J:scholar.google.com/&hl=en&as_sdt=0,5Martinez, A., & Chaves, C. (2018). Inmovilización de la proteína fotoactiva bacteriorodopsina sobre óxido de zinc Aplicación en Celdas Solares Bio-Sensibilizadas. Revista Tecnología en Marcha, 31(4), 49-62. doi:http://dx.doi.org/10.18845/tm.v31i4.3959Mohd Shafian, S., Mohd Saaid, I., Razali, N., Khalida Salleh, I., & Irawan, S. (2021). Experimental investigation of colloidal silica nanoparticles (C-SNPs) for fines migration control application. Applied Nanoscience, 11, 1993-2008. doi:https://doi.org/10.1007/s13204-021-01894-5Montoya, T., Coral, D., Franco, C., Nassar, N., & Cortés, F. (2014). A novel solid-liquid equilibrium model for describing the adsortion of associating asphaltene molecules onto solid surfaces based on the "Chemical Theory". Energy&Fuels, 28(8), 4963-4975. doi:https://doi.org/10.1021/ef501020dMora, C., Franco, C., & Cortes, F. (2013). Uso de nanopartículas de sílice para la estabilización de finos en lechos empacados de arena Ottawa. Informador técnico, 77(1), 27 - 34. doi:https://doi.org/10.23850/22565035.42Muneer, R., Hashmet, M., & Pourafshary, P. (2020). Fine migration control in sandstone: surface force analysis and application of DVLO theory. ACS Omega, 5(49), 31624-31639. doi:https://doi.org/10.1021/acsomega.0c03943Naranjo, E., & Pereira, J. (2021). Procesos en el medio poroso causante de la migración de finos durante la etapa de producción de petróleo. Revista Ciencia e Ingeniería, 42(2), 229-238Nashaat, N., Cortés, F., & Franco, C. (2021). Nanoparticles: An emerging technology for oil production and processing applications. Cham, Germany: Springer Nature Switzerland AG. doi:https://doi.org/10.1007/978-3-319-12051-5Ngata, M. R., Yang, B., Aminu, M. D., Emmanuely, B. L., Said, A. A., Kalibwami, D. C., . . . Nyakilla, E. E. (2022). Minireview of formation damage control through nanotechnology utilization at fieldwork conditions. Energy&Fuels, 36(8), 4174-4185. doi:https://doi.org/10.1021/acs.energyfuels.2c00210Ogolo, N. A., Achor, T., & Onyekonwu, M. O. (2022). Effect of aluminum oxide powder and nanoparticles on kaolinite mobilization in sand. Computational Engineering and Physical Modeling, 5(4), 67-78. doi:10.22115/CEPM.2023.381797.1229Ogolo, N. A., Olafuyi, O. A., & Onyekonwu, M. O. (2013). Impact of hidrocarbon oon the performance of nanoparticles in control of fines migration. In SPE Nigeria Annual International Conference and Exhibition, SPE-167503Ogolo, N., Olafuyi, O., & Onyekonwu, M. (2012). Effect of nanoparticles on migrating fines in formarions. In SPE International Oilfield Nanotechnology Conference and Exhibition, SPE-155213. doi:https://doi.org/10.2118/155213-MSOmar, F. M., Aziz, H. A., & Stoll, S. (2014). Aggregation and disaggregation of ZnO nanoparticles: Influence of pH and adsortion of Suwannee River humic acid. Science of the Total Environment, 468, 195-201. doi:https://doi.org/10.1016/j.scitotenv.2013.08.044Pourrahimi, A., Liu, D., Pallon, L., Andersson, R., Martínez Abad, A., Lagarón, J.-M., . . . Olsson, R. (2014). Water-based synthesis and cleaning methods for high purity ZnO nanoparticles - comparing acetate, chloride, sulphate and nitrate zinc salt precursors. RSC Advances, 4(67), 35568-35577. doi:https://doi.org/10.1039/C4RA06651KRamírez Barrón, S. N. (2013). Estudio del efecto antimicrobiano y citotóxico de nanopartículas de ZnO con y sin tratamiento superficial en nanocompuestos para uso médico (Trabajo de maestría). Centro de Investigación en Química Aplicada, Programa de maestría en técnología de polímeros.Rani, S., Suri, P., Shishodia, P. K., & Mehra, R. M. (2008). Synthsis of nanocrystalline ZnO powder via sol-gel route for dye-sentized solar cells. Solar Energy Materials & Solar Cells, 92, 1639 - 1645. doi:https://doi.org/10.1016/j.solmat.2008.07.015Rodríguez-Estupiñan, P., Giraldo, L., & Moreno-Piraján, J. C. (2019). Isotherms models, kinetics study and thermodynamic parameters of asphaltenes adsortion on activated carbons prepared from corncobs waste form toluene solutions. Journal of Thermal Analysis and Calorimetry, 138, 2577-2595. doi:https://doi.org/10.1007/s10973-019-08549-2Russell, T., Pham, D., Tavakkoli Neishaboor, M., Badalyan, A., Behr, A., Genolet, L., . . . Zeinijahromi, A. (2017). Effect of kaolinite on rocks on fines migration. Journal of Natural Gas Science and Engineering, 45, 243 - 255. doi:https://doi.org/10.1016/j.jngse.2017.05.020Salwa Alias, S., & Azmin Mohamad, A. (2014). Synthesis of zinc oxide by sol-gel method for photoelectro-chemical cells. Singapure: Springer.Samir Ali, A., Salem, A., & Mahmoud Attia, A. (2022). Mitigation of fines migration by using nano-fluid to alliviate formation damage in Abu Rawash G. Petroleum and Coal, 64(2), 304-312Savi, B., Rodrigues, L., & Bernardin, A. (2012). Síntesis de nanopartículas de ZnO por el proceso sol - gel. Qualicer, 12, 1 - 9Shakiba, M., Khamehchi, E., Fahimifar, A., & Dabir, B. (2020). A mechanistic study of smart water injection in the presence of nanoparticles for sand production control in unconsolidated sandstone reservoirs. Journal of Molecular Liquids, 319, 114210. doi:https://doi.org/10.1016/j.molliq.2020.114210Valencia Rios, J., & Castellar Ortega, G. (2013). Predicción de las curvas de ruptura para la remoción de plomo (II) en disolución acuosa sobre carbón activado en una columna empacada. Revista Facultad de Ingeniería Universidad de Antioquia(66), 141-158Wahab, R., Ansari, S. G., Kim, S. Y., Song, M., & Shin, H.-S. (2009). The role of pH variation on the grow of zinc oxide nanostructures. Applied Suface Science, 255, 4891 - 4896. doi:https://doi.org/10.1016/j.apsusc.2008.12.037Wang, C., Montero Pallares, J., Haftani, M., & Nouri, A. (2020). Developing a methodology to characterize formation damage (pore plugging) due to fines migration in sand control test. Journal of Petroleum Science and Engineering, 186, 106793. doi:https://doi.org/10.1016/j.petrol.2019.106793Yang, S., Russelll, T., Baldayan, A., Schacht, U., Woolley, M., & Bedrikovetsky, P. (2019). Characterizartion of fines migration system using laboratory pressure measurements. Journal of Natural Gas Science and Engineering, 65, 108-124. doi:https://doi.org/10.1016/j.jngse.2019.02.005Yasaman, A., Arab, D., & Pourafshary, P. (2014). Application of nanofluid to control fines migration to improve the performance of low salinity water flooding and alkaline flooding. Journal of Petroleum Science and Engineering, 124, 331-340. doi:https://doi.org/10.1016/j.petrol.2014.09.023Zabala Romero, R. D. (2016). Modelo fenomenológico para escalar a yacimiento el impacto sobre producción de hidrocarburos del daño de formación por migración de finos. Fuentes, el reventón energético, 14(1), 103-114. doi:https://doi.org/10.18273/revfue.v14n1-2016009Zheng, X., Perreault, F., & Jang, J. (2018). Fines adsortion on nanoparticle-coated surface. Acta Geotechnica, 13, 219 - 226. doi:https://doi.org/10.1007/s11440-017-0528-2EstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86864/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1098681773.2024.pdf1098681773.2024.pdfTesis de Maestría en Ingeniería - Ingeniería de Petróleosapplication/pdf1676781https://repositorio.unal.edu.co/bitstream/unal/86864/2/1098681773.2024.pdff4e6b00f11806953709b3b105207ae00MD52THUMBNAIL1098681773.2024.pdf.jpg1098681773.2024.pdf.jpgGenerated Thumbnailimage/jpeg5604https://repositorio.unal.edu.co/bitstream/unal/86864/3/1098681773.2024.pdf.jpg4c5c1c58e203928797a41681eaca7826MD53unal/86864oai:repositorio.unal.edu.co:unal/868642024-09-25 23:35:31.852Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=