El lenguaje del riesgo operativo aplicado a entidades bancarias y cooperativas financieras en Colombia, tomado del libro “Operational risk toward basel III: Best prácticas and issues in modeling, managment and regulation” del autor Greg N. Gregoriou

Mientras que el acuerdo de Basilea II ha sido aplicado en la mayor parte del mundo, siguen existiendo muchas discrepancias aun en las técnicas avanzadas de modelos de riesgos operacionales que se usan en grandes bancos internacionales. Una de las familias de modelos de distribución de perdidas agreg...

Full description

Autores:
Jaramillo Blanco, Claudia Marcela
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2014
Institución:
Universidad Autónoma de Bucaramanga - UNAB
Repositorio:
Repositorio UNAB
Idioma:
spa
OAI Identifier:
oai:repository.unab.edu.co:20.500.12749/14608
Acceso en línea:
http://hdl.handle.net/20.500.12749/14608
Palabra clave:
Financial engineering
Financial analysis
Financial managenment
Investigation
Risk models
Economy
Capital measurement
Yields
External losses
Probabilities
Bank operations
Financial market
Análisis financiero
Gestión financiera
Ingeniería financiera
Investigación
Probabilidades
Operaciones bancarias
Mercado financiero
Modelos de riesgos
Economía
Medición de capital
Rendimientos
Perdidas externas
Rights
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UNAB2_f8854cf526fa775a8499056a029491f7
oai_identifier_str oai:repository.unab.edu.co:20.500.12749/14608
network_acronym_str UNAB2
network_name_str Repositorio UNAB
repository_id_str
dc.title.spa.fl_str_mv El lenguaje del riesgo operativo aplicado a entidades bancarias y cooperativas financieras en Colombia, tomado del libro “Operational risk toward basel III: Best prácticas and issues in modeling, managment and regulation” del autor Greg N. Gregoriou
dc.title.translated.spa.fl_str_mv The language of operational risk applied to banks and financial cooperatives in Colombia, taken from the book "Operational risk toward basel III: best practices and issues in modeling, management and regulation" by the author Greg N. Gregoriou
title El lenguaje del riesgo operativo aplicado a entidades bancarias y cooperativas financieras en Colombia, tomado del libro “Operational risk toward basel III: Best prácticas and issues in modeling, managment and regulation” del autor Greg N. Gregoriou
spellingShingle El lenguaje del riesgo operativo aplicado a entidades bancarias y cooperativas financieras en Colombia, tomado del libro “Operational risk toward basel III: Best prácticas and issues in modeling, managment and regulation” del autor Greg N. Gregoriou
Financial engineering
Financial analysis
Financial managenment
Investigation
Risk models
Economy
Capital measurement
Yields
External losses
Probabilities
Bank operations
Financial market
Análisis financiero
Gestión financiera
Ingeniería financiera
Investigación
Probabilidades
Operaciones bancarias
Mercado financiero
Modelos de riesgos
Economía
Medición de capital
Rendimientos
Perdidas externas
title_short El lenguaje del riesgo operativo aplicado a entidades bancarias y cooperativas financieras en Colombia, tomado del libro “Operational risk toward basel III: Best prácticas and issues in modeling, managment and regulation” del autor Greg N. Gregoriou
title_full El lenguaje del riesgo operativo aplicado a entidades bancarias y cooperativas financieras en Colombia, tomado del libro “Operational risk toward basel III: Best prácticas and issues in modeling, managment and regulation” del autor Greg N. Gregoriou
title_fullStr El lenguaje del riesgo operativo aplicado a entidades bancarias y cooperativas financieras en Colombia, tomado del libro “Operational risk toward basel III: Best prácticas and issues in modeling, managment and regulation” del autor Greg N. Gregoriou
title_full_unstemmed El lenguaje del riesgo operativo aplicado a entidades bancarias y cooperativas financieras en Colombia, tomado del libro “Operational risk toward basel III: Best prácticas and issues in modeling, managment and regulation” del autor Greg N. Gregoriou
title_sort El lenguaje del riesgo operativo aplicado a entidades bancarias y cooperativas financieras en Colombia, tomado del libro “Operational risk toward basel III: Best prácticas and issues in modeling, managment and regulation” del autor Greg N. Gregoriou
dc.creator.fl_str_mv Jaramillo Blanco, Claudia Marcela
dc.contributor.advisor.none.fl_str_mv Macías Villalba, Gloria Inés
dc.contributor.author.none.fl_str_mv Jaramillo Blanco, Claudia Marcela
dc.contributor.cvlac.spa.fl_str_mv Macías Villalba, Gloria Inés [0000290980]
dc.contributor.googlescholar.spa.fl_str_mv Macías Villalba, Gloria Inés [_XmXMLUAAAAJ]
dc.contributor.orcid.spa.fl_str_mv Macías Villalba, Gloria Inés [0000-0001-5897-181X]
dc.subject.keywords.spa.fl_str_mv Financial engineering
Financial analysis
Financial managenment
Investigation
Risk models
Economy
Capital measurement
Yields
External losses
Probabilities
Bank operations
Financial market
topic Financial engineering
Financial analysis
Financial managenment
Investigation
Risk models
Economy
Capital measurement
Yields
External losses
Probabilities
Bank operations
Financial market
Análisis financiero
Gestión financiera
Ingeniería financiera
Investigación
Probabilidades
Operaciones bancarias
Mercado financiero
Modelos de riesgos
Economía
Medición de capital
Rendimientos
Perdidas externas
dc.subject.lemb.spa.fl_str_mv Análisis financiero
Gestión financiera
Ingeniería financiera
Investigación
Probabilidades
Operaciones bancarias
Mercado financiero
dc.subject.proposal.spa.fl_str_mv Modelos de riesgos
Economía
Medición de capital
Rendimientos
Perdidas externas
description Mientras que el acuerdo de Basilea II ha sido aplicado en la mayor parte del mundo, siguen existiendo muchas discrepancias aun en las técnicas avanzadas de modelos de riesgos operacionales que se usan en grandes bancos internacionales. Una de las familias de modelos de distribución de perdidas agregadas, uno de ellos es el LDA, que se enfoca en observar los eventos pasados de las perdidas externas y otro en las técnicas basadas en escenarios que usan opiniones subjetivas de expertos como punto de inicio para determinar el requerimiento de capital regulatorio que se usa para cubrir los riesgos operacionales. El mayor reto metodológico es combinar las dos técnicas de tal manera que cumplan los requerimientos de Basilea II. En este capítulo discutiremos e investigaremos el uso de varias alternativas para modelar una opinión experta que suene de una manera estadística tanto como se permita para posteriormente integrarlo con distribución de perdidas, equipado con datos internos y/o externos, un ejemplo numérico, soporte el análisis y muestre que existen soluciones para difundir la información que surja de ambas fuentes.
publishDate 2014
dc.date.issued.none.fl_str_mv 2014
dc.date.accessioned.none.fl_str_mv 2021-10-11T13:18:23Z
dc.date.available.none.fl_str_mv 2021-10-11T13:18:23Z
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.local.spa.fl_str_mv Trabajo de Grado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12749/14608
dc.identifier.instname.spa.fl_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UNAB
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.unab.edu.co
url http://hdl.handle.net/20.500.12749/14608
identifier_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
reponame:Repositorio Institucional UNAB
repourl:https://repository.unab.edu.co
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Libro: Operacional Risk Toward Basel III, Best Practices and Issues in Modeling, Management, and Regulation.
Greg N. Gregoriou.
Alderweireld, T., J Garcia and l.leonard.2006. A practical operational risk scenario analysis quantification. Risk 19,no 2: 93–95.
Alexander,c.2003. Operational risk: regulation analysis and management. London: prentice hall-ft.
Implementing a basel ii scenario-based ama for operational risk. in the basel hand book, (Ed) .k.ong. london: risk books.
Aue,f.,andm.kalkbrener.2006. Lda at work: deutsche bank’s approach to quantifying operational risk. Jjournal of operational risk 1, no. 4:49–93.
Bakker,m.r.a.2004. Quantifying operational risk with in banks according to basel II. master’sthesis. Delft institute of applied mathematics, delft, netherlands.
Bayes,t.1783. An essay towards solving problemin the doctrine of chances. philosophical transactions of the royal society 53:370–418.
Basel committee on banking supervision.2005. Basel ii: international convergence of capital measurement and capital standards—a revised framework. basel committee publications no.107, bank for international settlements, basel, switzerland.
Chapelle, a y. crama, g.h¨ ubner, and j.-p.peters.2008. Practical methods for measuring and managing operational risk in the financial sector: a clinical study. Journal of banking and finance 32,no.6:1049–1061.
Chavez-demoulin,v.,p.embrechts,andj.neslehova.2006. Quantitative models for operational risk: extremes, dependence and aggregation. journal of banking and finance 30,no.10:2635–2658
Clemen,R.T.,andR.L.Winkler.2007. Aggregating probability distributions. In Advances in decision analysis: From foundations to applications, ed.R.F. Miles and D. von Winter feldt. NewYork: Cambridge University Press.
Cooke,R.M.1991. Experts inuncertainty. New York: Oxford University Press.
Crama, Y.,G.H¨ ubner,andJ.-P.Peters.2007. Impact of the collection threshold on the determination of the capital charge for operational risk. In Advances in Risk Management, ed. G. Gregoriou. London: Palgrave-MacMillan.
Cruz,M.G.2002. Modeling, Measuring and hedging operational risk. Hoboken, NJ: John Wiley & Sons.
Daneshkhah,A.R.2004. Psychological aspects influencing elicitation of subjective probability. Workingpaper, University of Sheffield, U.K.
DiClemente,A.,andC.Romano.2004. A copula–extremevaluetheoryapproachfor modeling operational risk, In Operational risk modeling and analysis: Theory And practice, ed. M. Cruz. London: Risk Books.
Fellner,W.1965. Probability and profits. Home wood, IL: Irwin.
Figini,S.,P.Guidici,P.Uberti,andA.Sanyal.2007. A statistical methodto optimize the combination of internal and external data in operational risk measurement. Journal of Operational Risk 2,no.4:87–99.
Frachot,A.,P.Georges,andT.Roncalli.2001. Loss distribution approach for operational risk. Working paper ,Groupe de Recherche Op´erationnelle, Cr´ edit Lyonnais, Paris.
French,S.1985. Group consensus probability distributions: A critical survey. In Bayesian statistics 2, ed.J.M.Bernardo, M.H.DeGroot, D.V. Lindley, and A.F. M. Smith, Amsterdam: North-Holland.
FinancialSupervisoryAuthority.2005. AMA soundness standard. Working paper. FSA AMA Quantitative Expert Group, London.
Garthwaite,P.H.,J.B.Kadane,andA.O’Hagan.2005. Statistical methods for eliciting probability distributions. Journal of the American Statistical Association 100,no. 470:680–700.
Gelfand,A.E.,B.K.Mallick,andD.K.Dey.1995. Modeling expert opinion a rising as a partial probabilistic specification. Journal of the American Statistical Association 90,no.430:598–604.
Genest,C.,andK.J.McConway.1990. Allocating the weights in the lineal opinion pool. Journal of Forecasting 9,no.1:53–73.
Genest,C.,andM.J.Schervish.1985. Modeling expert judgments for Bayesian updating. Annals of Statistics 13,no.3:1198 1212.
Genest,C.,andJ.V.Zidek.1986. Combining probability distributions: A critique and annotated bibliography. Statistical Science 1,no.1:114–148.
Hogarth,R.M.(1975) Cognitive processes and the assessment of subjective probability distributions. Journal of the American Statistical Association 70,no. 350:271–294.
Kahneman,D.,P.Slovic,andA.Tversky.1982. Judgment under uncertainty: Heuristics and bases. Cambridge: Cambridge University Press.
Keeney,D.,andH.Raiffa.1976. Decisions with multiple objectives: Preferences and value trade –offs .New York: John Wiley & Sons.
King,J.L.2001. Operational risk: Measurement and modeling. New York: John Wiley &Sons.
Lambrigger, D.,P. Shevchenko ,and M.W¨ uthrich.2007. The quantification of op erationa lrisk using internal data, relevant external data and expert opinions. Journal of Operational Risk 2,no.3:3–27.
Lindley,D.V.1983. Reconciliation of probability distributions. Operations Research 31,no.5:866–880.
Morris,P.A.1974. Decision analysis expertuse. Managemen tScience 20,no. 9:1233–1241.
Moscadelli,M.2004. The modeling of operational risk: Experience with the analysis of the data collected by the Basel Committee.Workingpaper517,Bancad’Italia,Rome.
O’Hagan,A.1998. Eliciting expert beliefs in substantial practical applications. The Statistician 47,no.1:21 35.
Pahlman,M.,andA.Riabacke.2005. A study on framing effects in risk elicitation. Proceedings of the International Conference on computational intelligence for modelling, control and automation 1,no.2:689–694,Vienna,Austria.
Plous,S.1993. The psychology of judgment and decision making. New York: McGraw-Hill.
sbAMAWorkingGroup.2003. Scenario-based AMA. Working paper, London.
Steinhoff,C.,andR.Baule.2006. HowtovalidateOpRiskdistributions. Op Risk And Compliance 1,no.8:36–39.
Tversky,A.,andD.Kahneman.1974. Judgment under uncertainty: Heuristicsand biases. Science 185,no.4157:1124–1131.
West,M.1988. Modelling expert opinion. In Bayesian statistics 3,ed.J.M. Bernardo, M.H. De Groot ,D. V. Lindley, and A.F .M .Smith. Amsterdam: North-Holland.
West,M.,andJ.Crosse.1992. Modelling probabilistic agent opinion. Journal of the Royal StatisticalSociety, Series B ,545, no.1:285–299.
Winkler,R.L.1967. The assessment of prior distributions in Bayesian analysis. Journal of the American Statistical Association 62,no.319:776–800.
Winkler,R.L.1968. The consensus of subjective probability distributions. Management Science 15,no.2:361–375.
Alexander,C.2003. Operational risk: Regulation, analysis and management. London: Financial Times / Prentice - Hall.
Capital standards: Proposed interagency supervisory guidance for banks that would operate under proposed new Base lII framework. U.S.FedNews, February28, 2007.
Balkema, A.A.,andL.deHaan.1974. Residual life time at greatage. Annals of Probability 2,no.5:792–804.
Banerjee,S.,andB.Kulwinder.2005. Managing operational risk: Framework for financial institutions .Workingpaper, A. B Freeman Schoolof Business, Tulane University, New Orleans.
Basel Committee on Banking Supervision.1998. Operational risk management. BCBS Publication sNo. 42. Bank for International Settlements (September). www.bis.org/publ/bcbs42.htm.
Basel Committee on Banking Supervision. 1999. A new capital adequacy framework. BCBS Publications No.50. Bank for International Settlements(June). www.bis.org/publ/bcbs50.htm.
Basel Committee on Banking Supervision. 2001a. Sound practices for the management and supervision of operational risk. BCBS Publications Bank for International Settlements (December).www.bis.org/publ/bcbs86.htm.
Basel Committee on Banking Supervision.2001b. Working paper on the regulatory treatment of operationa lrisk. BCBS Publications No.8. Bank for International Settlements(September).www.bis.org/publ/bcbs wp8.pdf.
Basel Committee on Banking Supervision.2001c. Consultative document— Operational risk (Supporting document to the New Basel Capital Accord .BCBS Publications (Consultative Document)No.7.BankforInternationalSettlements (January).www.bis.org/publ/bcbsca07.pdf.
Basel Committee on Banking Supervision.2001d. Consultative document— Operational risk (Supporting document to the New Basel Capital Accord). BCBS Publications (Consultative Document)No.7. Bank for International Settlements(January).www.bis.org/publ/bcbsca07.pdf.
Basel Committee on Banking Supervision. 2002. Sound practices for the management and supervision on of operational risk .BCBS Publications No.91.Bank for International Settlements (July).www.bis.org/publ/bcbs91.htm.
BaselCommitteeonBankingSupervision.2003a. Operational risk transfer across financial sectors. Joint Forum Paper, Bank for International Settlements(August). www.bis.org/publ/joint06.htm.
Basel Committee on Banking Supervision.2003b. Sound practices for the management and supervision of operational risk. BCBS PublicationsNo.96.Bank for International Settlements (February).www.bis.org/publ/bcbs96.htm.
Basel Committee on Banking Supervision.2004a. International convergence of capital measurement and capital standards: Are vised framework. BCBS Publications No.107. Bank for International Settlements (June).www.bis.org/ Publ / bcbs107.htm.
Basel Committee on Banking Supervision.2004b. Principles for the home host recognition of AMA operational risk capital. BCBS Publications No.106, Bank for International Settlements (January). www.bis.org/publ/bcbs106.htm.
Basel Committee on Banking Supervision.2005a. Basel II :I nternational convergence of capital measurement and capital standards : A revised framework. BCBS Publications No.118. Bank for International Settlements(November). www.bis.org/publ/bcbs118.htm.
Basel Committee on Banking Supervision.2006a. Observed Range of Practice in Key Elements of Advanced Measurement Approaches (AMA). BCBS Publications No.131, Bank for International Settlements (October).www.bis.org/ Publ /bcbs131. htm.
Basel Committee on Banking Supervision.2006b. Basel II: International convergence of capital measurement and capital standards: A revised framework— Comprehensive version. BCBSPublicationsNo.128 .Bank for International Settlements (June). www.bis.org/publ/bcbs128.htm.
Basel Committee on Banking Supervision.2007. Principles for home-host supervisory cooperation and allocation mechanisms in the context of advanced measurement approaches (AMA)— Consultative document. Bank for International Settlements, Basel, Switzerland. Bjorn,B.J.,andM.Hubert.2004. A robust estimator of the tailind ex based on an exponential regression model .In Theory and applications of recent robust methods, eds.Hubert,M.,Pison,G.,Struyf,A.andS.VanAelst, Vol.10.Basel, Switzerland:Birkh¨ auser.www.wis.kuleuven.ac.be/stat/Papers/ tailindexICORS2003.pdf.
Castillo,E.,andS.H.Ali.1997. Fitting the generalized Pareto distribution to data. Journal of the American Statistical Association 92,no.440:1609–1620.
Coleman,R.,andM.Cruz.1999. Operational risk measurement and pricing. Derivatives Week 8,no.30:5–6.
Coles,S.G.,J.Heffernan,andT.A.Jonathan.1999. Dependence measures for extreme value analyses. Extremes 2,No.4:339–365.
Coles,StuartG.2001. An introduction to statistical modellingin extreme values. London:Springer-Verlag.
Crouhy,M.,D.Galai,andR.M.Mark.2004. Insuring versus self-insuring operational risk: View points of depositors and share holders. Journal of Derivatives 12,no.2:51–55.
Cruz,M.,R.Coleman,andS.Gerry.1998. Modeling and measuring operational risk. JournalofRisk 1,no.1:63–72.
Currie,C.V.2004. Basel II and operational risk—Over view of key concerns. Workingpaper134(March).School of Finance and Economics, University of Technology ,Sydney.
Currie,C.V.2005. A test of the strategic effect of Basel II operational risk requirements on banks. Workingpaper143(September).School of Finance and Economics, University of Technology, Sydney.
De Fontnouvelle,P.2005. The 2004 loss data collection exercise. Presentation at the Implementing an AMA for Operational Risk conference of the Federal Reserve Bank of Boston(May19). www.bos.frb.org/bankinfo/conevent/oprisk2005/defontnouvelle.pdf.
De Fontnouvelle P.,E.S. Rosengren, and J.S.Jordan.2004. Implications of alternative operational risk modeling techniques. SSRN workingpaper (June). http://papers.ssrn.com/sol3/papers.cfm?abstract id=556823.
Degen,M.,P.Embrechts,andL.D.Dominik.2006. The quantitative modeling of operational risk: Between g-and-h and EVT. Working paper, Swiss Institute of Technology(ETH),Zurich.
Dekkers,ArnoldL. M.,John H.J.Einmahl,and Laurens de Haan.1989. A moment estimator for the index of an extreme-value distribution. Annals of Statistics 17:1833–1855.
Drees,Holger.1995. Refined Pick and sestimators of the extreme value index. Annals of Statistics 32,no.1:2059–2080.
Drees, Holger, Laurens de Haan, and R .Sidney.1998. How to make a hillplot. Discussion paper, Timbergen Institute, Erasmus University, Rotterdam.
Dutta,KabirK.,andJ.Perry.2006. Ataleoftails:An empirical analysis of loss distribution models for estimating operational risk capital. Working paper06–13. Federal Reserve Bank of Boston(July).
Embrechts,P.2000. Extreme value theory:Potential and limitations as an integrated risk managementtool. Derivatives Use, Trading & Regulation 6,no.2:449–456.
Embrechts ,P., C.Kl ¨ uppelberg,andT.Mikosch.1997. Modelling extreme al events for insurance and finance. Heidelberg, Germany: Springer-Verlag.
Falk,M.,J.H¨ usler,andR.Rolf-Dieter.1994. Laws of small numbers: Extremes and rareevents. DMV-Seminar, Birkh¨ auser,Basel.
Federal Reserve Board.2006a. Federal Reserve statistical release—Aggregatere serves of depository institutions and the monetary base.Washington,DC. www.federalreserve.gov/releases/h3/20050120. Federal Reserve Board.2006b. Fourth quantitative impact study2006. Washington, DC.www.federalreserve.gov/boarddocs/bcreg/2006/20060224/.
Fisher,R.A.,andL.H.C.Tippett.1928. Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proceedings of the Cambridge Philosophical Society 4,no.2:180–190.
Grody,A.D.,F.C.Harmantzis,andK.J.Gregory.2005. Operational risk and reference data:Exploring costs, capital requirements and risk mitigation.”Working paper(November),Stevens Institute of Technology,Hoboken,NJ. Hill,B.M.1975.A simple general approach to inference about the tail of a distribution. Annals of Statistics 3,no.5:1163–1174.
Hoaglin,D.C.1985. Summarizing shape numerically: The g-and-h distributions. In Exploring datatables, trend, and shapes, ed. D.C. Hoaglin F. Mosteller,and J.W.Tukey. New York: JohnWiley&Sons.
Jenkinson,A.F.1955. The frequency distribution of the annual maximum(orminimum) values of meteorological elements. Quarterly Journal of the Royal Meteorology Society No.87:145–158.
Jobst,A.A.2007a. It’sallin the data—Consistent operational risk measurement and regulation. Journal of Financial Regulation and Compliance 15,no.4:423– 449.
Jobst,A.A.2007b. Operational risk—The stingis still in the tail but the poison depends on the dose. Journal of Operational Risk 2,no.2:1–56.
Jobst,A.A.2007c. The regulation of operational risk under the new Basel Capital Accord—Criticalissues. International Journal of Banking Law and Regulation 21,no.5:249–273.
Jobst,A.A.2007d. The treatment of operational risk under the new Basel Framework—Critical issues. Journal of Banking Regulation 8,no.4:316–352.
Kotz,S.,andN.Saralees.2000. Extreme value distributions. London: Imperial College Press.
Larsen,P.T.,andG.Krishna.2006. US banks seek looser Basel II rules. Financial Times of London, August 3.
Leippold,Markus,and P.Vanini.2003. The quantification of operational risk.SSRN Workingpaper(November).
Makarov,M.2006. Extreme value theory and high quantile convergence. Journal Of Operational Risk 1,no.2:51–57.
Martinez,J.,andB.Iglewicz.1984. Some properties of the Tukeyg and h family of distributions. Communications in Statistics—Theory and Methods 13,no.3:353–369.
Matz,L.2005. Measuring operational risk:A rewetaxIIng down the wrong runways? Bank Accounting and Finance 18,no.2–3:3–6,47.
McCulloch,J.H.1996. Simple consistent estimators of stable distribution parameters. Communications in Statistics—Simulations 15,no.4:1109–1136.
McNeil,A.J.,andS.Thomas.1997. The peak over thresholds method for estimating high quantiles of loss distributions. Swiss Institute of Technology(ETH),Zurich.
Mignola,G.,andR.Ugoccioni.2005. Tests of extreme value theory. Operational Risk &Compliance 6,no.10:32–35.
Mignola,G.,andR.Ugoccioni.2006. Sources of uncertainty in modeling operational risk losses. Journal of Operational Risk 1,no.2:33–50.
Mittnick,S.,andR.T.Svetlozar.1996. Tail estimation of the stable index. Applied Mathematic Letters 9,no.3:53–56.
Moscadelli,M.2004. The modeling of operational risk: Experience with the data collected by the Basel Committee. In Operational risk: Practical approaches to implementation, in E.Davis. London: , Incisive Media Ltd.
Neˇ slehov´ a,J.,P.Embrechts,andValerieC-Demoulin.2006. Infiniteme an models and the LDA for operational risk. Journal of Operational Risk 1,no.1:3–25.
O’Dell, Mark.2005. Quantitative impact study4:Preliminary results—AMA frame- work. Presentation at the Implementing an AMA for Operational Risk conference of the Federal Reserve Bank of Boston(May19).www.bos.frb.org/ bankinfo/ conevent/oprisk2005/odell.pdf.
Office of the Comptroller of the Currency, the Board of Governors of the Federal ,the Federal Deposit Insurance Corporation, and the Office of Thrift Supervision.2003. Operational risk advanced measurement approaches For regulatory Capital. Joint Supervisory Guidance
July2).www.federalreserve.gov/BoardDocs/Press/bcreg/2006/20060206/attachment.pdf Pickands,J.19.
Statistical Inference Using Extreme Order Statistics. Annals of Statistics 3,no.1:119–131. Pickands,J.1981.
Pickands,J.1981. Multivariate extreme value distributions. London: Imperial College Press. Poon,S.-H.,M.Rockinger,andT.Jonathan.2003. Extreme Value dependen cein financial markets:Diagnostics,models,and financial implications. Review of Financial Studies 17,no.2:581–610.
Reiss,R.-D.,andT.Michael.1997. Statistical analysis of extreme values. Basel Switzerland: Birkh¨ a user.
Resnick,S.I.,andS.Catalin.1997a. Asymptotic behavior of Hill’s estimator for auto regressive data. Stochastic Models 13,no.4:703–723.
Resnick,S.I.,andS.Catalin.1997b. Smoothing the Hill estimator. Advances in Applied Probability 9,no.1:271–293.
Rootz´ en,H.,andT.Nader.1997. Extreme value statistics and windstorm losses: A case study. Scandinavian Actuarial Journal 1,no.2:70–94.
Seivold,A.,S.Leifer,andU.Scott.2006. Operational risk management: An evolving discipline. SupervisoryI nsights. Federal Deposit Insurance Corporation. www.fdic.gov/regulations/examinations/supervisory/insights/sisum06/article01 risk.html.
Stephenson,A.G.2002. EVD: Extreme value distributions. R News 2,no.2:31–32. http://CRAN.R-project.ortg.org/doc/Rnews/.
Tukey,J.W.1977. Exploratory data analysis. Reading, MA: Addison-Wesley.
Zamorski,M.J.2003. Joint supervisory guidance on operational risk advanced measurement approaches for regulatory capital—Boardmemorandum. Federal Deposit Insurance Corporation, Division of Supervision and Consumer Protection(July).www.fdic.gov/regulations/laws/publiccomments/basel/boardmem-oprisk.pdf.
Bebko,C.P.2000. Service in tangibility and its impact on consumer expectations of Service quality. Journal of Services Marketing 14,no.1:9–26.
Bettman,J.R.1973. Perceived risk and its components: A model and empirical test. Journal of Marketing Research 10,no.2:184–190.
Bitner,M.J.,B.H.Booms,andM.S.Tetreault.1990. The service encounter: Diagnosing favorable and unfavorable incidents. Journal of Marketing 54,no.1:71–84.
Booms,B.,andM.Bitner.1981. Marketing strategies and organization structures for service firms.In Marketing of services, ed.J. Donnelly and W. George .Chicago, IL : American Marketing Association.
Boshoff, C. R. 1997. An experimental study of service recovery options. International Journal of Service Industry Management8, no. 2:110–130.
Cunningham, L. F., J. Gerlach, and M. D. Harper. 2004. Assessing perceived risk of consumers in internet airline reservations services, Journal of Air Transportation 9, no. 1:21–35.
Debely, J., M. Dubosson, and E. Fragni` ere. 2006. The travel agent: Delivering more value by becoming an operational risk manager. Proceedings of the La Londe9th International Research Seminar in Service Management, June, 178–203.
Debely, J., M. Dubosson, and E. Fragni`ere. 2007. The pricing of knowledge-based services: Insights from the environmental sciences. New Delhi 2nd International Conference on Services Management, June. Available at SSRN: http://ssrn.com/abstract=951651. To appear in the Journal of Services Research.
Debely, J., M. Dubosson, and E. Fragniere. 2007. The consequences of information overload in knowledge based service economies. ESSHRA Conference proceedings, June 12–13, Berne, Switzerland. Available at SSRN: http://ssrn.com/abstract=999525.
Denton, D. K. 2001. Better decisions with less information. Industrial Management43, no. 4:21–25.
Dowling, G. R., and R. Staelin. 1994. A model of perceived risk and risk-handling activities. Journal of Consumer Research21, no. 1:119–134.
Dubosson, M., E. Fragni` ere, and B. Millet. 2006. A control system designed to address the intangible nature of service risks. Proceedings of the Shangai IEEE International Conference on Service Operations and Logistics, and Informatics, Shanghai. June.
Eavis, P., and D. Enrich. 2008. Skunk at the bank party; Danger still lurks in balance sheets while stocks soar. Wall Street Journal(Eastern Edition), April 2, 2.
Engel, J. F., R. D. Blackwell, and P. W. Miniard. 1993. Consumer behavior. Chicago: Dryden Press. Finance and economics: Down the
Matterhorn; Investment Banking. 2007. The Economist. July 14, 83.
Finn, A. 1985. A theory of the consumer evaluation process for new product concepts. Research in Consumer Behavior1, no. 2:35–65.
Fragni` ere, E. and G. Sullivan. 2007. Risk management. Boston: Thomson Publishers.
Gr¨onroos, C. 1984. A service quality model and its marketing implications. European Journal of Marketing18, 40:36–44.
Guiltinan, J. P. 1987. The price bundling of services: A normative framework Journal of Marketing51, no. 2:74–85.
Guseman, D. S. 1981. Risk perception and risk reduction in consumer services. In Marketing of services, ed. J. H. Donnelly. et al. (Chicago: American Marketing Association.
Havelena, W. J., and W. S. DeSarbo. 1990. On the measurement of perceived consumer risk. Decision Sciences22, no. 4:927–939.
Heylighen, F. 2002. Complexity and information overload in society: Why increasing efficiency leads to decreasing control. Draft paper, April 12. Brussels: CLEA, Free University of Brussels.
Heskett, J., W. Sasser, and C. Hart. 1990. Service breakthroughs: Changing the rules of the game. New York: Free Press.
Horton, R. L. 1976. The structure of decision risk: Some further progress. Journal of the Academy of Marketing Science4, no. 4:694–706.
Jacoby, J., and L. Kaplan. 1972. The components of perceived risk. In Proceedings 3rd Annual Conference Association for Consumer Research, ed. M. Venkatesan Chicago: Association for Consumer Research.
Johnson, D. L., and I. R. Andrews. 1971. Risky-shift phenomenon as tested with consumer products as stimuli. Journal of Personality and Social Psychology20, no. 3:328–385.
Karmarkar, U. S., and R. Pitbladdo. 1995. Service markets and competition. Journal of Operations Management12, no. 4:397–412.
Laroche, M., J. Bergeron, and C. Goutaland. 2001. A three-dimensional scale of intangibility. Journal of Service Research4, no. 1:26–38.
Laroche, M., J. Bergeron, and C. Goutaland. 2003. How intangibility affects perceived risk: The moderating role of knowledge and involvement. Journal ofServices Marketing17, no. 2:122–140.
Laroche, M., G. H. G. McDougall, J. Bergeron, and Z. Yang. 2004. Exploring how intangibility affects perceived risk. Journal of Service Research6, no. 4: 373–389.
Mayer, K. J., J. T. Bowen, and M. R. Moulton. 2003 A proposed model of the descriptors of service process. Journal of Services Marketing17, no. 6:621–639.
McDougall, G. H. G., and D. W. Snetsinger. 1990. The intangibility of services: Measurement and competitive perspectives. Journal of Services Marketing 4, no. 4:27–40.
Meuter, M. L., A. L. Ostorm, R. I. Roundtree, and M. J. Bitner. 2000. Self-service technologies: Understanding customer satisfaction with technology-based service encounters.Journal of Marketing64, no. 3:50–64.
Mijuk, G., and A. Bradbery. 2008. Credit Suisse move hikes sector pricing concerns.Dow Jones Newswires, February 19.
Mitchell, V. W. 1998. A role for consumer risk perceptions in grocery retailing.British Food Journal100, no. 4:171–183.
Mitchell, V. W. 1999. A role for consumer risk perceptions in grocery retailing.British Food Journal100, no. 1–2:163–195.
Mitchell, V. W., and P. Boustani. 1994 A preliminary investigation into pre- and post-purchase risk perception and reduction. European Journal of Marketing 28, no. 1:56–71.
Mitchell, V. W., and M. Greatorex. 1993. Risk perception and reduction in thepurchase of consumer services. Service Industries Journal13, no. 4:179–200.
Mitchell, V. W. and G. S. Prince. 1993. Retailing to experienced and inexperienced consumers: A perceived risk approach. International Journal of Retail & Distribution Management12, no. 5:10–21.
Mitra, K., M. Reiss, and L. Capella. 1999. An examination of perceived risk, information search and behavioral intentions in search, experience and credence services. Journal of Services Marketing13, no. 3:208–228.
Mollenkamp, C., and M. Whitehouse. 2008. Banks fear a deepening of turmoil. Wall Street Journal(Eastern Edition), March 17, A1.
Murray, K. B., and J. L. Schlacter. 1990. The impact of services versus goods on consumers’ assessment of perceived risk. Journal of the Academy of Marketing Science8, no. 1:51–65.
Next year’s model? Risk management. 2008. The Economist, March 1, 15.Parasuraman, A., V. A. Zeithaml, and L. L. Berry. 1985. A conceptual model of service quality and its implications for future research. Journal of Marketing 49, no. 4:41–50.
Park, W. C., D. L. Mothersbaugh, and L. Feick. 1994. Consumer knowledge assessment. Journal of Consumer Research21, no. 1:71–82.
Peter, J. P., and M. J. Ryan. 1976. An investigation of perceived risk at the brand level. Journal of Marketing Research13, no. 2:184–188.
Pruitt, D. G. 1971. Conclusions: Towards an understanding of choice shifts in group discussion. Journal of Personality and Social Psychology20, no. 3:495–510.
Roselius, T. 1971. Consumer rankings of risk reduction methods. Journal of Marketing35, no. 1:56–61.
Ross, I. 1975. Perceived risk and consumer behavior: A critical review. Conference of the American Marketing Association1, no. 1:19–23.
Slovic, P., and S. Lichtenstein. 1986. Relative importance of probabilities and payoff in risk taking. Journal of Experimental Psychology Monograph78, no. 3:1–18.
Stanley, R. 2008. Behind the mess at UBS. BusinessWeek, March 3, 30–31.
Tan, S. J. 1999. Strategies for reducing consumers’ risk aversion in Internet shopping
Woodside, A.G. 1972. Informal group influences on risk taking. Journal of Marketing Research 9, no. 3:223–225.
Woodside, A. G. 1974. Is there a generalised risky shift phenomenon in consumer behavior? Journal of Marketing Research11, no. 2:225–226.
Wurman, R. S. 1990. Information anxiety. New York: Bantam Books.
Zeithaml V. A., and M. J. Bitner. 2000. Services marketing: Integrating customer focus across the firms, 2nd ed. New York: McGraw-Hill.
Zeithaml V. A., M. J. Bitner, and D. D. Gremler. 2006. Services marketing: Integrating customer focus across the firms. New York: McGraw-Hill.
Asmussen, S. 2000. Ruin probabilities. London: World Scientific.
Asmussen, S., D. P. Kroese, and R. Y. Rubinstein. 2005. Heavy tails, importance sampling and cross-entropy. Stochastic Models21, no. 1:57–76.
Basel Committee on Banking Supervision 2005. Basel II: International convergence of capital measurement and capital standards: A revised framework, www.bis.org. Basel, Switzerland.
Bee, M. 2006. Estimating the parameters in the loss distribution approach: How can we deal with trun cated data? In the advanced measurement approach to operational risk, ed. E. Davis. London: Risk Books.
Bee, M 2007. Importance sampling for sums of lognormal distributions, with applications to operational risk. Discussion paper, Department of Economics, University of Trento.
Buchm¨ uller, P., M. Haas, B. Rummel, and K. Stickelmann. 2006. AMA implementation in Germany: Results of BaFin’s and Bundesbank’s industry survey. In the advanced measurement approach to operational risk, ed. E. Davis. London: Risk Books.
Casella, G., and C. P. Robert. 2004. Monte Carlo statistical methods. New York: Springer.
De Koker, R. 2006. Operational risk modeling: Where do we go from here? In the advanced measurement approach to operational risk, ed. E. Davis. London: Risk Books.
Dempster, A. P., N. M. Laird, and D. B. Rubin 1977. Maximum likelihood from incomplete data via the EMalgorithm (with discussion).Journal of the Royal Statistical Society B39, no. 1:1–38.
Embrechts, P., C. Kl¨ uppelberg, and T. Mikosch. 1997. Modeling extremal events for insurance and finance. New York: Springer.
Flury, B. 1997. A first course in multivariate statistics. New York: Springer.
Geweke, J. 1989. Bayesian inference in econometric models using Monte Carlo integration.Econometrica57, no. 6:1317–1340.
Hesterberg, T. 1995. Weighted average importance sampling and defensive mixture distributions.Technometrics37, no. 2:185–194.
McLachlan, G. J., and T. Krishnan. 1996. The EM algorithm and extensions. NewYork: John Wiley & Sons.
McNeil, A. J., R. Frey, and P. Embrechts. 2005. Quantitative risk management: Concepts, techniques and tools. Princeton, NJ: Princeton University Press.
Mignola, G., and R. Ugoccioni. 2006. Tests of extreme-value theory applied to operational risk data. InThe advanced measurement approach to operational risk, ed. E. Davis. London: Risk Books.
Mikosch, T. 2004. Non–life insurance mathematics. New York: Springer.
Rubinstein, R. Y. 1981. Simulation and the Monte Carlo method. New York: John Wiley & Sons.
Rubinstein, R. Y., and D. P. Kroese. 2004. The cross-entropy method. New York:Springer.
Smith, R. L. 2003. Statistics of extremes, with applications in environment, insurance and finance. In Extreme values in finance, telecommunications and the environment, ed. B. Finkenstadt and H. Rootzen. London: Chapman and Hall/CRC Press.
Artzner, P., F. Delbaen, J. M. Eber, and D. Heath. 1999. Coherent measures of risk. Mathematical Finance9, no. 3:203–228.
Bee, M. 2005. On maximum likelihood estimation of operational loss distributions. Discussion paper no.3. University of Trento, Italy.
Basel Committee on Banking Supervision. 2003. The 2002 loss data collection exercise for operational risk: Summary of the data collected. Bank for International Settlement document, Basel, Switzerland.
Cameron, C., T. Li, P. Trivedi, and D. Zimmer. 2004. Modelling the differences in counted outcomes using bivariate copula models with application to mismeasured counts. Econometrics Journal7, no. 2:566–584.
Chavez-Demoulin, V., P. Embrechts, and J. Neslehova. 2006. Quantitative models for operational risk: Extremes, dependence and aggregation.Journal of Banking and Finance30, no. 10:2635–2658.
Cherubini, U., E. Luciano, and W. Vecchiato. 2004. Copula methods in finance. Hoboken, NJ: John Wiley & Sons.
Cruz, M. G. 2002. Modeling, measuring and hedging operational risk. Hoboken, NJ: John Wiley & Sons.
Deheuvels, P. 1978. Caract´ erisation compl´ ete des lois extr` emes multivari´ ees et de la convergence des types extr´ emes.Publications de L’Institut de statistique de l’Universit´e de Paris23, no. 3:1–36.
Denuit, M., and P. Lambert. 2005. Constraints on concordance measures in bivariate discrete data.Journal of Multivariate Analysis93, no. 1:40–57.
DiClemente, A., and C. Romano. 2004. A copula-extreme value theory approach for modelling operational risk. InOperational risk modelling and analysis: Theory and practice, ed. M. G. Cruz. London: Risk Books.
Embrechts, P., C. Kluppelberg, and T. Mikosch. 1997. Modeling extremal events for insurance and finance. Berlin: Springer-Verlag.
Embrechts, P., F. Lindskog, and A. McNeil. 2002. Modelling dependence with copulas and applications to risk management. InHandbook of heavy tailed distributions in finance, ed. S.T. Rachev. Amsterdam: Elsevier.
Embrechts, P., and G. Puccetti. 2007. Aggregating risk across matrix structures loss data: The case of operational risk. Working paper, ETH, Zurich.
Fantazzini, D., L. Dallavalle, and P. Giudici. 2008 Copulae and operational risks. International Journal of Risk Assessment and Management.
Fantazzini, D., L. Dallavalle, and P. Giudici. 2007. Empirical studies with operational loss data. In Operational risk: A Guide to Basel II capital requirements, models, and analysis, ed. F. Fabozzi. Hoboken, NJ: John Wiley & Sons.
Genest, C., and J. Neslehova. 2007. A primer on discrete copulas. ASTIN Bulletin37, no. 2:475–515.
Hosking, J. R. M., and J. R. Wallis. 1987. Parameter and quantile estimation for the generalized pareto distribution.Technometrics29, no. 3:339–349.
Joe, H., and J. Xu. 1996. The estimation method of inference functions for margins for multivariate models. Working paper, Department of Statistics University of British Columbia, Vancouver, British Columbia.
King, J. L. 2001. Operational risk: Measurement and modeling. Hoboken, NJ: John Wiley & Sons.
Lindskog, F., and A. McNeil. 2003. Common Poisson shock models: Applications to insurance and credit risk modeling. ASTIN Bulletin33, no. 2: 209– 238.
Moscadelli, M. 2004. The modelling of operational risk: Experiences with the analysis with the analysis of the data collected by the Basel Committee.” Working paper, Temi di Discussione del Servizio Studi, No. 517, Banca d’Italia, Roma.
McNeil, A., P. Embrechts, and R. Frey. 2005. Quantitative risk management: Concepts, techniques and tools. Boston: Springer.
Neslehova, J., P. Embrechts, and V. Chavez-Demoulin. 2006. Infinite mean models and the LDA for operational risk.Journal of Operational Risk1, no. 1:3–25.
Panjer, H. H., and G. Willmot. 1992. Insurance risk models. Schaumburg, IL: Society of Actuaries.
Patton, A. 2006. Estimation of multivariate models for time series of possibly different lengths. Journal of Econometrics132, no. 1:43–57.
Pfeifer, D., and J. Neslehova. 2004. Modeling and generating dependent risk processes for IRM and DFA.ASTIN Bulletin34, no. 2:333–360.
Roehr, A. 2002. Modelling operational losses.Algo Research Quarterly5, no. 2:53–64.
Stevens, W. L. 1950. Fiducial limits of the parameter of a discontinuous distribution. Biometrika, 37, no. 1/2:117–129.
Trivedi, P. K., and D. M. Zimmer. 2007. Copula modeling: An introduction for practitioners. Foundation and Trends in Econometrics1, nos. 1:1–111.
Alexander, C. 2005. Assessment of operational risk capital. In Risk management: Challenge and opportunity, eds. M. Frenkel, U. Hommel, and M. Rudolf. Berlin: Springer.
Chernobai, A., S. T. Rachev, and F. J. Fabozzi. 2007. Operational risk: A guide to Basel II capital requirements, models and analysis. Hoboken, NJ: John Wiley & Sons.
Clemen, R. T., and T. Reilly. 2001. Making hard decisions. Pacific Grove, CA: Duxbury Thomson Learning, Brooks/Cole.
Davis, E. 2005. Operational risk: Practical approaches to implementation. London: Risk Books.
D¨ obeli, B., M. Leippold, and P. Vanini. 2003. From operational risks to operational excellence, In Advances in operational risk: Firm wide issues for financial institutions, ed. P. Mestchian, 2nd ed. London: Risk Books.
Dobi´ ey, M., W. Kross, and M. M¨ uller-Reichart. 2003. Auch Management statt nur Controlling (Management too instead of just Controlling).Marktplatz Energie (Frankfurt) 6:4–5.
Dobi´ ey, M., W. Kross, and M. M¨ uller-Reichart. 2003. Auch Management statt nur Controlling (Management too instead of just Controlling).Marktplatz Energie (Frankfurt) 6:4–5.
Hommel, U., M. Scholich, and R. Vollrath. 2001. Realoptionen in der Unternehmenspraxis—Wert schaffen durch Flexibilit¨ at. Heidelberg: Springer.
Howson, C., and P. Urbach. 1989. Scientific reasoning: The Bayesian approach. a Salle, IL: Open Court Publishing Company.
Kahneman, D., P. Slovic, and A. Tversky. 1982. Judgement under uncertainty: Heuristics and biases. Cambridge, MA: Cambridge University Press.
Keeney, R. L. 1992. Value-focused thinking—A Path to creative decision making. Cambridge, MA: Harvard University Press.
Keeney, R. L., and H. Raiffa. 1993. Decisions with multiple objectives: Preferences and Value trade-offs. Cambridge, MA: Cambridge University Press.
Kross, W. 2000. Pricing risk: Probabilistic approaches and case studies. Workshop proceedings, Current Perspectives on Risk Management, June 18–19, Financial Stability Institute, Bank for International Settlements, Basel, Switzerland.
Kross, W. 2002. Holes in holistic risk management—Financial institutions’ approaches to operational risk. Proceedings, Society for Risk Analysis (SRAEurope) annual meeting, July 21–24. Humboldt University, Berlin, Germany.
Kross, W. 2004. Operational risk: The management perspective. InRisk management: Challenge and opportunity, ed. M. Frenkel, U. Hommel, and M. Rudolf Berlin: Springer.
Kross, W. 2006. Organized opportunities: Risk management in financial services organizations. Weinheim, Germany: John Wiley & Sons.
Kross, W. 2007. Kultur wandel durch MA Risk (Cultural change through MARisk) (interview),Compliance Manager 9, no. 11:5 .
Morgan, M. G., and M. Henrion. 1990. Uncertainty: A guide to dealing with uncertainty in quantitative risk and policy analysis. Cambridge, MA: Cambridge University Press.
Shapira, Z. 1995. Risk taking—A managerial perspective. New York: Russell Sage.
Von Winterfeldt, D. and W. Edwards. 1986. Decision analysis and behavioral research. Cambridge, MA: Cambridge University Press.
Alexander, C. 2005. Assessment of operational risk capital. In Risk management: Challenge and opportunity, eds. M. Frenkel, U. Hommel, and M. Rudolf. Berlin: Springer.
Amit, R., and B. Wernerfelt. 1990. Why do firms reduce risk ? Academy of Management Journal3, no. 3:520–533
Barberis, N., A. Shleifer, and R. Vishny. 1989. A model of investor sentiment. Journal of Financial Economics49, no. 3:307–343.
Black, F., and M. Scholes. 1973. Simplifying portfolio insurance. Journal of Portfolio Management14, no. 1:48–51.
Bowman, R. 1979. The theoretical relationship between systematic risk and financial (accounting) variables. Journal of Finance34, no. 3:617–630.
Chernobai, A., S. T. Rachev, and F. J. Fabozzi. 2007. Operational risk: A guide to Basel II capital requirements, models and analysis. Hoboken, NJ: John Wiley & Sons.
Clemen, R. T., and T. Reilly. 2001. Making hard decisions. Pacific Grove, CA: Duxbury Thomson Learning, Brooks/Cole.
Culp, C. 2002. The art of risk management. Hoboken, NJ: John Wiley & Sons.
Davis, E. 2005. Operational risk: Practical approaches to implementation. London: Risk Books.
D¨ obeli, B., M. Leippold, and P. Vanini. 2003. From operational risks to operational excellence. InA dvances in operational risk: Firm-wide issues for financial institutions, ed. P. Mestchian. London: Risk Books.
Fama, E., and French, K. R. 1992. The cross-section of expected security returns. Journal of Finance47, no. 2:427–465.
Fama, E., and K. R. French. 1993. Common risk factors in the returns on stocks and bonds. Journal of Financial Economics47, no. 3–56.
Fazzari, S. M., B. C. Petersen, and R. G. Hubbard. 1988. Financing constraints and corporate investment, Working paper, National Bureau of Economic Research, Cambridge, MA.
Fite, D., and P. Pfleiderer. 1995. Should firms use derivates to manage risk? In Risk management: Problems and solutions, ed. W. Beaver and G. Parker. New York:McGraw-Hill.
Froot, K., D. Scharfstein, and J. Stein. 1994. A framework for risk management. Harvard Business Review72, no. 6:91–102.
Gleißner, W. 2001. Identifikation, Messung und Aggregation von Risiken. In Wertorientiertes Risiko management f¨ ur Industrie und Handel, ed. W. Gleißner and G. Meier. Wiesbaden, Germany: Gabler.
Gleißner, W. 2002. Wertorientierte Analyse der Unternehmensplanung auf Basis des Risikomanagements.Finanz Betrieb7/8:417–427.
Gleißner, W. 2004. FutureValue-12 Module f¨ ur eine strategische wertorientierte Unternehmensf¨ uhrung. Wiesbaden, Germany: Gabler.
Gleißner, W. 2005. Kapital kosten—der Schwachpunkt bei der Unter nehmens be wertung und
Gleißner, W., and T. Berger. 2004. Die Ableitung von Kapital kostens¨ atzen aus dem Risikoinventar eines Unternehmens.UM-Unternehmensbewertung & Management. Frankfurt, Germany.
Goyal, A., and P. Santa-Clara. 2003. Idiosyncratic risk matters! Journal of Finance 58, no. 3:975–1008.
Haugen, R. 2002. The inefficient stock market. Upper Saddle River, NJ: Prentice Hall.
Haugen, R. 2004. The new finance. New York: Pearson Education.
Hubbert, R. 1998. Capital-market imperfections and investment. Journal of Economic Literature36, no. 2:193–225.
Keeney, R. L. 1992. Value-focused thinking—A path to creative decision making. Cambridge, MA: Harvard University Press.
Kross, W. 2004. Operational risk: The management perspective. In Risk management: Challenge and o pportunity, eds. M. Frenkel, U. Hommel, and M. Rudolf. Berlin: Springer.
Kross, W. 2006. Organized opportunities: Risk management in financial services organizations. Weinheim, Germany: John Wiley & Sons.
Kross, W. 2007. Kultur wandel durch MA Risk (Cultural change through MA Risk). Interview,Compliance Manager 9, no. 1:5.
K¨ ursten, W. 2006. Corporate hedging, Stake holder interesse und shareholder value. JfB Journal f¨ ur Betriebswirtschaft5, no. 6:3–31.
La Porta, R. 1996. Expectations and the cross-section of stock returns. Journal of Finance 51, no. 5:1715–1742.
Levi, M., and P. Serc¸u. 1991. Erroneous and valid reasons for hedging exchange rate exposure. Journal of Multinational Financial Management1, no. 2:25–37.
Lintner, J. 1965. The valuation of risk assets and the selection of risky investments. In Stock portfolios and capital budgets. Review of Economics and Statistics 47, no. 1:13–37.
Merton, R. C. 1974. On the pricing of corporate debt: The risk structure of interest rates. Journal of Finance 29, no. 2:449–470.
Modigliani, F., and M. H. Miller. 1958. The cost of capital, corporate finance, and the theory of investment. American Economic Review48, no. 3:261– 297.
Morgan, M. G., and M. Henrion. 1990. Uncertainty: A guide to dealing with uncertainty in quantitative risk and policy analysis. Cambridge, MA: Cambridge University Press.
Mossin, J. 1966. Equilibrium in a capital asset market.Econometrica34, no. 4:768–783.
Pritsch, G., and U. Hommel. 1997. Hedging im Sinne des Aktion¨ ars. DBW Die Betriebs wirts chaft 57, no. 5:672–693. Rappaport, A. 1986. Creating shareholder value. New York: The Free Press.
Ross, S. 1976. The arbitrage theory of capital asset pricing. Journal of Economic Theory13, no. 3:1051 1069.
Schnabel, J., and E. Roumi. 1989. Corporate insurance and the underinvestment problem: An extension. Journal of Risk and Insurance56, no. 1:155–159.
Shapira, Z. 1995. Risk taking—A managerial perspective. New York: Russell Sage Foundation.
Sharpe, W. F. 1964. Capital asset prices: A theory of equilibrium under conditions of risk. Journal of Finance 19, no. 3:425–442.
Sharpe, W. F. 1977. The CAPM: A “multi-beta” interpretation. In Financial decision making under uncertainty, ed. H. Levy and M. Sarnat. Burlington, MA: Academic Press.
Shefrin, H. 2000. Beyond greed and fear—Finance and the psychology of investing. Cambridge, MA: Harvard Business School Press.
Shleifer, A. 2000. Inefficient markets—An introduction to behavioral finance. New York: Oxford University Press.
Stern, J. M., J. S. Shiely, and I. Ross. 2001. The EVA challenge. Hoboken, NJ: John Wiley & Sons.
Ulschmid, C. 1994. Empirische Validierung von Kapital markt modellen. Berlin: Peter Lang Verlags gruppe.
Volkart, R. 1999. Risiko behafte tes Fremd kapital und WACC-Handhabung aus theore tischer und praktischer Sicht. Working paper, Swiss Banking Institute, Z¨ urich.Warner, J. 1977. Bankruptcy costs: Some evidence. Journal of Finance 32, no. 2:337–347.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.creativecommons.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.spa.fl_str_mv San Gil (Santander, Colombia
dc.coverage.temporal.spa.fl_str_mv 2014
dc.coverage.campus.spa.fl_str_mv UNAB Campus Bucaramanga
dc.publisher.grantor.spa.fl_str_mv Universidad Autónoma de Bucaramanga UNAB
dc.publisher.faculty.spa.fl_str_mv Facultad Economía y Negocios
dc.publisher.program.spa.fl_str_mv Pregrado Ingeniería Financiera
institution Universidad Autónoma de Bucaramanga - UNAB
bitstream.url.fl_str_mv https://repository.unab.edu.co/bitstream/20.500.12749/14608/1/2014_Tesis_Jaramillo_Blanco_Claudia_Marcela.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/14608/2/2014_Articulo_Jaramillo_Blanco_Claudia_Marcela.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/14608/3/2014_Presentacion_Jaramillo_Blanco_Claudia_Marcela.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/14608/4/license.txt
https://repository.unab.edu.co/bitstream/20.500.12749/14608/5/2014_Tesis_Jaramillo_Blanco_Claudia_Marcela.pdf.jpg
https://repository.unab.edu.co/bitstream/20.500.12749/14608/6/2014_Articulo_Jaramillo_Blanco_Claudia_Marcela.pdf.jpg
https://repository.unab.edu.co/bitstream/20.500.12749/14608/7/2014_Presentacion_Jaramillo_Blanco_Claudia_Marcela.pdf.jpg
bitstream.checksum.fl_str_mv 9f5e6686afc998948b18a92e04dac1b8
3c48448c4a38e48f41a4cf2de85f1452
f37ca279b70c0a662598b5e8431c21d9
3755c0cfdb77e29f2b9125d7a45dd316
2d1d2c646dc488aab103b764defd70ef
1e1cd29c330429b8a4d13038bf927ac5
8e6ed856c2ce3544a00137f4e016e7b3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB
repository.mail.fl_str_mv repositorio@unab.edu.co
_version_ 1814277767348355072
spelling Macías Villalba, Gloria Inésc687d25c-1560-42e9-af06-aba79b6d6429Jaramillo Blanco, Claudia Marcela681a9397-4b8d-4459-ac15-926555ce4236Macías Villalba, Gloria Inés [0000290980]Macías Villalba, Gloria Inés [_XmXMLUAAAAJ]Macías Villalba, Gloria Inés [0000-0001-5897-181X]San Gil (Santander, Colombia2014UNAB Campus Bucaramanga2021-10-11T13:18:23Z2021-10-11T13:18:23Z2014http://hdl.handle.net/20.500.12749/14608instname:Universidad Autónoma de Bucaramanga - UNABreponame:Repositorio Institucional UNABrepourl:https://repository.unab.edu.coMientras que el acuerdo de Basilea II ha sido aplicado en la mayor parte del mundo, siguen existiendo muchas discrepancias aun en las técnicas avanzadas de modelos de riesgos operacionales que se usan en grandes bancos internacionales. Una de las familias de modelos de distribución de perdidas agregadas, uno de ellos es el LDA, que se enfoca en observar los eventos pasados de las perdidas externas y otro en las técnicas basadas en escenarios que usan opiniones subjetivas de expertos como punto de inicio para determinar el requerimiento de capital regulatorio que se usa para cubrir los riesgos operacionales. El mayor reto metodológico es combinar las dos técnicas de tal manera que cumplan los requerimientos de Basilea II. En este capítulo discutiremos e investigaremos el uso de varias alternativas para modelar una opinión experta que suene de una manera estadística tanto como se permita para posteriormente integrarlo con distribución de perdidas, equipado con datos internos y/o externos, un ejemplo numérico, soporte el análisis y muestre que existen soluciones para difundir la información que surja de ambas fuentes.Fundación Universitaria San Gil UNISANGILCAPITULO 1 MODELO DE RIESGO OPERACIONAL BASADO EN LA OPINION DE MULTIPLES EXPERTOS ABSTRACTO INTRODUCCION 1.2 PANORAMA GENERAL DE LOS MODELOS AMA • 1.2.1 Enfoque de Distribución de Pérdidas • 1.2.2 AMA Basados en Escenarios • 1.2.3 Integración de LDA y sbAMA 1.3 USANDO OPINIONES DE EXPERTOS PARA MODELAR RIESGO OPERACIONAL: UN CASO PRACTICO DE NEGOCIO 1.4 COMBINACIÓN DE LAS OPINIONES DE LOS EXPERTOS 1.5 MODELO SUPRA-BAYESIANO PARA MODELAJE DE RIESGO OPERACIONAL • 1.5.1 Modelo • 1.5.2 Ilustración del Modelo 1.6 CONCLUSIONES CAPITULO 2 CONSISTENTE MEDICIÓN CUANTITATIVA DEL RIESGO OPERACIONAL ABSTRACTO 2.1 INTRODUCCION 2.2 PRÁCTICAS ACTUALES DE MEDICIÓN DEL RIESGO OPERACIONAL Y ENFOQUES REGULATORIOS. • RECUADRO 2.1 GESTIÓN DEL RIESGO OPERACIONAL (ORM). • RECUADRO 2.2 EVOLUCIÓN DEL MARCO SUFICIENCIA DE CAPITAL POR RIESGO OPERACIONAL AVANZADO. 2.3 RETOS PRINCIPALES DE MEDICIÓN LDA • 2.3.1 Deficiencias de la cuantificación de las Metodologías para las estimaciones de LDA • Efecto del momento de pérdida • EVT y GHD: El enfoque más común para la revisión de LDA • Riesgo Operacional como un proceso dinámico y el papel de las superposiciones Cualitativas • 2.3.2 Deficiencias de LDA que presenta la recogida de datos: Sistemas ORM y Características de los datos • Fuentes y agrupamiento de datos internos y la pérdida de datos externos • Efectos de perdidas frecuentes • Efectos de la frecuencia en la pérdidas esperadas • Efecto de la frecuencia sobre la pérdida de la pérdida inesperada • RECUADRO 2.3 INCONSISTENCIAS DE CAPITAL REGULATORIO DEL NUEVO ACUERDO DE BASILEA • Ajuste de Capital de Riesgo Operacional Estimada bajo AMA • Inicio para presentan el reconocimiento el bajo AMA CAPITULO 5 IDENTIFICAR Y MITIGAR LOS RIESGOS PERCIBIDOS EN LA CADENA DE SERVICIOS DEL BANCO: UN NUEVO ESFUERZO DE FORMALIZACIÓN PARA ABORDAR LA NATURALEZA HETEROGÉNEA DE SERVICIOS BASADOS EN CONOCIMIENTO DE INTANGIBLES. • ABSTRACTO • 5.1 INTRODUCCIÓN • 5.2 BANCOS EN LA ERA POST-SUBPRIME: UN SECTOR IMPORTANTE EN LA CRISIS • 5.3 CONCEPTO DE RIESGO PERCIBIDO: REVISIÓN DE LA LITERATURA • 5.4 SERVICIO DE CADENA DEL BANCO: CADENA DE LOS SERVICIOS Y EVENTOS DE RIESGO • 5.4.1 Proceso de compra del consumidor: diseñando estrategias de inversión • 5.4.2 Montaje de Vehículos de Inversión: La elección Los intermediarios • 5.4.3 Gestión de la incertidumbre • 5.5 SISTEMA DE CONTROL DISEÑADA PARA HACER FRENTE A LA NATURALEZA INTANGIBLE DE RIESGOS DE SERVICIO • 5.6 APLICACIÓN DEL MODELO TEID: EL CASO SOCGEN • 5.7 CONCLUSIONES PARTE 2 CAPITULO 8 IMPORTANTES TÉCNICAS DE MUESTREO PARA LA ESTIMACIÓN DEL GRAN CUANTIL EN EL MÉTODO DE MEDICIÓN AVANZADA. • ABSTRACTO • 8.1 INTRODUCCIÓN • 8.2 PRELIMINARES: POISSON MEZCLAS Y MUESTREO IMPORTANCIA • 8.2.1 Las distribuciones de la pérdida en el Método de Medición Avanzada • 8.2.2 Importancia de muestreo y Cruce entrópico • 8.2.3 Distribuciones de cola pesada para muestreo de importancia • 8.2.4 La elección de la densidad Instrumental • 8.3 CASO DE COLA MODERADAMENTE PESADA: REGISTRO NORMAL DE GRAVEDAD • 8.3.1 Enfoque Mezcla Defensivo • 8.3.2 Enfoque Estándar del cruce entrópico • 8.4 CASO DE COLA PESADA: SEVERIDAD DE PARETO • 8.4.1 Enfoque de defensa mixta • 8.5 RESULTADOS DE LA SIMULACIÓN • 8.5.1 Iniciar normales Severidad • 8.5.2 Severidad de Pareto • 8.6 CONCLUSIONES CAPITULO 10 MODELOS MULTIVARIANTES PARA RIESGO OPERACIONAL: UN ENFOQUE USANDO LA TEORÍA DE VALOR EXTREMO Y MODELOS DE CHOQUE DE POISSON • ABSTRACTO • 10.1 INTRODUCCIÓN • 10.2 ENFOQUE STANDARD LDA • 10.2.1 Modelo de Frecuencia • 10.2.2 Modelo de Severidad • 10.2.3 Agravando por el método de monte Carlo • 10.3 AGREGACIÓN VIA CÓPULA • 10.3.1 Estimación de cópulas con discretos Distribuciones • 10.3.2 Agregación de Procedimiento canónico para el Uso de cópulas • 10.3.3 Modelo de Choque de Poisson • 10.4 ANÁLISIS EMPÍRICO • 10.5 CONCLUSIÓN PARTE 3 CAPITULO 12 ADMINISTRACIÓN Y MITIGACIÓN DEL RIESGO OPERACIONAL • ABSTRACTO • 12.1 INTRODUCCIÓN • 12.2 ALCANCE LIMITADO DE GESTIÓN DEL RIESGO OPERACIONAL BAJO BASILEA II • 12.3 PERSPECTIVA DE GESTIÓN EN LA GESTIÓN DEL RIESGO OPERACIONAL • 12.4 RENDICIÓN DE GESTIÓN DEL RIESGO OPERACIONAL OPERACIONALMENTE MANEJABLE • 12.4.1 Implementación de la administración del riesgo operativo en la vida real para el Medio Ambiente • 12.4.2 Compensación de las posibles carencias de la vida real de las Gestión de riesgo operativo. • 12.4.3 Asignación de responsabilidades para la gestión de riesgo operativo. • 12.5 RECOMENDACIONES Y PERSPECTIVAS CAPITULO 14 SEGUROS DE RIESGO OPERACIONAL COMO GENERADOR DE VALOR NETO • ABSTRACTO • 14.1 INTRODUCCIÓN • 14.2 TRATAMIENTO DE LOS CONCEPTOS DE LA CATEGORÍA DE SEGURO BAJO BASILEA II • 14.3 QUE ABARCA, EN CONCEPTOS DE SEGUROS PARA LA GESTIÓN RIESGO OPERATIVO • 14.3.1 Los avances a la aceptación de los Mercados Eficientes • 14.3.2 Explicación de los Enfoques Bajo La hipótesis de Mercados ineficientes • 14.4 RIESGO, COSTO DE CAPITAL, Y VALOR DEL ACCIONISTA • 14.4.1 Valor de empresa y los costos de capital en los mercados eficientes • 14.4.2 Modelo Crítico • 14.4.3 Derivado del precio realista del costo de capital • 14.4.4 Otras consecuencias de la ineficiencia de los mercados de capitales • 14.5 OPTIMIZACIÓN DEL COSTO TOTAL DE RIESGO • 14.5.1 Evaluación del Costo Total de Riesgo • 14.5.2 Manejo del costo total de Riesgo • 14.5.3 Optimización Costo Total de Riesgo: Un enfoque por fases • 14.6 CONCLUSIONES, RECOMENDACIONES Y PERSPECTIVAS PARA MÁS INVESTIGACIÓN • 15 CONCLUSIONES PERSONALESPregradoWhile the Basel II accord has been applied in most parts of the world, many discrepancies remain even in advanced operational risk modeling techniques used by large international banks. One of the families of aggregate loss distribution models, one of them is the LDA, which focuses on observing past events of external losses and another on scenario-based techniques that use subjective opinions of experts as a starting point for determine the regulatory capital requirement that is used to cover operational risks. The biggest methodological challenge is to combine the two techniques in such a way that they meet the requirements of Basel II. In this chapter we will discuss and investigate the use of various alternatives to model an expert opinion that sounds in a statistical way as much as it is allowed to later integrate it with distribution of losses, equipped with internal and / or external data, a numerical example, support the analysis and show that there are solutions to disseminate information from both sources.Modalidad Presencialapplication/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)Atribución-NoComercial-SinDerivadas 2.5 Colombiahttp://purl.org/coar/access_right/c_abf2El lenguaje del riesgo operativo aplicado a entidades bancarias y cooperativas financieras en Colombia, tomado del libro “Operational risk toward basel III: Best prácticas and issues in modeling, managment and regulation” del autor Greg N. GregoriouThe language of operational risk applied to banks and financial cooperatives in Colombia, taken from the book "Operational risk toward basel III: best practices and issues in modeling, management and regulation" by the author Greg N. GregoriouIngeniero financieroUniversidad Autónoma de Bucaramanga UNABFacultad Economía y NegociosPregrado Ingeniería Financierainfo:eu-repo/semantics/bachelorThesisTrabajo de Gradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/redcol/resource_type/TPFinancial engineeringFinancial analysisFinancial managenmentInvestigationRisk modelsEconomyCapital measurementYieldsExternal lossesProbabilitiesBank operationsFinancial marketAnálisis financieroGestión financieraIngeniería financieraInvestigaciónProbabilidadesOperaciones bancariasMercado financieroModelos de riesgosEconomíaMedición de capitalRendimientosPerdidas externasLibro: Operacional Risk Toward Basel III, Best Practices and Issues in Modeling, Management, and Regulation.Greg N. Gregoriou.Alderweireld, T., J Garcia and l.leonard.2006. A practical operational risk scenario analysis quantification. Risk 19,no 2: 93–95.Alexander,c.2003. Operational risk: regulation analysis and management. London: prentice hall-ft.Implementing a basel ii scenario-based ama for operational risk. in the basel hand book, (Ed) .k.ong. london: risk books.Aue,f.,andm.kalkbrener.2006. Lda at work: deutsche bank’s approach to quantifying operational risk. Jjournal of operational risk 1, no. 4:49–93.Bakker,m.r.a.2004. Quantifying operational risk with in banks according to basel II. master’sthesis. Delft institute of applied mathematics, delft, netherlands.Bayes,t.1783. An essay towards solving problemin the doctrine of chances. philosophical transactions of the royal society 53:370–418.Basel committee on banking supervision.2005. Basel ii: international convergence of capital measurement and capital standards—a revised framework. basel committee publications no.107, bank for international settlements, basel, switzerland.Chapelle, a y. crama, g.h¨ ubner, and j.-p.peters.2008. Practical methods for measuring and managing operational risk in the financial sector: a clinical study. Journal of banking and finance 32,no.6:1049–1061.Chavez-demoulin,v.,p.embrechts,andj.neslehova.2006. Quantitative models for operational risk: extremes, dependence and aggregation. journal of banking and finance 30,no.10:2635–2658Clemen,R.T.,andR.L.Winkler.2007. Aggregating probability distributions. In Advances in decision analysis: From foundations to applications, ed.R.F. Miles and D. von Winter feldt. NewYork: Cambridge University Press.Cooke,R.M.1991. Experts inuncertainty. New York: Oxford University Press.Crama, Y.,G.H¨ ubner,andJ.-P.Peters.2007. Impact of the collection threshold on the determination of the capital charge for operational risk. In Advances in Risk Management, ed. G. Gregoriou. London: Palgrave-MacMillan.Cruz,M.G.2002. Modeling, Measuring and hedging operational risk. Hoboken, NJ: John Wiley & Sons.Daneshkhah,A.R.2004. Psychological aspects influencing elicitation of subjective probability. Workingpaper, University of Sheffield, U.K.DiClemente,A.,andC.Romano.2004. A copula–extremevaluetheoryapproachfor modeling operational risk, In Operational risk modeling and analysis: Theory And practice, ed. M. Cruz. London: Risk Books.Fellner,W.1965. Probability and profits. Home wood, IL: Irwin.Figini,S.,P.Guidici,P.Uberti,andA.Sanyal.2007. A statistical methodto optimize the combination of internal and external data in operational risk measurement. Journal of Operational Risk 2,no.4:87–99.Frachot,A.,P.Georges,andT.Roncalli.2001. Loss distribution approach for operational risk. Working paper ,Groupe de Recherche Op´erationnelle, Cr´ edit Lyonnais, Paris.French,S.1985. Group consensus probability distributions: A critical survey. In Bayesian statistics 2, ed.J.M.Bernardo, M.H.DeGroot, D.V. Lindley, and A.F. M. Smith, Amsterdam: North-Holland.FinancialSupervisoryAuthority.2005. AMA soundness standard. Working paper. FSA AMA Quantitative Expert Group, London.Garthwaite,P.H.,J.B.Kadane,andA.O’Hagan.2005. Statistical methods for eliciting probability distributions. Journal of the American Statistical Association 100,no. 470:680–700.Gelfand,A.E.,B.K.Mallick,andD.K.Dey.1995. Modeling expert opinion a rising as a partial probabilistic specification. Journal of the American Statistical Association 90,no.430:598–604.Genest,C.,andK.J.McConway.1990. Allocating the weights in the lineal opinion pool. Journal of Forecasting 9,no.1:53–73.Genest,C.,andM.J.Schervish.1985. Modeling expert judgments for Bayesian updating. Annals of Statistics 13,no.3:1198 1212.Genest,C.,andJ.V.Zidek.1986. Combining probability distributions: A critique and annotated bibliography. Statistical Science 1,no.1:114–148.Hogarth,R.M.(1975) Cognitive processes and the assessment of subjective probability distributions. Journal of the American Statistical Association 70,no. 350:271–294.Kahneman,D.,P.Slovic,andA.Tversky.1982. Judgment under uncertainty: Heuristics and bases. Cambridge: Cambridge University Press.Keeney,D.,andH.Raiffa.1976. Decisions with multiple objectives: Preferences and value trade –offs .New York: John Wiley & Sons.King,J.L.2001. Operational risk: Measurement and modeling. New York: John Wiley &Sons.Lambrigger, D.,P. Shevchenko ,and M.W¨ uthrich.2007. The quantification of op erationa lrisk using internal data, relevant external data and expert opinions. Journal of Operational Risk 2,no.3:3–27.Lindley,D.V.1983. Reconciliation of probability distributions. Operations Research 31,no.5:866–880.Morris,P.A.1974. Decision analysis expertuse. Managemen tScience 20,no. 9:1233–1241.Moscadelli,M.2004. The modeling of operational risk: Experience with the analysis of the data collected by the Basel Committee.Workingpaper517,Bancad’Italia,Rome.O’Hagan,A.1998. Eliciting expert beliefs in substantial practical applications. The Statistician 47,no.1:21 35.Pahlman,M.,andA.Riabacke.2005. A study on framing effects in risk elicitation. Proceedings of the International Conference on computational intelligence for modelling, control and automation 1,no.2:689–694,Vienna,Austria.Plous,S.1993. The psychology of judgment and decision making. New York: McGraw-Hill.sbAMAWorkingGroup.2003. Scenario-based AMA. Working paper, London.Steinhoff,C.,andR.Baule.2006. HowtovalidateOpRiskdistributions. Op Risk And Compliance 1,no.8:36–39.Tversky,A.,andD.Kahneman.1974. Judgment under uncertainty: Heuristicsand biases. Science 185,no.4157:1124–1131.West,M.1988. Modelling expert opinion. In Bayesian statistics 3,ed.J.M. Bernardo, M.H. De Groot ,D. V. Lindley, and A.F .M .Smith. Amsterdam: North-Holland.West,M.,andJ.Crosse.1992. Modelling probabilistic agent opinion. Journal of the Royal StatisticalSociety, Series B ,545, no.1:285–299.Winkler,R.L.1967. The assessment of prior distributions in Bayesian analysis. Journal of the American Statistical Association 62,no.319:776–800.Winkler,R.L.1968. The consensus of subjective probability distributions. Management Science 15,no.2:361–375.Alexander,C.2003. Operational risk: Regulation, analysis and management. London: Financial Times / Prentice - Hall.Capital standards: Proposed interagency supervisory guidance for banks that would operate under proposed new Base lII framework. U.S.FedNews, February28, 2007.Balkema, A.A.,andL.deHaan.1974. Residual life time at greatage. Annals of Probability 2,no.5:792–804.Banerjee,S.,andB.Kulwinder.2005. Managing operational risk: Framework for financial institutions .Workingpaper, A. B Freeman Schoolof Business, Tulane University, New Orleans.Basel Committee on Banking Supervision.1998. Operational risk management. BCBS Publication sNo. 42. Bank for International Settlements (September). www.bis.org/publ/bcbs42.htm.Basel Committee on Banking Supervision. 1999. A new capital adequacy framework. BCBS Publications No.50. Bank for International Settlements(June). www.bis.org/publ/bcbs50.htm.Basel Committee on Banking Supervision. 2001a. Sound practices for the management and supervision of operational risk. BCBS Publications Bank for International Settlements (December).www.bis.org/publ/bcbs86.htm.Basel Committee on Banking Supervision.2001b. Working paper on the regulatory treatment of operationa lrisk. BCBS Publications No.8. Bank for International Settlements(September).www.bis.org/publ/bcbs wp8.pdf.Basel Committee on Banking Supervision.2001c. Consultative document— Operational risk (Supporting document to the New Basel Capital Accord .BCBS Publications (Consultative Document)No.7.BankforInternationalSettlements (January).www.bis.org/publ/bcbsca07.pdf.Basel Committee on Banking Supervision.2001d. Consultative document— Operational risk (Supporting document to the New Basel Capital Accord). BCBS Publications (Consultative Document)No.7. Bank for International Settlements(January).www.bis.org/publ/bcbsca07.pdf.Basel Committee on Banking Supervision. 2002. Sound practices for the management and supervision on of operational risk .BCBS Publications No.91.Bank for International Settlements (July).www.bis.org/publ/bcbs91.htm.BaselCommitteeonBankingSupervision.2003a. Operational risk transfer across financial sectors. Joint Forum Paper, Bank for International Settlements(August). www.bis.org/publ/joint06.htm.Basel Committee on Banking Supervision.2003b. Sound practices for the management and supervision of operational risk. BCBS PublicationsNo.96.Bank for International Settlements (February).www.bis.org/publ/bcbs96.htm.Basel Committee on Banking Supervision.2004a. International convergence of capital measurement and capital standards: Are vised framework. BCBS Publications No.107. Bank for International Settlements (June).www.bis.org/ Publ / bcbs107.htm.Basel Committee on Banking Supervision.2004b. Principles for the home host recognition of AMA operational risk capital. BCBS Publications No.106, Bank for International Settlements (January). www.bis.org/publ/bcbs106.htm.Basel Committee on Banking Supervision.2005a. Basel II :I nternational convergence of capital measurement and capital standards : A revised framework. BCBS Publications No.118. Bank for International Settlements(November). www.bis.org/publ/bcbs118.htm.Basel Committee on Banking Supervision.2006a. Observed Range of Practice in Key Elements of Advanced Measurement Approaches (AMA). BCBS Publications No.131, Bank for International Settlements (October).www.bis.org/ Publ /bcbs131. htm.Basel Committee on Banking Supervision.2006b. Basel II: International convergence of capital measurement and capital standards: A revised framework— Comprehensive version. BCBSPublicationsNo.128 .Bank for International Settlements (June). www.bis.org/publ/bcbs128.htm.Basel Committee on Banking Supervision.2007. Principles for home-host supervisory cooperation and allocation mechanisms in the context of advanced measurement approaches (AMA)— Consultative document. Bank for International Settlements, Basel, Switzerland. Bjorn,B.J.,andM.Hubert.2004. A robust estimator of the tailind ex based on an exponential regression model .In Theory and applications of recent robust methods, eds.Hubert,M.,Pison,G.,Struyf,A.andS.VanAelst, Vol.10.Basel, Switzerland:Birkh¨ auser.www.wis.kuleuven.ac.be/stat/Papers/ tailindexICORS2003.pdf.Castillo,E.,andS.H.Ali.1997. Fitting the generalized Pareto distribution to data. Journal of the American Statistical Association 92,no.440:1609–1620.Coleman,R.,andM.Cruz.1999. Operational risk measurement and pricing. Derivatives Week 8,no.30:5–6.Coles,S.G.,J.Heffernan,andT.A.Jonathan.1999. Dependence measures for extreme value analyses. Extremes 2,No.4:339–365.Coles,StuartG.2001. An introduction to statistical modellingin extreme values. London:Springer-Verlag.Crouhy,M.,D.Galai,andR.M.Mark.2004. Insuring versus self-insuring operational risk: View points of depositors and share holders. Journal of Derivatives 12,no.2:51–55.Cruz,M.,R.Coleman,andS.Gerry.1998. Modeling and measuring operational risk. JournalofRisk 1,no.1:63–72.Currie,C.V.2004. Basel II and operational risk—Over view of key concerns. Workingpaper134(March).School of Finance and Economics, University of Technology ,Sydney.Currie,C.V.2005. A test of the strategic effect of Basel II operational risk requirements on banks. Workingpaper143(September).School of Finance and Economics, University of Technology, Sydney.De Fontnouvelle,P.2005. The 2004 loss data collection exercise. Presentation at the Implementing an AMA for Operational Risk conference of the Federal Reserve Bank of Boston(May19). www.bos.frb.org/bankinfo/conevent/oprisk2005/defontnouvelle.pdf.De Fontnouvelle P.,E.S. Rosengren, and J.S.Jordan.2004. Implications of alternative operational risk modeling techniques. SSRN workingpaper (June). http://papers.ssrn.com/sol3/papers.cfm?abstract id=556823.Degen,M.,P.Embrechts,andL.D.Dominik.2006. The quantitative modeling of operational risk: Between g-and-h and EVT. Working paper, Swiss Institute of Technology(ETH),Zurich.Dekkers,ArnoldL. M.,John H.J.Einmahl,and Laurens de Haan.1989. A moment estimator for the index of an extreme-value distribution. Annals of Statistics 17:1833–1855.Drees,Holger.1995. Refined Pick and sestimators of the extreme value index. Annals of Statistics 32,no.1:2059–2080.Drees, Holger, Laurens de Haan, and R .Sidney.1998. How to make a hillplot. Discussion paper, Timbergen Institute, Erasmus University, Rotterdam.Dutta,KabirK.,andJ.Perry.2006. Ataleoftails:An empirical analysis of loss distribution models for estimating operational risk capital. Working paper06–13. Federal Reserve Bank of Boston(July).Embrechts,P.2000. Extreme value theory:Potential and limitations as an integrated risk managementtool. Derivatives Use, Trading & Regulation 6,no.2:449–456.Embrechts ,P., C.Kl ¨ uppelberg,andT.Mikosch.1997. Modelling extreme al events for insurance and finance. Heidelberg, Germany: Springer-Verlag.Falk,M.,J.H¨ usler,andR.Rolf-Dieter.1994. Laws of small numbers: Extremes and rareevents. DMV-Seminar, Birkh¨ auser,Basel.Federal Reserve Board.2006a. Federal Reserve statistical release—Aggregatere serves of depository institutions and the monetary base.Washington,DC. www.federalreserve.gov/releases/h3/20050120. Federal Reserve Board.2006b. Fourth quantitative impact study2006. Washington, DC.www.federalreserve.gov/boarddocs/bcreg/2006/20060224/.Fisher,R.A.,andL.H.C.Tippett.1928. Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proceedings of the Cambridge Philosophical Society 4,no.2:180–190.Grody,A.D.,F.C.Harmantzis,andK.J.Gregory.2005. Operational risk and reference data:Exploring costs, capital requirements and risk mitigation.”Working paper(November),Stevens Institute of Technology,Hoboken,NJ. Hill,B.M.1975.A simple general approach to inference about the tail of a distribution. Annals of Statistics 3,no.5:1163–1174.Hoaglin,D.C.1985. Summarizing shape numerically: The g-and-h distributions. In Exploring datatables, trend, and shapes, ed. D.C. Hoaglin F. Mosteller,and J.W.Tukey. New York: JohnWiley&Sons.Jenkinson,A.F.1955. The frequency distribution of the annual maximum(orminimum) values of meteorological elements. Quarterly Journal of the Royal Meteorology Society No.87:145–158.Jobst,A.A.2007a. It’sallin the data—Consistent operational risk measurement and regulation. Journal of Financial Regulation and Compliance 15,no.4:423– 449.Jobst,A.A.2007b. Operational risk—The stingis still in the tail but the poison depends on the dose. Journal of Operational Risk 2,no.2:1–56.Jobst,A.A.2007c. The regulation of operational risk under the new Basel Capital Accord—Criticalissues. International Journal of Banking Law and Regulation 21,no.5:249–273.Jobst,A.A.2007d. The treatment of operational risk under the new Basel Framework—Critical issues. Journal of Banking Regulation 8,no.4:316–352.Kotz,S.,andN.Saralees.2000. Extreme value distributions. London: Imperial College Press.Larsen,P.T.,andG.Krishna.2006. US banks seek looser Basel II rules. Financial Times of London, August 3.Leippold,Markus,and P.Vanini.2003. The quantification of operational risk.SSRN Workingpaper(November).Makarov,M.2006. Extreme value theory and high quantile convergence. Journal Of Operational Risk 1,no.2:51–57.Martinez,J.,andB.Iglewicz.1984. Some properties of the Tukeyg and h family of distributions. Communications in Statistics—Theory and Methods 13,no.3:353–369.Matz,L.2005. Measuring operational risk:A rewetaxIIng down the wrong runways? Bank Accounting and Finance 18,no.2–3:3–6,47.McCulloch,J.H.1996. Simple consistent estimators of stable distribution parameters. Communications in Statistics—Simulations 15,no.4:1109–1136.McNeil,A.J.,andS.Thomas.1997. The peak over thresholds method for estimating high quantiles of loss distributions. Swiss Institute of Technology(ETH),Zurich.Mignola,G.,andR.Ugoccioni.2005. Tests of extreme value theory. Operational Risk &Compliance 6,no.10:32–35.Mignola,G.,andR.Ugoccioni.2006. Sources of uncertainty in modeling operational risk losses. Journal of Operational Risk 1,no.2:33–50.Mittnick,S.,andR.T.Svetlozar.1996. Tail estimation of the stable index. Applied Mathematic Letters 9,no.3:53–56.Moscadelli,M.2004. The modeling of operational risk: Experience with the data collected by the Basel Committee. In Operational risk: Practical approaches to implementation, in E.Davis. London: , Incisive Media Ltd.Neˇ slehov´ a,J.,P.Embrechts,andValerieC-Demoulin.2006. Infiniteme an models and the LDA for operational risk. Journal of Operational Risk 1,no.1:3–25.O’Dell, Mark.2005. Quantitative impact study4:Preliminary results—AMA frame- work. Presentation at the Implementing an AMA for Operational Risk conference of the Federal Reserve Bank of Boston(May19).www.bos.frb.org/ bankinfo/ conevent/oprisk2005/odell.pdf.Office of the Comptroller of the Currency, the Board of Governors of the Federal ,the Federal Deposit Insurance Corporation, and the Office of Thrift Supervision.2003. Operational risk advanced measurement approaches For regulatory Capital. Joint Supervisory GuidanceJuly2).www.federalreserve.gov/BoardDocs/Press/bcreg/2006/20060206/attachment.pdf Pickands,J.19.Statistical Inference Using Extreme Order Statistics. Annals of Statistics 3,no.1:119–131. Pickands,J.1981.Pickands,J.1981. Multivariate extreme value distributions. London: Imperial College Press. Poon,S.-H.,M.Rockinger,andT.Jonathan.2003. Extreme Value dependen cein financial markets:Diagnostics,models,and financial implications. Review of Financial Studies 17,no.2:581–610.Reiss,R.-D.,andT.Michael.1997. Statistical analysis of extreme values. Basel Switzerland: Birkh¨ a user.Resnick,S.I.,andS.Catalin.1997a. Asymptotic behavior of Hill’s estimator for auto regressive data. Stochastic Models 13,no.4:703–723.Resnick,S.I.,andS.Catalin.1997b. Smoothing the Hill estimator. Advances in Applied Probability 9,no.1:271–293.Rootz´ en,H.,andT.Nader.1997. Extreme value statistics and windstorm losses: A case study. Scandinavian Actuarial Journal 1,no.2:70–94.Seivold,A.,S.Leifer,andU.Scott.2006. Operational risk management: An evolving discipline. SupervisoryI nsights. Federal Deposit Insurance Corporation. www.fdic.gov/regulations/examinations/supervisory/insights/sisum06/article01 risk.html.Stephenson,A.G.2002. EVD: Extreme value distributions. R News 2,no.2:31–32. http://CRAN.R-project.ortg.org/doc/Rnews/.Tukey,J.W.1977. Exploratory data analysis. Reading, MA: Addison-Wesley.Zamorski,M.J.2003. Joint supervisory guidance on operational risk advanced measurement approaches for regulatory capital—Boardmemorandum. Federal Deposit Insurance Corporation, Division of Supervision and Consumer Protection(July).www.fdic.gov/regulations/laws/publiccomments/basel/boardmem-oprisk.pdf.Bebko,C.P.2000. Service in tangibility and its impact on consumer expectations of Service quality. Journal of Services Marketing 14,no.1:9–26.Bettman,J.R.1973. Perceived risk and its components: A model and empirical test. Journal of Marketing Research 10,no.2:184–190.Bitner,M.J.,B.H.Booms,andM.S.Tetreault.1990. The service encounter: Diagnosing favorable and unfavorable incidents. Journal of Marketing 54,no.1:71–84.Booms,B.,andM.Bitner.1981. Marketing strategies and organization structures for service firms.In Marketing of services, ed.J. Donnelly and W. George .Chicago, IL : American Marketing Association.Boshoff, C. R. 1997. An experimental study of service recovery options. International Journal of Service Industry Management8, no. 2:110–130.Cunningham, L. F., J. Gerlach, and M. D. Harper. 2004. Assessing perceived risk of consumers in internet airline reservations services, Journal of Air Transportation 9, no. 1:21–35.Debely, J., M. Dubosson, and E. Fragni` ere. 2006. The travel agent: Delivering more value by becoming an operational risk manager. Proceedings of the La Londe9th International Research Seminar in Service Management, June, 178–203.Debely, J., M. Dubosson, and E. Fragni`ere. 2007. The pricing of knowledge-based services: Insights from the environmental sciences. New Delhi 2nd International Conference on Services Management, June. Available at SSRN: http://ssrn.com/abstract=951651. To appear in the Journal of Services Research.Debely, J., M. Dubosson, and E. Fragniere. 2007. The consequences of information overload in knowledge based service economies. ESSHRA Conference proceedings, June 12–13, Berne, Switzerland. Available at SSRN: http://ssrn.com/abstract=999525.Denton, D. K. 2001. Better decisions with less information. Industrial Management43, no. 4:21–25.Dowling, G. R., and R. Staelin. 1994. A model of perceived risk and risk-handling activities. Journal of Consumer Research21, no. 1:119–134.Dubosson, M., E. Fragni` ere, and B. Millet. 2006. A control system designed to address the intangible nature of service risks. Proceedings of the Shangai IEEE International Conference on Service Operations and Logistics, and Informatics, Shanghai. June.Eavis, P., and D. Enrich. 2008. Skunk at the bank party; Danger still lurks in balance sheets while stocks soar. Wall Street Journal(Eastern Edition), April 2, 2.Engel, J. F., R. D. Blackwell, and P. W. Miniard. 1993. Consumer behavior. Chicago: Dryden Press. Finance and economics: Down theMatterhorn; Investment Banking. 2007. The Economist. July 14, 83.Finn, A. 1985. A theory of the consumer evaluation process for new product concepts. Research in Consumer Behavior1, no. 2:35–65.Fragni` ere, E. and G. Sullivan. 2007. Risk management. Boston: Thomson Publishers.Gr¨onroos, C. 1984. A service quality model and its marketing implications. European Journal of Marketing18, 40:36–44.Guiltinan, J. P. 1987. The price bundling of services: A normative framework Journal of Marketing51, no. 2:74–85.Guseman, D. S. 1981. Risk perception and risk reduction in consumer services. In Marketing of services, ed. J. H. Donnelly. et al. (Chicago: American Marketing Association.Havelena, W. J., and W. S. DeSarbo. 1990. On the measurement of perceived consumer risk. Decision Sciences22, no. 4:927–939.Heylighen, F. 2002. Complexity and information overload in society: Why increasing efficiency leads to decreasing control. Draft paper, April 12. Brussels: CLEA, Free University of Brussels.Heskett, J., W. Sasser, and C. Hart. 1990. Service breakthroughs: Changing the rules of the game. New York: Free Press.Horton, R. L. 1976. The structure of decision risk: Some further progress. Journal of the Academy of Marketing Science4, no. 4:694–706.Jacoby, J., and L. Kaplan. 1972. The components of perceived risk. In Proceedings 3rd Annual Conference Association for Consumer Research, ed. M. Venkatesan Chicago: Association for Consumer Research.Johnson, D. L., and I. R. Andrews. 1971. Risky-shift phenomenon as tested with consumer products as stimuli. Journal of Personality and Social Psychology20, no. 3:328–385.Karmarkar, U. S., and R. Pitbladdo. 1995. Service markets and competition. Journal of Operations Management12, no. 4:397–412.Laroche, M., J. Bergeron, and C. Goutaland. 2001. A three-dimensional scale of intangibility. Journal of Service Research4, no. 1:26–38.Laroche, M., J. Bergeron, and C. Goutaland. 2003. How intangibility affects perceived risk: The moderating role of knowledge and involvement. Journal ofServices Marketing17, no. 2:122–140.Laroche, M., G. H. G. McDougall, J. Bergeron, and Z. Yang. 2004. Exploring how intangibility affects perceived risk. Journal of Service Research6, no. 4: 373–389.Mayer, K. J., J. T. Bowen, and M. R. Moulton. 2003 A proposed model of the descriptors of service process. Journal of Services Marketing17, no. 6:621–639.McDougall, G. H. G., and D. W. Snetsinger. 1990. The intangibility of services: Measurement and competitive perspectives. Journal of Services Marketing 4, no. 4:27–40.Meuter, M. L., A. L. Ostorm, R. I. Roundtree, and M. J. Bitner. 2000. Self-service technologies: Understanding customer satisfaction with technology-based service encounters.Journal of Marketing64, no. 3:50–64.Mijuk, G., and A. Bradbery. 2008. Credit Suisse move hikes sector pricing concerns.Dow Jones Newswires, February 19.Mitchell, V. W. 1998. A role for consumer risk perceptions in grocery retailing.British Food Journal100, no. 4:171–183.Mitchell, V. W. 1999. A role for consumer risk perceptions in grocery retailing.British Food Journal100, no. 1–2:163–195.Mitchell, V. W., and P. Boustani. 1994 A preliminary investigation into pre- and post-purchase risk perception and reduction. European Journal of Marketing 28, no. 1:56–71.Mitchell, V. W., and M. Greatorex. 1993. Risk perception and reduction in thepurchase of consumer services. Service Industries Journal13, no. 4:179–200.Mitchell, V. W. and G. S. Prince. 1993. Retailing to experienced and inexperienced consumers: A perceived risk approach. International Journal of Retail & Distribution Management12, no. 5:10–21.Mitra, K., M. Reiss, and L. Capella. 1999. An examination of perceived risk, information search and behavioral intentions in search, experience and credence services. Journal of Services Marketing13, no. 3:208–228.Mollenkamp, C., and M. Whitehouse. 2008. Banks fear a deepening of turmoil. Wall Street Journal(Eastern Edition), March 17, A1.Murray, K. B., and J. L. Schlacter. 1990. The impact of services versus goods on consumers’ assessment of perceived risk. Journal of the Academy of Marketing Science8, no. 1:51–65.Next year’s model? Risk management. 2008. The Economist, March 1, 15.Parasuraman, A., V. A. Zeithaml, and L. L. Berry. 1985. A conceptual model of service quality and its implications for future research. Journal of Marketing 49, no. 4:41–50.Park, W. C., D. L. Mothersbaugh, and L. Feick. 1994. Consumer knowledge assessment. Journal of Consumer Research21, no. 1:71–82.Peter, J. P., and M. J. Ryan. 1976. An investigation of perceived risk at the brand level. Journal of Marketing Research13, no. 2:184–188.Pruitt, D. G. 1971. Conclusions: Towards an understanding of choice shifts in group discussion. Journal of Personality and Social Psychology20, no. 3:495–510.Roselius, T. 1971. Consumer rankings of risk reduction methods. Journal of Marketing35, no. 1:56–61.Ross, I. 1975. Perceived risk and consumer behavior: A critical review. Conference of the American Marketing Association1, no. 1:19–23.Slovic, P., and S. Lichtenstein. 1986. Relative importance of probabilities and payoff in risk taking. Journal of Experimental Psychology Monograph78, no. 3:1–18.Stanley, R. 2008. Behind the mess at UBS. BusinessWeek, March 3, 30–31.Tan, S. J. 1999. Strategies for reducing consumers’ risk aversion in Internet shoppingWoodside, A.G. 1972. Informal group influences on risk taking. Journal of Marketing Research 9, no. 3:223–225.Woodside, A. G. 1974. Is there a generalised risky shift phenomenon in consumer behavior? Journal of Marketing Research11, no. 2:225–226.Wurman, R. S. 1990. Information anxiety. New York: Bantam Books.Zeithaml V. A., and M. J. Bitner. 2000. Services marketing: Integrating customer focus across the firms, 2nd ed. New York: McGraw-Hill.Zeithaml V. A., M. J. Bitner, and D. D. Gremler. 2006. Services marketing: Integrating customer focus across the firms. New York: McGraw-Hill.Asmussen, S. 2000. Ruin probabilities. London: World Scientific.Asmussen, S., D. P. Kroese, and R. Y. Rubinstein. 2005. Heavy tails, importance sampling and cross-entropy. Stochastic Models21, no. 1:57–76.Basel Committee on Banking Supervision 2005. Basel II: International convergence of capital measurement and capital standards: A revised framework, www.bis.org. Basel, Switzerland.Bee, M. 2006. Estimating the parameters in the loss distribution approach: How can we deal with trun cated data? In the advanced measurement approach to operational risk, ed. E. Davis. London: Risk Books.Bee, M 2007. Importance sampling for sums of lognormal distributions, with applications to operational risk. Discussion paper, Department of Economics, University of Trento.Buchm¨ uller, P., M. Haas, B. Rummel, and K. Stickelmann. 2006. AMA implementation in Germany: Results of BaFin’s and Bundesbank’s industry survey. In the advanced measurement approach to operational risk, ed. E. Davis. London: Risk Books.Casella, G., and C. P. Robert. 2004. Monte Carlo statistical methods. New York: Springer.De Koker, R. 2006. Operational risk modeling: Where do we go from here? In the advanced measurement approach to operational risk, ed. E. Davis. London: Risk Books.Dempster, A. P., N. M. Laird, and D. B. Rubin 1977. Maximum likelihood from incomplete data via the EMalgorithm (with discussion).Journal of the Royal Statistical Society B39, no. 1:1–38.Embrechts, P., C. Kl¨ uppelberg, and T. Mikosch. 1997. Modeling extremal events for insurance and finance. New York: Springer.Flury, B. 1997. A first course in multivariate statistics. New York: Springer.Geweke, J. 1989. Bayesian inference in econometric models using Monte Carlo integration.Econometrica57, no. 6:1317–1340.Hesterberg, T. 1995. Weighted average importance sampling and defensive mixture distributions.Technometrics37, no. 2:185–194.McLachlan, G. J., and T. Krishnan. 1996. The EM algorithm and extensions. NewYork: John Wiley & Sons.McNeil, A. J., R. Frey, and P. Embrechts. 2005. Quantitative risk management: Concepts, techniques and tools. Princeton, NJ: Princeton University Press.Mignola, G., and R. Ugoccioni. 2006. Tests of extreme-value theory applied to operational risk data. InThe advanced measurement approach to operational risk, ed. E. Davis. London: Risk Books.Mikosch, T. 2004. Non–life insurance mathematics. New York: Springer.Rubinstein, R. Y. 1981. Simulation and the Monte Carlo method. New York: John Wiley & Sons.Rubinstein, R. Y., and D. P. Kroese. 2004. The cross-entropy method. New York:Springer.Smith, R. L. 2003. Statistics of extremes, with applications in environment, insurance and finance. In Extreme values in finance, telecommunications and the environment, ed. B. Finkenstadt and H. Rootzen. London: Chapman and Hall/CRC Press.Artzner, P., F. Delbaen, J. M. Eber, and D. Heath. 1999. Coherent measures of risk. Mathematical Finance9, no. 3:203–228.Bee, M. 2005. On maximum likelihood estimation of operational loss distributions. Discussion paper no.3. University of Trento, Italy.Basel Committee on Banking Supervision. 2003. The 2002 loss data collection exercise for operational risk: Summary of the data collected. Bank for International Settlement document, Basel, Switzerland.Cameron, C., T. Li, P. Trivedi, and D. Zimmer. 2004. Modelling the differences in counted outcomes using bivariate copula models with application to mismeasured counts. Econometrics Journal7, no. 2:566–584.Chavez-Demoulin, V., P. Embrechts, and J. Neslehova. 2006. Quantitative models for operational risk: Extremes, dependence and aggregation.Journal of Banking and Finance30, no. 10:2635–2658.Cherubini, U., E. Luciano, and W. Vecchiato. 2004. Copula methods in finance. Hoboken, NJ: John Wiley & Sons.Cruz, M. G. 2002. Modeling, measuring and hedging operational risk. Hoboken, NJ: John Wiley & Sons.Deheuvels, P. 1978. Caract´ erisation compl´ ete des lois extr` emes multivari´ ees et de la convergence des types extr´ emes.Publications de L’Institut de statistique de l’Universit´e de Paris23, no. 3:1–36.Denuit, M., and P. Lambert. 2005. Constraints on concordance measures in bivariate discrete data.Journal of Multivariate Analysis93, no. 1:40–57.DiClemente, A., and C. Romano. 2004. A copula-extreme value theory approach for modelling operational risk. InOperational risk modelling and analysis: Theory and practice, ed. M. G. Cruz. London: Risk Books.Embrechts, P., C. Kluppelberg, and T. Mikosch. 1997. Modeling extremal events for insurance and finance. Berlin: Springer-Verlag.Embrechts, P., F. Lindskog, and A. McNeil. 2002. Modelling dependence with copulas and applications to risk management. InHandbook of heavy tailed distributions in finance, ed. S.T. Rachev. Amsterdam: Elsevier.Embrechts, P., and G. Puccetti. 2007. Aggregating risk across matrix structures loss data: The case of operational risk. Working paper, ETH, Zurich.Fantazzini, D., L. Dallavalle, and P. Giudici. 2008 Copulae and operational risks. International Journal of Risk Assessment and Management.Fantazzini, D., L. Dallavalle, and P. Giudici. 2007. Empirical studies with operational loss data. In Operational risk: A Guide to Basel II capital requirements, models, and analysis, ed. F. Fabozzi. Hoboken, NJ: John Wiley & Sons.Genest, C., and J. Neslehova. 2007. A primer on discrete copulas. ASTIN Bulletin37, no. 2:475–515.Hosking, J. R. M., and J. R. Wallis. 1987. Parameter and quantile estimation for the generalized pareto distribution.Technometrics29, no. 3:339–349.Joe, H., and J. Xu. 1996. The estimation method of inference functions for margins for multivariate models. Working paper, Department of Statistics University of British Columbia, Vancouver, British Columbia.King, J. L. 2001. Operational risk: Measurement and modeling. Hoboken, NJ: John Wiley & Sons.Lindskog, F., and A. McNeil. 2003. Common Poisson shock models: Applications to insurance and credit risk modeling. ASTIN Bulletin33, no. 2: 209– 238.Moscadelli, M. 2004. The modelling of operational risk: Experiences with the analysis with the analysis of the data collected by the Basel Committee.” Working paper, Temi di Discussione del Servizio Studi, No. 517, Banca d’Italia, Roma.McNeil, A., P. Embrechts, and R. Frey. 2005. Quantitative risk management: Concepts, techniques and tools. Boston: Springer.Neslehova, J., P. Embrechts, and V. Chavez-Demoulin. 2006. Infinite mean models and the LDA for operational risk.Journal of Operational Risk1, no. 1:3–25.Panjer, H. H., and G. Willmot. 1992. Insurance risk models. Schaumburg, IL: Society of Actuaries.Patton, A. 2006. Estimation of multivariate models for time series of possibly different lengths. Journal of Econometrics132, no. 1:43–57.Pfeifer, D., and J. Neslehova. 2004. Modeling and generating dependent risk processes for IRM and DFA.ASTIN Bulletin34, no. 2:333–360.Roehr, A. 2002. Modelling operational losses.Algo Research Quarterly5, no. 2:53–64.Stevens, W. L. 1950. Fiducial limits of the parameter of a discontinuous distribution. Biometrika, 37, no. 1/2:117–129.Trivedi, P. K., and D. M. Zimmer. 2007. Copula modeling: An introduction for practitioners. Foundation and Trends in Econometrics1, nos. 1:1–111.Alexander, C. 2005. Assessment of operational risk capital. In Risk management: Challenge and opportunity, eds. M. Frenkel, U. Hommel, and M. Rudolf. Berlin: Springer.Chernobai, A., S. T. Rachev, and F. J. Fabozzi. 2007. Operational risk: A guide to Basel II capital requirements, models and analysis. Hoboken, NJ: John Wiley & Sons.Clemen, R. T., and T. Reilly. 2001. Making hard decisions. Pacific Grove, CA: Duxbury Thomson Learning, Brooks/Cole.Davis, E. 2005. Operational risk: Practical approaches to implementation. London: Risk Books.D¨ obeli, B., M. Leippold, and P. Vanini. 2003. From operational risks to operational excellence, In Advances in operational risk: Firm wide issues for financial institutions, ed. P. Mestchian, 2nd ed. London: Risk Books.Dobi´ ey, M., W. Kross, and M. M¨ uller-Reichart. 2003. Auch Management statt nur Controlling (Management too instead of just Controlling).Marktplatz Energie (Frankfurt) 6:4–5.Dobi´ ey, M., W. Kross, and M. M¨ uller-Reichart. 2003. Auch Management statt nur Controlling (Management too instead of just Controlling).Marktplatz Energie (Frankfurt) 6:4–5.Hommel, U., M. Scholich, and R. Vollrath. 2001. Realoptionen in der Unternehmenspraxis—Wert schaffen durch Flexibilit¨ at. Heidelberg: Springer.Howson, C., and P. Urbach. 1989. Scientific reasoning: The Bayesian approach. a Salle, IL: Open Court Publishing Company.Kahneman, D., P. Slovic, and A. Tversky. 1982. Judgement under uncertainty: Heuristics and biases. Cambridge, MA: Cambridge University Press.Keeney, R. L. 1992. Value-focused thinking—A Path to creative decision making. Cambridge, MA: Harvard University Press.Keeney, R. L., and H. Raiffa. 1993. Decisions with multiple objectives: Preferences and Value trade-offs. Cambridge, MA: Cambridge University Press.Kross, W. 2000. Pricing risk: Probabilistic approaches and case studies. Workshop proceedings, Current Perspectives on Risk Management, June 18–19, Financial Stability Institute, Bank for International Settlements, Basel, Switzerland.Kross, W. 2002. Holes in holistic risk management—Financial institutions’ approaches to operational risk. Proceedings, Society for Risk Analysis (SRAEurope) annual meeting, July 21–24. Humboldt University, Berlin, Germany.Kross, W. 2004. Operational risk: The management perspective. InRisk management: Challenge and opportunity, ed. M. Frenkel, U. Hommel, and M. Rudolf Berlin: Springer.Kross, W. 2006. Organized opportunities: Risk management in financial services organizations. Weinheim, Germany: John Wiley & Sons.Kross, W. 2007. Kultur wandel durch MA Risk (Cultural change through MARisk) (interview),Compliance Manager 9, no. 11:5 .Morgan, M. G., and M. Henrion. 1990. Uncertainty: A guide to dealing with uncertainty in quantitative risk and policy analysis. Cambridge, MA: Cambridge University Press.Shapira, Z. 1995. Risk taking—A managerial perspective. New York: Russell Sage.Von Winterfeldt, D. and W. Edwards. 1986. Decision analysis and behavioral research. Cambridge, MA: Cambridge University Press.Alexander, C. 2005. Assessment of operational risk capital. In Risk management: Challenge and opportunity, eds. M. Frenkel, U. Hommel, and M. Rudolf. Berlin: Springer.Amit, R., and B. Wernerfelt. 1990. Why do firms reduce risk ? Academy of Management Journal3, no. 3:520–533Barberis, N., A. Shleifer, and R. Vishny. 1989. A model of investor sentiment. Journal of Financial Economics49, no. 3:307–343.Black, F., and M. Scholes. 1973. Simplifying portfolio insurance. Journal of Portfolio Management14, no. 1:48–51.Bowman, R. 1979. The theoretical relationship between systematic risk and financial (accounting) variables. Journal of Finance34, no. 3:617–630.Chernobai, A., S. T. Rachev, and F. J. Fabozzi. 2007. Operational risk: A guide to Basel II capital requirements, models and analysis. Hoboken, NJ: John Wiley & Sons.Clemen, R. T., and T. Reilly. 2001. Making hard decisions. Pacific Grove, CA: Duxbury Thomson Learning, Brooks/Cole.Culp, C. 2002. The art of risk management. Hoboken, NJ: John Wiley & Sons.Davis, E. 2005. Operational risk: Practical approaches to implementation. London: Risk Books.D¨ obeli, B., M. Leippold, and P. Vanini. 2003. From operational risks to operational excellence. InA dvances in operational risk: Firm-wide issues for financial institutions, ed. P. Mestchian. London: Risk Books.Fama, E., and French, K. R. 1992. The cross-section of expected security returns. Journal of Finance47, no. 2:427–465.Fama, E., and K. R. French. 1993. Common risk factors in the returns on stocks and bonds. Journal of Financial Economics47, no. 3–56.Fazzari, S. M., B. C. Petersen, and R. G. Hubbard. 1988. Financing constraints and corporate investment, Working paper, National Bureau of Economic Research, Cambridge, MA.Fite, D., and P. Pfleiderer. 1995. Should firms use derivates to manage risk? In Risk management: Problems and solutions, ed. W. Beaver and G. Parker. New York:McGraw-Hill.Froot, K., D. Scharfstein, and J. Stein. 1994. A framework for risk management. Harvard Business Review72, no. 6:91–102.Gleißner, W. 2001. Identifikation, Messung und Aggregation von Risiken. In Wertorientiertes Risiko management f¨ ur Industrie und Handel, ed. W. Gleißner and G. Meier. Wiesbaden, Germany: Gabler.Gleißner, W. 2002. Wertorientierte Analyse der Unternehmensplanung auf Basis des Risikomanagements.Finanz Betrieb7/8:417–427.Gleißner, W. 2004. FutureValue-12 Module f¨ ur eine strategische wertorientierte Unternehmensf¨ uhrung. Wiesbaden, Germany: Gabler.Gleißner, W. 2005. Kapital kosten—der Schwachpunkt bei der Unter nehmens be wertung undGleißner, W., and T. Berger. 2004. Die Ableitung von Kapital kostens¨ atzen aus dem Risikoinventar eines Unternehmens.UM-Unternehmensbewertung & Management. Frankfurt, Germany.Goyal, A., and P. Santa-Clara. 2003. Idiosyncratic risk matters! Journal of Finance 58, no. 3:975–1008.Haugen, R. 2002. The inefficient stock market. Upper Saddle River, NJ: Prentice Hall.Haugen, R. 2004. The new finance. New York: Pearson Education.Hubbert, R. 1998. Capital-market imperfections and investment. Journal of Economic Literature36, no. 2:193–225.Keeney, R. L. 1992. Value-focused thinking—A path to creative decision making. Cambridge, MA: Harvard University Press.Kross, W. 2004. Operational risk: The management perspective. In Risk management: Challenge and o pportunity, eds. M. Frenkel, U. Hommel, and M. Rudolf. Berlin: Springer.Kross, W. 2006. Organized opportunities: Risk management in financial services organizations. Weinheim, Germany: John Wiley & Sons.Kross, W. 2007. Kultur wandel durch MA Risk (Cultural change through MA Risk). Interview,Compliance Manager 9, no. 1:5.K¨ ursten, W. 2006. Corporate hedging, Stake holder interesse und shareholder value. JfB Journal f¨ ur Betriebswirtschaft5, no. 6:3–31.La Porta, R. 1996. Expectations and the cross-section of stock returns. Journal of Finance 51, no. 5:1715–1742.Levi, M., and P. Serc¸u. 1991. Erroneous and valid reasons for hedging exchange rate exposure. Journal of Multinational Financial Management1, no. 2:25–37.Lintner, J. 1965. The valuation of risk assets and the selection of risky investments. In Stock portfolios and capital budgets. Review of Economics and Statistics 47, no. 1:13–37.Merton, R. C. 1974. On the pricing of corporate debt: The risk structure of interest rates. Journal of Finance 29, no. 2:449–470.Modigliani, F., and M. H. Miller. 1958. The cost of capital, corporate finance, and the theory of investment. American Economic Review48, no. 3:261– 297.Morgan, M. G., and M. Henrion. 1990. Uncertainty: A guide to dealing with uncertainty in quantitative risk and policy analysis. Cambridge, MA: Cambridge University Press.Mossin, J. 1966. Equilibrium in a capital asset market.Econometrica34, no. 4:768–783.Pritsch, G., and U. Hommel. 1997. Hedging im Sinne des Aktion¨ ars. DBW Die Betriebs wirts chaft 57, no. 5:672–693. Rappaport, A. 1986. Creating shareholder value. New York: The Free Press.Ross, S. 1976. The arbitrage theory of capital asset pricing. Journal of Economic Theory13, no. 3:1051 1069.Schnabel, J., and E. Roumi. 1989. Corporate insurance and the underinvestment problem: An extension. Journal of Risk and Insurance56, no. 1:155–159.Shapira, Z. 1995. Risk taking—A managerial perspective. New York: Russell Sage Foundation.Sharpe, W. F. 1964. Capital asset prices: A theory of equilibrium under conditions of risk. Journal of Finance 19, no. 3:425–442.Sharpe, W. F. 1977. The CAPM: A “multi-beta” interpretation. In Financial decision making under uncertainty, ed. H. Levy and M. Sarnat. Burlington, MA: Academic Press.Shefrin, H. 2000. Beyond greed and fear—Finance and the psychology of investing. Cambridge, MA: Harvard Business School Press.Shleifer, A. 2000. Inefficient markets—An introduction to behavioral finance. New York: Oxford University Press.Stern, J. M., J. S. Shiely, and I. Ross. 2001. The EVA challenge. Hoboken, NJ: John Wiley & Sons.Ulschmid, C. 1994. Empirische Validierung von Kapital markt modellen. Berlin: Peter Lang Verlags gruppe.Volkart, R. 1999. Risiko behafte tes Fremd kapital und WACC-Handhabung aus theore tischer und praktischer Sicht. Working paper, Swiss Banking Institute, Z¨ urich.Warner, J. 1977. Bankruptcy costs: Some evidence. Journal of Finance 32, no. 2:337–347.ORIGINAL2014_Tesis_Jaramillo_Blanco_Claudia_Marcela.pdf2014_Tesis_Jaramillo_Blanco_Claudia_Marcela.pdfTesisapplication/pdf2706450https://repository.unab.edu.co/bitstream/20.500.12749/14608/1/2014_Tesis_Jaramillo_Blanco_Claudia_Marcela.pdf9f5e6686afc998948b18a92e04dac1b8MD51open access2014_Articulo_Jaramillo_Blanco_Claudia_Marcela.pdf2014_Articulo_Jaramillo_Blanco_Claudia_Marcela.pdfArtículoapplication/pdf647999https://repository.unab.edu.co/bitstream/20.500.12749/14608/2/2014_Articulo_Jaramillo_Blanco_Claudia_Marcela.pdf3c48448c4a38e48f41a4cf2de85f1452MD52open access2014_Presentacion_Jaramillo_Blanco_Claudia_Marcela.pdf2014_Presentacion_Jaramillo_Blanco_Claudia_Marcela.pdfPresentaciónapplication/pdf2484860https://repository.unab.edu.co/bitstream/20.500.12749/14608/3/2014_Presentacion_Jaramillo_Blanco_Claudia_Marcela.pdff37ca279b70c0a662598b5e8431c21d9MD53open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8829https://repository.unab.edu.co/bitstream/20.500.12749/14608/4/license.txt3755c0cfdb77e29f2b9125d7a45dd316MD54open accessTHUMBNAIL2014_Tesis_Jaramillo_Blanco_Claudia_Marcela.pdf.jpg2014_Tesis_Jaramillo_Blanco_Claudia_Marcela.pdf.jpgIM Thumbnailimage/jpeg5961https://repository.unab.edu.co/bitstream/20.500.12749/14608/5/2014_Tesis_Jaramillo_Blanco_Claudia_Marcela.pdf.jpg2d1d2c646dc488aab103b764defd70efMD55open access2014_Articulo_Jaramillo_Blanco_Claudia_Marcela.pdf.jpg2014_Articulo_Jaramillo_Blanco_Claudia_Marcela.pdf.jpgIM Thumbnailimage/jpeg11396https://repository.unab.edu.co/bitstream/20.500.12749/14608/6/2014_Articulo_Jaramillo_Blanco_Claudia_Marcela.pdf.jpg1e1cd29c330429b8a4d13038bf927ac5MD56open access2014_Presentacion_Jaramillo_Blanco_Claudia_Marcela.pdf.jpg2014_Presentacion_Jaramillo_Blanco_Claudia_Marcela.pdf.jpgIM Thumbnailimage/jpeg11532https://repository.unab.edu.co/bitstream/20.500.12749/14608/7/2014_Presentacion_Jaramillo_Blanco_Claudia_Marcela.pdf.jpg8e6ed856c2ce3544a00137f4e016e7b3MD57open access20.500.12749/14608oai:repository.unab.edu.co:20.500.12749/146082023-12-14 18:08:57.989open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbi4gRWwgQVVUT1IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVTkFCIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuCgpFbCBBVVRPUiBhdXRvcml6YSBhIGxhIFVuaXZlcnNpZGFkIEF1dMOzbm9tYSBkZSBCdWNhcmFtYW5nYSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24uCg==