Cálculo simbólico de soluciones para tres ecuaciones diferenciales parciales no lineales generalizadas utilizando el método tanh

Tres ecuaciones diferenciales parciales no lineales, a saber, el estándar KdV ecuación, la ecuación de Boussinesq y el KdV generalizado de quinto orden ecuación se consideran aquí desde el punto de vista de la construcción exacta soluciones para ellos. Las ecuaciones que consideramos aquí son en su...

Full description

Autores:
Salas, Alvaro H.
Gómez, Cesar A.
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2009
Institución:
Universidad Autónoma de Bucaramanga - UNAB
Repositorio:
Repositorio UNAB
Idioma:
spa
OAI Identifier:
oai:repository.unab.edu.co:20.500.12749/8971
Acceso en línea:
http://hdl.handle.net/20.500.12749/8971
Palabra clave:
Ecuación diferencial parcial no lineal
Ecuación de KdV
Ecuación de Boussinesq
Ecuación FKdV
Nonlinear partial differential equation
KdV equation
Boussinesq equation
FKdV equation
Technological innovations
Computer's science
Technological development
Systems engineer
Research
Technology of the information and communication
Innovaciones tecnológicas
Ciencias de la computación
Desarrollo tecnológico
Ingeniería de sistemas
Investigaciones
Tecnologías de la información y la comunicación
Ecuación diferencial parcial no lineal
Ecuación de KdV
Ecuación de Boussines
Ecuación fKdV
Rights
License
Derechos de autor 2009 Revista Colombiana de Computación
id UNAB2_fd006df092eb9edea108c1f1ac1d7969
oai_identifier_str oai:repository.unab.edu.co:20.500.12749/8971
network_acronym_str UNAB2
network_name_str Repositorio UNAB
repository_id_str
dc.title.spa.fl_str_mv Cálculo simbólico de soluciones para tres ecuaciones diferenciales parciales no lineales generalizadas utilizando el método tanh
dc.title.translated.eng.fl_str_mv Symbolic computation of solutions for three generalized nonlinear partial differential eQuations by using the tanh method
title Cálculo simbólico de soluciones para tres ecuaciones diferenciales parciales no lineales generalizadas utilizando el método tanh
spellingShingle Cálculo simbólico de soluciones para tres ecuaciones diferenciales parciales no lineales generalizadas utilizando el método tanh
Ecuación diferencial parcial no lineal
Ecuación de KdV
Ecuación de Boussinesq
Ecuación FKdV
Nonlinear partial differential equation
KdV equation
Boussinesq equation
FKdV equation
Technological innovations
Computer's science
Technological development
Systems engineer
Research
Technology of the information and communication
Innovaciones tecnológicas
Ciencias de la computación
Desarrollo tecnológico
Ingeniería de sistemas
Investigaciones
Tecnologías de la información y la comunicación
Ecuación diferencial parcial no lineal
Ecuación de KdV
Ecuación de Boussines
Ecuación fKdV
title_short Cálculo simbólico de soluciones para tres ecuaciones diferenciales parciales no lineales generalizadas utilizando el método tanh
title_full Cálculo simbólico de soluciones para tres ecuaciones diferenciales parciales no lineales generalizadas utilizando el método tanh
title_fullStr Cálculo simbólico de soluciones para tres ecuaciones diferenciales parciales no lineales generalizadas utilizando el método tanh
title_full_unstemmed Cálculo simbólico de soluciones para tres ecuaciones diferenciales parciales no lineales generalizadas utilizando el método tanh
title_sort Cálculo simbólico de soluciones para tres ecuaciones diferenciales parciales no lineales generalizadas utilizando el método tanh
dc.creator.fl_str_mv Salas, Alvaro H.
Gómez, Cesar A.
dc.contributor.author.spa.fl_str_mv Salas, Alvaro H.
Gómez, Cesar A.
dc.contributor.orcid.spa.fl_str_mv Gómez, Cesar A. [0000-0002-0285-5649]
dc.contributor.researchgate.spa.fl_str_mv Salas, Álvaro H. [Alvaro-Salas-2]
dc.subject.none.fl_str_mv Ecuación diferencial parcial no lineal
Ecuación de KdV
Ecuación de Boussinesq
Ecuación FKdV
topic Ecuación diferencial parcial no lineal
Ecuación de KdV
Ecuación de Boussinesq
Ecuación FKdV
Nonlinear partial differential equation
KdV equation
Boussinesq equation
FKdV equation
Technological innovations
Computer's science
Technological development
Systems engineer
Research
Technology of the information and communication
Innovaciones tecnológicas
Ciencias de la computación
Desarrollo tecnológico
Ingeniería de sistemas
Investigaciones
Tecnologías de la información y la comunicación
Ecuación diferencial parcial no lineal
Ecuación de KdV
Ecuación de Boussines
Ecuación fKdV
dc.subject.keywords.eng.fl_str_mv Nonlinear partial differential equation
KdV equation
Boussinesq equation
FKdV equation
Technological innovations
Computer's science
Technological development
Systems engineer
Research
Technology of the information and communication
dc.subject.lemb.spa.fl_str_mv Innovaciones tecnológicas
Ciencias de la computación
Desarrollo tecnológico
Ingeniería de sistemas
Investigaciones
Tecnologías de la información y la comunicación
dc.subject.proposal.spa.fl_str_mv Ecuación diferencial parcial no lineal
Ecuación de KdV
Ecuación de Boussines
Ecuación fKdV
description Tres ecuaciones diferenciales parciales no lineales, a saber, el estándar KdV ecuación, la ecuación de Boussinesq y el KdV generalizado de quinto orden ecuación se consideran aquí desde el punto de vista de la construcción exacta soluciones para ellos. Las ecuaciones que consideramos aquí son en su forma más general. formulario. Nuevas soluciones exactas que incluyen soluciones periódicas y de solitones son derivado formalmente usando el método tanh. El lenguaje de programación Se utiliza Mathematica.
publishDate 2009
dc.date.issued.none.fl_str_mv 2009-06-01
dc.date.accessioned.none.fl_str_mv 2020-10-27T00:20:48Z
dc.date.available.none.fl_str_mv 2020-10-27T00:20:48Z
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.local.spa.fl_str_mv Artículo
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/CJournalArticle
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.issn.none.fl_str_mv 2539-2115
1657-2831
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12749/8971
dc.identifier.instname.spa.fl_str_mv instname:Universidad Autónoma de Bucaramanga UNAB
dc.identifier.repourl.none.fl_str_mv repourl:https://repository.unab.edu.co
identifier_str_mv 2539-2115
1657-2831
instname:Universidad Autónoma de Bucaramanga UNAB
repourl:https://repository.unab.edu.co
url http://hdl.handle.net/20.500.12749/8971
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.unab.edu.co/index.php/rcc/article/view/1140/1173
dc.relation.uri.none.fl_str_mv https://revistas.unab.edu.co/index.php/rcc/article/view/1140
dc.relation.references.none.fl_str_mv WAZWAZ A., The extended tanh method for new solitons solutions for many forms of the fifth-order KdV equations, Applied Mathematics and Computation, Elsevier, 84-2 (2007), 1002-1014.
GÓMEZ C. A., Special forms of the fifth-order KdV equation with new periodic and soliton solutions, Appl. Math and Comp, 189(2007) 1066-1077.
GÓMEZ C. A. & SALAS ALVARO H., The generalized tanh-coth method to special types of the fifth-order KdV equation Applied Mathematics and Computation, Elsevier, 203(2008) 873-880.
SALAS S. ALVARO H. & C.A. GÓMEZ, Computing exact solutions for some fifth KdV equations with forcing term, Appl. Math and Comp, 204(2008) 257-260.
SALAS S. ALVARO H., C.GÓMEZ & ESCOBAR L. JOSÉ G., Exact solutions for the general fifth order KdV equation by the extended tanh method, Journal. of Mathematical Sciences: Advances and Applications, Allabahad, India, Vol.1, 2(2008), 305-310.
GÓMEZ C. A. & SALAS S. ALVARO H., Special forms of SawadaKotera equation with periodic and soliton solutions, Int. J. of Appl. Math. Analysis. and Appl.,2(2007), 85-91.
HIROTA R., Direct Methods in Soliton Theory, Berlin 1980.
BALDWIN D., GOKTAS U., HEREMAN W., HONG L., MARTINO R.S. & MILLER J.C., Symbolic computation of exact solutions expressible in hyperbolic and elliptic functions for nonlinear PDFs, J. Symbolic Comp. 37(2004), no. 6, 669-705; Prepint version: nlin.SI/0201008(arXiv.org)
FAN F. & HON Y. C., Generalized tanh Method Extended to Special Types of Nonlinear Equations, Z. Naturforsch. A, 57(2002), no. 8, 692-700.
GÓMEZ C. A., Exact solutions for a new fifth-order integrable system, Revista Colombiana de Matemáticas, Universidad Nacional de Colombia, Bogotá, 40(2006), 119-125.
GÓMEZ C. A. & SALAS S. ALVARO H., Exact solutions for reaction diffusion equation by using the generalized tanh method, Scientia Et Technica, Universidad Tecnológica de Pereira, 13(2007),409- 410.
GÓMEZ C. A. & SALAS S. ALVARO H., Solutions for a class of fifth-order nonlinear partial differential system, Journal. of Mathematical Sciences: Advances and Applications, Allabahad, India, Vol.3, 1(2009), p.p. 121-128. Preprint version available at http://www.arXiv.org 0809-2870.
GÓMEZ C. A. & SALAS S. ALVARO H., New periodic and soliton solutions for the Generalized BBM and Burgers–BBM equations, Applied Mathematics and Computation, Elsevier, (2009) xxx-xx.
GÓMEZ C. A. & SALAS S. ALVARO H., Exact solutions for a new integrable system (KdV6), Journal. of Mathematical Sciences: Advances and Applications, Allabahad, India, Vol.1, 2(2008), 401-413.
GÓMEZ C. A. & SALAS S. ALVARO H., New exact Solutions to Special KdV6 and to Jaulient-Miodek Equations Using the Generalized tanh-coth Method, Int. Journal of Computer, Symbolic Computation of Solutions for Three Generalized Nonlinear Partial Differential Equations by Using the Tanh Method 135 Mathematical Sciences and Applications , Vol. 2 4,(2008), p.p. 271-280.
GÓMEZ C. A., A new travelling wave solution of the Mikhailov– Novikov–Wang system using the extended tanh method, Boletin de Matematicas, Vol. XIV 1(2007), 38-43.
GÓMEZ C. A. & SALAS S. ALVARO H., The variational iteration method combined with improved generalized tanh-coth method applied to Sawada-Kotera equation, Applied Mathematics and Computation, Elsevier, (2009) doi:10.1016/j.amc.2009.05.046.
GÓMEZ C. A. & SALAS S. ALVARO H., The Cole Hopf transformation and improved tanh-coth method applied to new integrable system (KdV6), Applied Mathematics and Computation, Elsevier, 204(2008) 957-962.
HE J.H. & ZHANG L.N., Generalized solitary solution and compacton-like solution of the Jaulent-Miodek equations using the Exp-function method, Phys.Lett. A (2007), doi:10.1016/j.physleta.2007.08.059.
SALAS S. ALVARO H., GÓMEZ C. A. & CASTILLO H. JAIRO E. New abundant solutions for the Burgers equation , Computers and Mathematics with Applications, Elsevier, 58(2009), 514-520.
CONTE R. & MUSETTE M., Link betwen solitary waves and projective Riccati equations, J. Phys. A Math. 25 (1992), 5609- 5623.
YAN Z., The Riccati equation with variable coefficients expansion algorithm to find more exact solutions of nonlinear differential equation, Comput. Phys. Comm. 152(2003), no. 1, 1- 8. Prepint version available at http://www.mmrc.iss.ac.cn/pub/mm22.pdf/20.pdf
GÓMEZ C. A. & SALAS ALVARO H., Exact solutions for the generalized shallow water wave equation by the general projective Riccati equations method, Boletín de Matemáticas, Universidad Nacional de Colombia, Bogotá, XIII-1(2006), 50- 56.
GÓMEZ C. A. & SALAS S. ALVARO H., New exact solutions for the combined sinh-cosh-Gordon equation, Lecturas Matemáticas, Sociedad Colombiana de Matemáticas, special issue (2006), 87- 93.
GÓMEZ C. A., New exact solutions of the Mikhailov–Novikov– Wang System, Int. J. of Comp. Math. Sciences and Appl. , 1 (2007), 137-143.
ABLOWITZ M. J., AND CLARKSON P. A., Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Mathematical Society Lecture Note Series 149, Cambridge Univ. Press, London (1991).
GARDNER C. S., AND MARIKAWA G. K., Courant Inst. Math. Sci.Res. Rep. NYO-9082, N.Y. University, New York (1960).
JEFFREY A., AND KAKUTANI T., SIAM Rev. 14, 582-643 (1972).
SCOTT A. C., CHU F. Y., AND MCLAUGHLIN D. W., Proc. IEEE 61, 1443-1483 (1973).
MIURA R. M., SIAM Rev. 18, 412-459 (1976).
ABLOWITZ M. J., AND SEGUR H., Solitons and the Inverse Scattering Transform, SIAM, Philadelphia (1981).
LAMB G. L., Elements of Soliton Theory, John Wiley, New York (1980).
CALOGERO F., AND DEGASPERIS A., Spectral Transforms and Solitons I, Amsterdam, Holland (1982).
DODD R. K., EILBECK J. C., GIBBON J. D., AND MORRIS H. C., Solitons and Nonlinear Wave Equations, Academic Press, New York (1982).
NOVIKOV S. P., MANAKOV S. V., PITAEVSKII L. P., AND ZAKHAROV V. E., Theory of Solitons. The Inverse Scattering Method, Plenum, New York (1984).
ZHAO XUEQUIN AND OTHERS, A new Riccati equation expansion method with symbolic computation to construct new traveling wave solution of nonlinear differential equations, Applied Mathematics and Computation, 172 (2006) 24-39.
WAZWAZ A., Construction of soliton solutions and periodic solutions of the Boussinesq equation by the modified decomposition method, Chaos Solitons Fract. 12 (2001) 1549.
LIU S. K., FU Z. T., LIU S. D., ZHAO Q., Expansion method about the Jacobi elliptic function and its applications to nonlinear wave equations, Acta. Phys. Sin. 50 (2001) 2068.
BRATSOS A. G., The solution of the Boussinesq equation using the method of lines, Comput. Methods. Appl. Mech. Eng. 157 (1998) 33.
TODA M., WADATI M., A soliton and two solitons in an exponential lattice and related equations, J. Phys. Soc. Jpn. 34 (1973) 18.
AMEINA N., SYMBOLIC COMPUTATION OF EXACT SOLUTIONS OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS USING DIRECT METHODS. (THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (MATHEMATICAL AND COMPUTER SCIENCE)) COLORADO SCHOOL OF MINES.
SALAS S. ALVARO H., New solutions for the KdV equation by the exp-function method, Visión Electrónica, Universidad Distrital Francisco José de Caldas, Bogotá, Colombia, septiembre, 2009, Año 2, No. .3.
SALAS S. ALVARO H., GÓMEZ C. A. & CASTILLO H. JAIRO E. , Exact solutions for the Generalized Modified Degasperis--Procesi equation, Symbolic Computation of Solutions for Three Generalized Nonlinear Partial Differential Equations by Using the Tanh Method 137 Applied Mathematics and Computation, Elsevier, september 2009, article in press.
CASTILLO H. JAIRO E. , SALAS S. ALVARO H. & ESCOBAR L. JOSÉ G., Exact solutions for a nonlinear model , Applied Mathematics and Computation, september 2009, article in press.
SALAS S. ALVARO H., GÓMEZ C. A., A practical approach to solve coupled systems of nonlinear PDE's, Journal. of Mathematical Sciences: Advances and Applications, Allabahad, India, Vol. 3, No. 1(August, 2009), 101-107, http://scientificadvances.org/journals1P5.htm
SALAS S. ALVARO H., Exact solutions for the general fifth-order KDV, EqWorld – The world of Mathematical Equations, 19th may, 2008, Russia. web site : http://eqworld.ipmnet.ru/eqarchive/view.php?id=314
SALAS S. ALVARO H., Exact solutions for the general fifth-order KDV, EqWorld – The world of Mathematical Equations, January, 2009, Russia.
SALAS S. ALVARO H., CASTILLO H. JAIRO E., & ESCOBAR L. JOSÉ G., About the seventh-order Kaup-Kupershmidt equation and its solutions, 2008, http://arxiv.org
] SALAS S. ALVARO H. & ESCOBAR L. JOSÉ G., A New solutions for the modified generalized Degasperis-Procesi equation, 2008, http://arxiv.org
SALAS S. ALVARO H., & ESCOBAR L. JOSÉ G., A New solutions for the modified generalized Degasperis-Procesi equation, 2008, http://arxiv.org
WAZWAZ A., ANALYTIC STUDY FOR FIFTH-ORDER KDV-TYPE EQUATIONS WITH ARBITRARY POWER NONLINEARITIES, COMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, , 12-6 (2007), 904-909.
SALAS S. ALVARO H.,Two standard methods for solving the Ito equation, http://arxiv.org
SALAS S. ALVARO H., Some exact solutions for the CaudreyDodd-Gibbon equation, 2008, http://arxiv.org
SALAS S. ALVARO H., GÓMEZ C. A. & ESCOBAR L. JOSÉ G., Exact solutions for the general fifth order KdV equation by the extended tanh method , 2008, http://arxiv.org
SALAS S. ALVARO H., GÓMEZ C. A , El software Mathematica en la búsqueda de soluciones exactas de ecuaciones diferenciales no lineales en derivadas parciales mediante el uso de la ecuación de Riccati, Memorias del Primer Seminario Internacional de Tecnologías en Educación Matemática, Universidad Pedagógica Nacional, Santafé de Bogotá, Colombia 1 (2005) 379-387.
dc.relation.references.spa.fl_str_mv ABLOWITZ M.J., CLARKSON P.A., Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University press, Cambridge,1991.
dc.rights.none.fl_str_mv Derechos de autor 2009 Revista Colombiana de Computación
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.creativecommons.*.fl_str_mv Attribution-NonCommercial-ShareAlike 4.0 International
rights_invalid_str_mv Derechos de autor 2009 Revista Colombiana de Computación
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Attribution-NonCommercial-ShareAlike 4.0 International
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad Autónoma de Bucaramanga UNAB
publisher.none.fl_str_mv Universidad Autónoma de Bucaramanga UNAB
dc.source.none.fl_str_mv Revista Colombiana de Computación; Vol. 10 Núm. 1 (2009): Revista Colombiana de Computación; 120-137
institution Universidad Autónoma de Bucaramanga - UNAB
bitstream.url.fl_str_mv https://repository.unab.edu.co/bitstream/20.500.12749/8971/1/2009_Articulo_C%c3%a1lculo%20simbolico%20de%20soluciones%20para%20tres%20ecuaciones%20diferenciales%20parciales%20no%20lineales%20generalizadas%20utilizando%20el%20metodo%20tanh.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/8971/2/2009_Articulo_C%c3%a1lculo%20simbolico%20de%20soluciones%20para%20tres%20ecuaciones%20diferenciales%20parciales%20no%20lineales%20generalizadas%20utilizando%20el%20metodo%20tanh.pdf.jpg
bitstream.checksum.fl_str_mv 1cc33aff1bb84ecd31e85f552ac2a559
4f268abb10b108830644661bfdeae17f
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB
repository.mail.fl_str_mv repositorio@unab.edu.co
_version_ 1814277861489508352
spelling Salas, Alvaro H.bdb5fd0c-6b00-40bc-a4a3-1126a58ffd6fGómez, Cesar A.0c18d6dc-aa4d-4458-aec2-7927b41a2395Gómez, Cesar A. [0000-0002-0285-5649]Salas, Álvaro H. [Alvaro-Salas-2]2020-10-27T00:20:48Z2020-10-27T00:20:48Z2009-06-012539-21151657-2831http://hdl.handle.net/20.500.12749/8971instname:Universidad Autónoma de Bucaramanga UNABrepourl:https://repository.unab.edu.coTres ecuaciones diferenciales parciales no lineales, a saber, el estándar KdV ecuación, la ecuación de Boussinesq y el KdV generalizado de quinto orden ecuación se consideran aquí desde el punto de vista de la construcción exacta soluciones para ellos. Las ecuaciones que consideramos aquí son en su forma más general. formulario. Nuevas soluciones exactas que incluyen soluciones periódicas y de solitones son derivado formalmente usando el método tanh. El lenguaje de programación Se utiliza Mathematica.Three nonlinear partial differential equations, namely, the standard KdV equation, the Boussinesq equation and the generalized fifth-order KdV equation are considered here from of point the view of construct exact solutions for them. The equations that we consider here are in its most general form. New exact solutions which include periodic and soliton solutions are formally derived by using the tanh method. The programming language Mathematica is used.application/pdfspaUniversidad Autónoma de Bucaramanga UNABhttps://revistas.unab.edu.co/index.php/rcc/article/view/1140/1173https://revistas.unab.edu.co/index.php/rcc/article/view/1140WAZWAZ A., The extended tanh method for new solitons solutions for many forms of the fifth-order KdV equations, Applied Mathematics and Computation, Elsevier, 84-2 (2007), 1002-1014.GÓMEZ C. A., Special forms of the fifth-order KdV equation with new periodic and soliton solutions, Appl. Math and Comp, 189(2007) 1066-1077.GÓMEZ C. A. & SALAS ALVARO H., The generalized tanh-coth method to special types of the fifth-order KdV equation Applied Mathematics and Computation, Elsevier, 203(2008) 873-880.SALAS S. ALVARO H. & C.A. GÓMEZ, Computing exact solutions for some fifth KdV equations with forcing term, Appl. Math and Comp, 204(2008) 257-260.SALAS S. ALVARO H., C.GÓMEZ & ESCOBAR L. JOSÉ G., Exact solutions for the general fifth order KdV equation by the extended tanh method, Journal. of Mathematical Sciences: Advances and Applications, Allabahad, India, Vol.1, 2(2008), 305-310.GÓMEZ C. A. & SALAS S. ALVARO H., Special forms of SawadaKotera equation with periodic and soliton solutions, Int. J. of Appl. Math. Analysis. and Appl.,2(2007), 85-91.HIROTA R., Direct Methods in Soliton Theory, Berlin 1980.BALDWIN D., GOKTAS U., HEREMAN W., HONG L., MARTINO R.S. & MILLER J.C., Symbolic computation of exact solutions expressible in hyperbolic and elliptic functions for nonlinear PDFs, J. Symbolic Comp. 37(2004), no. 6, 669-705; Prepint version: nlin.SI/0201008(arXiv.org)FAN F. & HON Y. C., Generalized tanh Method Extended to Special Types of Nonlinear Equations, Z. Naturforsch. A, 57(2002), no. 8, 692-700.GÓMEZ C. A., Exact solutions for a new fifth-order integrable system, Revista Colombiana de Matemáticas, Universidad Nacional de Colombia, Bogotá, 40(2006), 119-125.GÓMEZ C. A. & SALAS S. ALVARO H., Exact solutions for reaction diffusion equation by using the generalized tanh method, Scientia Et Technica, Universidad Tecnológica de Pereira, 13(2007),409- 410.GÓMEZ C. A. & SALAS S. ALVARO H., Solutions for a class of fifth-order nonlinear partial differential system, Journal. of Mathematical Sciences: Advances and Applications, Allabahad, India, Vol.3, 1(2009), p.p. 121-128. Preprint version available at http://www.arXiv.org 0809-2870.GÓMEZ C. A. & SALAS S. ALVARO H., New periodic and soliton solutions for the Generalized BBM and Burgers–BBM equations, Applied Mathematics and Computation, Elsevier, (2009) xxx-xx.GÓMEZ C. A. & SALAS S. ALVARO H., Exact solutions for a new integrable system (KdV6), Journal. of Mathematical Sciences: Advances and Applications, Allabahad, India, Vol.1, 2(2008), 401-413.GÓMEZ C. A. & SALAS S. ALVARO H., New exact Solutions to Special KdV6 and to Jaulient-Miodek Equations Using the Generalized tanh-coth Method, Int. Journal of Computer, Symbolic Computation of Solutions for Three Generalized Nonlinear Partial Differential Equations by Using the Tanh Method 135 Mathematical Sciences and Applications , Vol. 2 4,(2008), p.p. 271-280.GÓMEZ C. A., A new travelling wave solution of the Mikhailov– Novikov–Wang system using the extended tanh method, Boletin de Matematicas, Vol. XIV 1(2007), 38-43.GÓMEZ C. A. & SALAS S. ALVARO H., The variational iteration method combined with improved generalized tanh-coth method applied to Sawada-Kotera equation, Applied Mathematics and Computation, Elsevier, (2009) doi:10.1016/j.amc.2009.05.046.GÓMEZ C. A. & SALAS S. ALVARO H., The Cole Hopf transformation and improved tanh-coth method applied to new integrable system (KdV6), Applied Mathematics and Computation, Elsevier, 204(2008) 957-962.HE J.H. & ZHANG L.N., Generalized solitary solution and compacton-like solution of the Jaulent-Miodek equations using the Exp-function method, Phys.Lett. A (2007), doi:10.1016/j.physleta.2007.08.059.SALAS S. ALVARO H., GÓMEZ C. A. & CASTILLO H. JAIRO E. New abundant solutions for the Burgers equation , Computers and Mathematics with Applications, Elsevier, 58(2009), 514-520.CONTE R. & MUSETTE M., Link betwen solitary waves and projective Riccati equations, J. Phys. A Math. 25 (1992), 5609- 5623.YAN Z., The Riccati equation with variable coefficients expansion algorithm to find more exact solutions of nonlinear differential equation, Comput. Phys. Comm. 152(2003), no. 1, 1- 8. Prepint version available at http://www.mmrc.iss.ac.cn/pub/mm22.pdf/20.pdfGÓMEZ C. A. & SALAS ALVARO H., Exact solutions for the generalized shallow water wave equation by the general projective Riccati equations method, Boletín de Matemáticas, Universidad Nacional de Colombia, Bogotá, XIII-1(2006), 50- 56.GÓMEZ C. A. & SALAS S. ALVARO H., New exact solutions for the combined sinh-cosh-Gordon equation, Lecturas Matemáticas, Sociedad Colombiana de Matemáticas, special issue (2006), 87- 93.GÓMEZ C. A., New exact solutions of the Mikhailov–Novikov– Wang System, Int. J. of Comp. Math. Sciences and Appl. , 1 (2007), 137-143.ABLOWITZ M. J., AND CLARKSON P. A., Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Mathematical Society Lecture Note Series 149, Cambridge Univ. Press, London (1991).GARDNER C. S., AND MARIKAWA G. K., Courant Inst. Math. Sci.Res. Rep. NYO-9082, N.Y. University, New York (1960).JEFFREY A., AND KAKUTANI T., SIAM Rev. 14, 582-643 (1972).SCOTT A. C., CHU F. Y., AND MCLAUGHLIN D. W., Proc. IEEE 61, 1443-1483 (1973).MIURA R. M., SIAM Rev. 18, 412-459 (1976).ABLOWITZ M. J., AND SEGUR H., Solitons and the Inverse Scattering Transform, SIAM, Philadelphia (1981).LAMB G. L., Elements of Soliton Theory, John Wiley, New York (1980).CALOGERO F., AND DEGASPERIS A., Spectral Transforms and Solitons I, Amsterdam, Holland (1982).DODD R. K., EILBECK J. C., GIBBON J. D., AND MORRIS H. C., Solitons and Nonlinear Wave Equations, Academic Press, New York (1982).NOVIKOV S. P., MANAKOV S. V., PITAEVSKII L. P., AND ZAKHAROV V. E., Theory of Solitons. The Inverse Scattering Method, Plenum, New York (1984).ZHAO XUEQUIN AND OTHERS, A new Riccati equation expansion method with symbolic computation to construct new traveling wave solution of nonlinear differential equations, Applied Mathematics and Computation, 172 (2006) 24-39.WAZWAZ A., Construction of soliton solutions and periodic solutions of the Boussinesq equation by the modified decomposition method, Chaos Solitons Fract. 12 (2001) 1549.LIU S. K., FU Z. T., LIU S. D., ZHAO Q., Expansion method about the Jacobi elliptic function and its applications to nonlinear wave equations, Acta. Phys. Sin. 50 (2001) 2068.BRATSOS A. G., The solution of the Boussinesq equation using the method of lines, Comput. Methods. Appl. Mech. Eng. 157 (1998) 33.TODA M., WADATI M., A soliton and two solitons in an exponential lattice and related equations, J. Phys. Soc. Jpn. 34 (1973) 18.AMEINA N., SYMBOLIC COMPUTATION OF EXACT SOLUTIONS OF NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS USING DIRECT METHODS. (THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (MATHEMATICAL AND COMPUTER SCIENCE)) COLORADO SCHOOL OF MINES.SALAS S. ALVARO H., New solutions for the KdV equation by the exp-function method, Visión Electrónica, Universidad Distrital Francisco José de Caldas, Bogotá, Colombia, septiembre, 2009, Año 2, No. .3.SALAS S. ALVARO H., GÓMEZ C. A. & CASTILLO H. JAIRO E. , Exact solutions for the Generalized Modified Degasperis--Procesi equation, Symbolic Computation of Solutions for Three Generalized Nonlinear Partial Differential Equations by Using the Tanh Method 137 Applied Mathematics and Computation, Elsevier, september 2009, article in press.CASTILLO H. JAIRO E. , SALAS S. ALVARO H. & ESCOBAR L. JOSÉ G., Exact solutions for a nonlinear model , Applied Mathematics and Computation, september 2009, article in press.SALAS S. ALVARO H., GÓMEZ C. A., A practical approach to solve coupled systems of nonlinear PDE's, Journal. of Mathematical Sciences: Advances and Applications, Allabahad, India, Vol. 3, No. 1(August, 2009), 101-107, http://scientificadvances.org/journals1P5.htmSALAS S. ALVARO H., Exact solutions for the general fifth-order KDV, EqWorld – The world of Mathematical Equations, 19th may, 2008, Russia. web site : http://eqworld.ipmnet.ru/eqarchive/view.php?id=314SALAS S. ALVARO H., Exact solutions for the general fifth-order KDV, EqWorld – The world of Mathematical Equations, January, 2009, Russia.SALAS S. ALVARO H., CASTILLO H. JAIRO E., & ESCOBAR L. JOSÉ G., About the seventh-order Kaup-Kupershmidt equation and its solutions, 2008, http://arxiv.org] SALAS S. ALVARO H. & ESCOBAR L. JOSÉ G., A New solutions for the modified generalized Degasperis-Procesi equation, 2008, http://arxiv.orgSALAS S. ALVARO H., & ESCOBAR L. JOSÉ G., A New solutions for the modified generalized Degasperis-Procesi equation, 2008, http://arxiv.orgWAZWAZ A., ANALYTIC STUDY FOR FIFTH-ORDER KDV-TYPE EQUATIONS WITH ARBITRARY POWER NONLINEARITIES, COMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, , 12-6 (2007), 904-909.SALAS S. ALVARO H.,Two standard methods for solving the Ito equation, http://arxiv.orgSALAS S. ALVARO H., Some exact solutions for the CaudreyDodd-Gibbon equation, 2008, http://arxiv.orgSALAS S. ALVARO H., GÓMEZ C. A. & ESCOBAR L. JOSÉ G., Exact solutions for the general fifth order KdV equation by the extended tanh method , 2008, http://arxiv.orgSALAS S. ALVARO H., GÓMEZ C. A , El software Mathematica en la búsqueda de soluciones exactas de ecuaciones diferenciales no lineales en derivadas parciales mediante el uso de la ecuación de Riccati, Memorias del Primer Seminario Internacional de Tecnologías en Educación Matemática, Universidad Pedagógica Nacional, Santafé de Bogotá, Colombia 1 (2005) 379-387.ABLOWITZ M.J., CLARKSON P.A., Solitons, Nonlinear Evolution Equations and Inverse Scattering, Cambridge University press, Cambridge,1991.Derechos de autor 2009 Revista Colombiana de Computaciónhttp://creativecommons.org/licenses/by-nc-sa/4.0/http://creativecommons.org/licenses/by-nc-nd/2.5/co/Attribution-NonCommercial-ShareAlike 4.0 Internationalhttp://purl.org/coar/access_right/c_abf2Revista Colombiana de Computación; Vol. 10 Núm. 1 (2009): Revista Colombiana de Computación; 120-137Ecuación diferencial parcial no linealEcuación de KdVEcuación de BoussinesqEcuación FKdVNonlinear partial differential equationKdV equationBoussinesq equationFKdV equationTechnological innovationsComputer's scienceTechnological developmentSystems engineerResearchTechnology of the information and communicationInnovaciones tecnológicasCiencias de la computaciónDesarrollo tecnológicoIngeniería de sistemasInvestigacionesTecnologías de la información y la comunicaciónEcuación diferencial parcial no linealEcuación de KdVEcuación de BoussinesEcuación fKdVCálculo simbólico de soluciones para tres ecuaciones diferenciales parciales no lineales generalizadas utilizando el método tanhSymbolic computation of solutions for three generalized nonlinear partial differential eQuations by using the tanh methodinfo:eu-repo/semantics/articleArtículohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/redcol/resource_type/CJournalArticleORIGINAL2009_Articulo_Cálculo simbolico de soluciones para tres ecuaciones diferenciales parciales no lineales generalizadas utilizando el metodo tanh.pdf2009_Articulo_Cálculo simbolico de soluciones para tres ecuaciones diferenciales parciales no lineales generalizadas utilizando el metodo tanh.pdfArtículoapplication/pdf1051665https://repository.unab.edu.co/bitstream/20.500.12749/8971/1/2009_Articulo_C%c3%a1lculo%20simbolico%20de%20soluciones%20para%20tres%20ecuaciones%20diferenciales%20parciales%20no%20lineales%20generalizadas%20utilizando%20el%20metodo%20tanh.pdf1cc33aff1bb84ecd31e85f552ac2a559MD51open accessTHUMBNAIL2009_Articulo_Cálculo simbolico de soluciones para tres ecuaciones diferenciales parciales no lineales generalizadas utilizando el metodo tanh.pdf.jpg2009_Articulo_Cálculo simbolico de soluciones para tres ecuaciones diferenciales parciales no lineales generalizadas utilizando el metodo tanh.pdf.jpgIM Thumbnailimage/jpeg5999https://repository.unab.edu.co/bitstream/20.500.12749/8971/2/2009_Articulo_C%c3%a1lculo%20simbolico%20de%20soluciones%20para%20tres%20ecuaciones%20diferenciales%20parciales%20no%20lineales%20generalizadas%20utilizando%20el%20metodo%20tanh.pdf.jpg4f268abb10b108830644661bfdeae17fMD52open access20.500.12749/8971oai:repository.unab.edu.co:20.500.12749/89712022-11-23 16:32:04.575open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.co