Evaluación de alternativas para el dimensionamiento y mantenimiento de la instalación fotovoltaica en Cens
Esta investigación abordó el tema de diseño de instalaciones solares fotovoltaicas conectadas a la red (GRID TIE) debido a que la generación de energía y por ende la rentabilidad de una instalación solar fotovoltaica es bastante sensible a sus parámetros de diseño, esto sumado a que se tienen pocos...
- Autores:
-
Cáceres Carvajal, Wilmer Andrey
Duarte Moreno, Ángel David
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2021
- Institución:
- Universidad Autónoma de Bucaramanga - UNAB
- Repositorio:
- Repositorio UNAB
- Idioma:
- spa
- OAI Identifier:
- oai:repository.unab.edu.co:20.500.12749/14068
- Acceso en línea:
- http://hdl.handle.net/20.500.12749/14068
- Palabra clave:
- Energy engineering
Technological innovations
Energy
Photovoltaic characterization
Panel shading
Photovoltaic plant performance
Performance ratio
Series or parallel configuration
Photovoltaic inverter
NTC2050 solar
PVSol
Minitab
Hypothesis analysis
Solar power plants
Power plants
Energetic resources
Ingeniería en energía
Innovaciones tecnológicas
Energía
Centrales solares
Centrales eléctricas
Recursos energéticos
Caracterización fotovoltaica
Sombreado de paneles
Desempeño de plantas fotovoltaicas
Performance ratio
Configuración serie o paralelo
Inversor fotovoltaico
NTC2050 solar
PVSol
Minitab
Análisis de hipótesis
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id |
UNAB2_ed556d054b0fffa0ee138ee9b23a81ac |
---|---|
oai_identifier_str |
oai:repository.unab.edu.co:20.500.12749/14068 |
network_acronym_str |
UNAB2 |
network_name_str |
Repositorio UNAB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Evaluación de alternativas para el dimensionamiento y mantenimiento de la instalación fotovoltaica en Cens |
dc.title.translated.spa.fl_str_mv |
Evaluation of alternatives for the dimensioning and maintenance of the photovoltaic installation in Cens |
title |
Evaluación de alternativas para el dimensionamiento y mantenimiento de la instalación fotovoltaica en Cens |
spellingShingle |
Evaluación de alternativas para el dimensionamiento y mantenimiento de la instalación fotovoltaica en Cens Energy engineering Technological innovations Energy Photovoltaic characterization Panel shading Photovoltaic plant performance Performance ratio Series or parallel configuration Photovoltaic inverter NTC2050 solar PVSol Minitab Hypothesis analysis Solar power plants Power plants Energetic resources Ingeniería en energía Innovaciones tecnológicas Energía Centrales solares Centrales eléctricas Recursos energéticos Caracterización fotovoltaica Sombreado de paneles Desempeño de plantas fotovoltaicas Performance ratio Configuración serie o paralelo Inversor fotovoltaico NTC2050 solar PVSol Minitab Análisis de hipótesis |
title_short |
Evaluación de alternativas para el dimensionamiento y mantenimiento de la instalación fotovoltaica en Cens |
title_full |
Evaluación de alternativas para el dimensionamiento y mantenimiento de la instalación fotovoltaica en Cens |
title_fullStr |
Evaluación de alternativas para el dimensionamiento y mantenimiento de la instalación fotovoltaica en Cens |
title_full_unstemmed |
Evaluación de alternativas para el dimensionamiento y mantenimiento de la instalación fotovoltaica en Cens |
title_sort |
Evaluación de alternativas para el dimensionamiento y mantenimiento de la instalación fotovoltaica en Cens |
dc.creator.fl_str_mv |
Cáceres Carvajal, Wilmer Andrey Duarte Moreno, Ángel David |
dc.contributor.advisor.none.fl_str_mv |
Muñoz Maldonado, Yecid Alfonso |
dc.contributor.author.none.fl_str_mv |
Cáceres Carvajal, Wilmer Andrey Duarte Moreno, Ángel David |
dc.contributor.cvlac.spa.fl_str_mv |
Muñoz Maldonado, Yecid Alfonso [0001478388] |
dc.contributor.googlescholar.spa.fl_str_mv |
Muñoz Maldonado, Yecid Alfonso [Flz965cAAAAJ&hl=es&oi=ao] |
dc.contributor.orcid.spa.fl_str_mv |
Muñoz Maldonado, Yecid Alfonso [0000-0002-5151-1068] |
dc.contributor.researchgate.spa.fl_str_mv |
Muñoz Maldonado, Yecid Alfonso [Yecid_Munoz] |
dc.subject.keywords.spa.fl_str_mv |
Energy engineering Technological innovations Energy Photovoltaic characterization Panel shading Photovoltaic plant performance Performance ratio Series or parallel configuration Photovoltaic inverter NTC2050 solar PVSol Minitab Hypothesis analysis Solar power plants Power plants Energetic resources |
topic |
Energy engineering Technological innovations Energy Photovoltaic characterization Panel shading Photovoltaic plant performance Performance ratio Series or parallel configuration Photovoltaic inverter NTC2050 solar PVSol Minitab Hypothesis analysis Solar power plants Power plants Energetic resources Ingeniería en energía Innovaciones tecnológicas Energía Centrales solares Centrales eléctricas Recursos energéticos Caracterización fotovoltaica Sombreado de paneles Desempeño de plantas fotovoltaicas Performance ratio Configuración serie o paralelo Inversor fotovoltaico NTC2050 solar PVSol Minitab Análisis de hipótesis |
dc.subject.lemb.spa.fl_str_mv |
Ingeniería en energía Innovaciones tecnológicas Energía Centrales solares Centrales eléctricas Recursos energéticos |
dc.subject.proposal.spa.fl_str_mv |
Caracterización fotovoltaica Sombreado de paneles Desempeño de plantas fotovoltaicas Performance ratio Configuración serie o paralelo Inversor fotovoltaico NTC2050 solar PVSol Minitab Análisis de hipótesis |
description |
Esta investigación abordó el tema de diseño de instalaciones solares fotovoltaicas conectadas a la red (GRID TIE) debido a que la generación de energía y por ende la rentabilidad de una instalación solar fotovoltaica es bastante sensible a sus parámetros de diseño, esto sumado a que se tienen pocos proyectos experimentales en la región, genera que los proyectos actuales y futuros tengan una menor rentabilidad; como es el caso de la instalación solar FV en CENS. El objetivo principal de la investigación fue realizar un estudio teórico-práctico que determine cómo los parámetros de diseño del campo solar fotovoltaico CENS Sevilla, tales como la correcta selección del inversor, la configuración, orientación y frecuencia de limpiado de los módulos solares, impactan sobre el desempeño de la instalación. La mayor parte del proyecto se hizo de manera experimental aprovechando los distintos equipos de medida y las facilidades de modificar la instalación, se diseñaron los experimentos de tal manera que solo se vean afectados por el factor a evaluar, se ejecutaron, se tomaron datos para luego filtrarlos y escribir sobre los resultados obtenidos. De acuerdo con el análisis realizado se concluye que: es mejor tener mayor cantidad de paneles en serie que en paralelo, tener mayor potencia en DC mejoró el performance ratio, la disposición horizontal o vertical de los paneles no afecto al sistema, el hecho de limpiar los paneles no mejora el desempeño del sistema, específicamente para nuestro caso de estudio debido a que las lluvias ayudan en esta labor, dependiendo de la temporada cuando fueron tomados los experimentos. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-08-27T22:16:58Z |
dc.date.available.none.fl_str_mv |
2021-08-27T22:16:58Z |
dc.date.issued.none.fl_str_mv |
2021-07 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.local.spa.fl_str_mv |
Trabajo de Grado |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12749/14068 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Autónoma de Bucaramanga - UNAB |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional UNAB |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.unab.edu.co |
url |
http://hdl.handle.net/20.500.12749/14068 |
identifier_str_mv |
instname:Universidad Autónoma de Bucaramanga - UNAB reponame:Repositorio Institucional UNAB repourl:https://repository.unab.edu.co |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
[1] IRENA, “RENEWABLE POWER GENERATION COSTS IN 2019,” 2019. [Online]. Available: https://www.irena.org//media/Files/IRENA/Agency/Publication/2020/Jun/IRENA_Power_Generation_Cost s_2019.pdf [2] UPME, “Estadísticas Incentivos FNCE,” 2021. https://www1.upme.gov.co/Incentivos/Paginas/reportesfnce.aspx [3] Laborde, M. A., & Williams, R. (2016). Energía Solar. Buenos Aires: Academia Nacional de Ciencias Exactas, Fisicas y Naturales [4] Granda-Gutiérrez, E. E., Orta, O. A., Díaz-Guillén, J. C., Jimenez, M. A., Osorio, M., & González, M. A. (2013). Modelado y simulación de celdas y paneles solares. In Congreso Internacional de Ingeniería Electrónica (Vol. 35, pp. 17-22). [5] Rodrigo, P. M., Velázquez, R., & Fernández, E. F. (2016). DC/AC conversion efficiency of grid-connected photovoltaic inverters in central Mexico. Solar Energy, 139, 650665. [6] Anand, V. P., Ameen, E., & Pesala, B. (2014, January). Experimental investigation of the shading losses on solar module system performance. In 2014 International Conference on Advances in Electrical Engineering (ICAEE) (pp. 1-4). IEEE. [7] Certicalia, “¿Qué es un analizador de redes eléctricas?,” 0, 2015. https://www.certicalia.com/blog/que-es-analizador-redes-electricas. [8] Baci, A. B., Salmi, M., Menni, Y., Ghafourian, S., Sadeghzadeh, M., & Ghalandari, M. (2020). A New Configuration of Vertically Connecting Solar Cells: Solar Tree. International Journal of Photoenergy, 2020 [9] M. N. Sadiku and C. K. Alexander, Fundamentos de circuitos electricos. 2006 [10] Minitab, “Soporte Minitab,” 2018. https://support.minitab.com/es-mx/minitab/18/. [11] JMP, “Coeficiente de correlación,” Portal de formación estadística, 2015. [12] Florez Rojas, J. (2015). Energías alternativas en Colombia bajo la Ley 1715 [13] Pérez Álvarez, J. C. (2019). Guía para el dimensionamiento de sistemas solares fotovoltaicos conectados y aplicación de la Resolución CREG 030 de 2018 para la inyección de excedentes a la red [14] Ministerio de minas y energía, REGLAMENTO TÉCNICO DE INSTALACIONES ELÉCTRICAS (RETIE). 2013, p. 9. [15] ICONTEC, NORMA TECNICA COLOMBIANA 2050. 2019, pp. 27; 627 [16] P. M. Rodrigo, R. Velázquez, and E. F. Fernández, “DC/AC conversion efficiency of grid-connected photovoltaic inverters in central Mexico,” Sol. Energy, vol. 139, pp. 650–665, 2016 [17] S. Mirić and M. Nedeljković, “The solar photovoltaic panel simulator,” Rev. Roum. Sci. Techn.–Électrotechn. Énerg, vol. 60, no. 3, pp. 273–281, [Online]. Available: http://www.revue.elth.pub.ro/upload/45086206 Miric Nedelkovic_pp273-281.pdf [18] M. Seyedmahmoudian, B. Horan, T. K. Soon, R. Rahmani, A. M. T. Oo, and A. Stojcevski, “State of the art artificial intelligence-based MPPT techniques for mitigating partial shading effects on PV systems – A review,” ELSEVIER, 2016 [19] N. Kaushika and R. Anil, “An investigation of mismatch losses in solar photovoltaic cell networks,” ELSEIVER, vol. 0, no. 0, pp. 1–5, 2007 [20] L. Ponnusamy and D. Desappan, “An investigation of temperature effects on solar photovoltaic cells and modules,” Int. J. Eng., vol. 27, no. 11, pp. 1713–1722, 2014 [21] P. Sathyanarayana, R. Ballal, P. L. Sagar, and G. Kumar, “Effect of shading on the performance of solar PV panel,” Energy and Power, vol. 5, no. 1A, pp. 1–4, 2015. [22] Diaz-Dorado, Eloy & Suárez, Andrés & Carrillo, C. & Cidrás, José. (2010). Influence of the PV modules layout in the power losses of a PV array with shadows [23] D. L. Alvarez, A. S. Al-Sumaiti, and S. R. Rivera, “Estimation of an optimal PV panel cleaning strategy based on both annual radiation profile and module degradation,” IEEE Access, vol. 8, pp. 63832–63839, 2020. [24] N. Khadka, A. Bista, B. Adhikari, A. Shrestha, and D. Bista, “Smart solar photovoltaic panel cleaning system,” in IOP Conference Series: Earth and Environmental Science, 2020, vol. 463, no. 1, p. 12121 [25] S. A. Sulaiman, A. K. Singh, M. M. M. Mokhtar, and M. A. Bou-Rabee, “Influence of dirt accumulation on performance of PV panels,” Energy Procedia, vol. 50, pp. 50–56, 2014 [26] A. S. Chaudhary and D. K. Chaturvedi, “Thermal image analysis and segmentation to study temperature effects of cement and bird deposition on surface of solar panels,” Int. J. Image, Graph. Signal Process., vol. 9, no. 12, p. 12, 2017 [27] Y. S. Kim and R. Winston, “Power conversion in concentrating photovoltaic systems: central, string, and micro-inverters,” Prog. Photovoltaics Res. Appl., vol. 22, no. 9, pp. 984–992, 2014 [28] D. Pal, H. Koniki, and P. Bajpai, “Central and micro inverters for solar photovoltaic integration in AC grid,” in 2016 National Power Systems Conference (NPSC), 2016, pp. 1–6. [29] M. Díez-Mediavilla, M. I. Dieste-Velasco, M. del C. Rodríguez-Amigo, T. GarcíaCalderón, and C. Alonso-Tristán, “Performance of grid-tied PV facilities based on real data in Spain: Central inverter versus string system,” Energy Convers. Manag., vol. 86, pp. 1128–1133, 2014. [30] L. Ren, F. Wang, L. Li, X. Liu, and Y. Zhang, “Design Optimization of Distributed PV Power Station Based on the Efficiency Modelling and Analysis,” in 2019 IEEE 4th International Future Energy Electronics Conference (IFEEC), 2019, pp. 1–6. [31] L. Ren, S. Zhang, L. Li, Y. ZZhang, and F. Wang, “Efficiency diagnosis and optimization in distributed solar plants,” ELSIVIER, 2021 [32] C. Zhao et al., “Optimal Configuration of ESS and SVG for the Coordinated Improvement of Power Quality in Low Voltage Distribution Network with high Penetration PV,” in 2021 6th Asia Conference on Power and Electrical Engineering (ACPEE), 2021, pp. 1372–1377 [33] D. Meneghel, E. da Costa Bortoni, and A. Karimi, “Boosting DC/AC ratio of PV plant for BESS integration on DC side,” in 2018 IEEE Conference on Technologies for Sustainability (SusTech), 2018, pp. 1–4 [34] S. Raju Pendem and S. Mikkili, “Modeling, simulation and performance analysis of solar PV array configurations (Series, Series–Parallel and Honey-Comb) to extract maximum power under Partial Shading Conditions,” ELSEVIER, vol. 0, no. 0, pp. 1–14, 2018 [35] Seco, E. P. J. D. G., Pulido, J. M. G., Gómez, D. G., & Alcelay, I. A. (2019). Influencia del Sistema de Puesta a Tierra en la Compatibilidad Electromagnética en Edificios Hospitalarios= Influence of Grounding Systems in the Electromagnetic Compatibility in Hospital Buildings. Anales de Edificación, 5(2), 30-39 [36] Ministerio de mina y energía de Colombia, «Reglamento Técnico de Instalaciones Eléctricas. RETIE,» [En línea]. Available: http://www.minminas.gov.co/minminas/RETIE [37] colombiano. C. E. (1998). NTC 2050. Bogotá DC: el Instituto. [38] colombiano. C. E. NTC 1630, 30 de noviembre de 2006. Bogotá DC: el Instituto [39] Ruiz, L. I., & López, E. A. ¿Caída de tensión?: concepto, causas y efectos en un sistema eléctrico industrial. |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
dc.rights.creativecommons.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 Atribución-NoComercial-SinDerivadas 2.5 Colombia |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.spatial.spa.fl_str_mv |
Colombia |
dc.publisher.grantor.spa.fl_str_mv |
Universidad Autónoma de Bucaramanga UNAB |
dc.publisher.program.spa.fl_str_mv |
Pregrado Ingeniería en Energía |
institution |
Universidad Autónoma de Bucaramanga - UNAB |
bitstream.url.fl_str_mv |
https://repository.unab.edu.co/bitstream/20.500.12749/14068/1/2021_Tesis_Wilmer_Andrey_Caceres_Carvajal.pdf https://repository.unab.edu.co/bitstream/20.500.12749/14068/2/2021_Licencia_Wilmer_Andrey_Caceres_Carvajal.pdf https://repository.unab.edu.co/bitstream/20.500.12749/14068/3/license.txt https://repository.unab.edu.co/bitstream/20.500.12749/14068/4/2021_Tesis_Wilmer_Andrey_Caceres_Carvajal.pdf.jpg https://repository.unab.edu.co/bitstream/20.500.12749/14068/5/2021_Licencia_Wilmer_Andrey_Caceres_Carvajal.pdf.jpg |
bitstream.checksum.fl_str_mv |
c2af89fbe1cbc6e6ef08db75acf963c0 0579278dcacc9ac4f6eb17762d6b7d10 8a4605be74aa9ea9d79846c1fba20a33 ad73976ec3a5514f1315c2238a0806a5 236f75d50040a41c433faf6982a35491 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB |
repository.mail.fl_str_mv |
repositorio@unab.edu.co |
_version_ |
1814278402778071040 |
spelling |
Muñoz Maldonado, Yecid AlfonsoCáceres Carvajal, Wilmer AndreyDuarte Moreno, Ángel DavidMuñoz Maldonado, Yecid Alfonso [0001478388]Muñoz Maldonado, Yecid Alfonso [Flz965cAAAAJ&hl=es&oi=ao]Muñoz Maldonado, Yecid Alfonso [0000-0002-5151-1068]Muñoz Maldonado, Yecid Alfonso [Yecid_Munoz]Colombia2021-08-27T22:16:58Z2021-08-27T22:16:58Z2021-07http://hdl.handle.net/20.500.12749/14068instname:Universidad Autónoma de Bucaramanga - UNABreponame:Repositorio Institucional UNABrepourl:https://repository.unab.edu.coEsta investigación abordó el tema de diseño de instalaciones solares fotovoltaicas conectadas a la red (GRID TIE) debido a que la generación de energía y por ende la rentabilidad de una instalación solar fotovoltaica es bastante sensible a sus parámetros de diseño, esto sumado a que se tienen pocos proyectos experimentales en la región, genera que los proyectos actuales y futuros tengan una menor rentabilidad; como es el caso de la instalación solar FV en CENS. El objetivo principal de la investigación fue realizar un estudio teórico-práctico que determine cómo los parámetros de diseño del campo solar fotovoltaico CENS Sevilla, tales como la correcta selección del inversor, la configuración, orientación y frecuencia de limpiado de los módulos solares, impactan sobre el desempeño de la instalación. La mayor parte del proyecto se hizo de manera experimental aprovechando los distintos equipos de medida y las facilidades de modificar la instalación, se diseñaron los experimentos de tal manera que solo se vean afectados por el factor a evaluar, se ejecutaron, se tomaron datos para luego filtrarlos y escribir sobre los resultados obtenidos. De acuerdo con el análisis realizado se concluye que: es mejor tener mayor cantidad de paneles en serie que en paralelo, tener mayor potencia en DC mejoró el performance ratio, la disposición horizontal o vertical de los paneles no afecto al sistema, el hecho de limpiar los paneles no mejora el desempeño del sistema, específicamente para nuestro caso de estudio debido a que las lluvias ayudan en esta labor, dependiendo de la temporada cuando fueron tomados los experimentos.EVALUACIÓN DE ALTERNATIVAS PARA EL DIMENSIONAMIENTO Y MANTENIMIENTO DE LA INSTALACIÓN FOTOVOLTAICA EN CENS .............................................................................................. 1 1. INTRODUCCIÓN ......................................................................................................................... 12 2. JUSTIFICACIÓN........................................................................................................................... 12 3. OBJETIVO GENERAL ................................................................................................................... 13 4. OBJETIVOS ESPECÍFICOS ............................................................................................................ 13 5. MARCO TEÓRICO ....................................................................................................................... 13 5.1. Marco teórico sistemas solares FV .................................................................................... 13 5.2. Marco teórico análisis estadístico ..................................................................................... 20 6. MARCO LEGAL ........................................................................................................................... 22 7. ESTADO DEL ARTE ..................................................................................................................... 25 8. METODOLOGÍA .......................................................................................................................... 28 8.1. Diseño de experimentos ................................................................................................... 28 8.2. Método de toma de datos: ............................................................................................... 29 8.3. Filtro de datos ................................................................................................................... 29 8.4. Suavizado de los factores no controlables mediante factores normalizados: ................. 32 8.5. Restricciones ..................................................................................................................... 34 9. DESARROLLO ............................................................................................................................. 35 9.1. CARACTERIZACION ............................................................................................................ 35 9.1.1. Descripción ................................................................................................................ 35 9.1.2. VALIDACIÓN DEL CUMPLIMIENTO DE LAS NORMAS TÉCNICAS RETIE Y NTC 2050 [36] [37] 49 9.1.4. SIMULACION .............................................................................................................. 69 9.1.5. DESEMPEÑO ACTUAL SIMULADO ............................................................................. 72 9.1.6. DATOS HISTÓRICOS DEL DESEMPEÑO DE LA INSTALACIÓN ..................................... 73 9.1.7. PÉRDIDAS POR SOMBREADO .................................................................................... 78 9.1.8. PERDIDAS POR VOLTAJE DE ARRANQUE ................................................................... 81 9.2. DIAS DE REFERENCIA DE LOS EXPERIMENTOS .................................................................. 82 9.2.1. Análisis estadístico .................................................................................................... 85 9.3. ANÁLISIS DEL EFECTO DE LA CONFIGURACIÓN (SERIE-PARALELO) DEL CAMPO SOLAR ... 85 9.3.1. Diseño de experimento ............................................................................................. 85 9.3.2. Resultados ................................................................................................................. 86 9.3.3. Análisis estadístico .................................................................................................... 88 9.4. ANÁLISIS DEL EFECTO DE LA LIMPIEZA DE LOS PANELES .................................................. 89 9.4.1. Diseño de experimento ............................................................................................. 89 9.4.2. Resultados ................................................................................................................. 90 9.4.3. Análisis estadístico .................................................................................................... 90 9.5. ANÁLISIS DEL EFECTO DE LA VARIACIÓN DE LA POTENCIA PICO EN DC ........................... 92 9.5.1. Diseño de experimento ............................................................................................. 92 9.5.2. Resultados ................................................................................................................. 93 9.5.3. Análisis estadístico .................................................................................................... 96 9.6. ANÁLISIS DEL TIPO DE INVERSOR (MICRO INVERTER, STRING INVERTIR, CENTRAR INVERTIR) ...................................................................................................................................... 97 9.6.1. Resultados ............................................................................................................... 100 10. OPORTUNIDADES DE MEJORA ............................................................................................ 101 ..................................................................................................................................................... 102 11. CONCLUSIONES ................................................................................................................... 111PregradoThis research addressed the design issue of solar photovoltaic installations connected to the grid (GRID TIE) because the generation of energy and therefore the profitability of a solar photovoltaic installation is quite sensitive to its design parameters, this added to the fact that they have few experimental projects in the region, it causes current and future projects to have a lower profitability; as is the case of the solar PV installation in CENS. The main objective of the research was to carry out a theoretical-practical study to determine how the design parameters of the CENS Sevilla photovoltaic solar field, such as the correct selection of the inverter, the configuration, orientation and cleaning frequency of the solar modules, impact on the performance of the facility. Most of the project was done experimentally, taking advantage of the different measurement equipment and the facilities to modify the installation, the experiments were designed in such a way that they are only affected by the factor to be evaluated, they were carried out, data was collected for later filter them and write about the results obtained. According to the analysis carried out, it is concluded that: it is better to have more panels in series than in parallel, having higher DC power improved the performance ratio, the horizontal or vertical arrangement of the panels did not affect the system, the fact of cleaning The panels do not improve the performance of the system, specifically for our case study because the rains help in this work, depending on the season when the experiments were taken.application/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial-SinDerivadas 2.5 ColombiaEvaluación de alternativas para el dimensionamiento y mantenimiento de la instalación fotovoltaica en CensEvaluation of alternatives for the dimensioning and maintenance of the photovoltaic installation in CensIngeniero en EnergíaUniversidad Autónoma de Bucaramanga UNABPregrado Ingeniería en Energíainfo:eu-repo/semantics/bachelorThesisTrabajo de Gradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/redcol/resource_type/TPEnergy engineeringTechnological innovationsEnergyPhotovoltaic characterizationPanel shadingPhotovoltaic plant performancePerformance ratioSeries or parallel configurationPhotovoltaic inverterNTC2050 solarPVSolMinitabHypothesis analysisSolar power plantsPower plantsEnergetic resourcesIngeniería en energíaInnovaciones tecnológicasEnergíaCentrales solaresCentrales eléctricasRecursos energéticosCaracterización fotovoltaicaSombreado de panelesDesempeño de plantas fotovoltaicasPerformance ratioConfiguración serie o paraleloInversor fotovoltaicoNTC2050 solarPVSolMinitabAnálisis de hipótesis[1] IRENA, “RENEWABLE POWER GENERATION COSTS IN 2019,” 2019. [Online]. Available: https://www.irena.org//media/Files/IRENA/Agency/Publication/2020/Jun/IRENA_Power_Generation_Cost s_2019.pdf[2] UPME, “Estadísticas Incentivos FNCE,” 2021. https://www1.upme.gov.co/Incentivos/Paginas/reportesfnce.aspx[3] Laborde, M. A., & Williams, R. (2016). Energía Solar. Buenos Aires: Academia Nacional de Ciencias Exactas, Fisicas y Naturales[4] Granda-Gutiérrez, E. E., Orta, O. A., Díaz-Guillén, J. C., Jimenez, M. A., Osorio, M., & González, M. A. (2013). Modelado y simulación de celdas y paneles solares. In Congreso Internacional de Ingeniería Electrónica (Vol. 35, pp. 17-22).[5] Rodrigo, P. M., Velázquez, R., & Fernández, E. F. (2016). DC/AC conversion efficiency of grid-connected photovoltaic inverters in central Mexico. Solar Energy, 139, 650665.[6] Anand, V. P., Ameen, E., & Pesala, B. (2014, January). Experimental investigation of the shading losses on solar module system performance. In 2014 International Conference on Advances in Electrical Engineering (ICAEE) (pp. 1-4). IEEE.[7] Certicalia, “¿Qué es un analizador de redes eléctricas?,” 0, 2015. https://www.certicalia.com/blog/que-es-analizador-redes-electricas.[8] Baci, A. B., Salmi, M., Menni, Y., Ghafourian, S., Sadeghzadeh, M., & Ghalandari, M. (2020). A New Configuration of Vertically Connecting Solar Cells: Solar Tree. International Journal of Photoenergy, 2020[9] M. N. Sadiku and C. K. Alexander, Fundamentos de circuitos electricos. 2006[10] Minitab, “Soporte Minitab,” 2018. https://support.minitab.com/es-mx/minitab/18/.[11] JMP, “Coeficiente de correlación,” Portal de formación estadística, 2015.[12] Florez Rojas, J. (2015). Energías alternativas en Colombia bajo la Ley 1715[13] Pérez Álvarez, J. C. (2019). Guía para el dimensionamiento de sistemas solares fotovoltaicos conectados y aplicación de la Resolución CREG 030 de 2018 para la inyección de excedentes a la red[14] Ministerio de minas y energía, REGLAMENTO TÉCNICO DE INSTALACIONES ELÉCTRICAS (RETIE). 2013, p. 9.[15] ICONTEC, NORMA TECNICA COLOMBIANA 2050. 2019, pp. 27; 627[16] P. M. Rodrigo, R. Velázquez, and E. F. Fernández, “DC/AC conversion efficiency of grid-connected photovoltaic inverters in central Mexico,” Sol. Energy, vol. 139, pp. 650–665, 2016[17] S. Mirić and M. Nedeljković, “The solar photovoltaic panel simulator,” Rev. Roum. Sci. Techn.–Électrotechn. Énerg, vol. 60, no. 3, pp. 273–281, [Online]. Available: http://www.revue.elth.pub.ro/upload/45086206 Miric Nedelkovic_pp273-281.pdf[18] M. Seyedmahmoudian, B. Horan, T. K. Soon, R. Rahmani, A. M. T. Oo, and A. Stojcevski, “State of the art artificial intelligence-based MPPT techniques for mitigating partial shading effects on PV systems – A review,” ELSEVIER, 2016[19] N. Kaushika and R. Anil, “An investigation of mismatch losses in solar photovoltaic cell networks,” ELSEIVER, vol. 0, no. 0, pp. 1–5, 2007[20] L. Ponnusamy and D. Desappan, “An investigation of temperature effects on solar photovoltaic cells and modules,” Int. J. Eng., vol. 27, no. 11, pp. 1713–1722, 2014[21] P. Sathyanarayana, R. Ballal, P. L. Sagar, and G. Kumar, “Effect of shading on the performance of solar PV panel,” Energy and Power, vol. 5, no. 1A, pp. 1–4, 2015.[22] Diaz-Dorado, Eloy & Suárez, Andrés & Carrillo, C. & Cidrás, José. (2010). Influence of the PV modules layout in the power losses of a PV array with shadows[23] D. L. Alvarez, A. S. Al-Sumaiti, and S. R. Rivera, “Estimation of an optimal PV panel cleaning strategy based on both annual radiation profile and module degradation,” IEEE Access, vol. 8, pp. 63832–63839, 2020.[24] N. Khadka, A. Bista, B. Adhikari, A. Shrestha, and D. Bista, “Smart solar photovoltaic panel cleaning system,” in IOP Conference Series: Earth and Environmental Science, 2020, vol. 463, no. 1, p. 12121[25] S. A. Sulaiman, A. K. Singh, M. M. M. Mokhtar, and M. A. Bou-Rabee, “Influence of dirt accumulation on performance of PV panels,” Energy Procedia, vol. 50, pp. 50–56, 2014[26] A. S. Chaudhary and D. K. Chaturvedi, “Thermal image analysis and segmentation to study temperature effects of cement and bird deposition on surface of solar panels,” Int. J. Image, Graph. Signal Process., vol. 9, no. 12, p. 12, 2017[27] Y. S. Kim and R. Winston, “Power conversion in concentrating photovoltaic systems: central, string, and micro-inverters,” Prog. Photovoltaics Res. Appl., vol. 22, no. 9, pp. 984–992, 2014[28] D. Pal, H. Koniki, and P. Bajpai, “Central and micro inverters for solar photovoltaic integration in AC grid,” in 2016 National Power Systems Conference (NPSC), 2016, pp. 1–6.[29] M. Díez-Mediavilla, M. I. Dieste-Velasco, M. del C. Rodríguez-Amigo, T. GarcíaCalderón, and C. Alonso-Tristán, “Performance of grid-tied PV facilities based on real data in Spain: Central inverter versus string system,” Energy Convers. Manag., vol. 86, pp. 1128–1133, 2014.[30] L. Ren, F. Wang, L. Li, X. Liu, and Y. Zhang, “Design Optimization of Distributed PV Power Station Based on the Efficiency Modelling and Analysis,” in 2019 IEEE 4th International Future Energy Electronics Conference (IFEEC), 2019, pp. 1–6.[31] L. Ren, S. Zhang, L. Li, Y. ZZhang, and F. Wang, “Efficiency diagnosis and optimization in distributed solar plants,” ELSIVIER, 2021[32] C. Zhao et al., “Optimal Configuration of ESS and SVG for the Coordinated Improvement of Power Quality in Low Voltage Distribution Network with high Penetration PV,” in 2021 6th Asia Conference on Power and Electrical Engineering (ACPEE), 2021, pp. 1372–1377[33] D. Meneghel, E. da Costa Bortoni, and A. Karimi, “Boosting DC/AC ratio of PV plant for BESS integration on DC side,” in 2018 IEEE Conference on Technologies for Sustainability (SusTech), 2018, pp. 1–4[34] S. Raju Pendem and S. Mikkili, “Modeling, simulation and performance analysis of solar PV array configurations (Series, Series–Parallel and Honey-Comb) to extract maximum power under Partial Shading Conditions,” ELSEVIER, vol. 0, no. 0, pp. 1–14, 2018[35] Seco, E. P. J. D. G., Pulido, J. M. G., Gómez, D. G., & Alcelay, I. A. (2019). Influencia del Sistema de Puesta a Tierra en la Compatibilidad Electromagnética en Edificios Hospitalarios= Influence of Grounding Systems in the Electromagnetic Compatibility in Hospital Buildings. Anales de Edificación, 5(2), 30-39[36] Ministerio de mina y energía de Colombia, «Reglamento Técnico de Instalaciones Eléctricas. RETIE,» [En línea]. Available: http://www.minminas.gov.co/minminas/RETIE[37] colombiano. C. E. (1998). NTC 2050. Bogotá DC: el Instituto.[38] colombiano. C. E. NTC 1630, 30 de noviembre de 2006. Bogotá DC: el Instituto[39] Ruiz, L. I., & López, E. A. ¿Caída de tensión?: concepto, causas y efectos en un sistema eléctrico industrial.ORIGINAL2021_Tesis_Wilmer_Andrey_Caceres_Carvajal.pdf2021_Tesis_Wilmer_Andrey_Caceres_Carvajal.pdfTesisapplication/pdf6390922https://repository.unab.edu.co/bitstream/20.500.12749/14068/1/2021_Tesis_Wilmer_Andrey_Caceres_Carvajal.pdfc2af89fbe1cbc6e6ef08db75acf963c0MD51open access2021_Licencia_Wilmer_Andrey_Caceres_Carvajal.pdf2021_Licencia_Wilmer_Andrey_Caceres_Carvajal.pdfLicenciaapplication/pdf602730https://repository.unab.edu.co/bitstream/20.500.12749/14068/2/2021_Licencia_Wilmer_Andrey_Caceres_Carvajal.pdf0579278dcacc9ac4f6eb17762d6b7d10MD52metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.unab.edu.co/bitstream/20.500.12749/14068/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53open accessTHUMBNAIL2021_Tesis_Wilmer_Andrey_Caceres_Carvajal.pdf.jpg2021_Tesis_Wilmer_Andrey_Caceres_Carvajal.pdf.jpgIM Thumbnailimage/jpeg5362https://repository.unab.edu.co/bitstream/20.500.12749/14068/4/2021_Tesis_Wilmer_Andrey_Caceres_Carvajal.pdf.jpgad73976ec3a5514f1315c2238a0806a5MD54open access2021_Licencia_Wilmer_Andrey_Caceres_Carvajal.pdf.jpg2021_Licencia_Wilmer_Andrey_Caceres_Carvajal.pdf.jpgIM Thumbnailimage/jpeg9243https://repository.unab.edu.co/bitstream/20.500.12749/14068/5/2021_Licencia_Wilmer_Andrey_Caceres_Carvajal.pdf.jpg236f75d50040a41c433faf6982a35491MD55open access20.500.12749/14068oai:repository.unab.edu.co:20.500.12749/140682021-08-27 18:01:44.858open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |