Generación de energía a partir de la oxidación en dos etapas con residuos sólidos urbanos de la ciudad de Bucaramanga
El siguiente documento tiene como objetivo comprobar, mediante simulación, la posibilidad de generación de energía mediante la tecnología conocida como oxidación en dos etapas, utilizando como fuente de alimentación los residuos sólidos urbanos de la ciudad de Bucaramanga, esto como medio de aprovec...
- Autores:
-
Monsalve León, Andrea Natalia
García Reyes, Laura Estefanía
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2019
- Institución:
- Universidad Autónoma de Bucaramanga - UNAB
- Repositorio:
- Repositorio UNAB
- Idioma:
- spa
- OAI Identifier:
- oai:repository.unab.edu.co:20.500.12749/7260
- Acceso en línea:
- http://hdl.handle.net/20.500.12749/7260
- Palabra clave:
- Energy engineering
Technological innovations
Energy
Two-Stage Oxidation
Power Generation
Municipal Solid Waste
Aspen Plus
Energetic resources
Waste treatment
Oxidation
Ingeniería en energía
Innovaciones tecnológicas
Energía
Recursos energéticos
Tratamiento de residuos
Oxidación
Oxidación en dos etapas
Generación de energía
Residuos sólidos urbanos
Aspen Plus
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id |
UNAB2_fd7c962e49f7f64724735b16fba41500 |
---|---|
oai_identifier_str |
oai:repository.unab.edu.co:20.500.12749/7260 |
network_acronym_str |
UNAB2 |
network_name_str |
Repositorio UNAB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Generación de energía a partir de la oxidación en dos etapas con residuos sólidos urbanos de la ciudad de Bucaramanga |
dc.title.translated.spa.fl_str_mv |
Generation of energy from oxidation in two stages with urban solid waste in the city of Bucaramanga |
title |
Generación de energía a partir de la oxidación en dos etapas con residuos sólidos urbanos de la ciudad de Bucaramanga |
spellingShingle |
Generación de energía a partir de la oxidación en dos etapas con residuos sólidos urbanos de la ciudad de Bucaramanga Energy engineering Technological innovations Energy Two-Stage Oxidation Power Generation Municipal Solid Waste Aspen Plus Energetic resources Waste treatment Oxidation Ingeniería en energía Innovaciones tecnológicas Energía Recursos energéticos Tratamiento de residuos Oxidación Oxidación en dos etapas Generación de energía Residuos sólidos urbanos Aspen Plus |
title_short |
Generación de energía a partir de la oxidación en dos etapas con residuos sólidos urbanos de la ciudad de Bucaramanga |
title_full |
Generación de energía a partir de la oxidación en dos etapas con residuos sólidos urbanos de la ciudad de Bucaramanga |
title_fullStr |
Generación de energía a partir de la oxidación en dos etapas con residuos sólidos urbanos de la ciudad de Bucaramanga |
title_full_unstemmed |
Generación de energía a partir de la oxidación en dos etapas con residuos sólidos urbanos de la ciudad de Bucaramanga |
title_sort |
Generación de energía a partir de la oxidación en dos etapas con residuos sólidos urbanos de la ciudad de Bucaramanga |
dc.creator.fl_str_mv |
Monsalve León, Andrea Natalia García Reyes, Laura Estefanía |
dc.contributor.advisor.spa.fl_str_mv |
Galindo Noguera, Ana Lisbeth Meneses Jácome, Alexander |
dc.contributor.author.spa.fl_str_mv |
Monsalve León, Andrea Natalia García Reyes, Laura Estefanía |
dc.contributor.cvlac.*.fl_str_mv |
Galindo Noguera, Ana Lisbeth [0000115074] |
dc.contributor.googlescholar.*.fl_str_mv |
Galindo Noguera, Ana Lisbeth [wdT-u28AAAAJ] |
dc.contributor.orcid.*.fl_str_mv |
Galindo Noguera, Ana Lisbeth [0000-0001-8065-5055] |
dc.contributor.scopus.*.fl_str_mv |
Galindo Noguera, Ana Lisbeth [56002365900] |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación Recursos, Energía, Sostenibilidad - GIRES Grupo de Investigaciones Clínicas |
dc.subject.keywords.eng.fl_str_mv |
Energy engineering Technological innovations Energy Two-Stage Oxidation Power Generation Municipal Solid Waste Aspen Plus Energetic resources Waste treatment Oxidation |
topic |
Energy engineering Technological innovations Energy Two-Stage Oxidation Power Generation Municipal Solid Waste Aspen Plus Energetic resources Waste treatment Oxidation Ingeniería en energía Innovaciones tecnológicas Energía Recursos energéticos Tratamiento de residuos Oxidación Oxidación en dos etapas Generación de energía Residuos sólidos urbanos Aspen Plus |
dc.subject.lemb.spa.fl_str_mv |
Ingeniería en energía Innovaciones tecnológicas Energía Recursos energéticos Tratamiento de residuos Oxidación |
dc.subject.proposal.spa.fl_str_mv |
Oxidación en dos etapas Generación de energía Residuos sólidos urbanos Aspen Plus |
description |
El siguiente documento tiene como objetivo comprobar, mediante simulación, la posibilidad de generación de energía mediante la tecnología conocida como oxidación en dos etapas, utilizando como fuente de alimentación los residuos sólidos urbanos de la ciudad de Bucaramanga, esto como medio de aprovechamiento de los residuos ante la problemática de disposición final existente en el relleno sanitario de la ciudad. El sistema de oxidación es dos etapas se modela como un gasificador de tipo updraft que utiliza como agente gasificante aire. Como entrada al proceso se usa la composición teórica de los RSU de la ciudad, que presentan un poder calorífico de 16.465,434 kJ/kg. El proceso de la gasificación se realizó en el software Aspen Plus, definiendo las condiciones de las corrientes de ingreso y de trabajo de las diferentes fases, teniendo siempre en cuenta que los valores concordaran con información de estudios previo para asegurar la veracidad de los datos. También se estipulan las reacciones típicas que ocurren en las zonas de reducción y oxidación de un gasificador de este tipo. El proceso de generación de energía se realiza con ayuda del software Matlab y de la herramienta de cálculo EES, donde se determina la generación de energía mediante la turbina de vapor de un ciclo Rankine, vapor generado gracias al aprovechamiento de calor de los gases de combustión de la oxidación en dos etapas. Los resultados muestran que, con una relación de equivalencia de 0,2 se logra el mejor aprovechamiento energético de los residuos, lográndose un valor de calor de 1.069.170 kJ/h en los gases de combustión que se traducen, en la generación de energía eléctrica, en 819.850 kWh/año. También, con esta RE se logra el control de las emisiones liberadas a la atmosfera, siendo los componentes liberados principalmente H2O, CO2, N2 y O2, además se confirma con la resolución 058 de 2002 del Ministerio de Ambiente de Colombia, que las emisiones de los agentes contaminantes se encuentran dentro de los límites permitidos. Con el desarrollo y funcionamiento de esta tecnología se logra la utilización y aprovechamiento de 840 toneladas de residuos sólidos urbanos al año. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-09-28T17:40:16Z |
dc.date.available.none.fl_str_mv |
2020-09-28T17:40:16Z |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.local.spa.fl_str_mv |
Trabajo de Grado |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12749/7260 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Autónoma de Bucaramanga - UNAB |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional UNAB |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.unab.edu.co |
url |
http://hdl.handle.net/20.500.12749/7260 |
identifier_str_mv |
instname:Universidad Autónoma de Bucaramanga - UNAB reponame:Repositorio Institucional UNAB repourl:https://repository.unab.edu.co |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
[1] A. Periathamby, Waste. A Handbook for Management, 2011 [2] Departamento Nacional de Planeación, «Informe Nacional Disposición Final de Residuos Sólidos,» 2016. [3] L. Á. Rodríguez Escobar, «Towards Environmental Management of Solid Residues in large Latin-american Cities,» 2002. [4] Autoridad Nacional de Licencias Ambientales, «Comunicaciones ANLA,» 2018. [5] K. S. Assaf Carrascal, Sitio de disposición final de residuos sólidos el carrasco y la afectación a derechos fundamentales y colectivos, 2012. [6] L. E. Contreras Manzano, Evaluacion Ambiental Ex – Post Del Sitio De Disposición Final De Residuos Solido El Carrasco En El Municipio De Bucaramanga, 2012. [7] S. Consonni y F. Vigano, «Waste gasification vs conventional Waste-To- Energy: A comparative evaluation of two commercial technologies,» 2012. [8] D. Moratorio, I. Rocco y M. Castelli, «Conversión de Residuos Sólidos Urbanos en Energía/Converting Municipal Solid Waste into energy,» 2012 [9] Departamento Administrativo de la Función Pública, Decreto 1784 de 2017, 2017. [10] D. Hankoto, «Aspen Plus Modeling Approach in Solid Waste Gasification,» de Current Developments in Biotechnology and Bioengineering, 2019, pp. 259- 281. [11] Agencia Extremela de la Energía, La biomasa forestal, 2013 [12] N. Ayala, «Bioenergía a partir de residuos forestales,» Madera y Bosques, 2018. [13] Organización de las Naciones Unidas para la Alimentación y la Agricultura, Residuos agrícolas y ganaderos, 2014. 14] Danny Nuñez, «Uso de residuos agrícolas para la producción de biocombustibles en el departamento del Meta,» Tecnura [15] J. Fernández, Energías renovables para todos - Biomasa. [16] Secretaría de energía Argentina, Energía Biomasa. [17] Y. Arboleda, «Fundamentos para el diseño de biodigestores,» Universidad Nacional de Colombia, 2009 [18] Y. Vargas, «Aprovechamiento de residuos agroindustriales para el mejoramiento de la calidad del ambiente,» Facultad de Ciencias Básicas, 2018. [19] Alcaldía de Bucaramanga, «Plan de gestión integral de residuos sólidos PGIRS,» 2015. [20] D. Nestor, «Generación de Energía a partir de Residuos Sólidos Urbanos. Estrategias Termodinámicas para Optimizar el Desempeño de Centrales Térmicas,» Información tecnologica vol 3, 2019. [21] D. Rua, «Generación de energía a partir de los residuos sólidos urbanos,» 2015. [22] Empresa De Aseo De Bucaramanga S.A, «Invitación pública para la selección de la nueva tecnología, su implementación y operación, para el tratamiento alternativo de la disposición final y el aprovechamiento de los residuos sólidos urbanos (RSU) en la ciudad de Bucaramanga,» 2017 [23] UIS, CAMVHIL S.A.S/CEIAM, «Caracteristicas de los residuos sólidos generados en el municipio de Bucaramanga,» 2015. [24] A. Castello, «DISEÑO DE UN REACTOR CONTINUO DE GASIFICACIÓN,» 2014. [25] International District Energy Association, 2007. [26] S. Castro, «INSTALACIÓN Y ARRANQUE DE UN PROTOTIPO DE GASIFICACIÓN,» 2015. [27] P. Castellanos, «IDENTIFICACIÓN Y CONTROL DE UN GASIFICADOR DE LECHO FLUIDIZADO,» 2017 [28] M. Gomez, «Sistema de generación eléctrica con pila de combustible de óxido sólido alimentado con residuos forestales y su optimización mediante algoritmos basados en nubes de partículas,» 2008. [29] A. Grimm, «Gasificación en flujo ascendente de madera pelletizada de abedul,» 2005. [30] I. Sánchez, «Análisis comparativo de las tecnologías de valorización de residuos basadas en la gasificación,» 2014 [31] L. Carrasco, «DISEÑO Y CONSTRUCCION DE UN GASIFICADOR DE LECHO FIJO PARA LA PRODUCCION DE GAS DE SINTESIS,» 2015. [32] A. Heraz, Estudio de gasificación mediante un prototipo experimental para el tratamiento termoquímico de residuos orgánicos, 2012. [33] F. Moreno, Simulación de gasificación de biomasa en lecho fluidizado burbujeante, 2010 [34] G. Young, Municipal solid waste to energy conversion processes, 2010 [35] S. d. E. d. Argentina, Energías Renovables, 2008. [36] M. Cortázar, Estudio comparativo de tecnologías comerciales de valorización de residuos sólidos urbanos, 2014. [37] J. Barajas, Sistema de combustión a pequeña escala para la producción de energía limpia en zonas aisladas, 2015. [38] J. Speight, «Handbook of industrial hydrocarbon process,» 2011. [39] SAGE metering Inc, «Stoichiometric Combustion Impact on Boiler Efficiency,» 2013. [40] C. Forde, «Biobased Fats (Lipids) and Oils from Biomass as a Source of Bioenergy,» Bioenergy research, 2014. [41] G. Cujia y A. Bula, «POTENCIAL OBTENCIÓN DE GAS DE SÍNTESIS,» 2010. [42] X. Lin y F. Wang, «Thermodynamic Equilibrium Analysis on Limitation of Moisture and Ash for Optimal Air Gasification of Municipal Solid Waste,» Waste biomass valor, 2016. [43] C. Hindsgaul, «High performance gasification with the two-stage gasifier,» 2001. [44] H. Zhou, «Classification and comparison of municipal solid,» Journal of the Air & Waste Management Association, 2014. [45] A. L. Násner, Modelagem de uma Planta Piloto de Gaseificação de Combustível Derivado de de Resíduos (CDR) em um Sistema Integrado a Motor Ciclo Otto, Utilizando o Software Aspen Plus., 2015. [46] T. Hatanaka, «Role of Chlorine in Combustion Field in Formation of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans during Waste Incineration,» 2005. [47] A. Almentero, «El análisis Pinch: integración y optimización en una planta de». [48] R. ESPINOSA, ESTUDIO DE LA PRODUCCIÓN DE HIDRÓGENO A PARTIR DE LOS RESIDUOS SÓLIDOS DE LA CIUDAD DE MÉXICO MEDIANTE LA TECNOLOGÍA DE GASIFICACIÓN, 2016. [49] C. Serrato, Metodología para el cálculo de energía extraída a partir de la biomasa en el Departamento de Cundinamarca, 2016. [50] F. d. h. p. i. w. m. s. w. (. g. f. h. production, «Souman Rudra,» Energy, 201 [51] Ministerio de Ambiente y Desarrollo Sostenible, Diario Oficial No. 44691 de enero 29 de 2002. RESOLUCION 058 DE 2002, 2002. [52] J. Lesme, «ANÁLISIS TERMODINÁMICO DE UN GASIFICADOR “ANKUR” MODELO WBG-10 TRABAJANDO CON DIFERENTES BIOMASAS,» Tecnología Química, 2008. [53] E. Puentes, «Generación eléctrica con Biomasa. Evolución de la retribución en este tipo de tecnología,» 2017 [54] A. Heraz, «Estudio de gasificación mediante un prototipo experimental para el tratamiento termoquímico de residuos orgánicos,» 2012. |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
dc.rights.creativecommons.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 Atribución-NoComercial-SinDerivadas 2.5 Colombia |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.spatial.spa.fl_str_mv |
Bucaramanga (Santander, Colombia) |
dc.coverage.campus.spa.fl_str_mv |
UNAB Campus Bucaramanga |
dc.publisher.grantor.spa.fl_str_mv |
Universidad Autónoma de Bucaramanga UNAB |
dc.publisher.program.spa.fl_str_mv |
Pregrado Ingeniería en Energía |
institution |
Universidad Autónoma de Bucaramanga - UNAB |
bitstream.url.fl_str_mv |
https://repository.unab.edu.co/bitstream/20.500.12749/7260/3/license.txt https://repository.unab.edu.co/bitstream/20.500.12749/7260/4/2019_Tesis_Andrea_Natalia_Monsalve_Leon.pdf.jpg https://repository.unab.edu.co/bitstream/20.500.12749/7260/5/2019_Presentacion_Andrea_Natalia_Monsalve_Leon.pdf.jpg https://repository.unab.edu.co/bitstream/20.500.12749/7260/7/Licencia_Laura.pdf.jpg https://repository.unab.edu.co/bitstream/20.500.12749/7260/1/2019_Tesis_Andrea_Natalia_Monsalve_Leon.pdf https://repository.unab.edu.co/bitstream/20.500.12749/7260/2/2019_Presentacion_Andrea_Natalia_Monsalve_Leon.pdf https://repository.unab.edu.co/bitstream/20.500.12749/7260/6/Licencia_Laura.pdf |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 b2aed581c59c2409827003afd0e828c2 6f34371736963904070a7d83cc38605d 513309163fd94b4d216ea1036d5bba5d 5bcb97af9804f6ea9566741f476c0dc6 2c5f5bab466862e96d6652c02520b488 760f1fe05e27974aa917ec7c894ed586 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB |
repository.mail.fl_str_mv |
repositorio@unab.edu.co |
_version_ |
1828219886000668672 |
spelling |
Galindo Noguera, Ana Lisbeth72476719-2397-455f-9800-c0b4a195869c-1Meneses Jácome, Alexander22a91647-230a-4d2f-b537-90ebcdaf6362-1Monsalve León, Andrea Natalia226f1c45-f8ce-4ef4-a3f8-57b24765c673-1García Reyes, Laura Estefanía8c445ed0-3f9d-49b3-ba92-f1a2c1d78bcf-1Galindo Noguera, Ana Lisbeth [0000115074]Galindo Noguera, Ana Lisbeth [wdT-u28AAAAJ]Galindo Noguera, Ana Lisbeth [0000-0001-8065-5055]Galindo Noguera, Ana Lisbeth [56002365900]Grupo de Investigación Recursos, Energía, Sostenibilidad - GIRESGrupo de Investigaciones ClínicasBucaramanga (Santander, Colombia)UNAB Campus Bucaramanga2020-09-28T17:40:16Z2020-09-28T17:40:16Z2019http://hdl.handle.net/20.500.12749/7260instname:Universidad Autónoma de Bucaramanga - UNABreponame:Repositorio Institucional UNABrepourl:https://repository.unab.edu.coEl siguiente documento tiene como objetivo comprobar, mediante simulación, la posibilidad de generación de energía mediante la tecnología conocida como oxidación en dos etapas, utilizando como fuente de alimentación los residuos sólidos urbanos de la ciudad de Bucaramanga, esto como medio de aprovechamiento de los residuos ante la problemática de disposición final existente en el relleno sanitario de la ciudad. El sistema de oxidación es dos etapas se modela como un gasificador de tipo updraft que utiliza como agente gasificante aire. Como entrada al proceso se usa la composición teórica de los RSU de la ciudad, que presentan un poder calorífico de 16.465,434 kJ/kg. El proceso de la gasificación se realizó en el software Aspen Plus, definiendo las condiciones de las corrientes de ingreso y de trabajo de las diferentes fases, teniendo siempre en cuenta que los valores concordaran con información de estudios previo para asegurar la veracidad de los datos. También se estipulan las reacciones típicas que ocurren en las zonas de reducción y oxidación de un gasificador de este tipo. El proceso de generación de energía se realiza con ayuda del software Matlab y de la herramienta de cálculo EES, donde se determina la generación de energía mediante la turbina de vapor de un ciclo Rankine, vapor generado gracias al aprovechamiento de calor de los gases de combustión de la oxidación en dos etapas. Los resultados muestran que, con una relación de equivalencia de 0,2 se logra el mejor aprovechamiento energético de los residuos, lográndose un valor de calor de 1.069.170 kJ/h en los gases de combustión que se traducen, en la generación de energía eléctrica, en 819.850 kWh/año. También, con esta RE se logra el control de las emisiones liberadas a la atmosfera, siendo los componentes liberados principalmente H2O, CO2, N2 y O2, además se confirma con la resolución 058 de 2002 del Ministerio de Ambiente de Colombia, que las emisiones de los agentes contaminantes se encuentran dentro de los límites permitidos. Con el desarrollo y funcionamiento de esta tecnología se logra la utilización y aprovechamiento de 840 toneladas de residuos sólidos urbanos al año.LISTA DE TABLAS.................................................................................................. 7 LISTA DE ILUSTRACIONES ............................................................................ 8 LISTA DE GRÁFICAS ............................................................................................. 9 LISTA DE ANEXOS ............................................................................................... 10 GLOSARIO ............................................................................................................ 11 RESUMEN ............................................................................................................. 12 INTRODUCCIÓN ................................................................................................... 13 1. BIOMASA ....................................................................................................... 15 1.1 TIPOS DE BIOMASA ................................................................................ 15 1.1.1 Recursos Forestales .......................................................................... 15 1.1.2 Recursos Agrícolas ............................................................................ 16 1.1.3 Cultivos Energéticos........................................................................... 16 1.1.4 Recursos Pecuarios ........................................................................... 16 1.1.5 Recursos Agroindustriales ................................................................. 16 1.1.6 Residuos Urbanos .............................................................................. 17 1.2 POTENCIAL ENERGÉTICO DEL RESIDUOS SÓLIDOS URBANOS (RSU) 17 1.2.1 Potencial de residuos en la ciudad de Bucaramanga ........................ 18 1.3 TECNOLOGÍAS DE APROVECHAMIENTO DE RESIDUOS PARA LA GENERACIÓN DE ENERGÍA ............................................................................ 18 1.4 GASIFICACIÓN ........................................................................................ 19 1.4.1 Agente Gasificante ............................................................................. 20 1.4.2 Tipos de gasificadores ....................................................................... 20 1.4.3 Etapas del proceso de gasificación .................................................... 22 1.5 OXIDACIÓN EN DOS ETAPAS ................................................................ 25 1.6 SOFTWARE DE SIMULACIÓN ................................................................ 27 2 OBJETIVOS ................................................................................................... 28 2.1 OBJETIVO GENERAL .............................................................................. 28 2.2 OBJETIVOS ESPECÍFICOS ..................................................................... 28 5 3 METODOLOGÍA ............................................................................................. 29 3.1 FASE I ...................................................................................................... 29 3.2 FASE II ..................................................................................................... 29 3.3 FASE III .................................................................................................... 30 4 DESARROLLO ............................................................................................... 32 4.1 FASE I: CARACTERIZACIÓN DE LOS RESIDUOS SÓLIDOS URBANOS Y SELECCIÓN DE LA TECNOLOGÍA................................................................ 32 4.1.1 Composición Física de los RSU de Bucaramanga ............................. 32 4.1.2 Composición Química de los RSU de Bucaramanga ......................... 34 4.1.3 Cálculo del Poder Calorífico ............................................................... 35 4.1.4 Selección de oxidación en dos etapas ............................................... 35 4.2 FASE II: PARÁMETROS DE LA SIMULACIÓN DE LA TECNOLOGÍA .... 37 4.2.1 Zona de Secado................................................................................. 37 4.2.2 Zona de Pirolisis ................................................................................ 38 4.2.3 Zona de reducción ............................................................................. 39 4.2.4 Zona de Oxidación ............................................................................. 40 4.2.5 Análisis Pinch .................................................................................... 40 4.2.6 Ciclo Rankine ..................................................................................... 41 4.3 FASE III: SIMULACIÓN DEL PROCESO ................................................. 43 4.3.1 Gasificación en dos etapas ................................................................ 44 4.3.2 Ciclo de generación de energía .......................................................... 52 5 RESULTADOS ............................................................................................... 55 5.1 ANÁLISIS ÚLTIMO Y ANÁLISIS PRÓXIMO ............................................ 55 5.2 CONTENIDO ENERGÉTICO DE LOS RSU............................................. 56 5.3 COMPONENTES DE LOS GASES DE COMBUSTIÓN ........................... 57 5.3.1 Incidencia de la relación de equivalencia en la formación de componentes .................................................................................................. 57 5.3.2 Incidencia de la relación de equivalencia en la temperatura de la reducción ........................................................................................................ 59 5.3.3 Incidencia de la relación de equivalencia en la generación de hidrogeno 60 5.3.4 Relación H2:CO ................................................................................. 61 5.4 APROVECHAMIENTO DE LOS RESIDUOS ........................................... 63 6 5.4.1 Incidencia de la relación de equivalencia en el calor generado en la combustión ..................................................................................................... 63 5.4.2 Incidencia de la relación de equivalencia en la potencia de la turbina 64 5.5 EMISIONES CONTAMINANTES .............................................................. 65 5.6 GENERACIÓN DE ENERGÍA ................................................................... 66 5.6.1 Eficiencia del proceso ........................................................................ 66 6 CONCLUSIONES ........................................................................................... 68 7 RECOMENDACIONES ................................................................................... 70 8 BIBLIOGRAFÍA ............................................................................................... 71 ANEXOS ................................................................................................................ 75PregradoThe following document aims to verify, through simulation, the possibility of generating energy through the technology known as two-stage oxidation, using the solid urban waste of the city of Bucaramanga as a power source, this as a means of making use of the waste given the problem of final disposal in the city's sanitary landfill. The two-stage oxidation system is modeled as an updraft type gasifier that uses air as a gasifying agent. As input to the process, the theoretical composition of the city's MSW is used, which has a calorific value of 16,465.434 kJ / kg. The gasification process was carried out in the Aspen Plus software, defining the conditions of the incoming and working streams of the different phases, always keeping in mind that the values agreed with information from previous studies to ensure the accuracy of the data. The typical reactions that occur in the reduction and oxidation zones of such a gasifier are also stipulated. The power generation process is carried out with the help of the Matlab software and the EES calculation tool, where the power generation is determined by means of the steam turbine of a Rankine cycle, steam generated thanks to the use of heat from the combustion gases of oxidation in two stages. The results show that, with an equivalence ratio of 0.2, the best energy use of the waste is achieved, achieving a heat value of 1,069,170 kJ / h in the combustion gases that translate, in the generation of electrical energy, in 819,850 kWh / year. Also, with this RE the control of the emissions released into the atmosphere is achieved, the components released being mainly H2O, CO2, N2 and O2, it is also confirmed with resolution 058 of 2002 of the Ministry of Environment of Colombia, that the emissions of pollutants are within permitted limits. With the development and operation of this technology, the use and exploitation of 840 tons of urban solid waste per year is achieved.Modalidad Presencialapplication/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial-SinDerivadas 2.5 ColombiaGeneración de energía a partir de la oxidación en dos etapas con residuos sólidos urbanos de la ciudad de BucaramangaGeneration of energy from oxidation in two stages with urban solid waste in the city of BucaramangaIngeniero en EnergíaUniversidad Autónoma de Bucaramanga UNABPregrado Ingeniería en Energíainfo:eu-repo/semantics/bachelorThesisTrabajo de Gradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/redcol/resource_type/TPEnergy engineeringTechnological innovationsEnergyTwo-Stage OxidationPower GenerationMunicipal Solid WasteAspen PlusEnergetic resourcesWaste treatmentOxidationIngeniería en energíaInnovaciones tecnológicasEnergíaRecursos energéticosTratamiento de residuosOxidaciónOxidación en dos etapasGeneración de energíaResiduos sólidos urbanosAspen Plus[1] A. Periathamby, Waste. A Handbook for Management, 2011[2] Departamento Nacional de Planeación, «Informe Nacional Disposición Final de Residuos Sólidos,» 2016.[3] L. Á. Rodríguez Escobar, «Towards Environmental Management of Solid Residues in large Latin-american Cities,» 2002.[4] Autoridad Nacional de Licencias Ambientales, «Comunicaciones ANLA,» 2018.[5] K. S. Assaf Carrascal, Sitio de disposición final de residuos sólidos el carrasco y la afectación a derechos fundamentales y colectivos, 2012.[6] L. E. Contreras Manzano, Evaluacion Ambiental Ex – Post Del Sitio De Disposición Final De Residuos Solido El Carrasco En El Municipio De Bucaramanga, 2012.[7] S. Consonni y F. Vigano, «Waste gasification vs conventional Waste-To- Energy: A comparative evaluation of two commercial technologies,» 2012.[8] D. Moratorio, I. Rocco y M. Castelli, «Conversión de Residuos Sólidos Urbanos en Energía/Converting Municipal Solid Waste into energy,» 2012[9] Departamento Administrativo de la Función Pública, Decreto 1784 de 2017, 2017.[10] D. Hankoto, «Aspen Plus Modeling Approach in Solid Waste Gasification,» de Current Developments in Biotechnology and Bioengineering, 2019, pp. 259- 281.[11] Agencia Extremela de la Energía, La biomasa forestal, 2013[12] N. Ayala, «Bioenergía a partir de residuos forestales,» Madera y Bosques, 2018.[13] Organización de las Naciones Unidas para la Alimentación y la Agricultura, Residuos agrícolas y ganaderos, 2014.14] Danny Nuñez, «Uso de residuos agrícolas para la producción de biocombustibles en el departamento del Meta,» Tecnura[15] J. Fernández, Energías renovables para todos - Biomasa.[16] Secretaría de energía Argentina, Energía Biomasa.[17] Y. Arboleda, «Fundamentos para el diseño de biodigestores,» Universidad Nacional de Colombia, 2009[18] Y. Vargas, «Aprovechamiento de residuos agroindustriales para el mejoramiento de la calidad del ambiente,» Facultad de Ciencias Básicas, 2018.[19] Alcaldía de Bucaramanga, «Plan de gestión integral de residuos sólidos PGIRS,» 2015.[20] D. Nestor, «Generación de Energía a partir de Residuos Sólidos Urbanos. Estrategias Termodinámicas para Optimizar el Desempeño de Centrales Térmicas,» Información tecnologica vol 3, 2019.[21] D. Rua, «Generación de energía a partir de los residuos sólidos urbanos,» 2015.[22] Empresa De Aseo De Bucaramanga S.A, «Invitación pública para la selección de la nueva tecnología, su implementación y operación, para el tratamiento alternativo de la disposición final y el aprovechamiento de los residuos sólidos urbanos (RSU) en la ciudad de Bucaramanga,» 2017[23] UIS, CAMVHIL S.A.S/CEIAM, «Caracteristicas de los residuos sólidos generados en el municipio de Bucaramanga,» 2015.[24] A. Castello, «DISEÑO DE UN REACTOR CONTINUO DE GASIFICACIÓN,» 2014.[25] International District Energy Association, 2007.[26] S. Castro, «INSTALACIÓN Y ARRANQUE DE UN PROTOTIPO DE GASIFICACIÓN,» 2015.[27] P. Castellanos, «IDENTIFICACIÓN Y CONTROL DE UN GASIFICADOR DE LECHO FLUIDIZADO,» 2017[28] M. Gomez, «Sistema de generación eléctrica con pila de combustible de óxido sólido alimentado con residuos forestales y su optimización mediante algoritmos basados en nubes de partículas,» 2008.[29] A. Grimm, «Gasificación en flujo ascendente de madera pelletizada de abedul,» 2005.[30] I. Sánchez, «Análisis comparativo de las tecnologías de valorización de residuos basadas en la gasificación,» 2014[31] L. Carrasco, «DISEÑO Y CONSTRUCCION DE UN GASIFICADOR DE LECHO FIJO PARA LA PRODUCCION DE GAS DE SINTESIS,» 2015.[32] A. Heraz, Estudio de gasificación mediante un prototipo experimental para el tratamiento termoquímico de residuos orgánicos, 2012.[33] F. Moreno, Simulación de gasificación de biomasa en lecho fluidizado burbujeante, 2010[34] G. Young, Municipal solid waste to energy conversion processes, 2010[35] S. d. E. d. Argentina, Energías Renovables, 2008.[36] M. Cortázar, Estudio comparativo de tecnologías comerciales de valorización de residuos sólidos urbanos, 2014.[37] J. Barajas, Sistema de combustión a pequeña escala para la producción de energía limpia en zonas aisladas, 2015.[38] J. Speight, «Handbook of industrial hydrocarbon process,» 2011.[39] SAGE metering Inc, «Stoichiometric Combustion Impact on Boiler Efficiency,» 2013.[40] C. Forde, «Biobased Fats (Lipids) and Oils from Biomass as a Source of Bioenergy,» Bioenergy research, 2014.[41] G. Cujia y A. Bula, «POTENCIAL OBTENCIÓN DE GAS DE SÍNTESIS,» 2010.[42] X. Lin y F. Wang, «Thermodynamic Equilibrium Analysis on Limitation of Moisture and Ash for Optimal Air Gasification of Municipal Solid Waste,» Waste biomass valor, 2016.[43] C. Hindsgaul, «High performance gasification with the two-stage gasifier,» 2001.[44] H. Zhou, «Classification and comparison of municipal solid,» Journal of the Air & Waste Management Association, 2014.[45] A. L. Násner, Modelagem de uma Planta Piloto de Gaseificação de Combustível Derivado de de Resíduos (CDR) em um Sistema Integrado a Motor Ciclo Otto, Utilizando o Software Aspen Plus., 2015.[46] T. Hatanaka, «Role of Chlorine in Combustion Field in Formation of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans during Waste Incineration,» 2005.[47] A. Almentero, «El análisis Pinch: integración y optimización en una planta de».[48] R. ESPINOSA, ESTUDIO DE LA PRODUCCIÓN DE HIDRÓGENO A PARTIR DE LOS RESIDUOS SÓLIDOS DE LA CIUDAD DE MÉXICO MEDIANTE LA TECNOLOGÍA DE GASIFICACIÓN, 2016.[49] C. Serrato, Metodología para el cálculo de energía extraída a partir de la biomasa en el Departamento de Cundinamarca, 2016.[50] F. d. h. p. i. w. m. s. w. (. g. f. h. production, «Souman Rudra,» Energy, 201[51] Ministerio de Ambiente y Desarrollo Sostenible, Diario Oficial No. 44691 de enero 29 de 2002. RESOLUCION 058 DE 2002, 2002.[52] J. Lesme, «ANÁLISIS TERMODINÁMICO DE UN GASIFICADOR “ANKUR” MODELO WBG-10 TRABAJANDO CON DIFERENTES BIOMASAS,» Tecnología Química, 2008.[53] E. Puentes, «Generación eléctrica con Biomasa. Evolución de la retribución en este tipo de tecnología,» 2017[54] A. Heraz, «Estudio de gasificación mediante un prototipo experimental para el tratamiento termoquímico de residuos orgánicos,» 2012.LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.unab.edu.co/bitstream/20.500.12749/7260/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53open accessTHUMBNAIL2019_Tesis_Andrea_Natalia_Monsalve_Leon.pdf.jpg2019_Tesis_Andrea_Natalia_Monsalve_Leon.pdf.jpgIM Thumbnailimage/jpeg4967https://repository.unab.edu.co/bitstream/20.500.12749/7260/4/2019_Tesis_Andrea_Natalia_Monsalve_Leon.pdf.jpgb2aed581c59c2409827003afd0e828c2MD54open access2019_Presentacion_Andrea_Natalia_Monsalve_Leon.pdf.jpg2019_Presentacion_Andrea_Natalia_Monsalve_Leon.pdf.jpgIM Thumbnailimage/jpeg9258https://repository.unab.edu.co/bitstream/20.500.12749/7260/5/2019_Presentacion_Andrea_Natalia_Monsalve_Leon.pdf.jpg6f34371736963904070a7d83cc38605dMD55open accessLicencia_Laura.pdf.jpgLicencia_Laura.pdf.jpgIM Thumbnailimage/jpeg10915https://repository.unab.edu.co/bitstream/20.500.12749/7260/7/Licencia_Laura.pdf.jpg513309163fd94b4d216ea1036d5bba5dMD57metadata only accessORIGINAL2019_Tesis_Andrea_Natalia_Monsalve_Leon.pdf2019_Tesis_Andrea_Natalia_Monsalve_Leon.pdfTesisapplication/pdf1114312https://repository.unab.edu.co/bitstream/20.500.12749/7260/1/2019_Tesis_Andrea_Natalia_Monsalve_Leon.pdf5bcb97af9804f6ea9566741f476c0dc6MD51open access2019_Presentacion_Andrea_Natalia_Monsalve_Leon.pdf2019_Presentacion_Andrea_Natalia_Monsalve_Leon.pdfPresentaciónapplication/pdf2021078https://repository.unab.edu.co/bitstream/20.500.12749/7260/2/2019_Presentacion_Andrea_Natalia_Monsalve_Leon.pdf2c5f5bab466862e96d6652c02520b488MD52open accessLicencia_Laura.pdfLicencia_Laura.pdfLicenciaapplication/pdf300662https://repository.unab.edu.co/bitstream/20.500.12749/7260/6/Licencia_Laura.pdf760f1fe05e27974aa917ec7c894ed586MD56metadata only access20.500.12749/7260oai:repository.unab.edu.co:20.500.12749/72602024-09-25 22:01:28.107open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |