Fabricación de hidrogeles de celulosa bacteriana funcionalizados con factores de crecimiento derivados de plasma pobre en plaquetas con potencial uso en el tratamiento de úlceras crónicas de pie diabético

Las úlceras crónicas de pie diabético (UCPD) son heridas que presentan alteración celular y desequilibrio bioquímico llevando a un retraso en la cicatrización y, en un 40% de los casos, a estadios de necrosis y amputación. Los tratamientos convencionales para las UCPD usualmente son efectivos en un...

Full description

Autores:
Cabrera Santamaria, Neider Yesid
Correa Suárez, Daniel Santiago
Corredor Díaz, Manuel Andrés
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2022
Institución:
Universidad Autónoma de Bucaramanga - UNAB
Repositorio:
Repositorio UNAB
Idioma:
spa
OAI Identifier:
oai:repository.unab.edu.co:20.500.12749/16886
Acceso en línea:
http://hdl.handle.net/20.500.12749/16886
Palabra clave:
Biomedical engineering
Engineering
Medical electronics
Biological physics
Bioengineering
Medical instruments and apparatus
Medicine
Biomedical
Clinical engineering
Immobilization capacity
Release capacity
Bacterial cellulose
Growth factors
Hydrogels
Blood proteins
Blood plasma
Foot diseases
Diabetic foot
Peripheral vascular diseases
Ingeniería biomédica
Ingeniería
Biofísica
Bioingeniería
Medicina
Biomédica
Proteínas de la sangre
Plasma sanguíneo
Enfermedades de los pies
Pie diabético
Enfermedades vasculares periféricas
Ingeniería clínica
Electrónica médica
Instrumentos y aparatos médicos
Capacidad de inmovilización
Celulosa bacteriana
Factores de crecimiento
Hidrogeles
Capacidad de liberación
Rights
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UNAB2_eb1b4bb2b57ab9187346aeddb0bc649f
oai_identifier_str oai:repository.unab.edu.co:20.500.12749/16886
network_acronym_str UNAB2
network_name_str Repositorio UNAB
repository_id_str
dc.title.spa.fl_str_mv Fabricación de hidrogeles de celulosa bacteriana funcionalizados con factores de crecimiento derivados de plasma pobre en plaquetas con potencial uso en el tratamiento de úlceras crónicas de pie diabético
dc.title.translated.spa.fl_str_mv Fabrication of functionalized bacterial cellulose hydrogels with growth factors. growth derived from platelet-poor plasma with potential use in the treatment of chronic diabetic foot ulcers
title Fabricación de hidrogeles de celulosa bacteriana funcionalizados con factores de crecimiento derivados de plasma pobre en plaquetas con potencial uso en el tratamiento de úlceras crónicas de pie diabético
spellingShingle Fabricación de hidrogeles de celulosa bacteriana funcionalizados con factores de crecimiento derivados de plasma pobre en plaquetas con potencial uso en el tratamiento de úlceras crónicas de pie diabético
Biomedical engineering
Engineering
Medical electronics
Biological physics
Bioengineering
Medical instruments and apparatus
Medicine
Biomedical
Clinical engineering
Immobilization capacity
Release capacity
Bacterial cellulose
Growth factors
Hydrogels
Blood proteins
Blood plasma
Foot diseases
Diabetic foot
Peripheral vascular diseases
Ingeniería biomédica
Ingeniería
Biofísica
Bioingeniería
Medicina
Biomédica
Proteínas de la sangre
Plasma sanguíneo
Enfermedades de los pies
Pie diabético
Enfermedades vasculares periféricas
Ingeniería clínica
Electrónica médica
Instrumentos y aparatos médicos
Capacidad de inmovilización
Celulosa bacteriana
Factores de crecimiento
Hidrogeles
Capacidad de liberación
title_short Fabricación de hidrogeles de celulosa bacteriana funcionalizados con factores de crecimiento derivados de plasma pobre en plaquetas con potencial uso en el tratamiento de úlceras crónicas de pie diabético
title_full Fabricación de hidrogeles de celulosa bacteriana funcionalizados con factores de crecimiento derivados de plasma pobre en plaquetas con potencial uso en el tratamiento de úlceras crónicas de pie diabético
title_fullStr Fabricación de hidrogeles de celulosa bacteriana funcionalizados con factores de crecimiento derivados de plasma pobre en plaquetas con potencial uso en el tratamiento de úlceras crónicas de pie diabético
title_full_unstemmed Fabricación de hidrogeles de celulosa bacteriana funcionalizados con factores de crecimiento derivados de plasma pobre en plaquetas con potencial uso en el tratamiento de úlceras crónicas de pie diabético
title_sort Fabricación de hidrogeles de celulosa bacteriana funcionalizados con factores de crecimiento derivados de plasma pobre en plaquetas con potencial uso en el tratamiento de úlceras crónicas de pie diabético
dc.creator.fl_str_mv Cabrera Santamaria, Neider Yesid
Correa Suárez, Daniel Santiago
Corredor Díaz, Manuel Andrés
dc.contributor.advisor.none.fl_str_mv Becerra Bayona, Silvia Milena
Solarte David, Víctor Alfonso
dc.contributor.author.none.fl_str_mv Cabrera Santamaria, Neider Yesid
Correa Suárez, Daniel Santiago
Corredor Díaz, Manuel Andrés
dc.contributor.cvlac.spa.fl_str_mv Solarte David, Víctor Alfonso [0001329391]
Becerra Bayona, Silvia Milena [0001568861]
dc.contributor.googlescholar.spa.fl_str_mv Becerra Bayona, Silvia Milena [5wr21EQAAAAJ]
dc.contributor.orcid.spa.fl_str_mv Solarte David, Víctor Alfonso [0000-0002-9856-1484]
Becerra Bayona, Silvia Milena [0000-0002-4499-5885]
dc.contributor.scopus.spa.fl_str_mv Becerra Bayona, Silvia Milena [36522328100]
dc.contributor.scopus.none.fl_str_mv Becerra Bayona, Silvia Milena [36522328100]
dc.contributor.researchgate.spa.fl_str_mv Becerra Bayona, Silvia Milena [Silvia_Becerra-Bayona]
dc.contributor.apolounab.none.fl_str_mv Becerra Bayona, Silvia Milena [silvia-milena-becerra-bayona]
dc.contributor.linkedin.none.fl_str_mv Becerra Bayona, Silvia Milena [silvia-becerra-3174455a]
dc.subject.keywords.spa.fl_str_mv Biomedical engineering
Engineering
Medical electronics
Biological physics
Bioengineering
Medical instruments and apparatus
Medicine
Biomedical
Clinical engineering
Immobilization capacity
Release capacity
Bacterial cellulose
Growth factors
Hydrogels
Blood proteins
Blood plasma
Foot diseases
Diabetic foot
Peripheral vascular diseases
topic Biomedical engineering
Engineering
Medical electronics
Biological physics
Bioengineering
Medical instruments and apparatus
Medicine
Biomedical
Clinical engineering
Immobilization capacity
Release capacity
Bacterial cellulose
Growth factors
Hydrogels
Blood proteins
Blood plasma
Foot diseases
Diabetic foot
Peripheral vascular diseases
Ingeniería biomédica
Ingeniería
Biofísica
Bioingeniería
Medicina
Biomédica
Proteínas de la sangre
Plasma sanguíneo
Enfermedades de los pies
Pie diabético
Enfermedades vasculares periféricas
Ingeniería clínica
Electrónica médica
Instrumentos y aparatos médicos
Capacidad de inmovilización
Celulosa bacteriana
Factores de crecimiento
Hidrogeles
Capacidad de liberación
dc.subject.lemb.spa.fl_str_mv Ingeniería biomédica
Ingeniería
Biofísica
Bioingeniería
Medicina
Biomédica
Proteínas de la sangre
Plasma sanguíneo
Enfermedades de los pies
Pie diabético
Enfermedades vasculares periféricas
dc.subject.proposal.spa.fl_str_mv Ingeniería clínica
Electrónica médica
Instrumentos y aparatos médicos
Capacidad de inmovilización
Celulosa bacteriana
Factores de crecimiento
Hidrogeles
Capacidad de liberación
description Las úlceras crónicas de pie diabético (UCPD) son heridas que presentan alteración celular y desequilibrio bioquímico llevando a un retraso en la cicatrización y, en un 40% de los casos, a estadios de necrosis y amputación. Los tratamientos convencionales para las UCPD usualmente son efectivos en un 50% de las veces; no obstante, en el caso de coberturas tipo apósito, su efectividad se reduce dada la ausencia de una matriz para la proliferación celular, además de alterar la humedad en la herida, por tanto, surge la necesidad de formular tratamientos con mayor eficacia en la cicatrización. En este proyecto se fabricaron hidrogeles de celulosa bacteriana (CB) funcionalizados con factores de crecimiento derivados de plasma pobre en plaquetas (PPP), con el fin de aprovechar las propiedades estructurales y biocompatibles de la CB, además de las ventajas en la cicatrización de heridas proporcionadas por los factores de crecimiento. Los hidrogeles de CB se obtuvieron después de 7 días de cultivo del inóculo de bacterias Gluconacetobacter-xylinus bajo condiciones estáticas en 3 medios de cultivo distintos (HS, MC y HSMC). Después de esto, las muestras de dichos hidrogeles se impregnaron con soluciones de PPP a diferentes concentraciones (0, 25, 50, 75 y 100%) durante períodos de 6, 12 y 24 h, y se estimó la capacidad de inmovilización (Ci) de factores de crecimiento para cada uno de estos tiempos. Posteriormente se estudió la liberación de factores de crecimiento inmovilizados en las muestras mediante su incubación a 37 °C en solución de PBS durante 48 h, y se estimó la capacidad de liberación (Cl) a las 4 y 48 h. Adicionalmente, se calculó el módulo de compresión de los hidrogeles de CB funcionalizados con PPP, mediante ensayos de compresión. Los resultados de la Ci indican que las muestras de hidrogeles cultivados en medio HS inmovilizan una mayor cantidad de factores de crecimiento en comparación con las muestras producidas en los medios MC y HSMC, estás últimas presentan valores de Ci similares. De igual manera, los hidrogeles de CB que presentan una mejor Cl corresponden a los obtenidos en medio HS. La Ci y la Cl de los hidrogeles de CB funcionalizados se relacionan directamente entre sí, por lo cual los hidrogeles con mayor Ci, consecuentemente son aquellos que presentan una mayor Cl. A su vez, la Ci y la Cl son directamente proporcionales a la concentración de PPP y al tiempo de inmovilización. En cuanto al módulo de compresión se encontraron valores en los rangos de 0.27 - 2.77 MPa, 0.89 - 1.18 MPa y 0.51 - 1.21 MPa para las muestras obtenidas en los medios de HS, MC y HSMC, respectivamente. Se concluye que los hidrogeles de CB funcionalizados con PPP, en especial los producidos en medio HS, podrían ser usados a futuro como potencial tratamiento para las UCDP debido a su comportamiento de inmovilización y liberación de biomoléculas benéficas para la cicatrización de heridas y su similitud en cuanto al comportamiento mecánico en comparación con valores del módulo de compresión del tejido nativo.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-07-11T16:57:41Z
dc.date.available.none.fl_str_mv 2022-07-11T16:57:41Z
dc.date.issued.none.fl_str_mv 2022
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.local.spa.fl_str_mv Trabajo de Grado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12749/16886
dc.identifier.instname.spa.fl_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UNAB
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.unab.edu.co
url http://hdl.handle.net/20.500.12749/16886
identifier_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
reponame:Repositorio Institucional UNAB
repourl:https://repository.unab.edu.co
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv ABS Bimedica. (s.f.). Todo lo que tienes que saber sobre la piel. https://abs.bimedica.com/cuidado-corporal/todo-lo-que-tienes-que-saber-sobre-la-piel/
Alven, S., & Aderibigbe, B. A. (2020). Chitosan and Cellulose-Based Hydrogels for Wound Management. International Journal of Molecular Sciences 2020, Vol. 21, Page 9656, 21(24), 9656. https://doi.org/10.3390/IJMS21249656
Amisten, S., Neville, M., Hawkes, R., Persaud, S. J., Karpe, F., & Salehi, A. (2015). An atlas of G-protein coupled receptor expression and function in human subcutaneous adipose tissue. Pharmacology & therapeutics, 146, 61–93. https://doi.org/10.1016/j.pharmthera.2014.09.007
Armstrong, D. G., Boulton, A. J. M., & Bus, S. A. (2017). Diabetic Foot Ulcers and Their Recurrence. Http://Dx.Doi.Org/10.1056/NEJMra1615439, 376(24), 2367–2375. https://doi.org/10.1056/NEJMRA1615439
Arroyo LD, & Burbaro JI. (2019). Diabetes y pie diabético: una problemática mundial abordada desde la fisioterapia. Revista Colombiana de Endocrinología, Diabetes y Metabolismo, 6(3), 199–208
Balin, A. K., & Pratt, L. (2002). Dilute povidone-iodine solutions inhibit human skin fibroblast growth. Dermatologic surgery : official publication for American Society for Dermatologic Surgery [et al.], 28(3), 210–214. https://doi.org/10.1046/j.1524 4725.2002.01161.x
Cáceres, M., Martínez, C., Martínez, J., & Smith, P. C. (2012). Effects of platelet-rich and poor plasma on the reparative response of gingival fibroblasts. Clinical Oral Implants Research, 23(9), 1104–1111. https://doi.org/10.1111/J.1600-0501.2011.02274.X
Cacicedo, L. (2017). Desarrollo de sistemas de liberación controlada de agentes quimioterapéuticos en matrices de celulosa microbiana con aplicaciones biomédicas. Universidad Nacional De La Plata. Retrieved from http://sedici.unlp.edu.ar/bitstream/handle/10915/64775/Documento_completo.p df?sequence=1
Carmichael S. W. (2014). The tangled web of Langer's lines. Clinical anatomy (New York, N.Y.), 27(2), 162–168. https://doi.org/10.1002/ca.22278
Cargnin, M. A., de Souza, A. G., de Lima, G. F., Gasparin, B. C., Rosa, D., & Paulino, A. T. (2020). Pinus residue/pectin-based composite hydrogels for the immobilization of β-D galactosidase. International journal of biological macromolecules, 149, 773–782. https://doi.org/10.1016/j.ijbiomac.2020.01.280
Chellini, F., Tani, A., Zecchi-Orlandini, S., & Sassoli, C. (2019a). Influence of platelet-rich and platelet-poor plasma on endogenous mechanisms of skeletal muscle repair/regeneration. International Journal of Molecular Sciences, 20(3). https://doi.org/10.3390/ijms20030683
Chellini, F., Tani, A., Zecchi-Orlandini, S., & Sassoli, C. (2019b). Influence of Platelet-Rich and Platelet-Poor Plasma on Endogenous Mechanisms of Skeletal Muscle Repair/Regeneration. International Journal of Molecular Sciences 2019, Vol. 20, Page 683, 20(3), 683. https://doi.org/10.3390/IJMS20030683
Chen, Q. Y., Xiao, S. L., Shi, S. Q., & Cai, L. P. (2020). A One-Pot Synthesis and Characterization of Antibacterial Silver Nanoparticle-Cellulose Film. Polymers, 12(2), 440. https://doi.org/10.3390/polym12020440
Cross, K. J., & Mustoe, T. A. (2003). Growth factors in wound healing. In Surgical Clinics of North America (Vol. 83, Issue 3, pp. 531–545). Elsevier. https://doi.org/10.1016/S0039 6109(02)00202-5
Damour, O., Hua, S. Z., Lasne, F., Villain, M., Rousselle, P., & Collombel, C. (1992). Cytotoxicity evaluation of antiseptics and antibiotics on cultured human fibroblasts and keratinocytes. Burns : journal of the International Society for Burn Injuries, 18(6), 479– 485. https://doi.org/10.1016/0305-4179(92)90180-3
Deuel, T. F., & Chang, Y. (2013). Growth Factors. Principles of Tissue Engineering: Fourth Edition, 291–308. https://doi.org/10.1016/B978-0-12-398358-9.00016-1
Diabetes - Organización Panamericana de la Salud. (n.d.). Retrieved August 26, 2021, from https://www.paho.org/es/temas/diabetes
Dolganov, A. V., Revin, V. D., Kostryukov, S. G., Revin, V. V., & Yang, G. (2021). Kinetic and Thermodynamic Characteristics of Fluoride Ions Adsorption from Solution onto the Aluminum Oxide Nanolayer of a Bacterial Cellulose-Based Composite Material. Polymers, 13(19), 3421. https://doi.org/10.3390/polym13193421
Dutta, S. D., Patel, D. K., & Lim, K.-T. (n.d.). Functional cellulose-based hydrogels as extracellular matrices for tissue engineering. https://doi.org/10.1186/s13036-019-0177 0
Elnashar, M. (2010). Review Article: Immobilized Molecules Using Biomaterials and Nanobiotechnology. Journal of Biomaterials and Nanobiotechnology, 1(1), 61-76. https://doi.org/10.4236/jbnb.2010.11008
El Mrabate, B., Udayakumar, M., Csiszár, E., Kristály, F., Leskó, M., Somlyai Sipos, L., Schabikowski, M., & Németh, Z. (2020). Development of bacterial cellulose-ZnO MWCNT hybrid membranes: a study of structural and mechanical properties. Royal Society open science, 7(6), 200592. https://doi.org/10.1098/rsos.200592
Escotto Sánchez, I., Miguel Rodríguez Trejo, J., Padilla Sánchez, L., & Rodríguez Ramírez, N. (2001). Factores de crecimiento en el tratamiento de úlceras en pacientes diabéticos. Revista Mexicana de ANGIOLOGIA, 29(3), 75–82.
Fijul Kabir, S. M., Sikdar, P. P., Haque, · B, Rahman Bhuiyan, · M A, Ali, · A, & Islam, · M N. (2018). Cellulose-based hydrogel materials: chemistry, properties and their prospective applications. Progress in Biomaterials, 7, 153–174. https://doi.org/10.1007/s40204-018-0095-0
Gallagher, A. J., Ní Annaidh, A., & Bruyère, K. (2012). Dynamic tensile properties of human skin. In IRCOBI Conference 2012, 12-14 September 2012, Dublin (Ireland). International Research Council on the Biomechanics of Injury
García Bello, L., Torales Salinas, J., Giménez, M. B., Flores, L. E., Gómez de Ruiz, N., & Centurión, O. A. (2016). The risk of those who care for risk: FIDRISK in healthcare personnel. Revista Virtual de La Sociedad Paraguaya de Medicina Interna, 3(2), 71–76. https://doi.org/10.18004/rvspmi/2312-3893/2016.03(02)71-076
González de la Torre, Héctor, Mosquera Fernández, Abián, Quintana Lorenzo, M.ª Luana, Perdomo Pérez, Estrella, & Quintana Montesdeoca, M.ª del Pino. (2012). Classifications of injuries on diabetic foot: A non-solved problem. Gerokomos, 23(2), 75-87. https://dx.doi.org/10.4321/S1134-928X2012000200006
Gupta, A., Briffa, S. M., Swingler, S., Gibson, H., Kannappan, V., Adamus, G., Kowalczuk, M., Martin, C., & Radecka, I. (2020). Synthesis of Silver Nanoparticles Using Curcumin-Cyclodextrins Loaded into Bacterial Cellulose-Based Hydrogels for Wound Dressing Applications. Biomacromolecules, 21(5), 1802–1811. https://doi.org/10.1021/acs.biomac.9b01724
Gupta, A., Keddie, D.J, Kannappan, V., Khalil, I.R., Kowalczuk, M., Martin, C., Shuai, X., Radecka, I. (2019). Production and characterisation of bacterial cellulose hydrogels loaded with curcumin encapsulated in cyclodextrins as wound dressings. European Polymer Journal, 118(1), 437-450. https://doi.org/10.1016/j.eurpolymj.2019.06.018
Hilton, J. R., Williams, D. T., Beuker, B., Miller, D. R., & Harding, K. G. (2004). Wound Dressings in Diabetic Foot Disease. Clinical Infectious Diseases, 39(Supplement_2), S100–S103. https://doi.org/10.1086/383270
Isaza, J. N. (2019). Comportamiento mecánico de la piel en función del espesor de las capas que la componen [Tesis de Doctorado, Universidad Nacional de Colombia]. Repositorio Institucional – Universidad Nacional de Colombia.
Ji, K., Wang, W., Zeng, B., Chen, S., Zhao, Q., Chen, Y., Li, G., & Ma, T. (2016). Bacterial cellulose synthesis mechanism of facultative anaerobe Enterobacter sp. FY-07. Scientific reports, 6, 21863. https://doi.org/10.1038/srep21863
Kalra, A, Lowe, A, and Al-Jumaily, AM (2016). Mechanical Behaviour of Skin: A Review. Journal of Material Science & Engineering. https://doi.org/10.4172/2169-0022.1000254
Kantor, J., & Margolis, D. J. (2001). Treatment options for diabetic neuropathic foot ulcers: A cost-effectiveness analysis. Dermatologic Surgery, 27(4), 347–351. https://doi.org/10.1046/j.1524-4725.2001.00280.x
Kim, J., Cai, Z., Lee, H. S., Choi, G. S., Lee, H. L., Jo, C.. (2011). Preparation and characterization of a Bacterial cellulose/Chitosan composite for potential biomedical application. Journal of Polymer Research, 18, 739-744. https://doi.org/10.1007/s10965 010-9470-9
Krasteva, P. V., Bernal-Bayard, J., Travier, L., Martin, F. A., Kaminski, P. A., Karimova, G., Fronzes, R., & Ghigo, J. M. (2017). Insights into the structure and assembly of a bacterial cellulose secretion system. Nature Communications, 8(1). https://doi.org/10.1038/s41467-017-01523-2
Lazarini, S. C., de Aquino, R., Amaral, A. C., Corbi, F. C. A., Corbi, P. P., Barud, H. S., & Lustri, W. R. (2015). Characterization of bilayer bacterial cellulose membranes with different fiber densities: a promising system for controlled release of the antibiotic ceftriaxone. Cellulose, 23(1), 737–748. doi:10.1007/s10570-015-0843-4
Lee, K. Y., & Mooney, D. J. (2001). Hydrogels for tissue engineering. In Chemical Reviews (Vol. 101, Issue 7, pp. 1869–1879). American Chemical Society. https://doi.org/10.1021/cr000108x
Lee, Y. H., Hong, Y. L., & Wu, T. L. (2021). Novel silver and nanoparticle-encapsulated growth factor co-loaded chitosan composite hydrogel with sustained antimicrobility and promoted biological properties for diabetic wound healing. Materials Science and Engineering C, 118, 111385. https://doi.org/10.1016/j.msec.2020.11138
Li, Z., Zhang, X., Yuan, T., Zhang, Y., Luo, C., Zhang, J., Liu, Y., & Fan, W. (2020). Addition of Platelet-Rich Plasma to Silk Fibroin Hydrogel Bioprinting for Cartilage Regeneration. Https://Home.Liebertpub.Com/Tea, 26(15–16), 886–895. https://doi.org/10.1089/TEN.TEA.2019.0304
Loh, E. Y. X., Mohamad, N., Fauzi, M. B., Ng, M. H., Ng, S. F., & Mohd Amin, M. C. I. (2018). Development of a bacterial cellulose-based hydrogel cell carrier containing keratinocytes and fibroblasts for full-thickness wound healing. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-21174-7
López, P., Director, J., López-Jaramillo, P., Calderón, C., Castillo, J., Darío Escobar, I., Melgarejo, E., & Parra, G. A. (2017). Prediabetes en Colombia: Consenso de expertos. Colomb Med, 48(4), 191–203. https://doi.org/10.25100/cm.v48i4.3662
Mikesh, LM, Aramadhaka, LR, Moskaluk, C., Zigrino, P., Mauch, C. y Fox, JW (2013). Anatomía proteómica de la piel humana. Revista de proteómica, 84, 190–200. https://doi.org/10.1016/j.jprot.2013.03.019
Moffatt, C., Flanagan, M., & Shuttleworth, A. (2004). POSITION Wound bed preparation in practice. European Wound Managment Assocation
O’Meara, S. M., Cullum, N. A., Majid, M., & Sheldon, T. A. (2001). Systematic review of antimicrobial agents used for chronic wounds. In British Journal of Surgery (Vol. 88, Issue 1, pp. 4–21). Oxford Academic. https://doi.org/10.1046/j.1365-2168.2001.01631.x
Oprea, M., Panaitescu, D. M., Nicolae, C. A., Gabor, A. R., Frone, A. N., Raditoiu, V., Casarica, A. (2020). Nanocomposites from functionalized bacterial cellulose and poly(3 hydroxybutyrate-co-3-hydroxyvalerate). Polymer Degradation and Stability, 109203. doi:10.1016/j.polymdegradstab.2020.109203
Paolini, J. E., Lamelza,V., Cohen, C., Giraldez, N., & Rabuffetti, M. (2006). CONGRESO DEL BICENTENARIO – Parche plaquetario autólogo. Utilización en úlceras crónicas. Fórum de Flebologia y Linfologia. http://cacvyl.org/parche-plaquetario/
Pinto, M. C., & Prada, Y. (2021). Caracterización mecánica de hidrogeles derivados de celulosa bacteriana producida a partir de mucílago de café con potencial uso en el diseño de apósitos para úlcera por presión decúbito supino [Tesis de Pregrado, Universidad Autónoma de Bucaramanga]. Repositorio Institucional – Universidad Autónoma de Bucaramanga
Pogorelova, N., Rogachev, E., Digel, I., Chernigova, S., & Nardin, D. (2020). Bacterial Cellulose Nanocomposites: Morphology and Mechanical Properties. Materials (Basel, Switzerland), 13(12), 2849. https://doi.org/10.3390/ma13122849
Portela, R., Leal, C. R., Almeida, P. L., & Sobral, R. G. (2019). Bacterial cellulose: a versatile biopolymer for wound dressing applications. Microbial Biotechnology, 12(4), 586. https://doi.org/10.1111/1751-7915.13392
Pozo, N. O. (2019). Síntesis Y Evaluación Cicatrizante De Un Apósito En Base A Un Hidrogel Con Propiedades De Liberación Sostenida De Compuestos Bioactivos. Facultad de Ciencias de la Salud - Escuela de Tecnología médica - Talca.
Ribeiro, J., Pereira, T., Amorim, I., Caseiro, A. R., Lopes, M. A., Lima, J., Gartner, A., Santos, J. D., Bártolo, P. J., Rodrigues, J. M., Mauricio, A. C., & Luís, A. L. (2014). Cell therapy with human MSCs isolated from the umbilical cord wharton jelly associated to a PVA membrane in the treatment of chronic skin wounds. International Journal of Medical Sciences, 11(10), 979–987. https://doi.org/10.7150/IJMS.9139
Rodríguez Flores, J., Palomar Gallego, M. A., & Torres García-Denche, J. (2012). Plasma rico en plaquetas: fundamentos biológicos y aplicaciones en cirugía maxilofacial y estética facial. Revista Española de Cirugía Oral y Maxilofacial, 34(1), 8–17. https://doi.org/10.1016/J.MAXILO.2011.10.007
Ross, P., Mayer, R., & Benziman, M. (1991). Cellulose biosynthesis and function in bacteria. Microbiological Reviews, 55(1), 35–58. https://doi.org/10.1128/mr.55.1.35-58.1991
Ruiz, S. R. y Martínez, J. A. (2016). Carbohidratos. Portal Académico del CCH, UNAM. https://portalacademico.cch.unam.mx/alumno/quimica2/unidad2/carbohidratos
Saad Setta, H., Elshahat, A., Elsherbiny, K., Massoud, K., & Safe, I. (2011). Platelet-rich plasma versus platelet-poor plasma in the management of chronic diabetic foot ulcers: A comparative study. International Wound Journal, 8(3), 307–312. https://doi.org/10.1111/J.1742-481X.2011.00797.X
Sangiovanni, S., Aguilar, J., & Asencio-santofimio, H. (2018). Epidemiología de diabetes mellitus tipo 2 en la población colombiana y factores de riesgo que predisponen a la amputación de miembros inferiores. Revisión de la literatura. Salutem Scientia Spiritus, 4(1), 49–56.
Saulis, A. S., Lautenschlager, E. P., & Mustoe, T. A. (2002). Biomechanical and viscoelastic properties of skin, SMAS, and composite flaps as they pertain to rhytidectomy. Plastic and reconstructive surgery, 110(2), 590–600. https://doi.org/10.1097/00006534 200208000-00035
Steed, D. L., Goslen, J. B., Holloway, G. A., Malone, J. M., Bunt, T. J., & Webster, M. W. (1992). Randomized prospective double-blind trial in healing chronic diabetic foot ulcers: CT-102 activated platelet supernatant, topical versus placebo. Diabetes Care, 15(11), 1598–1604. https://doi.org/10.2337/diacare.15.11.1598
Stoica, A. E., Chircov, C., & Grumezescu, A. M. (2020). Hydrogel dressings for the treatment of burn wounds: An up-to-date overview. In Materials (Vol. 13, Issue 12, pp. 1–24). Materials (Basel). https://doi.org/10.3390/ma13122853
Vasconcelos, N. F., Cunha, A. P., Ricardo, N. M. P. S., Freire, R. S., Vieira, L. de A. P., Brígida, A. I. S., Borges, M. de F., Rosa, M. de F., Vieira, R. S., & Andrade, F. K. (2020). Papain immobilization on heterofunctional membrane bacterial cellulose as a potential strategy for the debridement of skin wounds. International Journal of Biological Macromolecules, 165(Pt B), 3065–3077. https://doi.org/10.1016/j.ijbiomac.2020.10.200
Westby, M. J., Dumville, J. C., Soares, M. O., Stubbs, N., & Norman, G. (2017). Dressings and topical agents for treating pressure ulcers. In Cochrane Database of Systematic Reviews (Vol. 2017, Issue 6). Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD011947.pub2
Woeppel, K. M., Zheng, X. S., & Cui, X. T. (2018). Enhancing surface immobilization of bioactive molecules via a silica nanoparticle based coating. Journal of Materials Chemistry. B, 6(19), 3058. https://doi.org/10.1039/C8TB00408K
Wong, R., Geyer, S., Weninger, W., Guimberteau, J. C., & Wong, J. K. (2016). The dynamic anatomy and patterning of skin. Experimental dermatology, 25(2), 92–98. https://doi.org/10.1111/exd.12832
Woo, S. H., Kim, J. P., Park, J. J., Chung, P. S., Lee, S. H., & Jeong, H. S. (2013). Autologous platelet-poor plasma gel for injection laryngoplasty. Yonsei medical journal, 54(6), 1516–1523. https://doi.org/10.3349/ymj.2013.54.6.1516
Zhang, H., Luo, X., Tang, H., Zheng, M., & Huang, F. (2017). A novel candidate for wound dressing: Transparent porous maghemite/cellulose nanocomposite membranes with controlled release of doxorubicin from a simple approach. Materials science & engineering. C, Materials for biological applications, 79, 84–92. https://doi.org/10.1016/j.msec.2017.05.019
Zhang, J., Zhang, J., Zhang, N., Li, T., Zhou, X., Jia, J., Liang, Y., Sun, X., & Chen, H. (2020). The Effects of Platelet-Rich and Platelet-Poor Plasma on Biological Characteristics of BM-MSCs in Vitro. Analytical Cellular Pathology, 2020. https://doi.org/10.1155/2020/8546231
Zhang, Y. Q., Tao, M. L., Shen, W. D., Zhou, Y. Z., Ding, Y., Ma, Y., & Zhou, W. L. (2004). Immobilization of L-asparaginase on the microparticles of the natural silk sericin protein and its characters. Biomaterials, 25(17), 3751–3759. https://doi.org/10.1016/j.biomaterials.2003.10.019
Zhao, Y., Li, Z., Li, Q., Yang, L., Liu, H., Yan, R., Xiao, L., Liu, H., Wang, J., Yang, B., & Lin, Q. (2020). Transparent Conductive Supramolecular Hydrogels with Stimuli Responsive Properties for On-Demand Dissolvable Diabetic Foot Wound Dressings. Macromolecular Rapid Communications, 41(24), 2000441. https://doi.org/10.1002/marc.202000441
Zmejkoski, D., Spasojević, D., Orlovska, I., Kozyrovska, N., Soković, M., Glamočlija, J., Dmitrović, S., Matović, B., Tasić, N., Maksimović, V., Sosnin, M., & Radotić, K. (2018). Bacterial cellulose-lignin composite hydrogel as a promising agent in chronic wound healing. International Journal of Biological Macromolecules, 118, 494–503. https://doi.org/10.1016/j.ijbiomac.2018.06.067
Żur, J., Wojcieszyńska, D., & Guzik, U. (2016). Metabolic Responses of Bacterial Cells to Immobilization. Molecules, 21(7). https://doi.org/10.3390/MOLECULES21070958
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.creativecommons.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.spa.fl_str_mv Colombia
dc.coverage.campus.spa.fl_str_mv UNAB Campus Bucaramanga
dc.publisher.grantor.spa.fl_str_mv Universidad Autónoma de Bucaramanga UNAB
dc.publisher.faculty.spa.fl_str_mv Facultad Ingeniería
dc.publisher.program.spa.fl_str_mv Pregrado Ingeniería Biomédica
institution Universidad Autónoma de Bucaramanga - UNAB
bitstream.url.fl_str_mv https://repository.unab.edu.co/bitstream/20.500.12749/16886/1/2022_Tesis_Neider_Yesid_Cabrera.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/16886/2/2022_Licencia_Neider_Yesid_Cabrera.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/16886/3/license.txt
https://repository.unab.edu.co/bitstream/20.500.12749/16886/4/2022_Tesis_Neider_Yesid_Cabrera.pdf.jpg
https://repository.unab.edu.co/bitstream/20.500.12749/16886/5/2022_Licencia_Neider_Yesid_Cabrera.pdf.jpg
bitstream.checksum.fl_str_mv c9d44016f4935b61cd6ed94e4a70ab96
4fa3e5e98ea1fc996bbe79aa6ca1e9cb
3755c0cfdb77e29f2b9125d7a45dd316
546fada5c37091261da18de27b756d8b
6297b8ccd6bf010fa8bfa3fdd435e683
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB
repository.mail.fl_str_mv repositorio@unab.edu.co
_version_ 1814277341278371840
spelling Becerra Bayona, Silvia Milenaf59fde3b-924f-4fcc-96e9-5fd6250b2daeSolarte David, Víctor Alfonso54590e96-eda3-4b43-9ffa-14bd35ed7d08Cabrera Santamaria, Neider Yesidd14ddf67-6349-4109-b34c-a7a8089bb86cCorrea Suárez, Daniel Santiagoaf4074aa-d079-4185-8b82-4e3409ecb5cfCorredor Díaz, Manuel Andrés51d9136a-064f-4446-871c-42fa707a2364Solarte David, Víctor Alfonso [0001329391]Becerra Bayona, Silvia Milena [0001568861]Becerra Bayona, Silvia Milena [5wr21EQAAAAJ]Solarte David, Víctor Alfonso [0000-0002-9856-1484]Becerra Bayona, Silvia Milena [0000-0002-4499-5885]Becerra Bayona, Silvia Milena [36522328100]Becerra Bayona, Silvia Milena [36522328100]Becerra Bayona, Silvia Milena [Silvia_Becerra-Bayona]Becerra Bayona, Silvia Milena [silvia-milena-becerra-bayona]Becerra Bayona, Silvia Milena [silvia-becerra-3174455a]ColombiaUNAB Campus Bucaramanga2022-07-11T16:57:41Z2022-07-11T16:57:41Z2022http://hdl.handle.net/20.500.12749/16886instname:Universidad Autónoma de Bucaramanga - UNABreponame:Repositorio Institucional UNABrepourl:https://repository.unab.edu.coLas úlceras crónicas de pie diabético (UCPD) son heridas que presentan alteración celular y desequilibrio bioquímico llevando a un retraso en la cicatrización y, en un 40% de los casos, a estadios de necrosis y amputación. Los tratamientos convencionales para las UCPD usualmente son efectivos en un 50% de las veces; no obstante, en el caso de coberturas tipo apósito, su efectividad se reduce dada la ausencia de una matriz para la proliferación celular, además de alterar la humedad en la herida, por tanto, surge la necesidad de formular tratamientos con mayor eficacia en la cicatrización. En este proyecto se fabricaron hidrogeles de celulosa bacteriana (CB) funcionalizados con factores de crecimiento derivados de plasma pobre en plaquetas (PPP), con el fin de aprovechar las propiedades estructurales y biocompatibles de la CB, además de las ventajas en la cicatrización de heridas proporcionadas por los factores de crecimiento. Los hidrogeles de CB se obtuvieron después de 7 días de cultivo del inóculo de bacterias Gluconacetobacter-xylinus bajo condiciones estáticas en 3 medios de cultivo distintos (HS, MC y HSMC). Después de esto, las muestras de dichos hidrogeles se impregnaron con soluciones de PPP a diferentes concentraciones (0, 25, 50, 75 y 100%) durante períodos de 6, 12 y 24 h, y se estimó la capacidad de inmovilización (Ci) de factores de crecimiento para cada uno de estos tiempos. Posteriormente se estudió la liberación de factores de crecimiento inmovilizados en las muestras mediante su incubación a 37 °C en solución de PBS durante 48 h, y se estimó la capacidad de liberación (Cl) a las 4 y 48 h. Adicionalmente, se calculó el módulo de compresión de los hidrogeles de CB funcionalizados con PPP, mediante ensayos de compresión. Los resultados de la Ci indican que las muestras de hidrogeles cultivados en medio HS inmovilizan una mayor cantidad de factores de crecimiento en comparación con las muestras producidas en los medios MC y HSMC, estás últimas presentan valores de Ci similares. De igual manera, los hidrogeles de CB que presentan una mejor Cl corresponden a los obtenidos en medio HS. La Ci y la Cl de los hidrogeles de CB funcionalizados se relacionan directamente entre sí, por lo cual los hidrogeles con mayor Ci, consecuentemente son aquellos que presentan una mayor Cl. A su vez, la Ci y la Cl son directamente proporcionales a la concentración de PPP y al tiempo de inmovilización. En cuanto al módulo de compresión se encontraron valores en los rangos de 0.27 - 2.77 MPa, 0.89 - 1.18 MPa y 0.51 - 1.21 MPa para las muestras obtenidas en los medios de HS, MC y HSMC, respectivamente. Se concluye que los hidrogeles de CB funcionalizados con PPP, en especial los producidos en medio HS, podrían ser usados a futuro como potencial tratamiento para las UCDP debido a su comportamiento de inmovilización y liberación de biomoléculas benéficas para la cicatrización de heridas y su similitud en cuanto al comportamiento mecánico en comparación con valores del módulo de compresión del tejido nativo.Capítulo 1. Problema u Oportunidad ....................................................................................... 14 Introducción ................................................................................................................. 14 Planteamiento del Problema ........................................................................................ 16 Justificación ................................................................................................................. 17 Pregunta Problema ....................................................................................................... 18 Objetivo General .......................................................................................................... 18 Objetivos Específicos................................................................................................... 18 Capítulo 2. Marco Teórico ....................................................................................................... 19 La Piel humana y el Proceso de Cicatrización ............................................................. 19 Úlceras Crónicas de Pie Diabético ............................................................................... 21 Sistemas de Clasificación de las UCPD........................................................... 21 Alternativas Terapéuticas para las UCPD........................................................ 23 Apósitos Implementados en UCPD ............................................................................. 23 Hidrogeles y Celulosa Bacteriana ................................................................................ 24 Factores de Crecimiento y el Plasma Pobre en Plaquetas (PPP) ................................. 27 Inmovilización de Biomoléculas en Hidrogeles .......................................................... 28 Capacidad de Inmovilización de Moléculas en Redes Tridimensionales .................... 29 Capacidad de Liberación de Moléculas Inmovilizadas en Redes Tridimensionales ... 29 Capítulo 3. Estado del Arte ...................................................................................................... 31 Capítulo 4. Metodología .......................................................................................................... 35 Extracción de PPP a partir de Muestras Sanguíneas Humanas .................................... 35 Síntesis de CB .............................................................................................................. 35 Inmovilización de Factores de Crecimiento Derivados de PPP en Hidrogeles de CB 36 Caracterización Mecánica de los Hidrogeles Funcionalizados de CB......................... 38 Liberación de Factores de Crecimiento Inmovilizados en los Hidrogeles de CB ....... 39 Cuantificación de la Concentración Total de Factores de Crecimiento ....................... 40 Análisis Estadísticos .................................................................................................... 41 Capítulo 5. Resultados y Análisis de los Resultados ............................................................... 42 Resultados .................................................................................................................... 42 Síntesis y Fabricación de Hidrogeles de CB .................................................... 42 Inmovilización de Factores de Crecimiento Derivados de PPP en hidrogeles de CB .................................................................................................................... 44 Liberación de Factores de Crecimiento Inmovilizados en los Hidrogeles de CB .......................................................................................................................... 48 Caracterización Mecánica de los Hidrogeles de CB ........................................ 55 Análisis de Resultados ................................................................................................. 59 Capítulo 6. Conclusiones y Recomendaciones ........................................................................ 63 Referencias ............................................................................................................................... 64 Anexos ..................................................................................................................................... 74PregradoChronic diabetic foot ulcers (CDFUs) are wounds that present cellular alteration and biochemical imbalance leading to delayed healing and, in 40% of cases, to stages of necrosis and amputation. Conventional treatments for CDFUs are usually effective 50% of the time; however, in the case of dressing-type coverage, its effectiveness is reduced given the absence of a matrix for cell proliferation, in addition to altering the humidity in the wound, therefore, the need arises to formulate treatments with greater effectiveness in healing. In this project, bacterial cellulose (BC) hydrogels functionalized with growth factors derived from platelet poor plasma (PPP) were made, in order to take advantage of the structural and biocompatible properties of BC, in addition to its advantages in wound healing. provided by growth factors. The BC hydrogels were obtained after 7 days of cultivation of the Gluconacetobacter-xylinus bacteria inoculum under static conditions in 3 different culture media (HS, MC and HSMC). After this, the samples of said hydrogels were impregnated with PPP solutions at different concentrations (0, 25, 50, 75 and 100%) for periods of 6, 12 and 24 h, and the immobilization capacity (Ci) was estimated. of growth factors for each of these times. Subsequently, the release of immobilized growth factors in the samples was studied by incubating them at 37 °C in PBS solution for 48 h, and the release capacity (Cl) was estimated at 4 and 48 h. Additionally, the compression modulus of the BC hydrogels functionalized with PPP was calculated by means of compression tests. The Ci results indicate that the hydrogel samples cultured in HS medium immobilize a greater amount of growth factors compared to the samples produced in MC and HSMC media, the latter showing similar Ci values. Similarly, the BC hydrogels that present a better Cl correspond to those obtained in HS medium. The Ci and Cl of the functionalized BC hydrogels are directly related to each other, so the hydrogels with the highest Ci are consequently those with the highest Cl. In turn, the Ci and Cl are directly proportional to the concentration of PPP and at the time of immobilization. Regarding the compression modulus, values were found in the ranges of 0.27 - 2.77 MPa, 0.89 - 1.18 MPa and 0.51 - 1.21 MPa for the samples obtained in the HS, MC and HSMC media, respectively. It is concluded that BC hydrogels functionalized with PPP, especially those produced in HS medium, could be used in the future as a potential treatment for CDFUs due to their behavior of immobilization and release of beneficial biomolecules for wound healing and their similarity in terms of mechanical behavior compared to values of the compressive modulus of the native tissue.Modalidad Presencialapplication/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)Atribución-NoComercial-SinDerivadas 2.5 Colombiahttp://purl.org/coar/access_right/c_abf2Fabricación de hidrogeles de celulosa bacteriana funcionalizados con factores de crecimiento derivados de plasma pobre en plaquetas con potencial uso en el tratamiento de úlceras crónicas de pie diabéticoFabrication of functionalized bacterial cellulose hydrogels with growth factors. growth derived from platelet-poor plasma with potential use in the treatment of chronic diabetic foot ulcersIngeniero BiomédicoUniversidad Autónoma de Bucaramanga UNABFacultad IngenieríaPregrado Ingeniería Biomédicainfo:eu-repo/semantics/bachelorThesisTrabajo de Gradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/acceptedVersionhttp://purl.org/redcol/resource_type/TPBiomedical engineeringEngineeringMedical electronicsBiological physicsBioengineeringMedical instruments and apparatusMedicineBiomedicalClinical engineeringImmobilization capacityRelease capacityBacterial celluloseGrowth factorsHydrogelsBlood proteinsBlood plasmaFoot diseasesDiabetic footPeripheral vascular diseasesIngeniería biomédicaIngenieríaBiofísicaBioingenieríaMedicinaBiomédicaProteínas de la sangrePlasma sanguíneoEnfermedades de los piesPie diabéticoEnfermedades vasculares periféricasIngeniería clínicaElectrónica médicaInstrumentos y aparatos médicosCapacidad de inmovilizaciónCelulosa bacterianaFactores de crecimientoHidrogelesCapacidad de liberaciónABS Bimedica. (s.f.). Todo lo que tienes que saber sobre la piel. https://abs.bimedica.com/cuidado-corporal/todo-lo-que-tienes-que-saber-sobre-la-piel/Alven, S., & Aderibigbe, B. A. (2020). Chitosan and Cellulose-Based Hydrogels for Wound Management. International Journal of Molecular Sciences 2020, Vol. 21, Page 9656, 21(24), 9656. https://doi.org/10.3390/IJMS21249656Amisten, S., Neville, M., Hawkes, R., Persaud, S. J., Karpe, F., & Salehi, A. (2015). An atlas of G-protein coupled receptor expression and function in human subcutaneous adipose tissue. Pharmacology & therapeutics, 146, 61–93. https://doi.org/10.1016/j.pharmthera.2014.09.007Armstrong, D. G., Boulton, A. J. M., & Bus, S. A. (2017). Diabetic Foot Ulcers and Their Recurrence. Http://Dx.Doi.Org/10.1056/NEJMra1615439, 376(24), 2367–2375. https://doi.org/10.1056/NEJMRA1615439Arroyo LD, & Burbaro JI. (2019). Diabetes y pie diabético: una problemática mundial abordada desde la fisioterapia. Revista Colombiana de Endocrinología, Diabetes y Metabolismo, 6(3), 199–208Balin, A. K., & Pratt, L. (2002). Dilute povidone-iodine solutions inhibit human skin fibroblast growth. Dermatologic surgery : official publication for American Society for Dermatologic Surgery [et al.], 28(3), 210–214. https://doi.org/10.1046/j.1524 4725.2002.01161.xCáceres, M., Martínez, C., Martínez, J., & Smith, P. C. (2012). Effects of platelet-rich and poor plasma on the reparative response of gingival fibroblasts. Clinical Oral Implants Research, 23(9), 1104–1111. https://doi.org/10.1111/J.1600-0501.2011.02274.XCacicedo, L. (2017). Desarrollo de sistemas de liberación controlada de agentes quimioterapéuticos en matrices de celulosa microbiana con aplicaciones biomédicas. Universidad Nacional De La Plata. Retrieved from http://sedici.unlp.edu.ar/bitstream/handle/10915/64775/Documento_completo.p df?sequence=1Carmichael S. W. (2014). The tangled web of Langer's lines. Clinical anatomy (New York, N.Y.), 27(2), 162–168. https://doi.org/10.1002/ca.22278Cargnin, M. A., de Souza, A. G., de Lima, G. F., Gasparin, B. C., Rosa, D., & Paulino, A. T. (2020). Pinus residue/pectin-based composite hydrogels for the immobilization of β-D galactosidase. International journal of biological macromolecules, 149, 773–782. https://doi.org/10.1016/j.ijbiomac.2020.01.280Chellini, F., Tani, A., Zecchi-Orlandini, S., & Sassoli, C. (2019a). Influence of platelet-rich and platelet-poor plasma on endogenous mechanisms of skeletal muscle repair/regeneration. International Journal of Molecular Sciences, 20(3). https://doi.org/10.3390/ijms20030683Chellini, F., Tani, A., Zecchi-Orlandini, S., & Sassoli, C. (2019b). Influence of Platelet-Rich and Platelet-Poor Plasma on Endogenous Mechanisms of Skeletal Muscle Repair/Regeneration. International Journal of Molecular Sciences 2019, Vol. 20, Page 683, 20(3), 683. https://doi.org/10.3390/IJMS20030683Chen, Q. Y., Xiao, S. L., Shi, S. Q., & Cai, L. P. (2020). A One-Pot Synthesis and Characterization of Antibacterial Silver Nanoparticle-Cellulose Film. Polymers, 12(2), 440. https://doi.org/10.3390/polym12020440Cross, K. J., & Mustoe, T. A. (2003). Growth factors in wound healing. In Surgical Clinics of North America (Vol. 83, Issue 3, pp. 531–545). Elsevier. https://doi.org/10.1016/S0039 6109(02)00202-5Damour, O., Hua, S. Z., Lasne, F., Villain, M., Rousselle, P., & Collombel, C. (1992). Cytotoxicity evaluation of antiseptics and antibiotics on cultured human fibroblasts and keratinocytes. Burns : journal of the International Society for Burn Injuries, 18(6), 479– 485. https://doi.org/10.1016/0305-4179(92)90180-3Deuel, T. F., & Chang, Y. (2013). Growth Factors. Principles of Tissue Engineering: Fourth Edition, 291–308. https://doi.org/10.1016/B978-0-12-398358-9.00016-1Diabetes - Organización Panamericana de la Salud. (n.d.). Retrieved August 26, 2021, from https://www.paho.org/es/temas/diabetesDolganov, A. V., Revin, V. D., Kostryukov, S. G., Revin, V. V., & Yang, G. (2021). Kinetic and Thermodynamic Characteristics of Fluoride Ions Adsorption from Solution onto the Aluminum Oxide Nanolayer of a Bacterial Cellulose-Based Composite Material. Polymers, 13(19), 3421. https://doi.org/10.3390/polym13193421Dutta, S. D., Patel, D. K., & Lim, K.-T. (n.d.). Functional cellulose-based hydrogels as extracellular matrices for tissue engineering. https://doi.org/10.1186/s13036-019-0177 0Elnashar, M. (2010). Review Article: Immobilized Molecules Using Biomaterials and Nanobiotechnology. Journal of Biomaterials and Nanobiotechnology, 1(1), 61-76. https://doi.org/10.4236/jbnb.2010.11008El Mrabate, B., Udayakumar, M., Csiszár, E., Kristály, F., Leskó, M., Somlyai Sipos, L., Schabikowski, M., & Németh, Z. (2020). Development of bacterial cellulose-ZnO MWCNT hybrid membranes: a study of structural and mechanical properties. Royal Society open science, 7(6), 200592. https://doi.org/10.1098/rsos.200592Escotto Sánchez, I., Miguel Rodríguez Trejo, J., Padilla Sánchez, L., & Rodríguez Ramírez, N. (2001). Factores de crecimiento en el tratamiento de úlceras en pacientes diabéticos. Revista Mexicana de ANGIOLOGIA, 29(3), 75–82.Fijul Kabir, S. M., Sikdar, P. P., Haque, · B, Rahman Bhuiyan, · M A, Ali, · A, & Islam, · M N. (2018). Cellulose-based hydrogel materials: chemistry, properties and their prospective applications. Progress in Biomaterials, 7, 153–174. https://doi.org/10.1007/s40204-018-0095-0Gallagher, A. J., Ní Annaidh, A., & Bruyère, K. (2012). Dynamic tensile properties of human skin. In IRCOBI Conference 2012, 12-14 September 2012, Dublin (Ireland). International Research Council on the Biomechanics of InjuryGarcía Bello, L., Torales Salinas, J., Giménez, M. B., Flores, L. E., Gómez de Ruiz, N., & Centurión, O. A. (2016). The risk of those who care for risk: FIDRISK in healthcare personnel. Revista Virtual de La Sociedad Paraguaya de Medicina Interna, 3(2), 71–76. https://doi.org/10.18004/rvspmi/2312-3893/2016.03(02)71-076González de la Torre, Héctor, Mosquera Fernández, Abián, Quintana Lorenzo, M.ª Luana, Perdomo Pérez, Estrella, & Quintana Montesdeoca, M.ª del Pino. (2012). Classifications of injuries on diabetic foot: A non-solved problem. Gerokomos, 23(2), 75-87. https://dx.doi.org/10.4321/S1134-928X2012000200006Gupta, A., Briffa, S. M., Swingler, S., Gibson, H., Kannappan, V., Adamus, G., Kowalczuk, M., Martin, C., & Radecka, I. (2020). Synthesis of Silver Nanoparticles Using Curcumin-Cyclodextrins Loaded into Bacterial Cellulose-Based Hydrogels for Wound Dressing Applications. Biomacromolecules, 21(5), 1802–1811. https://doi.org/10.1021/acs.biomac.9b01724Gupta, A., Keddie, D.J, Kannappan, V., Khalil, I.R., Kowalczuk, M., Martin, C., Shuai, X., Radecka, I. (2019). Production and characterisation of bacterial cellulose hydrogels loaded with curcumin encapsulated in cyclodextrins as wound dressings. European Polymer Journal, 118(1), 437-450. https://doi.org/10.1016/j.eurpolymj.2019.06.018Hilton, J. R., Williams, D. T., Beuker, B., Miller, D. R., & Harding, K. G. (2004). Wound Dressings in Diabetic Foot Disease. Clinical Infectious Diseases, 39(Supplement_2), S100–S103. https://doi.org/10.1086/383270Isaza, J. N. (2019). Comportamiento mecánico de la piel en función del espesor de las capas que la componen [Tesis de Doctorado, Universidad Nacional de Colombia]. Repositorio Institucional – Universidad Nacional de Colombia.Ji, K., Wang, W., Zeng, B., Chen, S., Zhao, Q., Chen, Y., Li, G., & Ma, T. (2016). Bacterial cellulose synthesis mechanism of facultative anaerobe Enterobacter sp. FY-07. Scientific reports, 6, 21863. https://doi.org/10.1038/srep21863Kalra, A, Lowe, A, and Al-Jumaily, AM (2016). Mechanical Behaviour of Skin: A Review. Journal of Material Science & Engineering. https://doi.org/10.4172/2169-0022.1000254Kantor, J., & Margolis, D. J. (2001). Treatment options for diabetic neuropathic foot ulcers: A cost-effectiveness analysis. Dermatologic Surgery, 27(4), 347–351. https://doi.org/10.1046/j.1524-4725.2001.00280.xKim, J., Cai, Z., Lee, H. S., Choi, G. S., Lee, H. L., Jo, C.. (2011). Preparation and characterization of a Bacterial cellulose/Chitosan composite for potential biomedical application. Journal of Polymer Research, 18, 739-744. https://doi.org/10.1007/s10965 010-9470-9Krasteva, P. V., Bernal-Bayard, J., Travier, L., Martin, F. A., Kaminski, P. A., Karimova, G., Fronzes, R., & Ghigo, J. M. (2017). Insights into the structure and assembly of a bacterial cellulose secretion system. Nature Communications, 8(1). https://doi.org/10.1038/s41467-017-01523-2Lazarini, S. C., de Aquino, R., Amaral, A. C., Corbi, F. C. A., Corbi, P. P., Barud, H. S., & Lustri, W. R. (2015). Characterization of bilayer bacterial cellulose membranes with different fiber densities: a promising system for controlled release of the antibiotic ceftriaxone. Cellulose, 23(1), 737–748. doi:10.1007/s10570-015-0843-4Lee, K. Y., & Mooney, D. J. (2001). Hydrogels for tissue engineering. In Chemical Reviews (Vol. 101, Issue 7, pp. 1869–1879). American Chemical Society. https://doi.org/10.1021/cr000108xLee, Y. H., Hong, Y. L., & Wu, T. L. (2021). Novel silver and nanoparticle-encapsulated growth factor co-loaded chitosan composite hydrogel with sustained antimicrobility and promoted biological properties for diabetic wound healing. Materials Science and Engineering C, 118, 111385. https://doi.org/10.1016/j.msec.2020.11138Li, Z., Zhang, X., Yuan, T., Zhang, Y., Luo, C., Zhang, J., Liu, Y., & Fan, W. (2020). Addition of Platelet-Rich Plasma to Silk Fibroin Hydrogel Bioprinting for Cartilage Regeneration. Https://Home.Liebertpub.Com/Tea, 26(15–16), 886–895. https://doi.org/10.1089/TEN.TEA.2019.0304Loh, E. Y. X., Mohamad, N., Fauzi, M. B., Ng, M. H., Ng, S. F., & Mohd Amin, M. C. I. (2018). Development of a bacterial cellulose-based hydrogel cell carrier containing keratinocytes and fibroblasts for full-thickness wound healing. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-21174-7López, P., Director, J., López-Jaramillo, P., Calderón, C., Castillo, J., Darío Escobar, I., Melgarejo, E., & Parra, G. A. (2017). Prediabetes en Colombia: Consenso de expertos. Colomb Med, 48(4), 191–203. https://doi.org/10.25100/cm.v48i4.3662Mikesh, LM, Aramadhaka, LR, Moskaluk, C., Zigrino, P., Mauch, C. y Fox, JW (2013). Anatomía proteómica de la piel humana. Revista de proteómica, 84, 190–200. https://doi.org/10.1016/j.jprot.2013.03.019Moffatt, C., Flanagan, M., & Shuttleworth, A. (2004). POSITION Wound bed preparation in practice. European Wound Managment AssocationO’Meara, S. M., Cullum, N. A., Majid, M., & Sheldon, T. A. (2001). Systematic review of antimicrobial agents used for chronic wounds. In British Journal of Surgery (Vol. 88, Issue 1, pp. 4–21). Oxford Academic. https://doi.org/10.1046/j.1365-2168.2001.01631.xOprea, M., Panaitescu, D. M., Nicolae, C. A., Gabor, A. R., Frone, A. N., Raditoiu, V., Casarica, A. (2020). Nanocomposites from functionalized bacterial cellulose and poly(3 hydroxybutyrate-co-3-hydroxyvalerate). Polymer Degradation and Stability, 109203. doi:10.1016/j.polymdegradstab.2020.109203Paolini, J. E., Lamelza,V., Cohen, C., Giraldez, N., & Rabuffetti, M. (2006). CONGRESO DEL BICENTENARIO – Parche plaquetario autólogo. Utilización en úlceras crónicas. Fórum de Flebologia y Linfologia. http://cacvyl.org/parche-plaquetario/Pinto, M. C., & Prada, Y. (2021). Caracterización mecánica de hidrogeles derivados de celulosa bacteriana producida a partir de mucílago de café con potencial uso en el diseño de apósitos para úlcera por presión decúbito supino [Tesis de Pregrado, Universidad Autónoma de Bucaramanga]. Repositorio Institucional – Universidad Autónoma de BucaramangaPogorelova, N., Rogachev, E., Digel, I., Chernigova, S., & Nardin, D. (2020). Bacterial Cellulose Nanocomposites: Morphology and Mechanical Properties. Materials (Basel, Switzerland), 13(12), 2849. https://doi.org/10.3390/ma13122849Portela, R., Leal, C. R., Almeida, P. L., & Sobral, R. G. (2019). Bacterial cellulose: a versatile biopolymer for wound dressing applications. Microbial Biotechnology, 12(4), 586. https://doi.org/10.1111/1751-7915.13392Pozo, N. O. (2019). Síntesis Y Evaluación Cicatrizante De Un Apósito En Base A Un Hidrogel Con Propiedades De Liberación Sostenida De Compuestos Bioactivos. Facultad de Ciencias de la Salud - Escuela de Tecnología médica - Talca.Ribeiro, J., Pereira, T., Amorim, I., Caseiro, A. R., Lopes, M. A., Lima, J., Gartner, A., Santos, J. D., Bártolo, P. J., Rodrigues, J. M., Mauricio, A. C., & Luís, A. L. (2014). Cell therapy with human MSCs isolated from the umbilical cord wharton jelly associated to a PVA membrane in the treatment of chronic skin wounds. International Journal of Medical Sciences, 11(10), 979–987. https://doi.org/10.7150/IJMS.9139Rodríguez Flores, J., Palomar Gallego, M. A., & Torres García-Denche, J. (2012). Plasma rico en plaquetas: fundamentos biológicos y aplicaciones en cirugía maxilofacial y estética facial. Revista Española de Cirugía Oral y Maxilofacial, 34(1), 8–17. https://doi.org/10.1016/J.MAXILO.2011.10.007Ross, P., Mayer, R., & Benziman, M. (1991). Cellulose biosynthesis and function in bacteria. Microbiological Reviews, 55(1), 35–58. https://doi.org/10.1128/mr.55.1.35-58.1991Ruiz, S. R. y Martínez, J. A. (2016). Carbohidratos. Portal Académico del CCH, UNAM. https://portalacademico.cch.unam.mx/alumno/quimica2/unidad2/carbohidratosSaad Setta, H., Elshahat, A., Elsherbiny, K., Massoud, K., & Safe, I. (2011). Platelet-rich plasma versus platelet-poor plasma in the management of chronic diabetic foot ulcers: A comparative study. International Wound Journal, 8(3), 307–312. https://doi.org/10.1111/J.1742-481X.2011.00797.XSangiovanni, S., Aguilar, J., & Asencio-santofimio, H. (2018). Epidemiología de diabetes mellitus tipo 2 en la población colombiana y factores de riesgo que predisponen a la amputación de miembros inferiores. Revisión de la literatura. Salutem Scientia Spiritus, 4(1), 49–56.Saulis, A. S., Lautenschlager, E. P., & Mustoe, T. A. (2002). Biomechanical and viscoelastic properties of skin, SMAS, and composite flaps as they pertain to rhytidectomy. Plastic and reconstructive surgery, 110(2), 590–600. https://doi.org/10.1097/00006534 200208000-00035Steed, D. L., Goslen, J. B., Holloway, G. A., Malone, J. M., Bunt, T. J., & Webster, M. W. (1992). Randomized prospective double-blind trial in healing chronic diabetic foot ulcers: CT-102 activated platelet supernatant, topical versus placebo. Diabetes Care, 15(11), 1598–1604. https://doi.org/10.2337/diacare.15.11.1598Stoica, A. E., Chircov, C., & Grumezescu, A. M. (2020). Hydrogel dressings for the treatment of burn wounds: An up-to-date overview. In Materials (Vol. 13, Issue 12, pp. 1–24). Materials (Basel). https://doi.org/10.3390/ma13122853Vasconcelos, N. F., Cunha, A. P., Ricardo, N. M. P. S., Freire, R. S., Vieira, L. de A. P., Brígida, A. I. S., Borges, M. de F., Rosa, M. de F., Vieira, R. S., & Andrade, F. K. (2020). Papain immobilization on heterofunctional membrane bacterial cellulose as a potential strategy for the debridement of skin wounds. International Journal of Biological Macromolecules, 165(Pt B), 3065–3077. https://doi.org/10.1016/j.ijbiomac.2020.10.200Westby, M. J., Dumville, J. C., Soares, M. O., Stubbs, N., & Norman, G. (2017). Dressings and topical agents for treating pressure ulcers. In Cochrane Database of Systematic Reviews (Vol. 2017, Issue 6). Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD011947.pub2Woeppel, K. M., Zheng, X. S., & Cui, X. T. (2018). Enhancing surface immobilization of bioactive molecules via a silica nanoparticle based coating. Journal of Materials Chemistry. B, 6(19), 3058. https://doi.org/10.1039/C8TB00408KWong, R., Geyer, S., Weninger, W., Guimberteau, J. C., & Wong, J. K. (2016). The dynamic anatomy and patterning of skin. Experimental dermatology, 25(2), 92–98. https://doi.org/10.1111/exd.12832Woo, S. H., Kim, J. P., Park, J. J., Chung, P. S., Lee, S. H., & Jeong, H. S. (2013). Autologous platelet-poor plasma gel for injection laryngoplasty. Yonsei medical journal, 54(6), 1516–1523. https://doi.org/10.3349/ymj.2013.54.6.1516Zhang, H., Luo, X., Tang, H., Zheng, M., & Huang, F. (2017). A novel candidate for wound dressing: Transparent porous maghemite/cellulose nanocomposite membranes with controlled release of doxorubicin from a simple approach. Materials science & engineering. C, Materials for biological applications, 79, 84–92. https://doi.org/10.1016/j.msec.2017.05.019Zhang, J., Zhang, J., Zhang, N., Li, T., Zhou, X., Jia, J., Liang, Y., Sun, X., & Chen, H. (2020). The Effects of Platelet-Rich and Platelet-Poor Plasma on Biological Characteristics of BM-MSCs in Vitro. Analytical Cellular Pathology, 2020. https://doi.org/10.1155/2020/8546231Zhang, Y. Q., Tao, M. L., Shen, W. D., Zhou, Y. Z., Ding, Y., Ma, Y., & Zhou, W. L. (2004). Immobilization of L-asparaginase on the microparticles of the natural silk sericin protein and its characters. Biomaterials, 25(17), 3751–3759. https://doi.org/10.1016/j.biomaterials.2003.10.019Zhao, Y., Li, Z., Li, Q., Yang, L., Liu, H., Yan, R., Xiao, L., Liu, H., Wang, J., Yang, B., & Lin, Q. (2020). Transparent Conductive Supramolecular Hydrogels with Stimuli Responsive Properties for On-Demand Dissolvable Diabetic Foot Wound Dressings. Macromolecular Rapid Communications, 41(24), 2000441. https://doi.org/10.1002/marc.202000441Zmejkoski, D., Spasojević, D., Orlovska, I., Kozyrovska, N., Soković, M., Glamočlija, J., Dmitrović, S., Matović, B., Tasić, N., Maksimović, V., Sosnin, M., & Radotić, K. (2018). Bacterial cellulose-lignin composite hydrogel as a promising agent in chronic wound healing. International Journal of Biological Macromolecules, 118, 494–503. https://doi.org/10.1016/j.ijbiomac.2018.06.067Żur, J., Wojcieszyńska, D., & Guzik, U. (2016). Metabolic Responses of Bacterial Cells to Immobilization. Molecules, 21(7). https://doi.org/10.3390/MOLECULES21070958ORIGINAL2022_Tesis_Neider_Yesid_Cabrera.pdf2022_Tesis_Neider_Yesid_Cabrera.pdfTesisapplication/pdf2820644https://repository.unab.edu.co/bitstream/20.500.12749/16886/1/2022_Tesis_Neider_Yesid_Cabrera.pdfc9d44016f4935b61cd6ed94e4a70ab96MD51open access2022_Licencia_Neider_Yesid_Cabrera.pdf2022_Licencia_Neider_Yesid_Cabrera.pdfLicenciaapplication/pdf842439https://repository.unab.edu.co/bitstream/20.500.12749/16886/2/2022_Licencia_Neider_Yesid_Cabrera.pdf4fa3e5e98ea1fc996bbe79aa6ca1e9cbMD52metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8829https://repository.unab.edu.co/bitstream/20.500.12749/16886/3/license.txt3755c0cfdb77e29f2b9125d7a45dd316MD53open accessTHUMBNAIL2022_Tesis_Neider_Yesid_Cabrera.pdf.jpg2022_Tesis_Neider_Yesid_Cabrera.pdf.jpgIM Thumbnailimage/jpeg5080https://repository.unab.edu.co/bitstream/20.500.12749/16886/4/2022_Tesis_Neider_Yesid_Cabrera.pdf.jpg546fada5c37091261da18de27b756d8bMD54open access2022_Licencia_Neider_Yesid_Cabrera.pdf.jpg2022_Licencia_Neider_Yesid_Cabrera.pdf.jpgIM Thumbnailimage/jpeg10319https://repository.unab.edu.co/bitstream/20.500.12749/16886/5/2022_Licencia_Neider_Yesid_Cabrera.pdf.jpg6297b8ccd6bf010fa8bfa3fdd435e683MD55open access20.500.12749/16886oai:repository.unab.edu.co:20.500.12749/168862023-11-25 03:44:28.722open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbi4gRWwgQVVUT1IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVTkFCIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuCgpFbCBBVVRPUiBhdXRvcml6YSBhIGxhIFVuaXZlcnNpZGFkIEF1dMOzbm9tYSBkZSBCdWNhcmFtYW5nYSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24uCg==