Implementación de un montaje de referencia para la evaluación del potencial bioquímico de metano en la degradación de contaminantes provenientes de la agroindustria colombiana
El presente trabajo tuvo como finalidad implementar un montaje de referencia para la evaluación a escala de laboratorio del potencial bioquímico de metano (PBM) de una muestra de lodo anaerobio para la degradación de contaminantes provenientes de la agroindustria colombiana, utilizando como sustrato...
- Autores:
-
Ortiz Enciso, Camilo Andrés
Carvajal Dueñez, Jesús David
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2023
- Institución:
- Universidad Autónoma de Bucaramanga - UNAB
- Repositorio:
- Repositorio UNAB
- Idioma:
- spa
- OAI Identifier:
- oai:repository.unab.edu.co:20.500.12749/20053
- Acceso en línea:
- http://hdl.handle.net/20.500.12749/20053
- Palabra clave:
- (S/I) ratio
Biochemical methane potential (BMP)
Anaerobic sludge
Agroindustry
Chemical oxygen demand (COD)
Waste transformation
Bioremediation
Anaerobic digestion
Ingeniería en energía
Innovaciones tecnológicas
Energía
Transformación de residuos
Bioremediación
Digestión anaeróbica
Biogás
Potencial bioquímico de metano (PBM)
Lodo anaerobio
Agroindustria
Relación substrato/inóculo (S/I)
Demanda química de oxígeno (DQO)
- Rights
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id |
UNAB2_ebe803f833b03438febe943e88f50dc8 |
---|---|
oai_identifier_str |
oai:repository.unab.edu.co:20.500.12749/20053 |
network_acronym_str |
UNAB2 |
network_name_str |
Repositorio UNAB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Implementación de un montaje de referencia para la evaluación del potencial bioquímico de metano en la degradación de contaminantes provenientes de la agroindustria colombiana |
dc.title.translated.spa.fl_str_mv |
Implementation of a reference assembly for the evaluation of the biochemical potential of methane in the degradation of pollutants from Colombian agroindustry |
title |
Implementación de un montaje de referencia para la evaluación del potencial bioquímico de metano en la degradación de contaminantes provenientes de la agroindustria colombiana |
spellingShingle |
Implementación de un montaje de referencia para la evaluación del potencial bioquímico de metano en la degradación de contaminantes provenientes de la agroindustria colombiana (S/I) ratio Biochemical methane potential (BMP) Anaerobic sludge Agroindustry Chemical oxygen demand (COD) Waste transformation Bioremediation Anaerobic digestion Ingeniería en energía Innovaciones tecnológicas Energía Transformación de residuos Bioremediación Digestión anaeróbica Biogás Potencial bioquímico de metano (PBM) Lodo anaerobio Agroindustria Relación substrato/inóculo (S/I) Demanda química de oxígeno (DQO) |
title_short |
Implementación de un montaje de referencia para la evaluación del potencial bioquímico de metano en la degradación de contaminantes provenientes de la agroindustria colombiana |
title_full |
Implementación de un montaje de referencia para la evaluación del potencial bioquímico de metano en la degradación de contaminantes provenientes de la agroindustria colombiana |
title_fullStr |
Implementación de un montaje de referencia para la evaluación del potencial bioquímico de metano en la degradación de contaminantes provenientes de la agroindustria colombiana |
title_full_unstemmed |
Implementación de un montaje de referencia para la evaluación del potencial bioquímico de metano en la degradación de contaminantes provenientes de la agroindustria colombiana |
title_sort |
Implementación de un montaje de referencia para la evaluación del potencial bioquímico de metano en la degradación de contaminantes provenientes de la agroindustria colombiana |
dc.creator.fl_str_mv |
Ortiz Enciso, Camilo Andrés Carvajal Dueñez, Jesús David |
dc.contributor.advisor.none.fl_str_mv |
Meneses Jácome, Alexander Ávila Rojas, Omar Alberto Mendoza Castellanos, Luis Sebastián |
dc.contributor.author.none.fl_str_mv |
Ortiz Enciso, Camilo Andrés Carvajal Dueñez, Jesús David |
dc.contributor.cvlac.spa.fl_str_mv |
Meneses Jácome, Alexander [0000326020] Mendoza Castellanos, Luis Sebastián [115302] Ávila Rojas, Omar Alberto [0000066086] |
dc.contributor.googlescholar.spa.fl_str_mv |
Meneses Jácome, Alexander [es&oi=ao] Mendoza Castellanos, Luis Sebastián [S5TZbi8AAAAJ] Ávila Rojas, Omar Alberto [es&oi=ao] |
dc.contributor.orcid.spa.fl_str_mv |
Mendoza Castellanos, Luis Sebastián [0000-0001-8263-2551] Ávila Rojas, Omar Alberto [0000-0003-2872-5372] |
dc.contributor.scopus.spa.fl_str_mv |
Mendoza Castellanos, Luis Sebastián [57193169160] |
dc.contributor.researchgate.spa.fl_str_mv |
Meneses Jácome, Alexander [Alexander-Meneses-Jacome] Mendoza Castellanos, Luis Sebastián [Sebastian_Mendoza6] |
dc.contributor.researchgroup.spa.fl_str_mv |
Centro de Investigación en Biotecnología, Bioética y Ambiente - CINBBYA Grupo de Investigaciones Clínicas |
dc.contributor.apolounab.spa.fl_str_mv |
Meneses Jácome, Alexander [alexander-meneses-jácome] Mendoza Castellanos, Luis Sebastián [luis-sebastián-mendoza-castellanos] |
dc.subject.keywords.spa.fl_str_mv |
(S/I) ratio Biochemical methane potential (BMP) Anaerobic sludge Agroindustry Chemical oxygen demand (COD) Waste transformation Bioremediation Anaerobic digestion |
topic |
(S/I) ratio Biochemical methane potential (BMP) Anaerobic sludge Agroindustry Chemical oxygen demand (COD) Waste transformation Bioremediation Anaerobic digestion Ingeniería en energía Innovaciones tecnológicas Energía Transformación de residuos Bioremediación Digestión anaeróbica Biogás Potencial bioquímico de metano (PBM) Lodo anaerobio Agroindustria Relación substrato/inóculo (S/I) Demanda química de oxígeno (DQO) |
dc.subject.lemb.spa.fl_str_mv |
Ingeniería en energía Innovaciones tecnológicas Energía Transformación de residuos Bioremediación Digestión anaeróbica Biogás |
dc.subject.proposal.spa.fl_str_mv |
Potencial bioquímico de metano (PBM) Lodo anaerobio Agroindustria Relación substrato/inóculo (S/I) Demanda química de oxígeno (DQO) |
description |
El presente trabajo tuvo como finalidad implementar un montaje de referencia para la evaluación a escala de laboratorio del potencial bioquímico de metano (PBM) de una muestra de lodo anaerobio para la degradación de contaminantes provenientes de la agroindustria colombiana, utilizando como sustrato modelo de fácil degradación, el glicerol. Los ensayos de biodegradación a pequeña escala con el propósito de establecer una técnica confiable de PBM, se realizaron en biorreactores de 300 mL y las variables de control fueron la influencia de la relación substrato/inoculo (S/I) y la concentración del sustrato, en tanto que las variables de respuesta fueron la generación de biogás, la remoción de la demanda química de oxígeno (DQO) y el pH. De un diseño experimental exploratorio (-1, 0. 1) que comprometía 9 test, se logró acotar el intervalo de trabajo para la relación, que llevó a que finalmente en un ensayo final con tres réplicas con relación S/I de 3.2, se pudiera constatar que en condiciones de biodegradación anaerobia del glicerol, sin ajuste de pH ni de nutrientes, el consumo de DQO se encuentre alrededor del 30% lo que es coherente con las ecuaciones teóricas de producción de biogás, pero que es posible que luego del quinto día de experimentación, la actividad metanogénica se detenga como resultado de la rápida acidificación del medio y que el biogás resultante sea predominante en CO2 y no en CH4. En una segunda etapa de la experimentación se logró demostrar que el experimento es replicable en biorreactores de mayor escala (Bioflo 110) con producciones similares de biogás y remociones de DQO; los cuales fueron intervenidos para establecer los rangos operacionales de las variables agitación y temperatura de calentamiento. Un experimento realizado a esta escala a 37 ºC y agitación mecánica constante de 270 rpm, logró la mayor remoción de DQO en todo el estudio (41%) |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-05-24T19:36:57Z |
dc.date.available.none.fl_str_mv |
2023-05-24T19:36:57Z |
dc.date.issued.none.fl_str_mv |
2023-05-24 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.local.spa.fl_str_mv |
Trabajo de Grado |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12749/20053 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Autónoma de Bucaramanga - UNAB |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional UNAB |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.unab.edu.co |
url |
http://hdl.handle.net/20.500.12749/20053 |
identifier_str_mv |
instname:Universidad Autónoma de Bucaramanga - UNAB reponame:Repositorio Institucional UNAB repourl:https://repository.unab.edu.co |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Abdul Aziz, N. I. H., Hanafiah, M. M., & Mohamed Ali, M. Y. (2019). Sustainable biogas production from agrowaste and effluents – A promising step for small-scale industry income. Renewable Energy, 132, 363–369. https://doi.org/10.1016/j.renene.2018.07.149 Aguiar, S., Arboleda, L., & Uvidia, H. (2021). Aprovechamiento de residuos agroindustriales como alternativa en el mejoramiento de la calidad del ambiente. Revista Alfa, 5(15), 649–660. https://doi.org/10.33996/revistaalfa.v5i15.145 Angeladiki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, L., Guwy, A., Jenicek, P., Kalyuzhnui, S., & van Lier, J. (2007). Anaerobic Biodegradation, Activity and Inhibition (ABAI) Task Group Meeting 9th to 10th October 2006, in Prague. Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J. L., Guwy, A. J., Kalyuzhnyi, S., Jenicek, P., & van Lier, J. B. (2009). Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Science and Technology, 59(5), 927–934. https://doi.org/10.2166/wst.2009.040 Appels, L., Baeyens, J., Degrève, J., & Dewil, R. (2008). Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science, 34(6), 755–781. https://doi.org/10.1016/j.pecs.2008.06.002 Atasoy, M., Owusu-Agyeman, I., Plaza, E., & Cetecioglu, Z. (2018). Bio-based volatile fatty acid production and recovery from waste streams: Current status and future challenges. Bioresource Technology, 268, 773–786. https://doi.org/10.1016/j.biortech.2018.07.042 Caillet, H., Lebon, E., Akinlabi, E., Madyira, D., & Adelard, L. (2019). Influence of inoculum to substrate ratio on methane production in Biochemical Methane Potential (BMP) tests of sugarcane distillery waste water. Procedia Manufacturing, 35, 259–264. https://doi.org/10.1016/j.promfg.2019.05.037 Cárdenas Cleves, L. M., Parra Orobio, B. A., Torres Lozada, P., & Vásquez Franco, C. H. (2016). Perspectivas del ensayo de Potencial Bioquímico de Metano - PBM para el control del proceso de digestión anaerobia de residuos. Revista ION, 29(1), 95–108. https://doi.org/10.18273/revion.v29n1-2016008 Cardona Alzate, C. A., Serna-Loaiza, S., & Ortiz-Sanchez, M. (2020). Sustainable Biorefineries: What was Learned from the Design, Analysis and Implementation. Journal of Sustainable Development of Energy, Water and Environment Systems, 8(1), 88–117. https://doi.org/10.13044/j.sdewes.d7.0268 Carus, M., & Dammer, L. (2018). The Circular Bioeconomy—Concepts, Opportunities, and Limitations. Industrial Biotechnology, 14(2), 83–91. https://doi.org/10.1089/ind.2018.29121.mca Centeno, M. (2011). Gestión y valorización energética de los lodos fisicoquímicos y biológicos generados en el tratamiento de efluentes industriales de la empresa Bio-D S.A. Universidad Autónoma de Bucaramanga. Chen, Y., Cheng, J. J., & Creamer, K. S. (2008a). Inhibition of anaerobic digestion process: A review. Bioresource Technology, 99(10), 4044–4064. https://doi.org/10.1016/j.biortech.2007.01.057 Chen, Y., Cheng, J. J., & Creamer, K. S. (2008b). Inhibition of anaerobic digestion process: A review. Bioresource Technology, 99(10), 4044–4064. https://doi.org/10.1016/j.biortech.2007.01.057 Cirne, D. G., Paloumet, X., Björnsson, L., Alves, M. M., & Mattiasson, B. (2007). Anaerobic digestion of lipid-rich waste—Effects of lipid concentration. Renewable Energy, 32(6), 965–975. https://doi.org/10.1016/j.renene.2006.04.003 Coca, M. (n.d.). Planta de tratamiento de aguas residuales procedentes de la producción de biodiesel. Universidad de Valladolid. Dahiya, S., Sarkar, O., Swamy, Y. V., & Venkata Mohan, S. (2015). Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen. Bioresource Technology, 182, 103–113. https://doi.org/10.1016/j.biortech.2015.01.007 Demirel, B., & Scherer, P. (2011). Trace element requirements of agricultural biogas digesters during biological conversion of renewable biomass to methane. Biomass and Bioenergy, 35(3), 992–998. https://doi.org/10.1016/j.biombioe.2010.12.022 Deublein, D., & Steinhauser, A. (2008). Biogas from Waste and Renewable Resources. Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/9783527621705 Facchin, V., Cavinato, C., Pavan, P., & Bolzonella, D. (2013). Batch and Continuous Mesophilic Anaerobic Digestion of Food Waste: Effect of Trace Elements Supplementation. Chemical Engineering Transactions, 32. Garcia-Nunez, J. A., Rodriguez, D. T., Fontanilla, C. A., Ramirez, N. E., Silva Lora, E. E., Frear, C. S., Stockle, C., Amonette, J., & Garcia-Perez, M. (2016). Evaluation of alternatives for the evolution of palm oil mills into biorefineries. Biomass and Bioenergy, 95, 310–329. https://doi.org/10.1016/j.biombioe.2016.05.020 Ghaleb, A. A. S., Kutty, S. R. M., Ho, Y. C., Jagaba, A. H., Noor, A., Al-Sabaeei, A. M., Kumar, V., & Saeed, A. A. H. (2020). Anaerobic co-digestion for oily-biological sludge with sugarcane bagasse for biogas production under mesophilic condition. IOP Conference Series: Materials Science and Engineering, 991(1), 012084. https://doi.org/10.1088/1757-899X/991/1/012084 Hansen, T. L., Schmidt, J. E., Angelidaki, I., Marca, E., Jansen, J. la C., Mosbæk, H., & Christensen, T. H. (2004). Method for determination of methane potentials of solid organic waste. Waste Management, 24(4), 393–400. https://doi.org/10.1016/j.wasman.2003.09.009 Holliger, C., Alves, M., Andrade, D., Angelidaki, I., Astals, S., Baier, U., Bougrier, C., Buffière, P., Carballa, M., de Wilde, V., Ebertseder, F., Fernández, B., Ficara, E., Fotidis, I., Frigon, J.-C., de Laclos, H. F., Ghasimi, D. S. M., Hack, G., Hartel, M., … Wierinck, I. (2016). Towards a standardization of biomethane potential tests. Water Science and Technology, 74(11), 2515–2522. https://doi.org/10.2166/wst.2016.336 Jain, S., Jain, S., Wolf, I. T., Lee, J., & Tong, Y. W. (2015). A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste. Renewable and Sustainable Energy Reviews, 52, 142–154. https://doi.org/10.1016/j.rser.2015.07.091 Jash, T., & Ghosh, D. N. (1996). Studies on the solubilization kinetics of solid organic residues during anaerobic biomethanation. Energy, 21(7–8), 725–730. https://doi.org/10.1016/0360-5442(95)00123-9 Jimenez, J. A., la Motta, E. J., & Parker, D. S. (2005). Kinetics of Removal of Particulate Chemical Oxygen Demand in the Activated-Sludge Process. Water Environment Research, 77(5), 437–446. https://doi.org/10.2175/106143005X67340 Kainthola, J., Kalamdhad, A. S., & Goud, V. v. (2019). A review on enhanced biogas production from anaerobic digestion of lignocellulosic biomass by different enhancement techniques. Process Biochemistry, 84, 81–90. https://doi.org/10.1016/j.procbio.2019.05.023 Kallistova, A. Yu., Goel, G., & Nozhevnikova, A. N. (2014). Microbial diversity of methanogenic communities in the systems for anaerobic treatment of organic waste. Microbiology, 83(5), 462–483. https://doi.org/10.1134/S0026261714050142 Karim, K., Hoffmann, R., Thomas Klasson, K., & Al-Dahhan, M. H. (2005). Anaerobic digestion of animal waste: Effect of mode of mixing. Water Research, 39(15), 3597–3606. https://doi.org/10.1016/j.watres.2005.06.019 Kumar, A., & Samadder, S. R. (2020). Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: A review. Energy, 197, 117253. https://doi.org/10.1016/j.energy.2020.117253 Kumar, S. (2011). Composting of municipal solid waste. Critical Reviews in Biotechnology, 31(2), 112–136. https://doi.org/10.3109/07388551.2010.492207 Kwietniewska, E., & Tys, J. (2014). Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation. Renewable and Sustainable Energy Reviews, 34, 491–500. https://doi.org/10.1016/j.rser.2014.03.041 Lesteur, M., Bellon-Maurel, V., Gonzalez, C., Latrille, E., Roger, J. M., Junqua, G., & Steyer, J. P. (2010). Alternative methods for determining anaerobic biodegradability: A review. Process Biochemistry, 45(4), 431–440. https://doi.org/10.1016/j.procbio.2009.11.018 Li, D., Liu, S., Mi, L., Li, Z., Yuan, Y., Yan, Z., & Liu, X. (2015). Effects of feedstock ratio and organic loading rate on the anaerobic mesophilic co-digestion of rice straw and cow manure. Bioresource Technology, 189, 319–326. https://doi.org/10.1016/j.biortech.2015.04.033 Li, R., Chen, S., Li, X., Saifullah Lar, J., He, Y., & Zhu, B. (2009). Anaerobic Codigestion of Kitchen Waste with Cattle Manure for Biogas Production. Energy & Fuels, 23(4), 2225–2228. https://doi.org/10.1021/ef8008772 Li, X., Li, L., Zheng, M., Fu, G., & Lar, J. S. (2009). Anaerobic Co-Digestion of Cattle Manure with Corn Stover Pretreated by Sodium Hydroxide for Efficient Biogas Production. Energy & Fuels, 23(9), 4635–4639. https://doi.org/10.1021/ef900384p Li, Y., Park, S. Y., & Zhu, J. (2011). Solid-state anaerobic digestion for methane production from organic waste. Renewable and Sustainable Energy Reviews, 15(1), 821–826. https://doi.org/10.1016/j.rser.2010.07.042 Llabrés-Luengo, P., & Mata-Alvarez, J. (1988). Influence of temperature, buffer, composition and straw particle length on the anaerobic digestion of wheat straw—Pig manure mixtures. Resources, Conservation and Recycling, 1(1), 27–37. https://doi.org/10.1016/0921-3449(88)90005-5 Lombardi, L., & Francini, G. (2020). Techno-economic and environmental assessment of the main biogas upgrading technologies. Renewable Energy, 156, 440–458. https://doi.org/10.1016/j.renene.2020.04.083 Macherzyński, B. (2018). Biochemical Neutralization of Coke Excess Sewage Sludge During Anaerobic Digestion Process. Chemical and Biochemical Engineering Quarterly, 32(2), 239–246. https://doi.org/10.15255/CABEQ.2016.1041 Mao, C., Feng, Y., Wang, X., & Ren, G. (2015). Review on research achievements of biogas from anaerobic digestion. Renewable and Sustainable Energy Reviews, 45, 540–555. https://doi.org/10.1016/j.rser.2015.02.032 Mata-Alvarez, J. (2015). Biomethanization of the Organic Fraction of Municipal Solid Wastes. Water Intelligence Online, 4(0), 9781780402994–9781780402994. https://doi.org/10.2166/9781780402994 Mata-Alvarez, J., Dosta, J., Romero-Güiza, M. S., Fonoll, X., Peces, M., & Astals, S. (2014). A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renewable and Sustainable Energy Reviews, 36, 412–427. https://doi.org/10.1016/j.rser.2014.04.039 Mata-Alvarez, J., Macé, S., & Llabrés, P. (2000). Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresource Technology, 74(1), 3–16. https://doi.org/10.1016/S0960-8524(00)00023-7 Merlin Christy, P., Gopinath, L. R., & Divya, D. (2014). A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renewable and Sustainable Energy Reviews, 34, 167–173. https://doi.org/10.1016/j.rser.2014.03.010 Meynell, P.-J. (1976). Methane : planning a digester. Prism Press. Nakasima-López, M., Taboada-González, P., Aguilar-Virgen, Q., & Velázquez-Limón, N. (2017). Adaptación de Inóculos Durante el Arranque de la Digestión Anaerobia con Residuos Sólidos Orgánicos. Información Tecnológica, 28(1), 199–208. https://doi.org/10.4067/S0718-07642017000100020 Nguyen, L. N., Kumar, J., Vu, M. T., Mohammed, J. A. H., Pathak, N., Commault, A. S., Sutherland, D., Zdarta, J., Tyagi, V. K., & Nghiem, L. D. (2021). Biomethane production from anaerobic co-digestion at wastewater treatment plants: A critical review on development and innovations in biogas upgrading techniques. Science of The Total Environment, 765, 142753. https://doi.org/10.1016/j.scitotenv.2020.142753 Panichnumsin, P., Nopharatana, A., Ahring, B., & Chaiprasert, P. (2010). Production of methane by co-digestion of cassava pulp with various concentrations of pig manure. Biomass and Bioenergy, 34(8), 1117–1124. https://doi.org/10.1016/j.biombioe.2010.02.018 Parkin, G. F., & Owen, W. F. (1986). Fundamentals of Anaerobic Digestion of Wastewater Sludges. Journal of Environmental Engineering, 112(5), 867–920. https://doi.org/10.1061/(ASCE)0733-9372(1986)112:5(867) Pavlostathis, S. G., & Giraldo‐Gomez, E. (1991). Kinetics of anaerobic treatment: A critical review. Critical Reviews in Environmental Control, 21(5–6), 411–490. https://doi.org/10.1080/10643389109388424 Quispe, C. A. G., Coronado, C. J. R., & Carvalho Jr., J. A. (2013). Glycerol: Production, consumption, prices, characterization and new trends in combustion. Renewable and Sustainable Energy Reviews, 27, 475–493. https://doi.org/10.1016/j.rser.2013.06.017 Reda, T., Plugge, C. M., Abram, N. J., & Hirst, J. (2008). Reversible interconversion of carbon dioxide and formate by an electroactive enzyme. Proceedings of the National Academy of Sciences, 105(31), 10654–10658. https://doi.org/10.1073/pnas.0801290105 Ren, Y., Yu, M., Wu, C., Wang, Q., Gao, M., Huang, Q., & Liu, Y. (2018). A comprehensive review on food waste anaerobic digestion: Research updates and tendencies. Bioresource Technology, 247, 1069–1076. https://doi.org/10.1016/j.biortech.2017.09.109 Rittmann, B. E., & McCarty, P. L. (n.d.). Environmental Biotechnology: Principles and Applications. Rodriguez-Chiang, L., Llorca, J., & Dahl, O. (2016). Anaerobic co-digestion of acetate-rich with lignin-rich wastewater and the effect of hydrotalcite addition. Bioresource Technology, 218, 84–91. https://doi.org/10.1016/j.biortech.2016.06.074 Sánchez, E., Borja, R., Weiland, P., Travieso, L., & Martı́n, A. (2001). Effect of substrate concentration and temperature on the anaerobic digestion of piggery waste in a tropical climate. Process Biochemistry, 37(5), 483–489. https://doi.org/10.1016/S0032-9592(01)00240-0 Sánchez Ramírez, J., Ribes, J., Ferrer, J., & García-Usach, M. F. (2017). Obtención de los principales parámetros del agua residual urbana empleados en los modelos matemáticos de fangos activados a partir de una caracterización analítica simple. Ingeniería y Región, 17, 33. https://doi.org/10.25054/22161325.1534 SANGSRI, S., SIRIPATANA, C., RAKMAK, N., WADCHASIT, P., & JIJAI, S. (2021). Evaluating Biomethane Potential of Inocula from Different Active Biogas Digesters for Palm Oil Mill Effluent by BMP and SMA: Effect of Dilution and Sources. Walailak Journal of Science and Technology (WJST), 18(1). https://doi.org/10.48048/wjst.2021.6515 Sperling, M. (2005). Príncipios do tratamento biólogico de águas residuárias. Universidade Federal de Minas Gerais. Stichting Toegepast Onderzoek Reiniging Afvalwater (STORA). (1985). Optimalisatie van de gistingsgasproductie. Suhartini, S., Nurika, I., Paul, R., & Melville, L. (2021). Estimation of Biogas Production and the Emission Savings from Anaerobic Digestion of Fruit-based Agro-industrial Waste and Agricultural crops residues. BioEnergy Research, 14(3), 844–859. https://doi.org/10.1007/s12155-020-10209-5 Tambone, F., Genevini, P., D’Imporzano, G., & Adani, F. (2009). Assessing amendment properties of digestate by studying the organic matter composition and the degree of biological stability during the anaerobic digestion of the organic fraction of MSW. Bioresource Technology, 100(12), 3140–3142. https://doi.org/10.1016/j.biortech.2009.02.012 Turovskiy, I. S., & Mathai, P. K. (2006). Wastewater Sludge Processing. John Wiley & Sons, Inc. https://doi.org/10.1002/047179161X van Lier, J. (2014). Notas de curso Vavilin, V. A., Fernandez, B., Palatsi, J., & Flotats, X. (2008). Hydrolysis kinetics in anaerobic degradation of particulate organic material: An overview. Waste Management, 28(6), 939–951. https://doi.org/10.1016/j.wasman.2007.03.028 Vavilin, V. A., Rytov, S. v., Lokshina, L. Ya., Rintala, J. A., & Lyberatos, G. (2001). Simplified hydrolysis models for the optimal design of two-stage anaerobic digestion. Water Research, 35(17), 4247–4251. https://doi.org/10.1016/S0043-1354(01)00148-8 Venkata Mohan, S., Nikhil, G. N., Chiranjeevi, P., Nagendranatha Reddy, C., Rohit, M. V., Kumar, A. N., & Sarkar, O. (2016). Waste biorefinery models towards sustainable circular bioeconomy: Critical review and future perspectives. Bioresource Technology, 215, 2–12. https://doi.org/10.1016/j.biortech.2016.03.130 Wang, K., Yin, J., Shen, D., & Li, N. (2014). Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: Effect of pH. Bioresource Technology, 161, 395–401. https://doi.org/10.1016/j.biortech.2014.03.088 Westerholm, M., Isaksson, S., Karlsson Lindsjö, O., & Schnürer, A. (2018). Microbial community adaptability to altered temperature conditions determines the potential for process optimisation in biogas production. Applied Energy, 226, 838–848. https://doi.org/10.1016/j.apenergy.2018.06.045 Westerholm, M., Isaksson, S., Karlsson Lindsjö, O., & Schnürer, A. (2018). Microbial community adaptability to altered temperature conditions determines the potential for process optimisation in biogas production. Applied Energy, 226, 838–848. https://doi.org/10.1016/j.apenergy.2018.06.045 Xie, S., Wickham, R., & Nghiem, L. D. (2017). Synergistic effect from anaerobic co-digestion of sewage sludge and organic wastes. International Biodeterioration & Biodegradation, 116, 191–197. https://doi.org/10.1016/j.ibiod.2016.10.037 Xu, F., Shi, J., Lv, W., Yu, Z., & Li, Y. (2013). Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover. Waste Management, 33(1), 26–32. https://doi.org/10.1016/j.wasman.2012.08.006 Yu, M., Wu, C., Wang, Q., Sun, X., Ren, Y., & Li, Y.-Y. (2018). Ethanol prefermentation of food waste in sequencing batch methane fermentation for improved buffering capacity and microbial community analysis. Bioresource Technology, 248, 187–193. https://doi.org/10.1016/j.biortech.2017.07.013 Yuan, H., & Zhu, N. (2016). Progress in inhibition mechanisms and process control of intermediates and by-products in sewage sludge anaerobic digestion. Renewable and Sustainable Energy Reviews, 58, 429–438. https://doi.org/10.1016/j.rser.2015.12.261 Zhang, C., Su, H., Baeyens, J., & Tan, T. (2014). Reviewing the anaerobic digestion of food waste for biogas production. Renewable and Sustainable Energy Reviews, 38, 383–392. https://doi.org/10.1016/j.rser.2014.05.038 Zhang, L., Lee, Y.-W., & Jahng, D. (2011). Anaerobic co-digestion of food waste and piggery wastewater: Focusing on the role of trace elements. Bioresource Technology, 102(8), 5048–5059. https://doi.org/10.1016/j.biortech.2011.01.082 Zhao, J., Wang, D., Liu, Y., Ngo, H. H., Guo, W., Yang, Q., & Li, X. (2018). Novel stepwise pH control strategy to improve short chain fatty acid production from sludge anaerobic fermentation. Bioresource Technology, 249, 431–438. https://doi.org/10.1016/j.biortech.2017.10.050 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.creativecommons.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Abierto (Texto Completo) Atribución-NoComercial-SinDerivadas 2.5 Colombia http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.spatial.spa.fl_str_mv |
Bucaramanga (Santander, Colombia) |
dc.coverage.temporal.spa.fl_str_mv |
2022 |
dc.coverage.campus.spa.fl_str_mv |
UNAB Campus Bucaramanga |
dc.publisher.grantor.spa.fl_str_mv |
Universidad Autónoma de Bucaramanga UNAB |
dc.publisher.program.spa.fl_str_mv |
Pregrado Ingeniería en Energía |
institution |
Universidad Autónoma de Bucaramanga - UNAB |
bitstream.url.fl_str_mv |
https://repository.unab.edu.co/bitstream/20.500.12749/20053/1/2023_Tesis_Camilo_Andres_Ortiz.pdf https://repository.unab.edu.co/bitstream/20.500.12749/20053/5/2023_Licencia_Camilo_Andres_Ortiz.pdf https://repository.unab.edu.co/bitstream/20.500.12749/20053/4/license.txt https://repository.unab.edu.co/bitstream/20.500.12749/20053/6/2023_Tesis_Camilo_Andres_Ortiz.pdf.jpg https://repository.unab.edu.co/bitstream/20.500.12749/20053/7/2023_Licencia_Camilo_Andres_Ortiz.pdf.jpg |
bitstream.checksum.fl_str_mv |
9bf7a861ec853cda72040d2b6fd7818f fa042c12b909b2aa31972408c7a47827 3755c0cfdb77e29f2b9125d7a45dd316 c823e772d32d20229fad8e46d30ff82c ddd091f04302a6d7da356564ae113efc |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB |
repository.mail.fl_str_mv |
repositorio@unab.edu.co |
_version_ |
1814277349826363392 |
spelling |
Meneses Jácome, Alexander22a91647-230a-4d2f-b537-90ebcdaf6362Ávila Rojas, Omar Albertof0033827-0512-4602-9007-96d860d1673dMendoza Castellanos, Luis Sebastián7a057558-4290-4431-b0f6-96d3e1d8bde9Ortiz Enciso, Camilo Andrés08570327-41a1-43d8-adda-9fe7ad4e5f29Carvajal Dueñez, Jesús David761f728c-94ed-412b-83fc-7ac17164c248Meneses Jácome, Alexander [0000326020]Mendoza Castellanos, Luis Sebastián [115302]Ávila Rojas, Omar Alberto [0000066086]Meneses Jácome, Alexander [es&oi=ao]Mendoza Castellanos, Luis Sebastián [S5TZbi8AAAAJ]Ávila Rojas, Omar Alberto [es&oi=ao]Mendoza Castellanos, Luis Sebastián [0000-0001-8263-2551]Ávila Rojas, Omar Alberto [0000-0003-2872-5372]Mendoza Castellanos, Luis Sebastián [57193169160]Meneses Jácome, Alexander [Alexander-Meneses-Jacome]Mendoza Castellanos, Luis Sebastián [Sebastian_Mendoza6]Centro de Investigación en Biotecnología, Bioética y Ambiente - CINBBYAGrupo de Investigaciones ClínicasMeneses Jácome, Alexander [alexander-meneses-jácome]Mendoza Castellanos, Luis Sebastián [luis-sebastián-mendoza-castellanos]Bucaramanga (Santander, Colombia)2022UNAB Campus Bucaramanga2023-05-24T19:36:57Z2023-05-24T19:36:57Z2023-05-24http://hdl.handle.net/20.500.12749/20053instname:Universidad Autónoma de Bucaramanga - UNABreponame:Repositorio Institucional UNABrepourl:https://repository.unab.edu.coEl presente trabajo tuvo como finalidad implementar un montaje de referencia para la evaluación a escala de laboratorio del potencial bioquímico de metano (PBM) de una muestra de lodo anaerobio para la degradación de contaminantes provenientes de la agroindustria colombiana, utilizando como sustrato modelo de fácil degradación, el glicerol. Los ensayos de biodegradación a pequeña escala con el propósito de establecer una técnica confiable de PBM, se realizaron en biorreactores de 300 mL y las variables de control fueron la influencia de la relación substrato/inoculo (S/I) y la concentración del sustrato, en tanto que las variables de respuesta fueron la generación de biogás, la remoción de la demanda química de oxígeno (DQO) y el pH. De un diseño experimental exploratorio (-1, 0. 1) que comprometía 9 test, se logró acotar el intervalo de trabajo para la relación, que llevó a que finalmente en un ensayo final con tres réplicas con relación S/I de 3.2, se pudiera constatar que en condiciones de biodegradación anaerobia del glicerol, sin ajuste de pH ni de nutrientes, el consumo de DQO se encuentre alrededor del 30% lo que es coherente con las ecuaciones teóricas de producción de biogás, pero que es posible que luego del quinto día de experimentación, la actividad metanogénica se detenga como resultado de la rápida acidificación del medio y que el biogás resultante sea predominante en CO2 y no en CH4. En una segunda etapa de la experimentación se logró demostrar que el experimento es replicable en biorreactores de mayor escala (Bioflo 110) con producciones similares de biogás y remociones de DQO; los cuales fueron intervenidos para establecer los rangos operacionales de las variables agitación y temperatura de calentamiento. Un experimento realizado a esta escala a 37 ºC y agitación mecánica constante de 270 rpm, logró la mayor remoción de DQO en todo el estudio (41%)RESUMEN 1 INTRODUCCIÓN 1 JUSTIFICACIÓN 2 1. MARCO REFERENCIAL 3 1.1. MARCO CONCEPTUAL 3 1.1.1. POTENCIAL BIOQUÍMICO DE METANO 3 1.2. MARCO NORMATIVO Y ASPECTO DE GOBERNANZA DE LA BIOECONOMÍA 8 1.3. ANTECEDENTES 9 2. OBJETIVOS 10 2.1. OBJETIVO GENERAL 10 2.2. OBJETIVOS ESPECÍFICOS 10 3. DESARROLLO METODOLÓGICO 11 3.1. PROCEDIMIENTOS Y METODOS EXPERIMENTALES COMUNES A TODA LA FASE EXPERIMENTAL 11 3.1.1. CARACTERIZACIÓN DEL INOCULO 11 3.1.2. PREPARACIÓN DE LA SOLUCIÓN MADRE DE SUBSTRATO (GLICEROL) 12 3.2. TEST DE POTENCIAL BIOQUÍMICO DE METANO (PBM) 13 3.2.1. ENSAYO EXPLORATORIO 13 3.2.2. MONTAJE EXPERIMENTAL PBM CUANTITATIVO 15 3.3. CARACTERIZACIÓN DEL BIORREACTOR BIOFLO 110 17 3.3.1. VERIFICACION DE FUNCIONALIDAD Y FACILIDADES OPERATIVAS 17 3.3.2. VERIFICACIÓN DE MEDICIÓN DE VARIABLES EXPERIMENTALES BIORREACTOR BIOFLO 110 19 3.4. VALIDACIÓN DEL MEJOR EXPERIMENTO EN REACTOR BIOFLO 110 21 4. RESULTADOS 22 4.1. ENSAYO EXPLORATORIO 22 4.2. MONTAJE EXPERIMENTAL BPM CUANTITATIVO 23 4.3. CARACTERIZACIÓN DE LAS CONDICIONES DE OPERACIÓN DEL REACTOR 26 4.4. VALIDACIÓN EN EL REACTOR BIOFLO 110 Y EN EL REACTOR IN VITRO 27 5. CONCLUSIONES Y RECOMENDACIONES 29 6. REFERENCIAS BIBLIOGRÁFICAS 30 ANEXOS 38PregradoThe purpose of this work was to implement a reference set-up for the laboratory-scale evaluation of the biochemical methane potential (BMP) of an anaerobic sludge sample for the degradation of pollutants from the Colombian agroindustry, using glycerol as an easily degradable model substrate. The small-scale biodegradation tests with the purpose of establishing a reliable PBM technique were carried out in 300 mL bioreactors and the control variables were the influence of the substrate/inoculum (S/I) ratio and the substrate concentration, while the response variables were biogas generation, chemical oxygen demand (COD) removal and pH. From an exploratory experimental design (-1, 0. 1) involving 9 tests, it was possible to narrow the working range for the ratio, which finally led to a final test with three replicates with an S/I ratio of 3.2, it was possible to verify that in conditions of anaerobic biodegradation of glycerol, without adjustment of pH or nutrients, the COD consumption is around 30%, which is consistent with the theoretical equations of biogas production, but it is possible that after the fifth day of experimentation, the methanogenic activity stops as a result of the rapid acidification of the medium and that the resulting biogas is predominantly CO2 and not CH4. In a second stage of the experiment, it was possible to demonstrate that the experiment is replicable in larger scale bioreactors (Bioflo 110) with similar biogas production and COD removals, which were intervened to establish the operational ranges of the agitation and heating temperature variables. An experiment carried out at this scale at 37 ºC and constant mechanical agitation of 270 rpm, achieved the highest COD removal in the whole study (41%).Modalidad Presencialapplication/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)Atribución-NoComercial-SinDerivadas 2.5 Colombiahttp://purl.org/coar/access_right/c_abf2Implementación de un montaje de referencia para la evaluación del potencial bioquímico de metano en la degradación de contaminantes provenientes de la agroindustria colombianaImplementation of a reference assembly for the evaluation of the biochemical potential of methane in the degradation of pollutants from Colombian agroindustryIngeniero en EnergíaUniversidad Autónoma de Bucaramanga UNABPregrado Ingeniería en Energíainfo:eu-repo/semantics/bachelorThesisTrabajo de Gradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/acceptedVersionhttp://purl.org/redcol/resource_type/TP(S/I) ratioBiochemical methane potential (BMP)Anaerobic sludgeAgroindustryChemical oxygen demand (COD)Waste transformationBioremediationAnaerobic digestionIngeniería en energíaInnovaciones tecnológicasEnergíaTransformación de residuosBioremediaciónDigestión anaeróbicaBiogásPotencial bioquímico de metano (PBM)Lodo anaerobioAgroindustriaRelación substrato/inóculo (S/I)Demanda química de oxígeno (DQO)Abdul Aziz, N. I. H., Hanafiah, M. M., & Mohamed Ali, M. Y. (2019). Sustainable biogas production from agrowaste and effluents – A promising step for small-scale industry income. Renewable Energy, 132, 363–369. https://doi.org/10.1016/j.renene.2018.07.149Aguiar, S., Arboleda, L., & Uvidia, H. (2021). Aprovechamiento de residuos agroindustriales como alternativa en el mejoramiento de la calidad del ambiente. Revista Alfa, 5(15), 649–660. https://doi.org/10.33996/revistaalfa.v5i15.145Angeladiki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, L., Guwy, A., Jenicek, P., Kalyuzhnui, S., & van Lier, J. (2007). Anaerobic Biodegradation, Activity and Inhibition (ABAI) Task Group Meeting 9th to 10th October 2006, in Prague.Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J. L., Guwy, A. J., Kalyuzhnyi, S., Jenicek, P., & van Lier, J. B. (2009). Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Science and Technology, 59(5), 927–934. https://doi.org/10.2166/wst.2009.040Appels, L., Baeyens, J., Degrève, J., & Dewil, R. (2008). Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science, 34(6), 755–781. https://doi.org/10.1016/j.pecs.2008.06.002Atasoy, M., Owusu-Agyeman, I., Plaza, E., & Cetecioglu, Z. (2018). Bio-based volatile fatty acid production and recovery from waste streams: Current status and future challenges. Bioresource Technology, 268, 773–786. https://doi.org/10.1016/j.biortech.2018.07.042Caillet, H., Lebon, E., Akinlabi, E., Madyira, D., & Adelard, L. (2019). Influence of inoculum to substrate ratio on methane production in Biochemical Methane Potential (BMP) tests of sugarcane distillery waste water. Procedia Manufacturing, 35, 259–264. https://doi.org/10.1016/j.promfg.2019.05.037Cárdenas Cleves, L. M., Parra Orobio, B. A., Torres Lozada, P., & Vásquez Franco, C. H. (2016). Perspectivas del ensayo de Potencial Bioquímico de Metano - PBM para el control del proceso de digestión anaerobia de residuos. Revista ION, 29(1), 95–108. https://doi.org/10.18273/revion.v29n1-2016008Cardona Alzate, C. A., Serna-Loaiza, S., & Ortiz-Sanchez, M. (2020). Sustainable Biorefineries: What was Learned from the Design, Analysis and Implementation. Journal of Sustainable Development of Energy, Water and Environment Systems, 8(1), 88–117. https://doi.org/10.13044/j.sdewes.d7.0268Carus, M., & Dammer, L. (2018). The Circular Bioeconomy—Concepts, Opportunities, and Limitations. Industrial Biotechnology, 14(2), 83–91. https://doi.org/10.1089/ind.2018.29121.mcaCenteno, M. (2011). Gestión y valorización energética de los lodos fisicoquímicos y biológicos generados en el tratamiento de efluentes industriales de la empresa Bio-D S.A. Universidad Autónoma de Bucaramanga.Chen, Y., Cheng, J. J., & Creamer, K. S. (2008a). Inhibition of anaerobic digestion process: A review. Bioresource Technology, 99(10), 4044–4064. https://doi.org/10.1016/j.biortech.2007.01.057Chen, Y., Cheng, J. J., & Creamer, K. S. (2008b). Inhibition of anaerobic digestion process: A review. Bioresource Technology, 99(10), 4044–4064. https://doi.org/10.1016/j.biortech.2007.01.057Cirne, D. G., Paloumet, X., Björnsson, L., Alves, M. M., & Mattiasson, B. (2007). Anaerobic digestion of lipid-rich waste—Effects of lipid concentration. Renewable Energy, 32(6), 965–975. https://doi.org/10.1016/j.renene.2006.04.003Coca, M. (n.d.). Planta de tratamiento de aguas residuales procedentes de la producción de biodiesel. Universidad de Valladolid.Dahiya, S., Sarkar, O., Swamy, Y. V., & Venkata Mohan, S. (2015). Acidogenic fermentation of food waste for volatile fatty acid production with co-generation of biohydrogen. Bioresource Technology, 182, 103–113. https://doi.org/10.1016/j.biortech.2015.01.007Demirel, B., & Scherer, P. (2011). Trace element requirements of agricultural biogas digesters during biological conversion of renewable biomass to methane. Biomass and Bioenergy, 35(3), 992–998. https://doi.org/10.1016/j.biombioe.2010.12.022Deublein, D., & Steinhauser, A. (2008). Biogas from Waste and Renewable Resources. Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/9783527621705 Facchin, V., Cavinato, C., Pavan, P., & Bolzonella, D. (2013). Batch and Continuous Mesophilic Anaerobic Digestion of Food Waste: Effect of Trace Elements Supplementation. Chemical Engineering Transactions, 32.Garcia-Nunez, J. A., Rodriguez, D. T., Fontanilla, C. A., Ramirez, N. E., Silva Lora, E. E., Frear, C. S., Stockle, C., Amonette, J., & Garcia-Perez, M. (2016). Evaluation of alternatives for the evolution of palm oil mills into biorefineries. Biomass and Bioenergy, 95, 310–329. https://doi.org/10.1016/j.biombioe.2016.05.020Ghaleb, A. A. S., Kutty, S. R. M., Ho, Y. C., Jagaba, A. H., Noor, A., Al-Sabaeei, A. M., Kumar, V., & Saeed, A. A. H. (2020). Anaerobic co-digestion for oily-biological sludge with sugarcane bagasse for biogas production under mesophilic condition. IOP Conference Series: Materials Science and Engineering, 991(1), 012084. https://doi.org/10.1088/1757-899X/991/1/012084Hansen, T. L., Schmidt, J. E., Angelidaki, I., Marca, E., Jansen, J. la C., Mosbæk, H., & Christensen, T. H. (2004). Method for determination of methane potentials of solid organic waste. Waste Management, 24(4), 393–400. https://doi.org/10.1016/j.wasman.2003.09.009Holliger, C., Alves, M., Andrade, D., Angelidaki, I., Astals, S., Baier, U., Bougrier, C., Buffière, P., Carballa, M., de Wilde, V., Ebertseder, F., Fernández, B., Ficara, E., Fotidis, I., Frigon, J.-C., de Laclos, H. F., Ghasimi, D. S. M., Hack, G., Hartel, M., … Wierinck, I. (2016). Towards a standardization of biomethane potential tests. Water Science and Technology, 74(11), 2515–2522. https://doi.org/10.2166/wst.2016.336Jain, S., Jain, S., Wolf, I. T., Lee, J., & Tong, Y. W. (2015). A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste. Renewable and Sustainable Energy Reviews, 52, 142–154. https://doi.org/10.1016/j.rser.2015.07.091Jash, T., & Ghosh, D. N. (1996). Studies on the solubilization kinetics of solid organic residues during anaerobic biomethanation. Energy, 21(7–8), 725–730. https://doi.org/10.1016/0360-5442(95)00123-9Jimenez, J. A., la Motta, E. J., & Parker, D. S. (2005). Kinetics of Removal of Particulate Chemical Oxygen Demand in the Activated-Sludge Process. Water Environment Research, 77(5), 437–446. https://doi.org/10.2175/106143005X67340Kainthola, J., Kalamdhad, A. S., & Goud, V. v. (2019). A review on enhanced biogas production from anaerobic digestion of lignocellulosic biomass by different enhancement techniques. Process Biochemistry, 84, 81–90. https://doi.org/10.1016/j.procbio.2019.05.023Kallistova, A. Yu., Goel, G., & Nozhevnikova, A. N. (2014). Microbial diversity of methanogenic communities in the systems for anaerobic treatment of organic waste. Microbiology, 83(5), 462–483. https://doi.org/10.1134/S0026261714050142Karim, K., Hoffmann, R., Thomas Klasson, K., & Al-Dahhan, M. H. (2005). Anaerobic digestion of animal waste: Effect of mode of mixing. Water Research, 39(15), 3597–3606. https://doi.org/10.1016/j.watres.2005.06.019Kumar, A., & Samadder, S. R. (2020). Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: A review. Energy, 197, 117253. https://doi.org/10.1016/j.energy.2020.117253Kumar, S. (2011). Composting of municipal solid waste. Critical Reviews in Biotechnology, 31(2), 112–136. https://doi.org/10.3109/07388551.2010.492207Kwietniewska, E., & Tys, J. (2014). Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation. Renewable and Sustainable Energy Reviews, 34, 491–500. https://doi.org/10.1016/j.rser.2014.03.041Lesteur, M., Bellon-Maurel, V., Gonzalez, C., Latrille, E., Roger, J. M., Junqua, G., & Steyer, J. P. (2010). Alternative methods for determining anaerobic biodegradability: A review. Process Biochemistry, 45(4), 431–440. https://doi.org/10.1016/j.procbio.2009.11.018Li, D., Liu, S., Mi, L., Li, Z., Yuan, Y., Yan, Z., & Liu, X. (2015). Effects of feedstock ratio and organic loading rate on the anaerobic mesophilic co-digestion of rice straw and cow manure. Bioresource Technology, 189, 319–326. https://doi.org/10.1016/j.biortech.2015.04.033Li, R., Chen, S., Li, X., Saifullah Lar, J., He, Y., & Zhu, B. (2009). Anaerobic Codigestion of Kitchen Waste with Cattle Manure for Biogas Production. Energy & Fuels, 23(4), 2225–2228. https://doi.org/10.1021/ef8008772Li, X., Li, L., Zheng, M., Fu, G., & Lar, J. S. (2009). Anaerobic Co-Digestion of Cattle Manure with Corn Stover Pretreated by Sodium Hydroxide for Efficient Biogas Production. Energy & Fuels, 23(9), 4635–4639. https://doi.org/10.1021/ef900384pLi, Y., Park, S. Y., & Zhu, J. (2011). Solid-state anaerobic digestion for methane production from organic waste. Renewable and Sustainable Energy Reviews, 15(1), 821–826. https://doi.org/10.1016/j.rser.2010.07.042Llabrés-Luengo, P., & Mata-Alvarez, J. (1988). Influence of temperature, buffer, composition and straw particle length on the anaerobic digestion of wheat straw—Pig manure mixtures. Resources, Conservation and Recycling, 1(1), 27–37. https://doi.org/10.1016/0921-3449(88)90005-5Lombardi, L., & Francini, G. (2020). Techno-economic and environmental assessment of the main biogas upgrading technologies. Renewable Energy, 156, 440–458. https://doi.org/10.1016/j.renene.2020.04.083Macherzyński, B. (2018). Biochemical Neutralization of Coke Excess Sewage Sludge During Anaerobic Digestion Process. Chemical and Biochemical Engineering Quarterly, 32(2), 239–246. https://doi.org/10.15255/CABEQ.2016.1041Mao, C., Feng, Y., Wang, X., & Ren, G. (2015). Review on research achievements of biogas from anaerobic digestion. Renewable and Sustainable Energy Reviews, 45, 540–555. https://doi.org/10.1016/j.rser.2015.02.032Mata-Alvarez, J. (2015). Biomethanization of the Organic Fraction of Municipal Solid Wastes. Water Intelligence Online, 4(0), 9781780402994–9781780402994. https://doi.org/10.2166/9781780402994Mata-Alvarez, J., Dosta, J., Romero-Güiza, M. S., Fonoll, X., Peces, M., & Astals, S. (2014). A critical review on anaerobic co-digestion achievements between 2010 and 2013. Renewable and Sustainable Energy Reviews, 36, 412–427. https://doi.org/10.1016/j.rser.2014.04.039Mata-Alvarez, J., Macé, S., & Llabrés, P. (2000). Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresource Technology, 74(1), 3–16. https://doi.org/10.1016/S0960-8524(00)00023-7Merlin Christy, P., Gopinath, L. R., & Divya, D. (2014). A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renewable and Sustainable Energy Reviews, 34, 167–173. https://doi.org/10.1016/j.rser.2014.03.010Meynell, P.-J. (1976). Methane : planning a digester. Prism Press.Nakasima-López, M., Taboada-González, P., Aguilar-Virgen, Q., & Velázquez-Limón, N. (2017). Adaptación de Inóculos Durante el Arranque de la Digestión Anaerobia con Residuos Sólidos Orgánicos. Información Tecnológica, 28(1), 199–208. https://doi.org/10.4067/S0718-07642017000100020Nguyen, L. N., Kumar, J., Vu, M. T., Mohammed, J. A. H., Pathak, N., Commault, A. S., Sutherland, D., Zdarta, J., Tyagi, V. K., & Nghiem, L. D. (2021). Biomethane production from anaerobic co-digestion at wastewater treatment plants: A critical review on development and innovations in biogas upgrading techniques. Science of The Total Environment, 765, 142753. https://doi.org/10.1016/j.scitotenv.2020.142753Panichnumsin, P., Nopharatana, A., Ahring, B., & Chaiprasert, P. (2010). Production of methane by co-digestion of cassava pulp with various concentrations of pig manure. Biomass and Bioenergy, 34(8), 1117–1124. https://doi.org/10.1016/j.biombioe.2010.02.018Parkin, G. F., & Owen, W. F. (1986). Fundamentals of Anaerobic Digestion of Wastewater Sludges. Journal of Environmental Engineering, 112(5), 867–920. https://doi.org/10.1061/(ASCE)0733-9372(1986)112:5(867)Pavlostathis, S. G., & Giraldo‐Gomez, E. (1991). Kinetics of anaerobic treatment: A critical review. Critical Reviews in Environmental Control, 21(5–6), 411–490. https://doi.org/10.1080/10643389109388424Quispe, C. A. G., Coronado, C. J. R., & Carvalho Jr., J. A. (2013). Glycerol: Production, consumption, prices, characterization and new trends in combustion. Renewable and Sustainable Energy Reviews, 27, 475–493. https://doi.org/10.1016/j.rser.2013.06.017Reda, T., Plugge, C. M., Abram, N. J., & Hirst, J. (2008). Reversible interconversion of carbon dioxide and formate by an electroactive enzyme. Proceedings of the National Academy of Sciences, 105(31), 10654–10658. https://doi.org/10.1073/pnas.0801290105Ren, Y., Yu, M., Wu, C., Wang, Q., Gao, M., Huang, Q., & Liu, Y. (2018). A comprehensive review on food waste anaerobic digestion: Research updates and tendencies. Bioresource Technology, 247, 1069–1076. https://doi.org/10.1016/j.biortech.2017.09.109Rittmann, B. E., & McCarty, P. L. (n.d.). Environmental Biotechnology: Principles and Applications.Rodriguez-Chiang, L., Llorca, J., & Dahl, O. (2016). Anaerobic co-digestion of acetate-rich with lignin-rich wastewater and the effect of hydrotalcite addition. Bioresource Technology, 218, 84–91. https://doi.org/10.1016/j.biortech.2016.06.074Sánchez, E., Borja, R., Weiland, P., Travieso, L., & Martı́n, A. (2001). Effect of substrate concentration and temperature on the anaerobic digestion of piggery waste in a tropical climate. Process Biochemistry, 37(5), 483–489. https://doi.org/10.1016/S0032-9592(01)00240-0Sánchez Ramírez, J., Ribes, J., Ferrer, J., & García-Usach, M. F. (2017). Obtención de los principales parámetros del agua residual urbana empleados en los modelos matemáticos de fangos activados a partir de una caracterización analítica simple. Ingeniería y Región, 17, 33. https://doi.org/10.25054/22161325.1534SANGSRI, S., SIRIPATANA, C., RAKMAK, N., WADCHASIT, P., & JIJAI, S. (2021). Evaluating Biomethane Potential of Inocula from Different Active Biogas Digesters for Palm Oil Mill Effluent by BMP and SMA: Effect of Dilution and Sources. Walailak Journal of Science and Technology (WJST), 18(1). https://doi.org/10.48048/wjst.2021.6515Sperling, M. (2005). Príncipios do tratamento biólogico de águas residuárias. Universidade Federal de Minas Gerais.Stichting Toegepast Onderzoek Reiniging Afvalwater (STORA). (1985). Optimalisatie van de gistingsgasproductie.Suhartini, S., Nurika, I., Paul, R., & Melville, L. (2021). Estimation of Biogas Production and the Emission Savings from Anaerobic Digestion of Fruit-based Agro-industrial Waste and Agricultural crops residues. BioEnergy Research, 14(3), 844–859. https://doi.org/10.1007/s12155-020-10209-5Tambone, F., Genevini, P., D’Imporzano, G., & Adani, F. (2009). Assessing amendment properties of digestate by studying the organic matter composition and the degree of biological stability during the anaerobic digestion of the organic fraction of MSW. Bioresource Technology, 100(12), 3140–3142. https://doi.org/10.1016/j.biortech.2009.02.012Turovskiy, I. S., & Mathai, P. K. (2006). Wastewater Sludge Processing. John Wiley & Sons, Inc. https://doi.org/10.1002/047179161Xvan Lier, J. (2014). Notas de cursoVavilin, V. A., Fernandez, B., Palatsi, J., & Flotats, X. (2008). Hydrolysis kinetics in anaerobic degradation of particulate organic material: An overview. Waste Management, 28(6), 939–951. https://doi.org/10.1016/j.wasman.2007.03.028Vavilin, V. A., Rytov, S. v., Lokshina, L. Ya., Rintala, J. A., & Lyberatos, G. (2001). Simplified hydrolysis models for the optimal design of two-stage anaerobic digestion. Water Research, 35(17), 4247–4251. https://doi.org/10.1016/S0043-1354(01)00148-8Venkata Mohan, S., Nikhil, G. N., Chiranjeevi, P., Nagendranatha Reddy, C., Rohit, M. V., Kumar, A. N., & Sarkar, O. (2016). Waste biorefinery models towards sustainable circular bioeconomy: Critical review and future perspectives. Bioresource Technology, 215, 2–12. https://doi.org/10.1016/j.biortech.2016.03.130Wang, K., Yin, J., Shen, D., & Li, N. (2014). Anaerobic digestion of food waste for volatile fatty acids (VFAs) production with different types of inoculum: Effect of pH. Bioresource Technology, 161, 395–401. https://doi.org/10.1016/j.biortech.2014.03.088Westerholm, M., Isaksson, S., Karlsson Lindsjö, O., & Schnürer, A. (2018). Microbial community adaptability to altered temperature conditions determines the potential for process optimisation in biogas production. Applied Energy, 226, 838–848. https://doi.org/10.1016/j.apenergy.2018.06.045Westerholm, M., Isaksson, S., Karlsson Lindsjö, O., & Schnürer, A. (2018). Microbial community adaptability to altered temperature conditions determines the potential for process optimisation in biogas production. Applied Energy, 226, 838–848. https://doi.org/10.1016/j.apenergy.2018.06.045Xie, S., Wickham, R., & Nghiem, L. D. (2017). Synergistic effect from anaerobic co-digestion of sewage sludge and organic wastes. International Biodeterioration & Biodegradation, 116, 191–197. https://doi.org/10.1016/j.ibiod.2016.10.037Xu, F., Shi, J., Lv, W., Yu, Z., & Li, Y. (2013). Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover. Waste Management, 33(1), 26–32. https://doi.org/10.1016/j.wasman.2012.08.006Yu, M., Wu, C., Wang, Q., Sun, X., Ren, Y., & Li, Y.-Y. (2018). Ethanol prefermentation of food waste in sequencing batch methane fermentation for improved buffering capacity and microbial community analysis. Bioresource Technology, 248, 187–193. https://doi.org/10.1016/j.biortech.2017.07.013Yuan, H., & Zhu, N. (2016). Progress in inhibition mechanisms and process control of intermediates and by-products in sewage sludge anaerobic digestion. Renewable and Sustainable Energy Reviews, 58, 429–438. https://doi.org/10.1016/j.rser.2015.12.261Zhang, C., Su, H., Baeyens, J., & Tan, T. (2014). Reviewing the anaerobic digestion of food waste for biogas production. Renewable and Sustainable Energy Reviews, 38, 383–392. https://doi.org/10.1016/j.rser.2014.05.038Zhang, L., Lee, Y.-W., & Jahng, D. (2011). Anaerobic co-digestion of food waste and piggery wastewater: Focusing on the role of trace elements. Bioresource Technology, 102(8), 5048–5059. https://doi.org/10.1016/j.biortech.2011.01.082Zhao, J., Wang, D., Liu, Y., Ngo, H. H., Guo, W., Yang, Q., & Li, X. (2018). Novel stepwise pH control strategy to improve short chain fatty acid production from sludge anaerobic fermentation. Bioresource Technology, 249, 431–438. https://doi.org/10.1016/j.biortech.2017.10.050ORIGINAL2023_Tesis_Camilo_Andres_Ortiz.pdf2023_Tesis_Camilo_Andres_Ortiz.pdfTesisapplication/pdf1230268https://repository.unab.edu.co/bitstream/20.500.12749/20053/1/2023_Tesis_Camilo_Andres_Ortiz.pdf9bf7a861ec853cda72040d2b6fd7818fMD51open access2023_Licencia_Camilo_Andres_Ortiz.pdf2023_Licencia_Camilo_Andres_Ortiz.pdfLicenciaapplication/pdf403970https://repository.unab.edu.co/bitstream/20.500.12749/20053/5/2023_Licencia_Camilo_Andres_Ortiz.pdffa042c12b909b2aa31972408c7a47827MD55metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8829https://repository.unab.edu.co/bitstream/20.500.12749/20053/4/license.txt3755c0cfdb77e29f2b9125d7a45dd316MD54open accessTHUMBNAIL2023_Tesis_Camilo_Andres_Ortiz.pdf.jpg2023_Tesis_Camilo_Andres_Ortiz.pdf.jpgIM Thumbnailimage/jpeg4711https://repository.unab.edu.co/bitstream/20.500.12749/20053/6/2023_Tesis_Camilo_Andres_Ortiz.pdf.jpgc823e772d32d20229fad8e46d30ff82cMD56open access2023_Licencia_Camilo_Andres_Ortiz.pdf.jpg2023_Licencia_Camilo_Andres_Ortiz.pdf.jpgIM Thumbnailimage/jpeg10169https://repository.unab.edu.co/bitstream/20.500.12749/20053/7/2023_Licencia_Camilo_Andres_Ortiz.pdf.jpgddd091f04302a6d7da356564ae113efcMD57metadata only access20.500.12749/20053oai:repository.unab.edu.co:20.500.12749/200532024-01-18 10:58:25.976open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbi4gRWwgQVVUT1IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVTkFCIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuCgpFbCBBVVRPUiBhdXRvcml6YSBhIGxhIFVuaXZlcnNpZGFkIEF1dMOzbm9tYSBkZSBCdWNhcmFtYW5nYSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24uCg== |