Cálculo simbólico de soluciones para tres ecuaciones diferenciales parciales no lineales generalizadas utilizando el método tanh
Tres ecuaciones diferenciales parciales no lineales, a saber, el estándar KdV ecuación, la ecuación de Boussinesq y el KdV generalizado de quinto orden ecuación se consideran aquí desde el punto de vista de la construcción exacta soluciones para ellos. Las ecuaciones que consideramos aquí son en su...
- Autores:
-
Salas, Alvaro H.
Gómez, Cesar A.
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2009
- Institución:
- Universidad Autónoma de Bucaramanga - UNAB
- Repositorio:
- Repositorio UNAB
- Idioma:
- spa
- OAI Identifier:
- oai:repository.unab.edu.co:20.500.12749/8971
- Acceso en línea:
- http://hdl.handle.net/20.500.12749/8971
- Palabra clave:
- Ecuación diferencial parcial no lineal
Ecuación de KdV
Ecuación de Boussinesq
Ecuación FKdV
Nonlinear partial differential equation
KdV equation
Boussinesq equation
FKdV equation
Technological innovations
Computer's science
Technological development
Systems engineer
Research
Technology of the information and communication
Innovaciones tecnológicas
Ciencias de la computación
Desarrollo tecnológico
Ingeniería de sistemas
Investigaciones
Tecnologías de la información y la comunicación
Ecuación diferencial parcial no lineal
Ecuación de KdV
Ecuación de Boussines
Ecuación fKdV
- Rights
- License
- Derechos de autor 2009 Revista Colombiana de Computación
id |
UNAB2_fd006df092eb9edea108c1f1ac1d7969 |
---|---|
oai_identifier_str |
oai:repository.unab.edu.co:20.500.12749/8971 |
network_acronym_str |
UNAB2 |
network_name_str |
Repositorio UNAB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Cálculo simbólico de soluciones para tres ecuaciones diferenciales parciales no lineales generalizadas utilizando el método tanh |
dc.title.translated.eng.fl_str_mv |
Symbolic computation of solutions for three generalized nonlinear partial differential eQuations by using the tanh method |
title |
Cálculo simbólico de soluciones para tres ecuaciones diferenciales parciales no lineales generalizadas utilizando el método tanh |
spellingShingle |
Cálculo simbólico de soluciones para tres ecuaciones diferenciales parciales no lineales generalizadas utilizando el método tanh Ecuación diferencial parcial no lineal Ecuación de KdV Ecuación de Boussinesq Ecuación FKdV Nonlinear partial differential equation KdV equation Boussinesq equation FKdV equation Technological innovations Computer's science Technological development Systems engineer Research Technology of the information and communication Innovaciones tecnológicas Ciencias de la computación Desarrollo tecnológico Ingeniería de sistemas Investigaciones Tecnologías de la información y la comunicación Ecuación diferencial parcial no lineal Ecuación de KdV Ecuación de Boussines Ecuación fKdV |
title_short |
Cálculo simbólico de soluciones para tres ecuaciones diferenciales parciales no lineales generalizadas utilizando el método tanh |
title_full |
Cálculo simbólico de soluciones para tres ecuaciones diferenciales parciales no lineales generalizadas utilizando el método tanh |
title_fullStr |
Cálculo simbólico de soluciones para tres ecuaciones diferenciales parciales no lineales generalizadas utilizando el método tanh |
title_full_unstemmed |
Cálculo simbólico de soluciones para tres ecuaciones diferenciales parciales no lineales generalizadas utilizando el método tanh |
title_sort |
Cálculo simbólico de soluciones para tres ecuaciones diferenciales parciales no lineales generalizadas utilizando el método tanh |
dc.creator.fl_str_mv |
Salas, Alvaro H. Gómez, Cesar A. |
dc.contributor.author.spa.fl_str_mv |
Salas, Alvaro H. Gómez, Cesar A. |
dc.contributor.orcid.spa.fl_str_mv |
Gómez, Cesar A. [0000-0002-0285-5649] |
dc.contributor.researchgate.spa.fl_str_mv |
Salas, Álvaro H. [Alvaro-Salas-2] |
dc.subject.none.fl_str_mv |
Ecuación diferencial parcial no lineal Ecuación de KdV Ecuación de Boussinesq Ecuación FKdV |
topic |
Ecuación diferencial parcial no lineal Ecuación de KdV Ecuación de Boussinesq Ecuación FKdV Nonlinear partial differential equation KdV equation Boussinesq equation FKdV equation Technological innovations Computer's science Technological development Systems engineer Research Technology of the information and communication Innovaciones tecnológicas Ciencias de la computación Desarrollo tecnológico Ingeniería de sistemas Investigaciones Tecnologías de la información y la comunicación Ecuación diferencial parcial no lineal Ecuación de KdV Ecuación de Boussines Ecuación fKdV |
dc.subject.keywords.eng.fl_str_mv |
Nonlinear partial differential equation KdV equation Boussinesq equation FKdV equation Technological innovations Computer's science Technological development Systems engineer Research Technology of the information and communication |
dc.subject.lemb.spa.fl_str_mv |
Innovaciones tecnológicas Ciencias de la computación Desarrollo tecnológico Ingeniería de sistemas Investigaciones Tecnologías de la información y la comunicación |
dc.subject.proposal.spa.fl_str_mv |
Ecuación diferencial parcial no lineal Ecuación de KdV Ecuación de Boussines Ecuación fKdV |
description |
Tres ecuaciones diferenciales parciales no lineales, a saber, el estándar KdV ecuación, la ecuación de Boussinesq y el KdV generalizado de quinto orden ecuación se consideran aquí desde el punto de vista de la construcción exacta soluciones para ellos. Las ecuaciones que consideramos aquí son en su forma más general. formulario. Nuevas soluciones exactas que incluyen soluciones periódicas y de solitones son derivado formalmente usando el método tanh. El lenguaje de programación Se utiliza Mathematica. |
publishDate |
2009 |
dc.date.issued.none.fl_str_mv |
2009-06-01 |
dc.date.accessioned.none.fl_str_mv |
2020-10-27T00:20:48Z |
dc.date.available.none.fl_str_mv |
2020-10-27T00:20:48Z |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.local.spa.fl_str_mv |
Artículo |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/CJournalArticle |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.issn.none.fl_str_mv |
2539-2115 1657-2831 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12749/8971 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Autónoma de Bucaramanga UNAB |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repository.unab.edu.co |
identifier_str_mv |
2539-2115 1657-2831 instname:Universidad Autónoma de Bucaramanga UNAB repourl:https://repository.unab.edu.co |
url |
http://hdl.handle.net/20.500.12749/8971 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://revistas.unab.edu.co/index.php/rcc/article/view/1140/1173 |
dc.relation.uri.none.fl_str_mv |
https://revistas.unab.edu.co/index.php/rcc/article/view/1140 |
dc.relation.references.none.fl_str_mv |
WAZWAZ A., The extended tanh method for new solitons solutions for many forms of the fifth-order KdV equations, Applied Mathematics and Computation, Elsevier, 84-2 (2007), 1002-1014. GÓMEZ C. A., Special forms of the fifth-order KdV equation with new periodic and soliton solutions, Appl. Math and Comp, 189(2007) 1066-1077. GÓMEZ C. A. & SALAS ALVARO H., The generalized tanh-coth method to special types of the fifth-order KdV equation Applied Mathematics and Computation, Elsevier, 203(2008) 873-880. SALAS S. ALVARO H. & C.A. GÓMEZ, Computing exact solutions for some fifth KdV equations with forcing term, Appl. Math and Comp, 204(2008) 257-260. SALAS S. ALVARO H., C.GÓMEZ & ESCOBAR L. JOSÉ G., Exact solutions for the general fifth order KdV equation by the extended tanh method, Journal. of Mathematical Sciences: Advances and Applications, Allabahad, India, Vol.1, 2(2008), 305-310. GÓMEZ C. A. & SALAS S. ALVARO H., Special forms of SawadaKotera equation with periodic and soliton solutions, Int. J. of Appl. Math. Analysis. and Appl.,2(2007), 85-91. HIROTA R., Direct Methods in Soliton Theory, Berlin 1980. BALDWIN D., GOKTAS U., HEREMAN W., HONG L., MARTINO R.S. & MILLER J.C., Symbolic computation of exact solutions expressible in hyperbolic and elliptic functions for nonlinear PDFs, J. Symbolic Comp. 37(2004), no. 6, 669-705; Prepint version: nlin.SI/0201008(arXiv.org) FAN F. & HON Y. C., Generalized tanh Method Extended to Special Types of Nonlinear Equations, Z. Naturforsch. A, 57(2002), no. 8, 692-700. GÓMEZ C. A., Exact solutions for a new fifth-order integrable system, Revista Colombiana de Matemáticas, Universidad Nacional de Colombia, Bogotá, 40(2006), 119-125. GÓMEZ C. A. & SALAS S. ALVARO H., Exact solutions for reaction diffusion equation by using the generalized tanh method, Scientia Et Technica, Universidad Tecnológica de Pereira, 13(2007),409- 410. GÓMEZ C. A. & SALAS S. ALVARO H., Solutions for a class of fifth-order nonlinear partial differential system, Journal. of Mathematical Sciences: Advances and Applications, Allabahad, India, Vol.3, 1(2009), p.p. 121-128. Preprint version available at http://www.arXiv.org 0809-2870. GÓMEZ C. A. & SALAS S. ALVARO H., New periodic and soliton solutions for the Generalized BBM and Burgers–BBM equations, Applied Mathematics and Computation, Elsevier, (2009) xxx-xx. GÓMEZ C. A. & SALAS S. ALVARO H., Exact solutions for a new integrable system (KdV6), Journal. of Mathematical Sciences: Advances and Applications, Allabahad, India, Vol.1, 2(2008), 401-413. GÓMEZ C. A. & SALAS S. ALVARO H., New exact Solutions to Special KdV6 and to Jaulient-Miodek Equations Using the Generalized tanh-coth Method, Int. Journal of Computer, Symbolic Computation of Solutions for Three Generalized Nonlinear Partial Differential Equations by Using the Tanh Method 135 Mathematical Sciences and Applications , Vol. 2 4,(2008), p.p. 271-280. GÓMEZ C. A., A new travelling wave solution of the Mikhailov– Novikov–Wang system using the extended tanh method, Boletin de Matematicas, Vol. XIV 1(2007), 38-43. GÓMEZ C. A. & SALAS S. ALVARO H., The variational iteration method combined with improved generalized tanh-coth method applied to Sawada-Kotera equation, Applied Mathematics and Computation, Elsevier, (2009) doi:10.1016/j.amc.2009.05.046. GÓMEZ C. A. & SALAS S. ALVARO H., The Cole Hopf transformation and improved tanh-coth method applied to new integrable system (KdV6), Applied Mathematics and Computation, Elsevier, 204(2008) 957-962. HE J.H. & ZHANG L.N., Generalized solitary solution and compacton-like solution of the Jaulent-Miodek equations using the Exp-function method, Phys.Lett. A (2007), doi:10.1016/j.physleta.2007.08.059. SALAS S. ALVARO H., GÓMEZ C. A. & CASTILLO H. JAIRO E. New abundant solutions for the Burgers equation , Computers and Mathematics with Applications, Elsevier, 58(2009), 514-520. CONTE R. & MUSETTE M., Link betwen solitary waves and projective Riccati equations, J. Phys. A Math. 25 (1992), 5609- 5623. YAN Z., The Riccati equation with variable coefficients expansion algorithm to find more exact solutions of nonlinear differential equation, Comput. Phys. Comm. 152(2003), no. 1, 1- 8. Prepint version available at http://www.mmrc.iss.ac.cn/pub/mm22.pdf/20.pdf GÓMEZ C. A. & SALAS ALVARO H., Exact solutions for the generalized shallow water wave equation by the general projective Riccati equations method, Boletín de Matemáticas, Universidad Nacional de Colombia, Bogotá, XIII-1(2006), 50- 56. GÓMEZ C. A. & SALAS S. ALVARO H., New exact solutions for the combined sinh-cosh-Gordon equation, Lecturas Matemáticas, Sociedad Colombiana de Matemáticas, special issue (2006), 87- 93. GÓMEZ C. A., New exact solutions of the Mikhailov–Novikov– Wang System, Int. J. of Comp. Math. Sciences and Appl. , 1 (2007), 137-143. ABLOWITZ M. J., AND CLARKSON P. A., Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Mathematical Society Lecture Note Series 149, Cambridge Univ. Press, London (1991). GARDNER C. S., AND MARIKAWA G. K., Courant Inst. Math. Sci.Res. Rep. NYO-9082, N.Y. University, New York (1960). JEFFREY A., AND KAKUTANI T., SIAM Rev. 14, 582-643 (1972). SCOTT A. C., CHU F. Y., AND MCLAUGHLIN D. W., Proc. IEEE 61, 1443-1483 (1973). MIURA R. M., SIAM Rev. 18, 412-459 (1976). ABLOWITZ M. J., AND SEGUR H., Solitons and the Inverse Scattering Transform, SIAM, Philadelphia (1981). LAMB G. L., Elements of Soliton Theory, John Wiley, New York (1980). CALOGERO F., AND DEGASPERIS A., Spectral Transforms and Solitons I, Amsterdam, Holland (1982). DODD R. K., EILBECK J. C., GIBBON J. D., AND MORRIS H. C., Solitons and Nonlinear Wave Equations, Academic Press, New York (1982). NOVIKOV S. P., MANAKOV S. V., PITAEVSKII L. P., AND ZAKHAROV V. E., Theory of Solitons. The Inverse Scattering Method, Plenum, New York (1984). ZHAO XUEQUIN AND OTHERS, A new Riccati equation expansion method with symbolic computation to construct new traveling wave solution of nonlinear differential equations, Applied Mathematics and Computation, 172 (2006) 24-39. WAZWAZ A., Construction of soliton solutions and periodic solutions of the Boussinesq equation by the modified decomposition method, Chaos Solitons Fract. 12 (2001) 1549. LIU S. K., FU Z. T., LIU S. D., ZHAO Q., Expansion method about the Jacobi elliptic function and its applications to nonlinear wave equations, Acta. Phys. Sin. 50 (2001) 2068. BRATSOS A. G., The solution of the Boussinesq equation using the method of lines, Comput. Methods. Appl. Mech. Eng. 157 (1998) 33. TODA M., WADATI M., A soliton and two solitons in an exponential lattice and related equations, J. Phys. Soc. Jpn. 34 (1973) 18. AMEINA N., SYMBOLIC COMPUTATION OF EXACT SOLUTIONS OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS USING DIRECT METHODS. (THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (MATHEMATICAL AND COMPUTER SCIENCE)) COLORADO SCHOOL OF MINES. SALAS S. ALVARO H., New solutions for the KdV equation by the exp-function method, Visión Electrónica, Universidad Distrital Francisco José de Caldas, Bogotá, Colombia, septiembre, 2009, Año 2, No. .3. SALAS S. ALVARO H., GÓMEZ C. A. & CASTILLO H. JAIRO E. , Exact solutions for the Generalized Modified Degasperis--Procesi equation, Symbolic Computation of Solutions for Three Generalized Nonlinear Partial Differential Equations by Using the Tanh Method 137 Applied Mathematics and Computation, Elsevier, september 2009, article in press. CASTILLO H. JAIRO E. , SALAS S. ALVARO H. & ESCOBAR L. JOSÉ G., Exact solutions for a nonlinear model , Applied Mathematics and Computation, september 2009, article in press. SALAS S. ALVARO H., GÓMEZ C. A., A practical approach to solve coupled systems of nonlinear PDE's, Journal. of Mathematical Sciences: Advances and Applications, Allabahad, India, Vol. 3, No. 1(August, 2009), 101-107, http://scientificadvances.org/journals1P5.htm SALAS S. ALVARO H., Exact solutions for the general fifth-order KDV, EqWorld – The world of Mathematical Equations, 19th may, 2008, Russia. web site : http://eqworld.ipmnet.ru/eqarchive/view.php?id=314 SALAS S. ALVARO H., Exact solutions for the general fifth-order KDV, EqWorld – The world of Mathematical Equations, January, 2009, Russia. SALAS S. ALVARO H., CASTILLO H. JAIRO E., & ESCOBAR L. JOSÉ G., About the seventh-order Kaup-Kupershmidt equation and its solutions, 2008, http://arxiv.org ] SALAS S. ALVARO H. & ESCOBAR L. JOSÉ G., A New solutions for the modified generalized Degasperis-Procesi equation, 2008, http://arxiv.org SALAS S. ALVARO H., & ESCOBAR L. JOSÉ G., A New solutions for the modified generalized Degasperis-Procesi equation, 2008, http://arxiv.org WAZWAZ A., ANALYTIC STUDY FOR FIFTH-ORDER KDV-TYPE EQUATIONS WITH ARBITRARY POWER NONLINEARITIES, COMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, , 12-6 (2007), 904-909. SALAS S. ALVARO H.,Two standard methods for solving the Ito equation, http://arxiv.org SALAS S. ALVARO H., Some exact solutions for the CaudreyDodd-Gibbon equation, 2008, http://arxiv.org SALAS S. ALVARO H., GÓMEZ C. A. & ESCOBAR L. JOSÉ G., Exact solutions for the general fifth order KdV equation by the extended tanh method , 2008, http://arxiv.org SALAS S. ALVARO H., GÓMEZ C. A , El software Mathematica en la búsqueda de soluciones exactas de ecuaciones diferenciales no lineales en derivadas parciales mediante el uso de la ecuación de Riccati, Memorias del Primer Seminario Internacional de Tecnologías en Educación Matemática, Universidad Pedagógica Nacional, Santafé de Bogotá, Colombia 1 (2005) 379-387. |
dc.relation.references.spa.fl_str_mv |
ABLOWITZ M.J., CLARKSON P.A., Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University press, Cambridge,1991. |
dc.rights.none.fl_str_mv |
Derechos de autor 2009 Revista Colombiana de Computación |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.creativecommons.*.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
rights_invalid_str_mv |
Derechos de autor 2009 Revista Colombiana de Computación http://creativecommons.org/licenses/by-nc-sa/4.0/ http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Attribution-NonCommercial-ShareAlike 4.0 International http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Autónoma de Bucaramanga UNAB |
publisher.none.fl_str_mv |
Universidad Autónoma de Bucaramanga UNAB |
dc.source.none.fl_str_mv |
Revista Colombiana de Computación; Vol. 10 Núm. 1 (2009): Revista Colombiana de Computación; 120-137 |
institution |
Universidad Autónoma de Bucaramanga - UNAB |
bitstream.url.fl_str_mv |
https://repository.unab.edu.co/bitstream/20.500.12749/8971/1/2009_Articulo_C%c3%a1lculo%20simbolico%20de%20soluciones%20para%20tres%20ecuaciones%20diferenciales%20parciales%20no%20lineales%20generalizadas%20utilizando%20el%20metodo%20tanh.pdf https://repository.unab.edu.co/bitstream/20.500.12749/8971/2/2009_Articulo_C%c3%a1lculo%20simbolico%20de%20soluciones%20para%20tres%20ecuaciones%20diferenciales%20parciales%20no%20lineales%20generalizadas%20utilizando%20el%20metodo%20tanh.pdf.jpg |
bitstream.checksum.fl_str_mv |
1cc33aff1bb84ecd31e85f552ac2a559 4f268abb10b108830644661bfdeae17f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB |
repository.mail.fl_str_mv |
repositorio@unab.edu.co |
_version_ |
1814277861489508352 |
spelling |
Salas, Alvaro H.bdb5fd0c-6b00-40bc-a4a3-1126a58ffd6fGómez, Cesar A.0c18d6dc-aa4d-4458-aec2-7927b41a2395Gómez, Cesar A. [0000-0002-0285-5649]Salas, Álvaro H. [Alvaro-Salas-2]2020-10-27T00:20:48Z2020-10-27T00:20:48Z2009-06-012539-21151657-2831http://hdl.handle.net/20.500.12749/8971instname:Universidad Autónoma de Bucaramanga UNABrepourl:https://repository.unab.edu.coTres ecuaciones diferenciales parciales no lineales, a saber, el estándar KdV ecuación, la ecuación de Boussinesq y el KdV generalizado de quinto orden ecuación se consideran aquí desde el punto de vista de la construcción exacta soluciones para ellos. Las ecuaciones que consideramos aquí son en su forma más general. formulario. Nuevas soluciones exactas que incluyen soluciones periódicas y de solitones son derivado formalmente usando el método tanh. El lenguaje de programación Se utiliza Mathematica.Three nonlinear partial differential equations, namely, the standard KdV equation, the Boussinesq equation and the generalized fifth-order KdV equation are considered here from of point the view of construct exact solutions for them. The equations that we consider here are in its most general form. New exact solutions which include periodic and soliton solutions are formally derived by using the tanh method. The programming language Mathematica is used.application/pdfspaUniversidad Autónoma de Bucaramanga UNABhttps://revistas.unab.edu.co/index.php/rcc/article/view/1140/1173https://revistas.unab.edu.co/index.php/rcc/article/view/1140WAZWAZ A., The extended tanh method for new solitons solutions for many forms of the fifth-order KdV equations, Applied Mathematics and Computation, Elsevier, 84-2 (2007), 1002-1014.GÓMEZ C. A., Special forms of the fifth-order KdV equation with new periodic and soliton solutions, Appl. Math and Comp, 189(2007) 1066-1077.GÓMEZ C. A. & SALAS ALVARO H., The generalized tanh-coth method to special types of the fifth-order KdV equation Applied Mathematics and Computation, Elsevier, 203(2008) 873-880.SALAS S. ALVARO H. & C.A. GÓMEZ, Computing exact solutions for some fifth KdV equations with forcing term, Appl. Math and Comp, 204(2008) 257-260.SALAS S. ALVARO H., C.GÓMEZ & ESCOBAR L. JOSÉ G., Exact solutions for the general fifth order KdV equation by the extended tanh method, Journal. of Mathematical Sciences: Advances and Applications, Allabahad, India, Vol.1, 2(2008), 305-310.GÓMEZ C. A. & SALAS S. ALVARO H., Special forms of SawadaKotera equation with periodic and soliton solutions, Int. J. of Appl. Math. Analysis. and Appl.,2(2007), 85-91.HIROTA R., Direct Methods in Soliton Theory, Berlin 1980.BALDWIN D., GOKTAS U., HEREMAN W., HONG L., MARTINO R.S. & MILLER J.C., Symbolic computation of exact solutions expressible in hyperbolic and elliptic functions for nonlinear PDFs, J. Symbolic Comp. 37(2004), no. 6, 669-705; Prepint version: nlin.SI/0201008(arXiv.org)FAN F. & HON Y. C., Generalized tanh Method Extended to Special Types of Nonlinear Equations, Z. Naturforsch. A, 57(2002), no. 8, 692-700.GÓMEZ C. A., Exact solutions for a new fifth-order integrable system, Revista Colombiana de Matemáticas, Universidad Nacional de Colombia, Bogotá, 40(2006), 119-125.GÓMEZ C. A. & SALAS S. ALVARO H., Exact solutions for reaction diffusion equation by using the generalized tanh method, Scientia Et Technica, Universidad Tecnológica de Pereira, 13(2007),409- 410.GÓMEZ C. A. & SALAS S. ALVARO H., Solutions for a class of fifth-order nonlinear partial differential system, Journal. of Mathematical Sciences: Advances and Applications, Allabahad, India, Vol.3, 1(2009), p.p. 121-128. Preprint version available at http://www.arXiv.org 0809-2870.GÓMEZ C. A. & SALAS S. ALVARO H., New periodic and soliton solutions for the Generalized BBM and Burgers–BBM equations, Applied Mathematics and Computation, Elsevier, (2009) xxx-xx.GÓMEZ C. A. & SALAS S. ALVARO H., Exact solutions for a new integrable system (KdV6), Journal. of Mathematical Sciences: Advances and Applications, Allabahad, India, Vol.1, 2(2008), 401-413.GÓMEZ C. A. & SALAS S. ALVARO H., New exact Solutions to Special KdV6 and to Jaulient-Miodek Equations Using the Generalized tanh-coth Method, Int. Journal of Computer, Symbolic Computation of Solutions for Three Generalized Nonlinear Partial Differential Equations by Using the Tanh Method 135 Mathematical Sciences and Applications , Vol. 2 4,(2008), p.p. 271-280.GÓMEZ C. A., A new travelling wave solution of the Mikhailov– Novikov–Wang system using the extended tanh method, Boletin de Matematicas, Vol. XIV 1(2007), 38-43.GÓMEZ C. A. & SALAS S. ALVARO H., The variational iteration method combined with improved generalized tanh-coth method applied to Sawada-Kotera equation, Applied Mathematics and Computation, Elsevier, (2009) doi:10.1016/j.amc.2009.05.046.GÓMEZ C. A. & SALAS S. ALVARO H., The Cole Hopf transformation and improved tanh-coth method applied to new integrable system (KdV6), Applied Mathematics and Computation, Elsevier, 204(2008) 957-962.HE J.H. & ZHANG L.N., Generalized solitary solution and compacton-like solution of the Jaulent-Miodek equations using the Exp-function method, Phys.Lett. A (2007), doi:10.1016/j.physleta.2007.08.059.SALAS S. ALVARO H., GÓMEZ C. A. & CASTILLO H. JAIRO E. New abundant solutions for the Burgers equation , Computers and Mathematics with Applications, Elsevier, 58(2009), 514-520.CONTE R. & MUSETTE M., Link betwen solitary waves and projective Riccati equations, J. Phys. A Math. 25 (1992), 5609- 5623.YAN Z., The Riccati equation with variable coefficients expansion algorithm to find more exact solutions of nonlinear differential equation, Comput. Phys. Comm. 152(2003), no. 1, 1- 8. Prepint version available at http://www.mmrc.iss.ac.cn/pub/mm22.pdf/20.pdfGÓMEZ C. A. & SALAS ALVARO H., Exact solutions for the generalized shallow water wave equation by the general projective Riccati equations method, Boletín de Matemáticas, Universidad Nacional de Colombia, Bogotá, XIII-1(2006), 50- 56.GÓMEZ C. A. & SALAS S. ALVARO H., New exact solutions for the combined sinh-cosh-Gordon equation, Lecturas Matemáticas, Sociedad Colombiana de Matemáticas, special issue (2006), 87- 93.GÓMEZ C. A., New exact solutions of the Mikhailov–Novikov– Wang System, Int. J. of Comp. Math. Sciences and Appl. , 1 (2007), 137-143.ABLOWITZ M. J., AND CLARKSON P. A., Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Mathematical Society Lecture Note Series 149, Cambridge Univ. Press, London (1991).GARDNER C. S., AND MARIKAWA G. K., Courant Inst. Math. Sci.Res. Rep. NYO-9082, N.Y. University, New York (1960).JEFFREY A., AND KAKUTANI T., SIAM Rev. 14, 582-643 (1972).SCOTT A. C., CHU F. Y., AND MCLAUGHLIN D. W., Proc. IEEE 61, 1443-1483 (1973).MIURA R. M., SIAM Rev. 18, 412-459 (1976).ABLOWITZ M. J., AND SEGUR H., Solitons and the Inverse Scattering Transform, SIAM, Philadelphia (1981).LAMB G. L., Elements of Soliton Theory, John Wiley, New York (1980).CALOGERO F., AND DEGASPERIS A., Spectral Transforms and Solitons I, Amsterdam, Holland (1982).DODD R. K., EILBECK J. C., GIBBON J. D., AND MORRIS H. C., Solitons and Nonlinear Wave Equations, Academic Press, New York (1982).NOVIKOV S. P., MANAKOV S. V., PITAEVSKII L. P., AND ZAKHAROV V. E., Theory of Solitons. The Inverse Scattering Method, Plenum, New York (1984).ZHAO XUEQUIN AND OTHERS, A new Riccati equation expansion method with symbolic computation to construct new traveling wave solution of nonlinear differential equations, Applied Mathematics and Computation, 172 (2006) 24-39.WAZWAZ A., Construction of soliton solutions and periodic solutions of the Boussinesq equation by the modified decomposition method, Chaos Solitons Fract. 12 (2001) 1549.LIU S. K., FU Z. T., LIU S. D., ZHAO Q., Expansion method about the Jacobi elliptic function and its applications to nonlinear wave equations, Acta. Phys. Sin. 50 (2001) 2068.BRATSOS A. G., The solution of the Boussinesq equation using the method of lines, Comput. Methods. Appl. Mech. Eng. 157 (1998) 33.TODA M., WADATI M., A soliton and two solitons in an exponential lattice and related equations, J. Phys. Soc. Jpn. 34 (1973) 18.AMEINA N., SYMBOLIC COMPUTATION OF EXACT SOLUTIONS OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS USING DIRECT METHODS. (THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (MATHEMATICAL AND COMPUTER SCIENCE)) COLORADO SCHOOL OF MINES.SALAS S. ALVARO H., New solutions for the KdV equation by the exp-function method, Visión Electrónica, Universidad Distrital Francisco José de Caldas, Bogotá, Colombia, septiembre, 2009, Año 2, No. .3.SALAS S. ALVARO H., GÓMEZ C. A. & CASTILLO H. JAIRO E. , Exact solutions for the Generalized Modified Degasperis--Procesi equation, Symbolic Computation of Solutions for Three Generalized Nonlinear Partial Differential Equations by Using the Tanh Method 137 Applied Mathematics and Computation, Elsevier, september 2009, article in press.CASTILLO H. JAIRO E. , SALAS S. ALVARO H. & ESCOBAR L. JOSÉ G., Exact solutions for a nonlinear model , Applied Mathematics and Computation, september 2009, article in press.SALAS S. ALVARO H., GÓMEZ C. A., A practical approach to solve coupled systems of nonlinear PDE's, Journal. of Mathematical Sciences: Advances and Applications, Allabahad, India, Vol. 3, No. 1(August, 2009), 101-107, http://scientificadvances.org/journals1P5.htmSALAS S. ALVARO H., Exact solutions for the general fifth-order KDV, EqWorld – The world of Mathematical Equations, 19th may, 2008, Russia. web site : http://eqworld.ipmnet.ru/eqarchive/view.php?id=314SALAS S. ALVARO H., Exact solutions for the general fifth-order KDV, EqWorld – The world of Mathematical Equations, January, 2009, Russia.SALAS S. ALVARO H., CASTILLO H. JAIRO E., & ESCOBAR L. JOSÉ G., About the seventh-order Kaup-Kupershmidt equation and its solutions, 2008, http://arxiv.org] SALAS S. ALVARO H. & ESCOBAR L. JOSÉ G., A New solutions for the modified generalized Degasperis-Procesi equation, 2008, http://arxiv.orgSALAS S. ALVARO H., & ESCOBAR L. JOSÉ G., A New solutions for the modified generalized Degasperis-Procesi equation, 2008, http://arxiv.orgWAZWAZ A., ANALYTIC STUDY FOR FIFTH-ORDER KDV-TYPE EQUATIONS WITH ARBITRARY POWER NONLINEARITIES, COMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, , 12-6 (2007), 904-909.SALAS S. ALVARO H.,Two standard methods for solving the Ito equation, http://arxiv.orgSALAS S. ALVARO H., Some exact solutions for the CaudreyDodd-Gibbon equation, 2008, http://arxiv.orgSALAS S. ALVARO H., GÓMEZ C. A. & ESCOBAR L. JOSÉ G., Exact solutions for the general fifth order KdV equation by the extended tanh method , 2008, http://arxiv.orgSALAS S. ALVARO H., GÓMEZ C. A , El software Mathematica en la búsqueda de soluciones exactas de ecuaciones diferenciales no lineales en derivadas parciales mediante el uso de la ecuación de Riccati, Memorias del Primer Seminario Internacional de Tecnologías en Educación Matemática, Universidad Pedagógica Nacional, Santafé de Bogotá, Colombia 1 (2005) 379-387.ABLOWITZ M.J., CLARKSON P.A., Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University press, Cambridge,1991.Derechos de autor 2009 Revista Colombiana de Computaciónhttp://creativecommons.org/licenses/by-nc-sa/4.0/http://creativecommons.org/licenses/by-nc-nd/2.5/co/Attribution-NonCommercial-ShareAlike 4.0 Internationalhttp://purl.org/coar/access_right/c_abf2Revista Colombiana de Computación; Vol. 10 Núm. 1 (2009): Revista Colombiana de Computación; 120-137Ecuación diferencial parcial no linealEcuación de KdVEcuación de BoussinesqEcuación FKdVNonlinear partial differential equationKdV equationBoussinesq equationFKdV equationTechnological innovationsComputer's scienceTechnological developmentSystems engineerResearchTechnology of the information and communicationInnovaciones tecnológicasCiencias de la computaciónDesarrollo tecnológicoIngeniería de sistemasInvestigacionesTecnologías de la información y la comunicaciónEcuación diferencial parcial no linealEcuación de KdVEcuación de BoussinesEcuación fKdVCálculo simbólico de soluciones para tres ecuaciones diferenciales parciales no lineales generalizadas utilizando el método tanhSymbolic computation of solutions for three generalized nonlinear partial differential eQuations by using the tanh methodinfo:eu-repo/semantics/articleArtículohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/redcol/resource_type/CJournalArticleORIGINAL2009_Articulo_Cálculo simbolico de soluciones para tres ecuaciones diferenciales parciales no lineales generalizadas utilizando el metodo tanh.pdf2009_Articulo_Cálculo simbolico de soluciones para tres ecuaciones diferenciales parciales no lineales generalizadas utilizando el metodo tanh.pdfArtículoapplication/pdf1051665https://repository.unab.edu.co/bitstream/20.500.12749/8971/1/2009_Articulo_C%c3%a1lculo%20simbolico%20de%20soluciones%20para%20tres%20ecuaciones%20diferenciales%20parciales%20no%20lineales%20generalizadas%20utilizando%20el%20metodo%20tanh.pdf1cc33aff1bb84ecd31e85f552ac2a559MD51open accessTHUMBNAIL2009_Articulo_Cálculo simbolico de soluciones para tres ecuaciones diferenciales parciales no lineales generalizadas utilizando el metodo tanh.pdf.jpg2009_Articulo_Cálculo simbolico de soluciones para tres ecuaciones diferenciales parciales no lineales generalizadas utilizando el metodo tanh.pdf.jpgIM Thumbnailimage/jpeg5999https://repository.unab.edu.co/bitstream/20.500.12749/8971/2/2009_Articulo_C%c3%a1lculo%20simbolico%20de%20soluciones%20para%20tres%20ecuaciones%20diferenciales%20parciales%20no%20lineales%20generalizadas%20utilizando%20el%20metodo%20tanh.pdf.jpg4f268abb10b108830644661bfdeae17fMD52open access20.500.12749/8971oai:repository.unab.edu.co:20.500.12749/89712022-11-23 16:32:04.575open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.co |