Diseño de protocolo de escaneo y modelado 3D para la elaboración de apósitos personalizados para pacientes con úlceras de pie diabético
Las úlceras por pie diabético son una de las complicaciones más comunes entre los pacientes que padecen Diabetes Mellitus, y la causa principal de amputaciones de miembro inferior en el mundo. Por esta razón, se han implementado nuevas técnicas para atenderlas, entre estas la impresión 3D que ha per...
- Autores:
-
Agredo Hurtado, María Alejandra
Bohórquez Vega, Nicolás Andrés
Serrano Cala, Andrea
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2022
- Institución:
- Universidad Autónoma de Bucaramanga - UNAB
- Repositorio:
- Repositorio UNAB
- Idioma:
- spa
- OAI Identifier:
- oai:repository.unab.edu.co:20.500.12749/17710
- Acceso en línea:
- http://hdl.handle.net/20.500.12749/17710
- Palabra clave:
- Biomedical engineering
Engineering
Medical electronics
Biological physics
Bioengineering
Medical instruments and apparatus
Medicine
Biomedical
Clinical engineering
Three-dimensional dressing
3D Scanning
3D printing
Diabetic foot ulcers
Sugar in the body
Diabetes mellitus
Modeling in medicine
Three-dimensional image
Ingeniería biomédica
Ingeniería
Biofísica
Bioingeniería
Medicina
Biomédica
Azúcar en el organismo
Diabetes mellitus
Modelado en medicina
Imagen tridimensional
Ingeniería clínica
Electrónica médica
Instrumentos y aparatos médicos
Apósito tridimensional
Escaneo 3D
Impresión 3D
Úlceras de pie diabético
- Rights
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id |
UNAB2_f710b316a2123b9c9fec9a7c48caa07a |
---|---|
oai_identifier_str |
oai:repository.unab.edu.co:20.500.12749/17710 |
network_acronym_str |
UNAB2 |
network_name_str |
Repositorio UNAB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Diseño de protocolo de escaneo y modelado 3D para la elaboración de apósitos personalizados para pacientes con úlceras de pie diabético |
dc.title.translated.spa.fl_str_mv |
Design of a 3D modeling and scanning protocol for the production of personalized dressings for patients with diabetic foot ulcers |
title |
Diseño de protocolo de escaneo y modelado 3D para la elaboración de apósitos personalizados para pacientes con úlceras de pie diabético |
spellingShingle |
Diseño de protocolo de escaneo y modelado 3D para la elaboración de apósitos personalizados para pacientes con úlceras de pie diabético Biomedical engineering Engineering Medical electronics Biological physics Bioengineering Medical instruments and apparatus Medicine Biomedical Clinical engineering Three-dimensional dressing 3D Scanning 3D printing Diabetic foot ulcers Sugar in the body Diabetes mellitus Modeling in medicine Three-dimensional image Ingeniería biomédica Ingeniería Biofísica Bioingeniería Medicina Biomédica Azúcar en el organismo Diabetes mellitus Modelado en medicina Imagen tridimensional Ingeniería clínica Electrónica médica Instrumentos y aparatos médicos Apósito tridimensional Escaneo 3D Impresión 3D Úlceras de pie diabético |
title_short |
Diseño de protocolo de escaneo y modelado 3D para la elaboración de apósitos personalizados para pacientes con úlceras de pie diabético |
title_full |
Diseño de protocolo de escaneo y modelado 3D para la elaboración de apósitos personalizados para pacientes con úlceras de pie diabético |
title_fullStr |
Diseño de protocolo de escaneo y modelado 3D para la elaboración de apósitos personalizados para pacientes con úlceras de pie diabético |
title_full_unstemmed |
Diseño de protocolo de escaneo y modelado 3D para la elaboración de apósitos personalizados para pacientes con úlceras de pie diabético |
title_sort |
Diseño de protocolo de escaneo y modelado 3D para la elaboración de apósitos personalizados para pacientes con úlceras de pie diabético |
dc.creator.fl_str_mv |
Agredo Hurtado, María Alejandra Bohórquez Vega, Nicolás Andrés Serrano Cala, Andrea |
dc.contributor.advisor.none.fl_str_mv |
Solarte David, Víctor Alfonso Becerra Bayona, Silvia Milena |
dc.contributor.author.none.fl_str_mv |
Agredo Hurtado, María Alejandra Bohórquez Vega, Nicolás Andrés Serrano Cala, Andrea |
dc.contributor.cvlac.spa.fl_str_mv |
Solarte David, Víctor Alfonso [0001329391] Becerra Bayona, Silvia Milena [0001568861] |
dc.contributor.googlescholar.spa.fl_str_mv |
Becerra Bayona, Silvia Milena [5wr21EQAAAAJ] |
dc.contributor.orcid.spa.fl_str_mv |
Solarte David, Víctor Alfonso [0000-0002-9856-1484] Becerra Bayona, Silvia Milena [0000-0002-4499-5885] |
dc.contributor.scopus.spa.fl_str_mv |
Becerra Bayona, Silvia Milena [36522328100] |
dc.contributor.researchgate.spa.fl_str_mv |
Becerra Bayona, Silvia Milena [Silvia_Becerra-Bayona] |
dc.contributor.researchgate.none.fl_str_mv |
Becerra Bayona, Silvia Milena [Silvia-Becerra-Bayona] |
dc.contributor.apolounab.none.fl_str_mv |
Becerra Bayona, Silvia Milena [silvia-milena-becerra-bayona] |
dc.contributor.linkedin.none.fl_str_mv |
Becerra Bayona, Silvia Milena [silvia-becerra-3174455a] |
dc.subject.keywords.spa.fl_str_mv |
Biomedical engineering Engineering Medical electronics Biological physics Bioengineering Medical instruments and apparatus Medicine Biomedical Clinical engineering Three-dimensional dressing 3D Scanning 3D printing Diabetic foot ulcers Sugar in the body Diabetes mellitus Modeling in medicine Three-dimensional image |
topic |
Biomedical engineering Engineering Medical electronics Biological physics Bioengineering Medical instruments and apparatus Medicine Biomedical Clinical engineering Three-dimensional dressing 3D Scanning 3D printing Diabetic foot ulcers Sugar in the body Diabetes mellitus Modeling in medicine Three-dimensional image Ingeniería biomédica Ingeniería Biofísica Bioingeniería Medicina Biomédica Azúcar en el organismo Diabetes mellitus Modelado en medicina Imagen tridimensional Ingeniería clínica Electrónica médica Instrumentos y aparatos médicos Apósito tridimensional Escaneo 3D Impresión 3D Úlceras de pie diabético |
dc.subject.lemb.spa.fl_str_mv |
Ingeniería biomédica Ingeniería Biofísica Bioingeniería Medicina Biomédica Azúcar en el organismo Diabetes mellitus Modelado en medicina Imagen tridimensional |
dc.subject.proposal.spa.fl_str_mv |
Ingeniería clínica Electrónica médica Instrumentos y aparatos médicos Apósito tridimensional Escaneo 3D Impresión 3D Úlceras de pie diabético |
description |
Las úlceras por pie diabético son una de las complicaciones más comunes entre los pacientes que padecen Diabetes Mellitus, y la causa principal de amputaciones de miembro inferior en el mundo. Por esta razón, se han implementado nuevas técnicas para atenderlas, entre estas la impresión 3D que ha permitido la elaboración de diversos métodos de tratamiento. Este proyecto consiste en el diseño de un protocolo para la elaboración de moldes personalizados que permitan la obtención de apósitos tridimensionales que se ajusten a las necesidades de cada paciente, haciendo uso de las tecnologías de escaneo e impresión 3D. Se tomó como referencia una úlcera en zona plantar; se realizó una serie de escaneos, de los cuales se seleccionaron 4 para imprimir. De igual forma, se hicieron pruebas de impresión variando parámetros como la velocidad y densidad de relleno que juegan un papel importante en la adquisición de resultados. El material utilizado fue PLA, ya que gracias a su rigidez brindó la estabilidad necesaria para la creación de cada una de las carcasas. Se encontró que las dimensiones obtenidas de las carcasas realizadas aplicando este procedimiento presentan un porcentaje de error que no supera el 2,14% para el área superficial y 1,04% en profundidad, con respecto al modelo de úlcera. Estos resultados permitieron establecer que el protocolo diseñado, puede ser utilizado para la fabricación de apósitos personalizados. Sin embargo, aún existe variabilidad en los resultados, por lo que es importante continuar con la investigación en esta área. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-09-16T15:31:42Z |
dc.date.available.none.fl_str_mv |
2022-09-16T15:31:42Z |
dc.date.issued.none.fl_str_mv |
2022 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.local.spa.fl_str_mv |
Trabajo de Grado |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12749/17710 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Autónoma de Bucaramanga - UNAB |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional UNAB |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.unab.edu.co |
url |
http://hdl.handle.net/20.500.12749/17710 |
identifier_str_mv |
instname:Universidad Autónoma de Bucaramanga - UNAB reponame:Repositorio Institucional UNAB repourl:https://repository.unab.edu.co |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Ahn, C., & Salcido, R. S. (2008). Advances in wound photography and assessment methods. Advances in Skin & Wound Care, 21(2). https://doi.org/10.1097/01.ASW.0000305411.58350.7d American Diabetes Association. (2011). Diagnosis and Classification of Diabetes Mellitus. https://doi.org/10.2337/dc11-S062 Ansari, A. A., & Kamil, M. (2021). Effect of print speed and extrusion temperature on properties of 3D printed PLA using fused deposition modeling process. Materials Today: Proceedings, 45, 5462–5468. https://doi.org/10.1016/j.matpr.2021.02.137 Aragón-Sánchez, J., Quintana-Marrero, Y., Aragón-Hernández, C., & Hernández-Herero, M. J. (2017). ImageJ: A Free, Easy, and Reliable Method to Measure Leg Ulcers Using Digital Pictures. International Journal of Lower Extremity Wounds, 16(4), 269–273. https://doi.org/10.1177/1534734617744951 Blume, P. A., Walters, J., Payne, W., Ayala, J., & Lantis, J. (2008). Comparison of negative pressure wound therapy usingVacuum-assisted closure with advanced moist wound therapy in the treatment of diabetic foot ulcers. Diabetes Care, 31(4), 631–636. https://doi.org/10.2337/dc07-2196 Bus, S.A., Lavery, A. L., Monteiro-Soares, M., Rasmussen, A., Raspovic, A., Sacco, I. C. N., & Van Netten, J. J. (2019). IWGDF Guideline on the classification of diabetic foot ulcers. International Working Group on the Diabetic Foot, 1–15. https://iwgdfguidelines.org/wp content/uploads/2019/05/02-IWGDF-prevention-guideline 2019.pdf%0Ahttps://iwgdfguidelines.org/prevention-guideline/ Bus, Sicco A., Akkerman, E. M., & Maas, M. (2021). Changes in sub-calcaneal fat pad composition and their association with dynamic plantar foot pressure in people with diabetic neuropathy. Clinical Biomechanics, 88(April), 105441. https://doi.org/10.1016/j.clinbiomech.2021.105441 Constantinou, G., Wilson, G., Sadeghi-Esfahlani, S., & Cirstea, M. (2017). An effective approach to the use of 3D scanning technology which shortens the development time of 3D models. Proceedings - 2017 International Conference on Optimization of Electrical and Electronic Equipment, OPTIM 2017 and 2017 Intl Aegean Conference on Electrical Machines and Power Electronics, ACEMP 2017, 1083–1088. https://doi.org/10.1109/OPTIM.2017.7975116 Foltynski, P., Ladyzynski, P., Ciechanowska, A., Migalska-Musial, K., Judzewicz, G., & Sabalinska, S. (2015). Wound area measurement with digital planimetry: Improved accuracy and precision with calibration based on 2 rulers. PLoS ONE, 10(8), 1–13. https://doi.org/10.1371/journal.pone.0134622 Gholami, P., Ahmadi-Pajouh, M. A., Abolftahi, N., Hamarneh, G., & Kayvanrad, M. (2018). Segmentation and Measurement of Chronic Wounds for Bioprinting. IEEE Journal of Biomedical and Health Informatics, 22(4), 1269–1277. https://doi.org/10.1109/JBHI.2017.2743526 Ghotaslou, R., Memar, M. Y., & Alizadeh, N. (2018). Classification, microbiology and treatment of diabetic foot infections. Journal of Wound Care, 27(7), 434–441. https://doi.org/10.12968/jowc.2018.27.7.434 Glover, K., Mathew, E., Pitzanti, G., Magee, E., & Lamprou, D. A. (2022). 3D bioprinted scaffolds for diabetic wound-healing applications. In Drug Delivery and Translational Research. https://doi.org/10.1007/s13346-022-01115-8 Glover, K., Stratakos, A. C., Varadi, A., & Lamprou, D. A. (2021). 3D scaffolds in the treatment of diabetic foot ulcers: New trends vs conventional approaches. International Journal of Pharmaceutics, 599(February), 120423. https://doi.org/10.1016/j.ijpharm.2021.120423 Grennan, D. (2019). Diabetic Foot Ulcers. JAMA, 321(1), 114–114. https://doi.org/10.1001/JAMA.2018.18323 Jia, L., Parker, C. N., Parker, T. J., Kinnear, E. M., Derhy, P. H., Alvarado, A. M., Huygens, F., & Lazzarini, P. A. (2017). Incidence and risk factors for developing infection in patients presenting with uninfected diabetic foot ulcers. PLoS ONE, 12(5), 1–15. https://doi.org/10.1371/journal.pone.0177916 Jørgensen, L. B., Halekoh, U., Jemec, G. B. E., Sørensen, J. A., & Yderstræde, K. B. (2020). Monitoring Wound Healing of Diabetic Foot Ulcers Using Two-Dimensional and Three Dimensional Wound Measurement Techniques: A Prospective Cohort Study. Advances in Wound Care, 9(10), 553–563. https://doi.org/10.1089/wound.2019.1000 Kristiawan, R. B., Imaduddin, F., Ariawan, D., Ubaidillah, & Arifin, Z. (2021). A review on the fused deposition modeling (FDM) 3D printing: Filament processing, materials, and printing parameters. Open Engineering, 11(1), 639–649. https://doi.org/10.1515/eng-2021-0063 Langemo, D. K., Melland, H., Olson, B., Hanson, D., Hunter, S., Henly, S. J., & Thompson, P. (2001). Comparison of 2 Wound Volume Measurement Methods. Advances in Skin & Wound Care, 14(4). https://journals.lww.com/aswcjournal/Fulltext/2001/07000/Comparison_of_2_Wound_Volu me_Measurement_Methods.11.aspx Li, J., Ji, Q., Peng, J., Jun, L., Fusong, J., & Xiaowei, Y. (2019). Assessing diabetic foot injury based on 3D image technology. 2019 6th International Conference on Systems and Informatics, ICSAI 2019, Icsai, 1218–1221. https://doi.org/10.1109/ICSAI48974.2019.9010171 Li, L., Yu, F., Shi, J., Shen, S., Teng, H., Yang, J., Wang, X., & Jiang, Q. (2017). In situ repair of bone and cartilage defects using 3D scanning and 3D printing. Scientific Reports, 7(1), 1– 12. https://doi.org/10.1038/s41598-017-10060-3 Nunez, K. (2019). What Is Wound Debridement and When Is It Necessary? Healthline. https://www.healthline.com/health/debridement Organización Mundial de la Salud (OMS). (2018). Informe mundial sobre la diabetes. Revista Virtual de La Sociedad Paraguaya de Medicina Interna, 3(2), 71–76. Partes del pie humano. (2022). Retrieved 28 June 2022, from https://www.partesdel.com/pie_humano.html Pena, G., Kuang, B., Szpak, Z., Cowled, P., Dawson, J., & Fitridge, R. (2020). Evaluation of a Novel Three-Dimensional Wound Measurement Device for Assessment of Diabetic Foot Ulcers. Advances in Wound Care, 9(11), 623–631. https://doi.org/10.1089/wound.2019.0965 Peter-Riesch, B. (2016). The diabetic foot: The never-ending challenge. Endocrine Development, 31, 108–134. https://doi.org/10.1159/000439409 Prince, J. D. (2014). 3D Printing: An Industrial Revolution. Journal of Electronic Resources in Medical Libraries, 11(1), 39–45. https://doi.org/10.1080/15424065.2014.877247 Rismalia, M., Hidajat, S. C., Permana, I. G. R., Hadisujoto, B., Muslimin, M., & Triawan, F. (2019). Infill pattern and density effects on the tensile properties of 3D printed PLA material. Journal of Physics: Conference Series, 1402(4). https://doi.org/10.1088/1742 6596/1402/4/044041 Rokit. (n.d.). ROKIT INVIVO User Manual Rosero, N., & Quitian, J. (2021). Diseño de una tinta de biomaterial de alginato y plasma pobre en plaquetas con potencial uso en la fabricación de apósitos personalizados para úlceras crónicas de pie diabético. Universidad Autónoma de Bucaramanga. Shining 3D. (2020). EinScanH User Manual. November, 1–57. https://www.einscan.com/handheld-3d-scanner/einscan-h/ Solarte David, V. A., Güiza-Argüello, V. R., Arango-Rodríguez, M. L., Sossa, C. L., & Becerra Bayona, S. M. (2022). Decellularized Tissues for Wound Healing: Towards Closing the Gap Between Scaffold Design and Effective Extracellular Matrix Remodeling. Frontiers in Bioengineering and Biotechnology, 10(February), 1–26. https://doi.org/10.3389/fbioe.2022.821852 Tan, C. T., Liang, K., Ngo, Z. H., & Dube, C. T. (2020). Biomedicines-08-00441-V2 (2).Pdf. 1– 19. Treuillet, S., Albouy, B., & Lucas, Y. (2009). Three-dimensional assessment of skin wounds using a standard digital camera. IEEE Transactions on Medical Imaging, 28(5), 752–762. https://doi.org/10.1109/TMI.2008.2012025 Tümer, E. H., & Erbil, H. Y. (2021). Extrusion-based 3d printing applications of pla composites: A review. Coatings, 11(4), 1–42. https://doi.org/10.3390/coatings11040390 Velazco, G., Gonzalez, A., & Ortiz, R. (2012). Apósitos de quitosano para el tratamiento de pie diabético ( Chitosan films for the diabetic foot treatment ) Resumen Introducción Resultados y Discusión Caso clínico. 1(1), 38–41 Yick, K. L., Lo, W. T., Ng, S. P., Yip, J., Kwan, H. H., Kwong, Y. Y., & Cheng, F. C. (2019). Analysis of insole geometry and deformity by using a three-dimensional image processing technique: A preliminary study. Journal of the American Podiatric Medical Association, 109(2), 98–107. https://doi.org/10.7547/16-116 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.creativecommons.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Abierto (Texto Completo) Atribución-NoComercial-SinDerivadas 2.5 Colombia http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.spatial.spa.fl_str_mv |
Bucaramanga (Santander, Colombia) |
dc.coverage.campus.spa.fl_str_mv |
UNAB Campus Bucaramanga |
dc.publisher.grantor.spa.fl_str_mv |
Universidad Autónoma de Bucaramanga UNAB |
dc.publisher.faculty.spa.fl_str_mv |
Facultad Ingeniería |
dc.publisher.program.spa.fl_str_mv |
Pregrado Ingeniería Biomédica |
institution |
Universidad Autónoma de Bucaramanga - UNAB |
bitstream.url.fl_str_mv |
https://repository.unab.edu.co/bitstream/20.500.12749/17710/1/2022_Tesis_Maria_Alejandra_Agredo.pdf https://repository.unab.edu.co/bitstream/20.500.12749/17710/4/2022_Licencia_Maria_Agredo.pdf https://repository.unab.edu.co/bitstream/20.500.12749/17710/3/license.txt https://repository.unab.edu.co/bitstream/20.500.12749/17710/5/2022_Tesis_Maria_Alejandra_Agredo.pdf.jpg https://repository.unab.edu.co/bitstream/20.500.12749/17710/6/2022_Licencia_Maria_Agredo.pdf.jpg |
bitstream.checksum.fl_str_mv |
311b385cff70745005d5a4313aaf414d bf20231ed5e6032ec8da97a184b8fcf3 3755c0cfdb77e29f2b9125d7a45dd316 08a81de7a4c3ad7b36ab88892c798269 c064aecf912106249b4970337592a2d0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB |
repository.mail.fl_str_mv |
repositorio@unab.edu.co |
_version_ |
1828219813622710272 |
spelling |
Solarte David, Víctor Alfonso54590e96-eda3-4b43-9ffa-14bd35ed7d08Becerra Bayona, Silvia Milenaf59fde3b-924f-4fcc-96e9-5fd6250b2daeAgredo Hurtado, María Alejandracc4836c5-532c-4931-8be1-0106f55c15d1Bohórquez Vega, Nicolás Andrés1e91b0b7-cf5e-4d44-a462-72f5063fcc87Serrano Cala, Andrea22b5944f-1b04-4ab4-b3bd-7a433b76403eSolarte David, Víctor Alfonso [0001329391]Becerra Bayona, Silvia Milena [0001568861]Becerra Bayona, Silvia Milena [5wr21EQAAAAJ]Solarte David, Víctor Alfonso [0000-0002-9856-1484]Becerra Bayona, Silvia Milena [0000-0002-4499-5885]Becerra Bayona, Silvia Milena [36522328100]Becerra Bayona, Silvia Milena [Silvia_Becerra-Bayona]Becerra Bayona, Silvia Milena [Silvia-Becerra-Bayona]Becerra Bayona, Silvia Milena [silvia-milena-becerra-bayona]Becerra Bayona, Silvia Milena [silvia-becerra-3174455a]Bucaramanga (Santander, Colombia)UNAB Campus Bucaramanga2022-09-16T15:31:42Z2022-09-16T15:31:42Z2022http://hdl.handle.net/20.500.12749/17710instname:Universidad Autónoma de Bucaramanga - UNABreponame:Repositorio Institucional UNABrepourl:https://repository.unab.edu.coLas úlceras por pie diabético son una de las complicaciones más comunes entre los pacientes que padecen Diabetes Mellitus, y la causa principal de amputaciones de miembro inferior en el mundo. Por esta razón, se han implementado nuevas técnicas para atenderlas, entre estas la impresión 3D que ha permitido la elaboración de diversos métodos de tratamiento. Este proyecto consiste en el diseño de un protocolo para la elaboración de moldes personalizados que permitan la obtención de apósitos tridimensionales que se ajusten a las necesidades de cada paciente, haciendo uso de las tecnologías de escaneo e impresión 3D. Se tomó como referencia una úlcera en zona plantar; se realizó una serie de escaneos, de los cuales se seleccionaron 4 para imprimir. De igual forma, se hicieron pruebas de impresión variando parámetros como la velocidad y densidad de relleno que juegan un papel importante en la adquisición de resultados. El material utilizado fue PLA, ya que gracias a su rigidez brindó la estabilidad necesaria para la creación de cada una de las carcasas. Se encontró que las dimensiones obtenidas de las carcasas realizadas aplicando este procedimiento presentan un porcentaje de error que no supera el 2,14% para el área superficial y 1,04% en profundidad, con respecto al modelo de úlcera. Estos resultados permitieron establecer que el protocolo diseñado, puede ser utilizado para la fabricación de apósitos personalizados. Sin embargo, aún existe variabilidad en los resultados, por lo que es importante continuar con la investigación en esta área.Capítulo 1. Descripción del problema ........................................................................................ 10 Planteamiento del problema ........................................................................................... 10 Justificación ................................................................................................................... 11 Pregunta de investigación .............................................................................................. 12 Objetivo general ............................................................................................................ 12 Objetivos específicos ..................................................................................................... 12 Capítulo 2. Marco teórico .......................................................................................................... 13 Diabetes Mellitus ........................................................................................................... 13 Úlceras de pie diabético ................................................................................................. 13 Sistema de clasificación de úlceras de pie diabético ....................................................... 14 Técnicas utilizadas en la actualidad para el tratamiento de úlceras de pie diabético ........ 15 Proceso de cicatrización de heridas ................................................................................ 16 Proceso normal de cicatrización ..................................................................................... 18 Proceso de cicatrización en pie diabético ....................................................................... 19 Escaneo 3D .................................................................................................................... 20 Técnicas para determinar las dimensiones de heridas ..................................................... 21 Enfoques unidimensionales ............................................................................................ 21 Enfoques bidimensionales .............................................................................................. 21 Enfoques tridimensionales ............................................................................................. 22 Impresión 3D ................................................................................................................. 23 Capítulo 3. Estado del arte ........................................................................................................ 26 Capítulo 4. Metodología ............................................................................................................ 32 Creación del modelo de úlcera artificial ......................................................................... 32 Adquisición de la imagen ............................................................................................... 32 Refinamiento del solido ................................................................................................. 33 Impresión 3D de carcasas............................................................................................... 34 Validación de resultados ................................................................................................ 35 Escaneos de los hidrogeles y refinamiento de sus moldes tridimensionales. ................... 35 Análisis de las dimensiones de las carcasas .................................................................... 36 Capítulo 5. Resultados y análisis de resultados .......................................................................... 39 Resultados ..................................................................................................................... 39 Creación del modelo de úlcera artificial ......................................................................... 39 Adquisición de la imagen ............................................................................................... 40 Refinamiento del sólido. ................................................................................................ 41 Impresión 3D de carcasas............................................................................................... 42 Validación de resultados ................................................................................................ 46 Análisis de resultados .................................................................................................... 60 Capítulo 6. Conclusiones ........................................................................................................... 63 Capítulo 7. Anexos .................................................................................................................... 65 Anexo 1. Protocolo de diseño de moldes para la fabricación de apósitos tridimensionales personalizados para úlceras de pie diabético................................................................... 65 Capítulo 8. Bibliografía ............................................................................................................. 76PregradoDiabetic foot ulcers are one of the most common complications among patients who suffer Diabetes Mellitus, and the main cause of lower limb amputations around the world. For this reason, new techniques have been implemented to treat them, including 3D printing, which has allowed the development of several treatment methods. This project consists in the design of a protocol to produce personalized molds that allow the obtaining of three-dimensional dressings that adjust to the needs of each patient, making use of 3D scanning and printing technologies. An ulcer in the plantar area was taken as a reference; a series of scans were taken, of which 4 were selected for printing. Similarly, printing tests were carried out by varying parameters such as speed and fill density, which play an important role in the acquisition of results. The material used was PLA, due to its rigidity it provided the necessary stability for the creation of each of the shells. It was found that the dimensions obtained from the shells, made by applying this procedure, presents an error percentage that does not exceed 2.14% for the surface area and 1.04% in depth, regarding the ulcer model. These results allowed establishing that the designed protocol could be used for the manufacture of customized dressings. However, there is still variability in the results, so it is important to continue with research in this area.Modalidad Presencialapplication/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)Atribución-NoComercial-SinDerivadas 2.5 Colombiahttp://purl.org/coar/access_right/c_abf2Diseño de protocolo de escaneo y modelado 3D para la elaboración de apósitos personalizados para pacientes con úlceras de pie diabéticoDesign of a 3D modeling and scanning protocol for the production of personalized dressings for patients with diabetic foot ulcersIngeniero BiomédicoUniversidad Autónoma de Bucaramanga UNABFacultad IngenieríaPregrado Ingeniería Biomédicainfo:eu-repo/semantics/bachelorThesisTrabajo de Gradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/acceptedVersionhttp://purl.org/redcol/resource_type/TPBiomedical engineeringEngineeringMedical electronicsBiological physicsBioengineeringMedical instruments and apparatusMedicineBiomedicalClinical engineeringThree-dimensional dressing3D Scanning3D printingDiabetic foot ulcersSugar in the bodyDiabetes mellitusModeling in medicineThree-dimensional imageIngeniería biomédicaIngenieríaBiofísicaBioingenieríaMedicinaBiomédicaAzúcar en el organismoDiabetes mellitusModelado en medicinaImagen tridimensionalIngeniería clínicaElectrónica médicaInstrumentos y aparatos médicosApósito tridimensionalEscaneo 3DImpresión 3DÚlceras de pie diabéticoAhn, C., & Salcido, R. S. (2008). Advances in wound photography and assessment methods. Advances in Skin & Wound Care, 21(2). https://doi.org/10.1097/01.ASW.0000305411.58350.7dAmerican Diabetes Association. (2011). Diagnosis and Classification of Diabetes Mellitus. https://doi.org/10.2337/dc11-S062Ansari, A. A., & Kamil, M. (2021). Effect of print speed and extrusion temperature on properties of 3D printed PLA using fused deposition modeling process. Materials Today: Proceedings, 45, 5462–5468. https://doi.org/10.1016/j.matpr.2021.02.137Aragón-Sánchez, J., Quintana-Marrero, Y., Aragón-Hernández, C., & Hernández-Herero, M. J. (2017). ImageJ: A Free, Easy, and Reliable Method to Measure Leg Ulcers Using Digital Pictures. International Journal of Lower Extremity Wounds, 16(4), 269–273. https://doi.org/10.1177/1534734617744951Blume, P. A., Walters, J., Payne, W., Ayala, J., & Lantis, J. (2008). Comparison of negative pressure wound therapy usingVacuum-assisted closure with advanced moist wound therapy in the treatment of diabetic foot ulcers. Diabetes Care, 31(4), 631–636. https://doi.org/10.2337/dc07-2196Bus, S.A., Lavery, A. L., Monteiro-Soares, M., Rasmussen, A., Raspovic, A., Sacco, I. C. N., & Van Netten, J. J. (2019). IWGDF Guideline on the classification of diabetic foot ulcers. International Working Group on the Diabetic Foot, 1–15. https://iwgdfguidelines.org/wp content/uploads/2019/05/02-IWGDF-prevention-guideline 2019.pdf%0Ahttps://iwgdfguidelines.org/prevention-guideline/Bus, Sicco A., Akkerman, E. M., & Maas, M. (2021). Changes in sub-calcaneal fat pad composition and their association with dynamic plantar foot pressure in people with diabetic neuropathy. Clinical Biomechanics, 88(April), 105441. https://doi.org/10.1016/j.clinbiomech.2021.105441Constantinou, G., Wilson, G., Sadeghi-Esfahlani, S., & Cirstea, M. (2017). An effective approach to the use of 3D scanning technology which shortens the development time of 3D models. Proceedings - 2017 International Conference on Optimization of Electrical and Electronic Equipment, OPTIM 2017 and 2017 Intl Aegean Conference on Electrical Machines and Power Electronics, ACEMP 2017, 1083–1088. https://doi.org/10.1109/OPTIM.2017.7975116Foltynski, P., Ladyzynski, P., Ciechanowska, A., Migalska-Musial, K., Judzewicz, G., & Sabalinska, S. (2015). Wound area measurement with digital planimetry: Improved accuracy and precision with calibration based on 2 rulers. PLoS ONE, 10(8), 1–13. https://doi.org/10.1371/journal.pone.0134622Gholami, P., Ahmadi-Pajouh, M. A., Abolftahi, N., Hamarneh, G., & Kayvanrad, M. (2018). Segmentation and Measurement of Chronic Wounds for Bioprinting. IEEE Journal of Biomedical and Health Informatics, 22(4), 1269–1277. https://doi.org/10.1109/JBHI.2017.2743526Ghotaslou, R., Memar, M. Y., & Alizadeh, N. (2018). Classification, microbiology and treatment of diabetic foot infections. Journal of Wound Care, 27(7), 434–441. https://doi.org/10.12968/jowc.2018.27.7.434Glover, K., Mathew, E., Pitzanti, G., Magee, E., & Lamprou, D. A. (2022). 3D bioprinted scaffolds for diabetic wound-healing applications. In Drug Delivery and Translational Research. https://doi.org/10.1007/s13346-022-01115-8Glover, K., Stratakos, A. C., Varadi, A., & Lamprou, D. A. (2021). 3D scaffolds in the treatment of diabetic foot ulcers: New trends vs conventional approaches. International Journal of Pharmaceutics, 599(February), 120423. https://doi.org/10.1016/j.ijpharm.2021.120423Grennan, D. (2019). Diabetic Foot Ulcers. JAMA, 321(1), 114–114. https://doi.org/10.1001/JAMA.2018.18323Jia, L., Parker, C. N., Parker, T. J., Kinnear, E. M., Derhy, P. H., Alvarado, A. M., Huygens, F., & Lazzarini, P. A. (2017). Incidence and risk factors for developing infection in patients presenting with uninfected diabetic foot ulcers. PLoS ONE, 12(5), 1–15. https://doi.org/10.1371/journal.pone.0177916Jørgensen, L. B., Halekoh, U., Jemec, G. B. E., Sørensen, J. A., & Yderstræde, K. B. (2020). Monitoring Wound Healing of Diabetic Foot Ulcers Using Two-Dimensional and Three Dimensional Wound Measurement Techniques: A Prospective Cohort Study. Advances in Wound Care, 9(10), 553–563. https://doi.org/10.1089/wound.2019.1000Kristiawan, R. B., Imaduddin, F., Ariawan, D., Ubaidillah, & Arifin, Z. (2021). A review on the fused deposition modeling (FDM) 3D printing: Filament processing, materials, and printing parameters. Open Engineering, 11(1), 639–649. https://doi.org/10.1515/eng-2021-0063Langemo, D. K., Melland, H., Olson, B., Hanson, D., Hunter, S., Henly, S. J., & Thompson, P. (2001). Comparison of 2 Wound Volume Measurement Methods. Advances in Skin & Wound Care, 14(4). https://journals.lww.com/aswcjournal/Fulltext/2001/07000/Comparison_of_2_Wound_Volu me_Measurement_Methods.11.aspxLi, J., Ji, Q., Peng, J., Jun, L., Fusong, J., & Xiaowei, Y. (2019). Assessing diabetic foot injury based on 3D image technology. 2019 6th International Conference on Systems and Informatics, ICSAI 2019, Icsai, 1218–1221. https://doi.org/10.1109/ICSAI48974.2019.9010171Li, L., Yu, F., Shi, J., Shen, S., Teng, H., Yang, J., Wang, X., & Jiang, Q. (2017). In situ repair of bone and cartilage defects using 3D scanning and 3D printing. Scientific Reports, 7(1), 1– 12. https://doi.org/10.1038/s41598-017-10060-3Nunez, K. (2019). What Is Wound Debridement and When Is It Necessary? Healthline. https://www.healthline.com/health/debridementOrganización Mundial de la Salud (OMS). (2018). Informe mundial sobre la diabetes. Revista Virtual de La Sociedad Paraguaya de Medicina Interna, 3(2), 71–76.Partes del pie humano. (2022). Retrieved 28 June 2022, from https://www.partesdel.com/pie_humano.htmlPena, G., Kuang, B., Szpak, Z., Cowled, P., Dawson, J., & Fitridge, R. (2020). Evaluation of a Novel Three-Dimensional Wound Measurement Device for Assessment of Diabetic Foot Ulcers. Advances in Wound Care, 9(11), 623–631. https://doi.org/10.1089/wound.2019.0965Peter-Riesch, B. (2016). The diabetic foot: The never-ending challenge. Endocrine Development, 31, 108–134. https://doi.org/10.1159/000439409Prince, J. D. (2014). 3D Printing: An Industrial Revolution. Journal of Electronic Resources in Medical Libraries, 11(1), 39–45. https://doi.org/10.1080/15424065.2014.877247Rismalia, M., Hidajat, S. C., Permana, I. G. R., Hadisujoto, B., Muslimin, M., & Triawan, F. (2019). Infill pattern and density effects on the tensile properties of 3D printed PLA material. Journal of Physics: Conference Series, 1402(4). https://doi.org/10.1088/1742 6596/1402/4/044041Rokit. (n.d.). ROKIT INVIVO User ManualRosero, N., & Quitian, J. (2021). Diseño de una tinta de biomaterial de alginato y plasma pobre en plaquetas con potencial uso en la fabricación de apósitos personalizados para úlceras crónicas de pie diabético. Universidad Autónoma de Bucaramanga.Shining 3D. (2020). EinScanH User Manual. November, 1–57. https://www.einscan.com/handheld-3d-scanner/einscan-h/Solarte David, V. A., Güiza-Argüello, V. R., Arango-Rodríguez, M. L., Sossa, C. L., & Becerra Bayona, S. M. (2022). Decellularized Tissues for Wound Healing: Towards Closing the Gap Between Scaffold Design and Effective Extracellular Matrix Remodeling. Frontiers in Bioengineering and Biotechnology, 10(February), 1–26. https://doi.org/10.3389/fbioe.2022.821852Tan, C. T., Liang, K., Ngo, Z. H., & Dube, C. T. (2020). Biomedicines-08-00441-V2 (2).Pdf. 1– 19.Treuillet, S., Albouy, B., & Lucas, Y. (2009). Three-dimensional assessment of skin wounds using a standard digital camera. IEEE Transactions on Medical Imaging, 28(5), 752–762. https://doi.org/10.1109/TMI.2008.2012025Tümer, E. H., & Erbil, H. Y. (2021). Extrusion-based 3d printing applications of pla composites: A review. Coatings, 11(4), 1–42. https://doi.org/10.3390/coatings11040390Velazco, G., Gonzalez, A., & Ortiz, R. (2012). Apósitos de quitosano para el tratamiento de pie diabético ( Chitosan films for the diabetic foot treatment ) Resumen Introducción Resultados y Discusión Caso clínico. 1(1), 38–41Yick, K. L., Lo, W. T., Ng, S. P., Yip, J., Kwan, H. H., Kwong, Y. Y., & Cheng, F. C. (2019). Analysis of insole geometry and deformity by using a three-dimensional image processing technique: A preliminary study. Journal of the American Podiatric Medical Association, 109(2), 98–107. https://doi.org/10.7547/16-116ORIGINAL2022_Tesis_Maria_Alejandra_Agredo.pdf2022_Tesis_Maria_Alejandra_Agredo.pdfTesisapplication/pdf1640156https://repository.unab.edu.co/bitstream/20.500.12749/17710/1/2022_Tesis_Maria_Alejandra_Agredo.pdf311b385cff70745005d5a4313aaf414dMD51open access2022_Licencia_Maria_Agredo.pdf2022_Licencia_Maria_Agredo.pdfLicenciaapplication/pdf893977https://repository.unab.edu.co/bitstream/20.500.12749/17710/4/2022_Licencia_Maria_Agredo.pdfbf20231ed5e6032ec8da97a184b8fcf3MD54metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8829https://repository.unab.edu.co/bitstream/20.500.12749/17710/3/license.txt3755c0cfdb77e29f2b9125d7a45dd316MD53open accessTHUMBNAIL2022_Tesis_Maria_Alejandra_Agredo.pdf.jpg2022_Tesis_Maria_Alejandra_Agredo.pdf.jpgIM Thumbnailimage/jpeg5211https://repository.unab.edu.co/bitstream/20.500.12749/17710/5/2022_Tesis_Maria_Alejandra_Agredo.pdf.jpg08a81de7a4c3ad7b36ab88892c798269MD55open access2022_Licencia_Maria_Agredo.pdf.jpg2022_Licencia_Maria_Agredo.pdf.jpgIM Thumbnailimage/jpeg10069https://repository.unab.edu.co/bitstream/20.500.12749/17710/6/2022_Licencia_Maria_Agredo.pdf.jpgc064aecf912106249b4970337592a2d0MD56metadata only access20.500.12749/17710oai:repository.unab.edu.co:20.500.12749/177102023-11-25 03:38:36.7open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbi4gRWwgQVVUT1IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVTkFCIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuCgpFbCBBVVRPUiBhdXRvcml6YSBhIGxhIFVuaXZlcnNpZGFkIEF1dMOzbm9tYSBkZSBCdWNhcmFtYW5nYSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24uCg== |