Desarrollo de kits orientados a proyectos Stem utilizando la programación y la impresión 3D para incentivar el estudio de la Ingeniería Mecatrónica

En la actualidad los jóvenes en Colombia no se ven interesados por el estudio de la ingeniería mecatrónica, esto debido a que la encuentran complicada. Así pues, el objetivo de este proyectos es el de generar interés en los jóvenes hacia la ingeniería mecatrónica a través de 3 kits orientados a proy...

Full description

Autores:
Rincón Sánchez, Karen Daniela
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad Autónoma de Bucaramanga - UNAB
Repositorio:
Repositorio UNAB
Idioma:
spa
OAI Identifier:
oai:repository.unab.edu.co:20.500.12749/25941
Acceso en línea:
http://hdl.handle.net/20.500.12749/25941
Palabra clave:
Mechatronic
3D printer
Programming
Education
STEM
Embedded systems
Rapid prototyping
Electronic data processing
Higher education
Educational games
Education (Simulation Methods)
Mecatrónica
Prototipado rápido
Procesamiento electrónico de datos
Educación superior
Juegos educativos
Educación (Métodos de simulación)
Impresión 3D
Programación
Educación
STEM
Sistemas embebidos
Rights
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UNAB2_f6c91cbbc5d58ed288cbba89db23b288
oai_identifier_str oai:repository.unab.edu.co:20.500.12749/25941
network_acronym_str UNAB2
network_name_str Repositorio UNAB
repository_id_str
dc.title.spa.fl_str_mv Desarrollo de kits orientados a proyectos Stem utilizando la programación y la impresión 3D para incentivar el estudio de la Ingeniería Mecatrónica
dc.title.translated.spa.fl_str_mv Development of kits aimed at Stem projects using programming and 3D printing to encourage the study of Mechatronic Engineering
title Desarrollo de kits orientados a proyectos Stem utilizando la programación y la impresión 3D para incentivar el estudio de la Ingeniería Mecatrónica
spellingShingle Desarrollo de kits orientados a proyectos Stem utilizando la programación y la impresión 3D para incentivar el estudio de la Ingeniería Mecatrónica
Mechatronic
3D printer
Programming
Education
STEM
Embedded systems
Rapid prototyping
Electronic data processing
Higher education
Educational games
Education (Simulation Methods)
Mecatrónica
Prototipado rápido
Procesamiento electrónico de datos
Educación superior
Juegos educativos
Educación (Métodos de simulación)
Impresión 3D
Programación
Educación
STEM
Sistemas embebidos
title_short Desarrollo de kits orientados a proyectos Stem utilizando la programación y la impresión 3D para incentivar el estudio de la Ingeniería Mecatrónica
title_full Desarrollo de kits orientados a proyectos Stem utilizando la programación y la impresión 3D para incentivar el estudio de la Ingeniería Mecatrónica
title_fullStr Desarrollo de kits orientados a proyectos Stem utilizando la programación y la impresión 3D para incentivar el estudio de la Ingeniería Mecatrónica
title_full_unstemmed Desarrollo de kits orientados a proyectos Stem utilizando la programación y la impresión 3D para incentivar el estudio de la Ingeniería Mecatrónica
title_sort Desarrollo de kits orientados a proyectos Stem utilizando la programación y la impresión 3D para incentivar el estudio de la Ingeniería Mecatrónica
dc.creator.fl_str_mv Rincón Sánchez, Karen Daniela
dc.contributor.advisor.none.fl_str_mv Chío Cho, Nayibe
Rueda Sánchez, Oscar Eduardo
dc.contributor.author.none.fl_str_mv Rincón Sánchez, Karen Daniela
dc.contributor.cvlac.spa.fl_str_mv Chío Cho, Nayibe [0000375918]
Rueda Sánchez, Oscar Eduardo [00001002588]
dc.contributor.googlescholar.spa.fl_str_mv Chío Cho, Nayibe [mModWy8AAAAJ]
Rueda Sánchez, Oscar Eduardo [WtioYOUAAAAJ]
dc.contributor.orcid.spa.fl_str_mv Chío Cho, Nayibe [0000-0002-9459-4350]
Rueda Sánchez, Oscar Eduardo [0000-0002-8977-9764]
dc.contributor.researchgate.spa.fl_str_mv Chío Cho, Nayibe [Nayibe_Chio]
Rueda Sánchez, Oscar Eduardo [Oscar_Sanchez40]
dc.contributor.apolounab.spa.fl_str_mv Chío Cho, Nayibe [nayibe-chío-cho]
Rueda Sánchez, Oscar Eduardo [oscar-eduardo-rueda-sánchez]
dc.contributor.linkedin.spa.fl_str_mv Chío Cho, Nayibe [nayibe-chio-cho-41a17724]
dc.subject.keywords.spa.fl_str_mv Mechatronic
3D printer
Programming
Education
STEM
Embedded systems
Rapid prototyping
Electronic data processing
Higher education
Educational games
Education (Simulation Methods)
topic Mechatronic
3D printer
Programming
Education
STEM
Embedded systems
Rapid prototyping
Electronic data processing
Higher education
Educational games
Education (Simulation Methods)
Mecatrónica
Prototipado rápido
Procesamiento electrónico de datos
Educación superior
Juegos educativos
Educación (Métodos de simulación)
Impresión 3D
Programación
Educación
STEM
Sistemas embebidos
dc.subject.lemb.spa.fl_str_mv Mecatrónica
Prototipado rápido
Procesamiento electrónico de datos
Educación superior
Juegos educativos
Educación (Métodos de simulación)
dc.subject.proposal.spa.fl_str_mv Impresión 3D
Programación
Educación
STEM
Sistemas embebidos
description En la actualidad los jóvenes en Colombia no se ven interesados por el estudio de la ingeniería mecatrónica, esto debido a que la encuentran complicada. Así pues, el objetivo de este proyectos es el de generar interés en los jóvenes hacia la ingeniería mecatrónica a través de 3 kits orientados a proyectos STEM los cuales están divididos en 3 áreas: Diversión, ecología e innovación, cada uno de estos kits contiene proyectos asociados a las temáticas propuestas en donde los estudiantes deberán realizar la programación de los dispositivos y construir los modelos a partir de piezas impresas en 3D, el conjunto de estos componentes tiene como resultado proyectos llamativos que les permitirán conocer conceptos básicos que hacen parte del trabajo de un ingeniero. La validación de estos proyectos se realizo mediante pruebas realizadas con estudiantes de colegio, donde se destinaron escenarios para que estos pudieran montar y programar los proyectos, también previa y posteriormente a estas actividades se realizaron encuestas para conocer las percepción de estos.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-08-08T14:29:10Z
dc.date.available.none.fl_str_mv 2024-08-08T14:29:10Z
dc.date.issued.none.fl_str_mv 2024-06-21
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.local.spa.fl_str_mv Trabajo de Grado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12749/25941
dc.identifier.instname.spa.fl_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UNAB
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.unab.edu.co
url http://hdl.handle.net/20.500.12749/25941
identifier_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
reponame:Repositorio Institucional UNAB
repourl:https://repository.unab.edu.co
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv C. Şen, Z. S. Ay, and S. A. Kiray, “A design-oriented STEM activity for students’ using and improving their engineering skills: the balance model with 3D printer,” Sci Act, vol. 57, no. 2, pp. 88–101, Apr. 2020, doi: 10.1080/00368121.2020.1805581.
A. Forbes, G. Falloon, M. Stevenson, M. Hatzigianni, and M. Bower, “An Analysis of the Nature of Young Students’ STEM Learning in 3D Technology-Enhanced Makerspaces,” Early Educ Dev, pp. 172–187, 2020, doi: 10.1080/10409289.2020.1781325.
B. Bungum and E. Mogstad, “Building and programming a weather station: Teachers’ views on values and challenges in a comprehensive STEM project,” Research in Science and Technological Education, 2022, doi: 10.1080/02635143.2022.2103108.
S. Seiler and R. Sell, “Comprehensive Blended Learning Concept for Teaching Micro Controller Technology Utilising HomeLab Kits and Remote Labs in a Virtual Web Environment,” 2013.
A. Förster et al., “A blended learning approach for an introductory computer science course,” Educ Sci (Basel), vol. 11, no. 8, Aug. 2021, doi: 10.3390/educsci11080372.
K. Y. Lin, S. C. Lu, H. H. Hsiao, C. P. Kao, and P. J. Williams, “Developing student imagination and career interest through a STEM project using 3D printing with repetitive modeling,” Interactive Learning Environments, 2021, doi: 10.1080/10494820.2021.1913607.
N. K. Cakir and G. Guven, “Arduino-Assisted robotic and coding applications in science teaching: Pulsimeter activity in compliance with the 5E learning model,” Sci Act, vol. 56, no. 2, pp. 42–51, Apr. 2019, doi: 10.1080/00368121.2019.1675574.
R. M. Yilmaz, “Educational magic toys developed with augmented reality technology for early childhood education,” Comput Human Behav, vol. 54, pp. 240–248, Jan. 2016, doi: 10.1016/j.chb.2015.07.040.
E. Smyrnova-Trybulska, N. Morze, P. Kommers, W. Zuziak, and M. Gladun, EDUCATIONAL ROBOTS IN PRIMARY SCHOOL TEACHERS’ AND STUDENTS’ OPINION ABOUT STEM EDUCATION FOR YOUNG LEARNERS. 2016. [Online]. Available: www.roboty.bielsko.pl,
R. Echempati, “Experiences of Implementing Blended Teaching and Learning Technique in Mechanics and Design Courses,” 2013.
J. S. He, S. Ji, and P. Bobbie, “Internet of things (IoT)-based learning framework to facilitate STEM undergraduate education,” in Proceedings of the SouthEast Conference, ACMSE 2017, Association for Computing Machinery, Inc, Apr. 2017, pp. 88–94. doi: 10.1145/3077286.3077321.
M. M. Devarajan, S. Parthasarathi, and M. A. Ganesh, “Low Cost Digital Trainer Experimentation Platform–A Case study,” Journal of Engineering Education Transformations, vol. 36, no. special issue 2, pp. 500–503, 2022, doi: 10.16920/jeet/2023/v36is2/23076.
T. C. Hsu, C. Chang, L. H. Wong, and G. P. Aw, “Learning Performance of Different Genders’ Computational Thinking,” Sustainability (Switzerland), vol. 14, no. 24, Dec. 2022, doi: 10.3390/su142416514.
A. Miller, C. Rosenbaum, and P. Blikstein, “MagneTracks: A tangible constructionist toolkit for newtonian physics,” in Proceedings of the 6th International Conference on Tangible, Embedded and Embodied Interaction, TEI 2012, 2012, pp. 253–256. doi: 10.1145/2148131.2148185.
M. Bower, M. Stevenson, A. Forbes, G. Falloon, and M. Hatzigianni, “Makerspaces pedagogy–supports and constraints during 3D design and 3D printing activities in primary schools,” EMI Educ Media Int, vol. 57, no. 1, pp. 1–28, Jan. 2020, doi: 10.1080/09523987.2020.1744845.
J. P. T. Mo and Y. M. Tang, “Project-based learning of systems engineering V model with the support of 3D printing,” Australasian Journal of Engineering Education, vol. 22, no. 1, pp. 3–13, Jan. 2017, doi: 10.1080/22054952.2017.1338229.
Y. Chen, S. C. F. Chow, and W. W. M. So, “School-STEM professional collaboration to diversify stereotypes and increase interest in STEM careers among primary school students,” Asia Pacific Journal of Education, vol. 42, no. 3, pp. 556–573, 2022, doi: 10.1080/02188791.2020.1841604.
T. Stephenson, M. Fleer, G. Fragkiadaki, and P. Rai, “Teaching STEM through play: conditions created by the conceptual playWorld model for early childhood teachers,” Early Years, 2021, doi: 10.1080/09575146.2021.2019198.
J. Beltrán, “E-learning y gamificación como apoyo al aprendizaje de programación,” 2017.
X. Basogain, M. Olabe, J. Carlos Olabe, M. Javier Rico, L. Rodríguez, and M. Amórtegui Renata, “Pensamiento computacional en las escuelas de Colombia:colaboración internacional de innovación en la educación,” 2017
D. DE Psicología, L. Alfredo Sánchez Ruiz Dirigida por, J. Alejandro Corredor Aristizábal, and M. de, “UNIVERSIDAD NACIONAL DE COLOMBIA,” 2016.
E. Alonso and A. Marín, “Software Libre para potenciar la educación media vocacional de colegios para la articulación con un programa de ingeniería de sistemas,” 2014. Accessed: Aug. 29, 2023. [Online]. Available: http://hdl.handle.net/20.500.12749/3386
H. Julián, P. López, J. Andrick, and P. Valencia, “SECUENCIA DIDÁCTICA PARA LA ENSEÑANZA DEL PENSAMIENTO 1 Secuencia Didáctica para la Enseñanza del Pensamiento Computacional con el Uso de la Tarjeta Programable Micro: Bit, para Estudiantes De 8° Grado de Educación Básica Secundaria,” 2022. Accessed: Sep. 04, 2023. [Online]. Available: http://hdl.handle.net/20.500.12749/18769
Avantek, “La mecatrónica: qué es, qué estudia y cómo se aplica,” https://avantek.es/la-mecatronica-que-es-que-estudia-y-como-se-aplica/.
“¿Qué es STEM?,” https://especiales.colombiaaprende.edu.co/rutastem/definicion.html.
Ferrovial, “¿Qué significa el término STEM?,” https://www.ferrovial.com/es/stem/que-es-stem/.
“E-learning. Definición y Características,” https://cfp.us.es/e-learning-definicion-y-caracteristicas.
Ingrid Mosquera, “¿Qué es un Makerspace educativo? Construye un espacio para la creatividad de tus alumnos,” https://www.unir.net/educacion/revista/que-es-un-makerspace-educativo-construye-un-espacio-para-la-creatividad-de-tus-alumnos/.
“ Project Based Learning, ¿qué es?,” https://innovaschools.edu.mx/blog/project-based-learning-que-es/.
Iberdrola, “‘Blended learning’, ¿cómo funciona el aprendizaje semipresencial?,” https://www.iberdrola.com/talento/que-es-blended-learning.
A.Solano, “The 5E Learning Cycle,” https://www.continuous-learning-institute.com/blog/the-5e-learning-cycle.
Adonai Vera, “ ¿Qué framework usar para deep learning? TensorFlow, Pytorch o CNTK,” https://platzi.com/blog/framework-deep-learning/#:~:text=Qu%C3%A9%20es%20un%20framework%20para%20deep%20learning&text=Lo%20definimos%20como%20una%20estructura,desarrollar%20un%20software%20o%20aplicaci%C3%B3n.
“¿Qué es programación en informática? Aprende con Euroinnova,” https://www.euroinnova.co/blog/que-es-programacion-en-informatica#iquestqueacute-es-programacioacuten-en-informaacutetica-aprende-con-euroinnova.
Editorial Etecé, “Lenguaje de programación,” https://concepto.de/lenguaje-de-programacion/.
Kodigo, “¿Cuáles son los 10 lenguajes de programación más usados en la actualidad?,” https://kodigo.org/cuales-son-los-10-lenguajes-de-programacion-mas-usados-en-la-actualidad/.
David Gutierrez, “Software de programación ,” https://www.velneo.com/blog/software-de-programacion.
Aula21, “Impresión 3D: todo lo que necesitas saber,” https://www.cursosaula21.com/que-es-la-impresion-3d/.
Óscar Costa, “Tinkercad. Dando volumen a las ideas,” https://intef.es/observatorio_tecno/tinkercad-dando-volumen-a-las-ideas/.
Industria4.0, “Sistemas embebidos y su aportación a la industria,” https://www.velneo.com/blog/software-de-programacion.
Arduino, “What is Arduino?,” https://www.arduino.cc/en/Guide/Introduction.
Arduino, “Arduino Documentation,” https://docs.arduino.cc/?_gl=1*2n9tvs*_ga*OTkwNTYyODUwLjE2OTE4OTU0Mjc.*_ga_NEXN8H46L5*MTY5MTg5NTQyNi4xLjEuMTY5MTg5NTQ0OS4wLjAuMA.
RaspberryPi, “¿Que es Raspberry Pi?,” https://raspberrypi.cl/que-es-raspberry/.
Gabriele Masi, “FOURSIGHT AND THE PRODUCTIVE DIVERSITY.,” https://wow-webmagazine.com/foursight-and-the-productive-diversity.
“FourSight,” https://www.foursightonline.com/.
André Laverde, “Norma IPC 2221B para diseño de PCB ,” https://www.aldeltatec.com/blog-diseno-con-normas-y-certificaciones/norma-ipc-2221b-para-diseno-de-pcb-actualizacion/.
Vasyl Cherlinka, “Humedad Del Suelo: Cómo Medir Y Controlar Su Nivel,” https://eos.com/es/blog/humedad-del-suelo/.
Arduino, “Arduino Nano,” https://docs.arduino.cc/hardware/nano/.
WeMos, “LOLIN D1 Mini,” https://www.wemos.cc/en/latest/d1/d1_mini.html.
Espressif Systems, “ESP32 Series Datasheet 2.4 GHz Wi-Fi + Bluetooth ® + Bluetooth LE SoC Including,” 2024. [Online]. Available: www.espressif.com
Espressif Systems, “ESP-NOW,” https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-reference/network/esp_now.html.
“Processing,” https://processing.org/environment.
Thinger.io, “What is Thinger.io?,” https://docs.thinger.io/.
“Macetas: Con drenaje v/s sin drenaje.,” https://www.mimercadito.cl/blog/macetas-drenaje-vs-sin-drenaje/.
“Filamento PLA: La Resistencia al Agua.,” https://systemdissa.com/technology/filamento-pla-la-resistencia-al-agua/#:~:text=En%20condiciones%20normales%2C%20el%20filamento,sus%20propiedades%20f%C3%ADsicas%20y%20mec%C3%A1nicas.
L. Corcuera and V. Almería, “Presentado por: Silvana Victoria Silva Mauriello Tipo de trabajo: Propuesta de intervención Universidad Internacional de La Rioja Facultad de Educación,” 2018.
dc.relation.uriapolo.spa.fl_str_mv https://apolo.unab.edu.co/en/persons/nayibe-ch%C3%ADo-cho
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.creativecommons.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.spa.fl_str_mv Colombia
dc.coverage.campus.spa.fl_str_mv UNAB Campus Bucaramanga
dc.publisher.grantor.spa.fl_str_mv Universidad Autónoma de Bucaramanga UNAB
dc.publisher.faculty.spa.fl_str_mv Facultad Ingeniería
dc.publisher.program.spa.fl_str_mv Pregrado Ingeniería Mecatrónica
institution Universidad Autónoma de Bucaramanga - UNAB
bitstream.url.fl_str_mv https://repository.unab.edu.co/bitstream/20.500.12749/25941/1/Tesis.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/25941/5/Licencia.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/25941/4/license.txt
https://repository.unab.edu.co/bitstream/20.500.12749/25941/6/Tesis.pdf.jpg
https://repository.unab.edu.co/bitstream/20.500.12749/25941/7/Licencia.pdf.jpg
bitstream.checksum.fl_str_mv 42ca7873395a02808f987475e4610897
acff550fca8d0583eca66d912fb742ce
3755c0cfdb77e29f2b9125d7a45dd316
31a0140912b750502188d7c670b81a6e
e88e04fdef09366150b0b2f942066741
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB
repository.mail.fl_str_mv repositorio@unab.edu.co
_version_ 1814277304760664064
spelling Chío Cho, Nayibe9a9736d2-31b2-403f-990f-0ce127d9753cRueda Sánchez, Oscar Eduardo4ef66783-aed8-48d3-a35f-6bd6406bae33Rincón Sánchez, Karen Danielaad7598f2-a88c-4fcd-90d6-a121678b060dChío Cho, Nayibe [0000375918]Rueda Sánchez, Oscar Eduardo [00001002588]Chío Cho, Nayibe [mModWy8AAAAJ]Rueda Sánchez, Oscar Eduardo [WtioYOUAAAAJ]Chío Cho, Nayibe [0000-0002-9459-4350]Rueda Sánchez, Oscar Eduardo [0000-0002-8977-9764]Chío Cho, Nayibe [Nayibe_Chio]Rueda Sánchez, Oscar Eduardo [Oscar_Sanchez40]Chío Cho, Nayibe [nayibe-chío-cho]Rueda Sánchez, Oscar Eduardo [oscar-eduardo-rueda-sánchez]Chío Cho, Nayibe [nayibe-chio-cho-41a17724]ColombiaUNAB Campus Bucaramanga2024-08-08T14:29:10Z2024-08-08T14:29:10Z2024-06-21http://hdl.handle.net/20.500.12749/25941instname:Universidad Autónoma de Bucaramanga - UNABreponame:Repositorio Institucional UNABrepourl:https://repository.unab.edu.coEn la actualidad los jóvenes en Colombia no se ven interesados por el estudio de la ingeniería mecatrónica, esto debido a que la encuentran complicada. Así pues, el objetivo de este proyectos es el de generar interés en los jóvenes hacia la ingeniería mecatrónica a través de 3 kits orientados a proyectos STEM los cuales están divididos en 3 áreas: Diversión, ecología e innovación, cada uno de estos kits contiene proyectos asociados a las temáticas propuestas en donde los estudiantes deberán realizar la programación de los dispositivos y construir los modelos a partir de piezas impresas en 3D, el conjunto de estos componentes tiene como resultado proyectos llamativos que les permitirán conocer conceptos básicos que hacen parte del trabajo de un ingeniero. La validación de estos proyectos se realizo mediante pruebas realizadas con estudiantes de colegio, donde se destinaron escenarios para que estos pudieran montar y programar los proyectos, también previa y posteriormente a estas actividades se realizaron encuestas para conocer las percepción de estos.1. INTRODUCCIÓN ............................................................................................. 1 1.1. Descripción breve del problema................................................................ 1 1.2. Justificación del problema......................................................................... 1 2. OBJETIVOS..................................................................................................... 2 2.1. Objetivo General........................................................................................... 2 2.2. Objetivos Específicos.................................................................................... 2 3. ESTADO DEL ARTE......................................................................................... 3 4. MARCO TEÓRICO........................................................................................... 9 4.1. Mecatrónica .................................................................................................. 9 4.2. STEM............................................................................................................ 9 4.3 Metodologías............................................................................................. 9 4.3.1 E-learning................................................................................................ 9 4.3.2 Makerspace........................................................................................... 10 4.3.3 PBL ....................................................................................................... 10 4.3.4 Blended learning ................................................................................... 10 4.3.5 5E learning ............................................................................................ 11 4.3.6 Framework ............................................................................................ 11 4.4 Programación .............................................................................................. 11 4.5 Lenguaje de programación .......................................................................... 12 4.6 Software de programación........................................................................... 12 4.7 Impresión 3D ............................................................................................... 12 4.8 Tinkercard.................................................................................................... 13 4.9 Plataformas de sistemas embebidos ........................................................... 13 4.9.1Arduino................................................................................................... 13 4.9.2 Raspberry Pi.......................................................................................... 14 5. METODOLOGÍA................................................................................................ 14 6. CRONOGRAMA............................................................................................. 16 7. DESARROLLO............................................................................................... 17 7.1. Selección y planteamiento de los kits ......................................................... 17 7.2. Diseño de circuitos y PCB .......................................................................... 25 7.2.1. Diseño electrónico y circuito................................................................. 25 7.2.1.1 Cálculos.............................................................................................. 29 7.2.2. PCB...................................................................................................... 31 7.3. Códigos y software ..................................................................................... 33 7.3.1 Arduino.................................................................................................. 33 7.3.2 Placas de desarrollo.............................................................................. 38 7.3.2.1. Arduino Nano..................................................................................... 39 7.3.2.2. Wemos .............................................................................................. 39 7.3.2.3. ESP32 ............................................................................................... 40 7.3.2.3.1. Protocolo ESPNOW ....................................................................... 40 7.3.3 Herramienta adicionales........................................................................ 41 7.3.3.1 Processing.......................................................................................... 41 7.3.3.2 Thinger.io............................................................................................ 41 7.4. Diseño e impresión 3D................................................................................ 42 7.4.1 Diseño CAD........................................................................................... 42 7.4.2 Impresión 3D......................................................................................... 47 7.5. Validación de funcionamiento (prototipo) .................................................... 49 8. Montaje y pruebas............................................................................................. 53 8.1. Montaje Final .............................................................................................. 53 8.2 Guías ........................................................................................................... 53 8.2.1 Guía de estudiantes .............................................................................. 54 8.2.2 Guía de docente.................................................................................... 55 8.3 Encuestas .................................................................................................... 56 8.3.1 Encuesta previa a estudiantes .............................................................. 56 8.3.2 Encuesta posterior a estudiantes.............................................................. 58 8.4 Pruebas ....................................................................................................... 59 8.4.1 Evidencia de las pruebas y desarrollo de los talleres............................ 59 8.4.2 Resultado de las encuestas .................................................................. 63 8.4.2.1 Encuesta Previa..................................................................................... 63 8.4.2.2 Encuesta Posterior................................................................................. 70 CONCLUSIONES.................................................................................................. 78 BIBLIOGRAFÍA ..................................................................................................... 80 ANEXOS ............................................................................................................... 85PregradoCurrently, young people in Colombia are not interested in studying mechatronics engineering, as they find it complicated. Therefore, the objective of this project is to generate interest in young people towards mechatronics engineering through three STEM-oriented kits, which are divided into three areas: Fun, Ecology, and Innovation. Each of these kits contains projects related to the proposed themes, where students will program the devices and build models using 3D-printed parts. The combination of these components results in engaging projects that introduce basic concepts integral to the work of an engineer. The validation of these projects was carried out through tests with high school students, where scenarios were set up for them to assemble and program the projects. Additionally, surveys were conducted before and after these activities to understand their perceptions.Modalidad Presencialapplication/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)Atribución-NoComercial-SinDerivadas 2.5 Colombiahttp://purl.org/coar/access_right/c_abf2Desarrollo de kits orientados a proyectos Stem utilizando la programación y la impresión 3D para incentivar el estudio de la Ingeniería MecatrónicaDevelopment of kits aimed at Stem projects using programming and 3D printing to encourage the study of Mechatronic EngineeringIngeniero MecatrónicoUniversidad Autónoma de Bucaramanga UNABFacultad IngenieríaPregrado Ingeniería Mecatrónicainfo:eu-repo/semantics/bachelorThesisTrabajo de Gradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/acceptedVersionhttp://purl.org/redcol/resource_type/TPMechatronic3D printerProgrammingEducationSTEMEmbedded systemsRapid prototypingElectronic data processingHigher educationEducational gamesEducation (Simulation Methods)MecatrónicaPrototipado rápidoProcesamiento electrónico de datosEducación superiorJuegos educativosEducación (Métodos de simulación)Impresión 3DProgramaciónEducaciónSTEMSistemas embebidosC. Şen, Z. S. Ay, and S. A. Kiray, “A design-oriented STEM activity for students’ using and improving their engineering skills: the balance model with 3D printer,” Sci Act, vol. 57, no. 2, pp. 88–101, Apr. 2020, doi: 10.1080/00368121.2020.1805581.A. Forbes, G. Falloon, M. Stevenson, M. Hatzigianni, and M. Bower, “An Analysis of the Nature of Young Students’ STEM Learning in 3D Technology-Enhanced Makerspaces,” Early Educ Dev, pp. 172–187, 2020, doi: 10.1080/10409289.2020.1781325.B. Bungum and E. Mogstad, “Building and programming a weather station: Teachers’ views on values and challenges in a comprehensive STEM project,” Research in Science and Technological Education, 2022, doi: 10.1080/02635143.2022.2103108.S. Seiler and R. Sell, “Comprehensive Blended Learning Concept for Teaching Micro Controller Technology Utilising HomeLab Kits and Remote Labs in a Virtual Web Environment,” 2013.A. Förster et al., “A blended learning approach for an introductory computer science course,” Educ Sci (Basel), vol. 11, no. 8, Aug. 2021, doi: 10.3390/educsci11080372.K. Y. Lin, S. C. Lu, H. H. Hsiao, C. P. Kao, and P. J. Williams, “Developing student imagination and career interest through a STEM project using 3D printing with repetitive modeling,” Interactive Learning Environments, 2021, doi: 10.1080/10494820.2021.1913607.N. K. Cakir and G. Guven, “Arduino-Assisted robotic and coding applications in science teaching: Pulsimeter activity in compliance with the 5E learning model,” Sci Act, vol. 56, no. 2, pp. 42–51, Apr. 2019, doi: 10.1080/00368121.2019.1675574.R. M. Yilmaz, “Educational magic toys developed with augmented reality technology for early childhood education,” Comput Human Behav, vol. 54, pp. 240–248, Jan. 2016, doi: 10.1016/j.chb.2015.07.040.E. Smyrnova-Trybulska, N. Morze, P. Kommers, W. Zuziak, and M. Gladun, EDUCATIONAL ROBOTS IN PRIMARY SCHOOL TEACHERS’ AND STUDENTS’ OPINION ABOUT STEM EDUCATION FOR YOUNG LEARNERS. 2016. [Online]. Available: www.roboty.bielsko.pl,R. Echempati, “Experiences of Implementing Blended Teaching and Learning Technique in Mechanics and Design Courses,” 2013.J. S. He, S. Ji, and P. Bobbie, “Internet of things (IoT)-based learning framework to facilitate STEM undergraduate education,” in Proceedings of the SouthEast Conference, ACMSE 2017, Association for Computing Machinery, Inc, Apr. 2017, pp. 88–94. doi: 10.1145/3077286.3077321.M. M. Devarajan, S. Parthasarathi, and M. A. Ganesh, “Low Cost Digital Trainer Experimentation Platform–A Case study,” Journal of Engineering Education Transformations, vol. 36, no. special issue 2, pp. 500–503, 2022, doi: 10.16920/jeet/2023/v36is2/23076.T. C. Hsu, C. Chang, L. H. Wong, and G. P. Aw, “Learning Performance of Different Genders’ Computational Thinking,” Sustainability (Switzerland), vol. 14, no. 24, Dec. 2022, doi: 10.3390/su142416514.A. Miller, C. Rosenbaum, and P. Blikstein, “MagneTracks: A tangible constructionist toolkit for newtonian physics,” in Proceedings of the 6th International Conference on Tangible, Embedded and Embodied Interaction, TEI 2012, 2012, pp. 253–256. doi: 10.1145/2148131.2148185.M. Bower, M. Stevenson, A. Forbes, G. Falloon, and M. Hatzigianni, “Makerspaces pedagogy–supports and constraints during 3D design and 3D printing activities in primary schools,” EMI Educ Media Int, vol. 57, no. 1, pp. 1–28, Jan. 2020, doi: 10.1080/09523987.2020.1744845.J. P. T. Mo and Y. M. Tang, “Project-based learning of systems engineering V model with the support of 3D printing,” Australasian Journal of Engineering Education, vol. 22, no. 1, pp. 3–13, Jan. 2017, doi: 10.1080/22054952.2017.1338229.Y. Chen, S. C. F. Chow, and W. W. M. So, “School-STEM professional collaboration to diversify stereotypes and increase interest in STEM careers among primary school students,” Asia Pacific Journal of Education, vol. 42, no. 3, pp. 556–573, 2022, doi: 10.1080/02188791.2020.1841604.T. Stephenson, M. Fleer, G. Fragkiadaki, and P. Rai, “Teaching STEM through play: conditions created by the conceptual playWorld model for early childhood teachers,” Early Years, 2021, doi: 10.1080/09575146.2021.2019198.J. Beltrán, “E-learning y gamificación como apoyo al aprendizaje de programación,” 2017.X. Basogain, M. Olabe, J. Carlos Olabe, M. Javier Rico, L. Rodríguez, and M. Amórtegui Renata, “Pensamiento computacional en las escuelas de Colombia:colaboración internacional de innovación en la educación,” 2017D. DE Psicología, L. Alfredo Sánchez Ruiz Dirigida por, J. Alejandro Corredor Aristizábal, and M. de, “UNIVERSIDAD NACIONAL DE COLOMBIA,” 2016.E. Alonso and A. Marín, “Software Libre para potenciar la educación media vocacional de colegios para la articulación con un programa de ingeniería de sistemas,” 2014. Accessed: Aug. 29, 2023. [Online]. Available: http://hdl.handle.net/20.500.12749/3386H. Julián, P. López, J. Andrick, and P. Valencia, “SECUENCIA DIDÁCTICA PARA LA ENSEÑANZA DEL PENSAMIENTO 1 Secuencia Didáctica para la Enseñanza del Pensamiento Computacional con el Uso de la Tarjeta Programable Micro: Bit, para Estudiantes De 8° Grado de Educación Básica Secundaria,” 2022. Accessed: Sep. 04, 2023. [Online]. Available: http://hdl.handle.net/20.500.12749/18769Avantek, “La mecatrónica: qué es, qué estudia y cómo se aplica,” https://avantek.es/la-mecatronica-que-es-que-estudia-y-como-se-aplica/.“¿Qué es STEM?,” https://especiales.colombiaaprende.edu.co/rutastem/definicion.html.Ferrovial, “¿Qué significa el término STEM?,” https://www.ferrovial.com/es/stem/que-es-stem/.“E-learning. Definición y Características,” https://cfp.us.es/e-learning-definicion-y-caracteristicas.Ingrid Mosquera, “¿Qué es un Makerspace educativo? Construye un espacio para la creatividad de tus alumnos,” https://www.unir.net/educacion/revista/que-es-un-makerspace-educativo-construye-un-espacio-para-la-creatividad-de-tus-alumnos/.“ Project Based Learning, ¿qué es?,” https://innovaschools.edu.mx/blog/project-based-learning-que-es/.Iberdrola, “‘Blended learning’, ¿cómo funciona el aprendizaje semipresencial?,” https://www.iberdrola.com/talento/que-es-blended-learning.A.Solano, “The 5E Learning Cycle,” https://www.continuous-learning-institute.com/blog/the-5e-learning-cycle.Adonai Vera, “ ¿Qué framework usar para deep learning? TensorFlow, Pytorch o CNTK,” https://platzi.com/blog/framework-deep-learning/#:~:text=Qu%C3%A9%20es%20un%20framework%20para%20deep%20learning&text=Lo%20definimos%20como%20una%20estructura,desarrollar%20un%20software%20o%20aplicaci%C3%B3n.“¿Qué es programación en informática? Aprende con Euroinnova,” https://www.euroinnova.co/blog/que-es-programacion-en-informatica#iquestqueacute-es-programacioacuten-en-informaacutetica-aprende-con-euroinnova.Editorial Etecé, “Lenguaje de programación,” https://concepto.de/lenguaje-de-programacion/.Kodigo, “¿Cuáles son los 10 lenguajes de programación más usados en la actualidad?,” https://kodigo.org/cuales-son-los-10-lenguajes-de-programacion-mas-usados-en-la-actualidad/.David Gutierrez, “Software de programación ,” https://www.velneo.com/blog/software-de-programacion.Aula21, “Impresión 3D: todo lo que necesitas saber,” https://www.cursosaula21.com/que-es-la-impresion-3d/.Óscar Costa, “Tinkercad. Dando volumen a las ideas,” https://intef.es/observatorio_tecno/tinkercad-dando-volumen-a-las-ideas/.Industria4.0, “Sistemas embebidos y su aportación a la industria,” https://www.velneo.com/blog/software-de-programacion.Arduino, “What is Arduino?,” https://www.arduino.cc/en/Guide/Introduction.Arduino, “Arduino Documentation,” https://docs.arduino.cc/?_gl=1*2n9tvs*_ga*OTkwNTYyODUwLjE2OTE4OTU0Mjc.*_ga_NEXN8H46L5*MTY5MTg5NTQyNi4xLjEuMTY5MTg5NTQ0OS4wLjAuMA.RaspberryPi, “¿Que es Raspberry Pi?,” https://raspberrypi.cl/que-es-raspberry/.Gabriele Masi, “FOURSIGHT AND THE PRODUCTIVE DIVERSITY.,” https://wow-webmagazine.com/foursight-and-the-productive-diversity.“FourSight,” https://www.foursightonline.com/.André Laverde, “Norma IPC 2221B para diseño de PCB ,” https://www.aldeltatec.com/blog-diseno-con-normas-y-certificaciones/norma-ipc-2221b-para-diseno-de-pcb-actualizacion/.Vasyl Cherlinka, “Humedad Del Suelo: Cómo Medir Y Controlar Su Nivel,” https://eos.com/es/blog/humedad-del-suelo/.Arduino, “Arduino Nano,” https://docs.arduino.cc/hardware/nano/.WeMos, “LOLIN D1 Mini,” https://www.wemos.cc/en/latest/d1/d1_mini.html.Espressif Systems, “ESP32 Series Datasheet 2.4 GHz Wi-Fi + Bluetooth ® + Bluetooth LE SoC Including,” 2024. [Online]. Available: www.espressif.comEspressif Systems, “ESP-NOW,” https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-reference/network/esp_now.html.“Processing,” https://processing.org/environment.Thinger.io, “What is Thinger.io?,” https://docs.thinger.io/.“Macetas: Con drenaje v/s sin drenaje.,” https://www.mimercadito.cl/blog/macetas-drenaje-vs-sin-drenaje/.“Filamento PLA: La Resistencia al Agua.,” https://systemdissa.com/technology/filamento-pla-la-resistencia-al-agua/#:~:text=En%20condiciones%20normales%2C%20el%20filamento,sus%20propiedades%20f%C3%ADsicas%20y%20mec%C3%A1nicas.L. Corcuera and V. Almería, “Presentado por: Silvana Victoria Silva Mauriello Tipo de trabajo: Propuesta de intervención Universidad Internacional de La Rioja Facultad de Educación,” 2018.https://apolo.unab.edu.co/en/persons/nayibe-ch%C3%ADo-choORIGINALTesis.pdfTesis.pdfTesisapplication/pdf20155927https://repository.unab.edu.co/bitstream/20.500.12749/25941/1/Tesis.pdf42ca7873395a02808f987475e4610897MD51open accessLicencia.pdfLicencia.pdfLicenciaapplication/pdf319226https://repository.unab.edu.co/bitstream/20.500.12749/25941/5/Licencia.pdfacff550fca8d0583eca66d912fb742ceMD55metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8829https://repository.unab.edu.co/bitstream/20.500.12749/25941/4/license.txt3755c0cfdb77e29f2b9125d7a45dd316MD54open accessTHUMBNAILTesis.pdf.jpgTesis.pdf.jpgIM Thumbnailimage/jpeg4583https://repository.unab.edu.co/bitstream/20.500.12749/25941/6/Tesis.pdf.jpg31a0140912b750502188d7c670b81a6eMD56open accessLicencia.pdf.jpgLicencia.pdf.jpgIM Thumbnailimage/jpeg12973https://repository.unab.edu.co/bitstream/20.500.12749/25941/7/Licencia.pdf.jpge88e04fdef09366150b0b2f942066741MD57metadata only access20.500.12749/25941oai:repository.unab.edu.co:20.500.12749/259412024-10-15 17:52:22.202open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbi4gRWwgQVVUT1IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVTkFCIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuCgpFbCBBVVRPUiBhdXRvcml6YSBhIGxhIFVuaXZlcnNpZGFkIEF1dMOzbm9tYSBkZSBCdWNhcmFtYW5nYSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24uCg==