Desarrollo de un programa de Eco-Driving a nivel operativo con monitoreo a bordo OBD II en el Área Metropolitana de Bucaramanga

Las estrategias de Eco-Driving buscan controlar y reducir el consumo innecesario de combustible mediante la toma de decisiones antes y durante la conducción. Para desarrollar las estrategias primero se realizó una campaña de monitoreo en condiciones reales de carreta para una muestra de 6 vehículos...

Full description

Autores:
Angulo Sanchez, Laura Valentina
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad Autónoma de Bucaramanga - UNAB
Repositorio:
Repositorio UNAB
Idioma:
spa
OAI Identifier:
oai:repository.unab.edu.co:20.500.12749/23191
Acceso en línea:
http://hdl.handle.net/20.500.12749/23191
Palabra clave:
Driving styles
Eco-driving
Random forest
Vehicle driving
Energetic resources
Energy conservation
Automobiles
Mecatrónica
Conducción de vehículos
Recursos energéticos
Conservación de la energía
Automóviles
Estilos de conducción
Conducción ecológica
PCA
Kmeans
Random forest
Rights
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UNAB2_eab720cf74fce3b978586d2101426182
oai_identifier_str oai:repository.unab.edu.co:20.500.12749/23191
network_acronym_str UNAB2
network_name_str Repositorio UNAB
repository_id_str
dc.title.spa.fl_str_mv Desarrollo de un programa de Eco-Driving a nivel operativo con monitoreo a bordo OBD II en el Área Metropolitana de Bucaramanga
dc.title.translated.spa.fl_str_mv Development of an Eco-Driving program at an operational level with on-board OBD II monitoring in the metropolitan area of Bucaramanga
title Desarrollo de un programa de Eco-Driving a nivel operativo con monitoreo a bordo OBD II en el Área Metropolitana de Bucaramanga
spellingShingle Desarrollo de un programa de Eco-Driving a nivel operativo con monitoreo a bordo OBD II en el Área Metropolitana de Bucaramanga
Driving styles
Eco-driving
Random forest
Vehicle driving
Energetic resources
Energy conservation
Automobiles
Mecatrónica
Conducción de vehículos
Recursos energéticos
Conservación de la energía
Automóviles
Estilos de conducción
Conducción ecológica
PCA
Kmeans
Random forest
title_short Desarrollo de un programa de Eco-Driving a nivel operativo con monitoreo a bordo OBD II en el Área Metropolitana de Bucaramanga
title_full Desarrollo de un programa de Eco-Driving a nivel operativo con monitoreo a bordo OBD II en el Área Metropolitana de Bucaramanga
title_fullStr Desarrollo de un programa de Eco-Driving a nivel operativo con monitoreo a bordo OBD II en el Área Metropolitana de Bucaramanga
title_full_unstemmed Desarrollo de un programa de Eco-Driving a nivel operativo con monitoreo a bordo OBD II en el Área Metropolitana de Bucaramanga
title_sort Desarrollo de un programa de Eco-Driving a nivel operativo con monitoreo a bordo OBD II en el Área Metropolitana de Bucaramanga
dc.creator.fl_str_mv Angulo Sanchez, Laura Valentina
dc.contributor.advisor.none.fl_str_mv Maradey Lázaro, Jessica Gissella
Huertas Cardozo, José Ignacio
dc.contributor.author.none.fl_str_mv Angulo Sanchez, Laura Valentina
dc.contributor.cvlac.spa.fl_str_mv Angulo Sanchez, Laura Valentina [1004924368]
Maradey Lázaro, Jessica Gissella [0000040553]
Huertas Cardozo, José Ignacio [0000057398]
dc.contributor.googlescholar.spa.fl_str_mv Huertas Cardozo, José Ignacio [es&oi=ao]
dc.contributor.orcid.spa.fl_str_mv Maradey Lázaro, Jessica Gissella [0000-0003-2319-1965]
Huertas Cardozo, José Ignacio [0000-0003-4508-6453]
dc.contributor.apolounab.spa.fl_str_mv Maradey Lázaro, Jessica Gissella [jessica-gissella-maradey-lázaro]
dc.subject.keywords.spa.fl_str_mv Driving styles
Eco-driving
Random forest
Vehicle driving
Energetic resources
Energy conservation
Automobiles
topic Driving styles
Eco-driving
Random forest
Vehicle driving
Energetic resources
Energy conservation
Automobiles
Mecatrónica
Conducción de vehículos
Recursos energéticos
Conservación de la energía
Automóviles
Estilos de conducción
Conducción ecológica
PCA
Kmeans
Random forest
dc.subject.lemb.spa.fl_str_mv Mecatrónica
Conducción de vehículos
Recursos energéticos
Conservación de la energía
Automóviles
dc.subject.proposal.spa.fl_str_mv Estilos de conducción
Conducción ecológica
PCA
Kmeans
Random forest
description Las estrategias de Eco-Driving buscan controlar y reducir el consumo innecesario de combustible mediante la toma de decisiones antes y durante la conducción. Para desarrollar las estrategias primero se realizó una campaña de monitoreo en condiciones reales de carreta para una muestra de 6 vehículos durante 6 meses, el objetivo de la campaña fue recolectar datos de variables de manejo como la velocidad, aceleración, RPM, consumo de combustible, entre otros, mediante un dispositivo OBD II. Para analizar los estilos de conducción, se implementaron dos modelos de aprendizaje no supervisado: Kmeans y DBSCAN. Utilizando las métricas del coeficiente de silueta y el índice de Davies Boulton, se determinó que el método de mayor calidad para la clasificación es Kmeans cuando se itera con las variables de velocidad promedio y aceleración positiva máxima. Los resultados indicaron la existencia de 3 grupos o clústeres que corresponden a los estilos calmado, normal y agresivo. A partir de esta clasificación, se identificaron las características distintivas de cada estilo, lo que permitió plantear estrategias de Ecodriving a nivel operativo, es decir relacionadas directamente con el comportamiento del conductor en carretera. Finalmente, para estimar el ahorro potencial derivado de estas estrategias, se entrenaron cinco modelos de regresión con aprendizaje supervisado. Cada modelo se evaluó utilizando índices de error como MSE, RMSE y R2, Los resultados indicaron que el modelo óptimo para la estimación es Random forest debido a que tiene un RMSE de 4,99 L/100Km siendo el valor más bajo de error y un coeficiente de determinación de 0.91 siendo el valor más alto obtenido, lo cual es indicador de una alta precisión del modelo entrenado. Según los resultados, se concluyó que el Ecodriving posibilita una reducción de hasta el 30% en el consumo de combustible. Esto se traduce en un ahorro económico para el conductor y una disminución en la producción de emisiones contaminantes.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-01-18T15:27:33Z
dc.date.available.none.fl_str_mv 2024-01-18T15:27:33Z
dc.date.issued.none.fl_str_mv 2024-01-17
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.local.spa.fl_str_mv Trabajo de Grado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12749/23191
dc.identifier.instname.spa.fl_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UNAB
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.unab.edu.co
url http://hdl.handle.net/20.500.12749/23191
identifier_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
reponame:Repositorio Institucional UNAB
repourl:https://repository.unab.edu.co
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Agencia Eureopea de Medio Ambiente, «Transporte,» 2020. [En línea].
T. Colombo, G. Panzani, S. Savaresi y P. Paparo, «Absolute Driving Style Estimation for Ground Vehicles,» IEEE Conference on Control Technology and Applications (CCTA), 2017.
Área metropolitana de Bucaramanga, «Balance mensual del control a fuentes moviles en Bucaramanga,Floridablanca,Piedecuesta y Giron:1350 pruebas realizadas;70% de los vehículos aprobados y 30% restante no cumplen la norma,» 2019. [En línea]. Available: https://www.amb.gov.co/balance-mensual-del-control-a-fuentes-moviles-en-bucaramanga-floridablanca-piedecuesta-y-giron-1350-pruebas-realizadas-70-de-los-vehiculos-aprobados-y-30-restante-no-cumple-la-norma/.
P.Fafoutellis, E.G.Mantouka,E.I. Vlahogianni, «Eco-Driving and Its Impacts on Fuel Efficiency: An Overview of Technologies and Data-Driven Methods. Sustainability,» 2021.
M. Sivak, B. Schoettle, «Eco-driving: Strategic, tactical, and operational decisions of the driver that influence vehicle fuel economy,» 2012.
N.Xu,X. Li,Q. Liu,D. Zhao, «An Overview of Eco-Driving Theory, Capability Evaluation and Training Applications,» 2021.
H.Wang, L.Fu,Y.Zhou,H.Li, «Modelling of the fuel consumption for passenger cars regarding,» Beijing, 2008.
E. Choi. E. Kim, «Critical aggressive acceleration values and models for fuel consumption when starting and driving a passenger car running on LPG,» 2017.
F. Saust, O. Bley, R. Kutzner, J. M. Wille, B. Friedrich and M. Maurer, «Exploitability of vehicle related sensor data in cooperative systems,» 13th International IEEE Conference on Intelligent Transportation Systems, 2010.
A.Weber, A. Winckler, «Advanced traffic signal control algorithms, appendix A: Exploratory advanced research project BMW,» 2013.
C. Rolim, P. Baptista, G. Duarte, T. Farias, «Impacts of On-board Devices and Training on Light Duty Vehicle Driving Behavior,» 2014.
M. H.Almannaa, H. Chen, H. A. Rakha, A. Loulizi, and I. El-Shawarby, «Reducing Vehicle Fuel Consumption and Delay at Signalized Intersections: Controlled-Field Evaluation of Effectiveness of Infrastructure-to-Vehicle Communication,» 2017.
P. Hao, G. Wu, K. Boriboonsomsin and M. J. Barth, «Eco-Approach and Departure (EAD) Application for Actuated Signals in Real-World TraffiC,» IEEE Transactions on Intelligent Transportation Systems, 2019.
O. Teichert, A. Koch and A. Ongel, «Comparison of Eco-Driving Strategies for Different Traffic-Management Measures,» IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), 2020.
P.Arroyo-López, J. C. Velázquez-Martínez & K. M. Gámez-Pérez, «Past behavior as a predictor of eco-driving practices: The case of a sustained intervention in a Mexican transportation company,» 2021.
J. Caban, «The investigation of eco-driving possibilities in passenger car used in urban traffic,» 2021.
D. Oswald et al, «Real-world Efficacy of a Haptic Accelerator Pedal-based Eco-driving System,» IEEE International Intelligent Transportation Systems Conference (ITSC), 2021.
M-H.Yen,S-L. Tian,Y-T.Lin,C-W. Yang y C-C.Chen, «Combining a Universal OBD-II Module with Deep Learning to Develop an Eco-Driving Analysis System,» appl.sci, 2021.
F.Kutzner,C.Kacperski,D.Schramm y M.Waenke, «How far can we get with eco driving tech?,» 2021.
F. Martín Poó y R. D. Ledesma, «A Study on the Relationship Between Personality and driving styles,» 2013.
J. D. Molina y B. F. Acuña, «“Clasificación de estilos de conducción en el área metropolitana de Bucaramanga con monitoreo a bordo (OBDII) en condiciones reales de carretera,» 2022.
J. C. Ferreira, J. de Almeida and A. R. da Silva, «The Impact of Driving Styles on Fuel Consumption: A Data-Warehouse-and-Data-Mining-Based Discovery Process,» IEEE Transactions on Intelligent Transportation Systems, 2015.
C. Lee y P. Öberg, «Classification of Road Type and Driving Style using OBD Data,» SAE 2015 World Congress & Exhibition, 2015.
K.Sentoff,L.Aultman,B.Holmén, «Implications of driving style and road grade for accurate vehicle,» 2015.
J. E. Meseguer, C. K. Toh, C. T. Calafate, J. C. Cano and P. Manzoni, «Drivingstyles: a mobile platform for driving styles and fuel consumption characterization,» Journal of Communications and Networks, 2017.
F. Martinelli, F. Mercaldo, A. Orlando, V. Nardone, A. Santone y A. Sangaiah, «Human behavior characterization for driving style recognition in vehicle system,» 2018.
I. Feraud y J. Naranjo, «A Data-driven Approach to Estimate Driving Style,» ICCMS '19: Proceedings of the 11th International Conference on Computer Modeling and Simulation, 2019.
J. Fan, Y. Li, Y. Liu, Y. Zhang and C. Ma, «Analysis of taxi driving behavior and driving risk based on trajectory data,» IEEE Intelligent Vehicles Symposium (IV), 2019.
B. Gao, K. Cai, T. Qu, Y. Hu and H. Chen, «Personalized Adaptive Cruise Control Based on Online Driving Style Recognition Technology and Model Predictive Control,» IEEE Transactions on Vehicular Technology, 2020.
A. Mohammadnazar, R. Arvin y A. Khattak, «Classifying travelers’ driving style using basic safety messages generated by connected vehicles: Application of unsupervised machine learning,» 2021.
M. Rafael, M. Sanchez, V. Mucino, J. Cervantes and A. Lozano, «Impact of driving styles on exhaust emissions and fuel economy from a heavy-duty truck: Laboratory tests,» Revista Internacional de Sistemas de Vehículos Pesados (IJHVS), 2006.
C. Marina Martinez, M. Heucke, F. -Y. Wang, B. Gao and D. Cao, «Driving Style Recognition for Intelligent Vehicle Control and Advanced Driver Assistance: A Survey,» IEEE Transactions on Intelligent Transportation Systems, 2018.
Z. Constantinescu, C. Marinoiu y M. Vladoiu, «Driving style analysis using data mining techniques,» International Journal of Computers Communications & Control, 2010.
De Zepeda, M. V. N., Meng, F., Su, J., Zeng, X.-J., & Wang, Q., Dynamic clustering analysis for driving styles identification, Engineering Applications of Artificial Intelligence, 2021.
O. F. Ozgul, M. U. Cakir, M. Tan, M. F. Amasyali y H. T. Hayvaci, «Fully Unsupervised Framework for Scoring Driving Style,» 2018 International Conference on Intelligent Systems (IS), 2018.
R. Yu, X. Long y J. Li, «Driving Style Analyses for Car-sharing Users Utilizing Low-frequency Trajectory Data,,» 5th International Conference on Transportation Information and Safety (ICTIS), 2019.
H. Strömberg,I.C.Karlsson,O. Rexfelt, «Eco-driving:Drivers’ understanding of the concept and implications for future interventions,» Transport Policy, 2015.
R.Tu,J.XU,T.Li y H.Chen, «Effective and Acceptable Eco-Driving Guidance for Human-Driving Vehicles: A Review,» Int. J. Environ. Res. Public Health, 2022.
Y. Yao, X. Zhao, C. Liu, J. Rong, Y. Zhang, Z. Dong y Y. Su, Vehicle Fuel Consumption Prediction Method Based on Driving Behavior Data Collected from Smartphones, 2020.
A. G. Çapraz, P. Özel, M. Şevkli y Ö. F. Beyca, Fuel Consumption Models Applied to Automobiles Using Real-time Data: A Comparison of Statistical Models, Procedia Comput, 2016, p. pp. 774–781.
S. Wickramanayake and H. M. N. Dilum Bandara, «"Fuel consumption prediction of fleet vehicles using Machine Learning: A comparative study,» de 2016 Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 2016.
G. Li, «Machine learning in fuel consumption prediction of aircraft,» de Cogn. Inform. (ICCI), Beijing, China, 2010.
F. Schockenhoff, H. Nehse y M. Lienkamp, «Maneuver-based objectification of user comfort affecting aspects of driving style of autonomous vehicle concepts,» Applied Sciences, 2020.
P. Jardin, I. Moisidis, S. S. Zetina y S. Rinderknecht, «Rule-Based Driving Style Classification Using Acceleration Data Profiles,» 23rd International Conference on Intelligent Transportation Systems (ITSC), 2020.
M. M. Bejani y M. Ghatee, «Convolutional neural network with adaptive regularization to classify driving styles on smartphones,» IEEE transactions on intelligent transportation systems, 2019.
O. Shouno, «Deep unsupervised learning of a topological map of vehicle maneuvers for characterizing driving styles,» 2018 21st International Conference on Intelligent Transportation Systems (ITSC), 2018.
I. Del Campo, E. Asua, V. Martínez, Ó. Mata-Carballeira y J. Echanobe, «Driving style recognition based on ride comfort using a hybrid machine learning algorithm,» 21st International Conference on Intelligent Transportation Systems (ITSC), 2018.
M. Brambilla, P. Mascetti y A. Mauri, «Comparison of different driving style analysis approaches based on trip segmentation over GPS information,» IEEE International Conference on Big Data (Big Data), 2017.
D. Dörr, D. Grabengiesser y F. Gauterin, «Online driving style recognition using fuzzy logic,» IEEE International Conference on Intelligent Trasportation Systems, 2014.
A. Aljaafreh, N. Alshabatat y Al-Din, «Driving style recognition using fuzzy logic,» International Conference on Vehicular Electronics and Safety, 2012
G. Li, F. Zhu, X. Qu, B. Cheng, S. Li y P. Green, «Driving style classification based on driving operational pictures,» IEEE Access, 2019.
A. Donkers, D. Yang y M. Viktorović, «Influence of driving style, infrastructure, weather and traffic on electric vehicle performance,» Transportation research part D: transport and environment, 2020.
J. Guo, Y. Jiang, Y. Yu y W. Liu, «A novel energy consumption prediction model with combination of road information and driving style of BEVs,» Sustainable Energy Technologies and Assessments, 2020.
I. Silva y J. Eugenio Naranjo, «A systematic methodology to evaluate prediction models for driving style classification,» Sensors, 2020.
J. Cordero, J. Aguilar, K. Aguilar, D. Chávez y E. Puerto, «Recognition of the driving style in vehicle drivers,» Sensors, 2020.
Y. Liu, J. Wang, P. Zhao, D. Qin y Z. Chen, «Research on classification and recognition of driving styles based on feature engineering,» IEEE Access, 2019.
R. Liessner, A. Dietermann, B. Bäker y K. Lüpkes, «Derivation of real-world driving cycles corresponding to traffic situation and driving style on the basis of Markov models and cluster analyses,» th Hybrid and Electric Vehicles Conference (HEVC 2016), 2016.
V. Nikulin, «Driving style identification with unsupervised learning,» International Conference on Machine Learning and Data Mining in Pattern Recognition, 2016.
K. Li, L. Jin, Y. Jiang, H. Xian y L. Gao, «Effects of driver behavior style differences and individual differences on driver sleepiness detection,» Advances in Mechanical Engineering, 2015.
K. M. Sentoff, L. Aultman-Hall y B. A. Holmén, «Implications of driving style and road grade for accurate vehicle activity data and emissions estimates,» Transportation Research Part D: Transport and Environment, 2015.
O. Derbel y R. Landry, «Driving style assessment based on the GPS data and fuzzy inference systems,» 12th International Multi-Conference on Systems, Signals & Devices, 2015.
D. Johnson y M. Trivedi, «Driving style recognition using a smartphone as a sensor platform,» 14th International IEEE Conference on Intelligent Transportation Systems, 2011
T. Felstead, M. McDonald y M. Fowkes, «Driving style extremes and potential vehicle emission effects,» Proceedings of the Institution of Civil Engineers-Transport, 2009.
J. Gallus, U. Kirchner, R. Vogt y T. Benter, «Impact of driving style and road grade on gaseous exhaust emissions of passenger vehicles measured by a Portable Emission Measurement System (PEMS),» Transportation Research Part D: Transport and Environment, 2017.
Y. Feng, S. Pickering, E. Chappell, P. Iravani y C. Brace, «A support vector clustering based approach for driving style classification,» International Journal of Machine Learning and Computing, 2019.
W. Han, W. Wang, X. Li y J. Xi, «Statistical-based approach for driving style recognition using Bayesian probability with kernel density estimation,» IET Intelligent Transport Systems, 2019.
Y. Feng, S. Pickering, E. Chappell, P. Iravani y C. Brace, «Driving Style Modelling with Adaptive Neuro-Fuzzy Inference System and Real Driving Data,» Conference on Applied Human Factors and Ergonomics, 2018.
G. Li, S. E. Li, B. Cheng y P. Green, «Estimation of driving style in naturalistic highway traffic using maneuver transition probabilities,» Transportation Research Part C: Emerging Technologies, 2017.
M. Karaduman y H. Eren, «Deep learning based traffic direction sign detection and determining driving style,» 2017 International Conference on Computer Science and Engineering, 2017.
F. Jiménez, J. C. Amarillo, J. E. Naranjo, F. Serradilla y A. Díaz, «Energy consumption estimation in electric vehicles considering driving style,,» IEEE 18th International Conference on Intelligent Transportation Systems, 2015.
C. Deng, C. Wu, N. Lyu y Z. Huang, «Driving style recognition method using braking characteristics based on hidden Markov model,» PLOS ONE, 2017.
Y. Shi, N. Cui y Y. Du, «Energy Management Strategy based on Driving Style Recognition for Plug-in Hybrid Electric Bus,» 2020 39th Chinese Control Conference, 2020.
Mensing, F., Bideaux, E., Trigui, R., Ribet, J., & Jeanneret, B., «Mensing, F., Bideaux, E., Trigui, R., Ribet, J., & Jeanneret, B. (2014). Eco-driving: An economic or ecologic driving style? Transportation Research Part C: Emerging Technologies, 38, 110–121. doi:10.1016/j.trc.2013.10.013 ,» Transportation Research Part C: Emerging Technologies, 2014.
Mayakuntla, S. K., & Verma, A, «A novel methodology for construction of driving cycles for Indian cities,» Transportation Research Part D: Transport and Environment, 2018.
H. Ullerichs, L. Poulsgaard y P. Sørensen, Clustering Based On Driving Style Using Hot Paths.
S. J. Navarro & R. A., Desarrollo de un ciclo de conducción bajo condiciones reales en el área metropolitana de Bucaramanga, 2021
Y.Huanga, E. C. Y. Ng, J.L Zhou, N.C. Surawskia, E.F Chanb, & G. Hong, «Eco-driving technology for sustainable road transport: A review,» 2018.
T. Colombo, G. Panzani, S. Savaresi y P. Paparo, «Absolute driving style estimation for ground vehicles,» IEEE conference on control technology and applications, 2017.
dc.relation.uriapolo.spa.fl_str_mv https://apolo.unab.edu.co/en/persons/jessica-gissella-maradey-l%C3%A1zaro
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.creativecommons.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.spa.fl_str_mv Bucaramanga (Santander, Colombia)
dc.coverage.campus.spa.fl_str_mv UNAB Campus Bucaramanga
dc.publisher.grantor.spa.fl_str_mv Universidad Autónoma de Bucaramanga UNAB
dc.publisher.faculty.spa.fl_str_mv Facultad Ingeniería
dc.publisher.program.spa.fl_str_mv Pregrado Ingeniería Mecatrónica
institution Universidad Autónoma de Bucaramanga - UNAB
bitstream.url.fl_str_mv https://repository.unab.edu.co/bitstream/20.500.12749/23191/1/Tesis.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/23191/5/Licencia.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/23191/6/Tesis.pdf.jpg
https://repository.unab.edu.co/bitstream/20.500.12749/23191/7/Licencia.pdf.jpg
https://repository.unab.edu.co/bitstream/20.500.12749/23191/4/license.txt
bitstream.checksum.fl_str_mv 01f3ee81c6f558a432a0e3356dba0ee5
5a0315653bde3b5d344d928eea1f2278
24528a6df2d58a557a2cd3282977de9b
ea23c5d155d391d1e54dea4ecc9653f9
3755c0cfdb77e29f2b9125d7a45dd316
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB
repository.mail.fl_str_mv repositorio@unab.edu.co
_version_ 1814277362993332224
spelling Maradey Lázaro, Jessica Gissellad6570851-23e5-44e4-8c29-fd312d351b94Huertas Cardozo, José Ignacio17418668-38f4-44e4-87f6-3705d87a6144Angulo Sanchez, Laura Valentina777f32a4-f157-4b16-a291-279f9b1ea359Angulo Sanchez, Laura Valentina [1004924368]Maradey Lázaro, Jessica Gissella [0000040553]Huertas Cardozo, José Ignacio [0000057398]Huertas Cardozo, José Ignacio [es&oi=ao]Maradey Lázaro, Jessica Gissella [0000-0003-2319-1965]Huertas Cardozo, José Ignacio [0000-0003-4508-6453]Maradey Lázaro, Jessica Gissella [jessica-gissella-maradey-lázaro]Bucaramanga (Santander, Colombia)UNAB Campus Bucaramanga2024-01-18T15:27:33Z2024-01-18T15:27:33Z2024-01-17http://hdl.handle.net/20.500.12749/23191instname:Universidad Autónoma de Bucaramanga - UNABreponame:Repositorio Institucional UNABrepourl:https://repository.unab.edu.coLas estrategias de Eco-Driving buscan controlar y reducir el consumo innecesario de combustible mediante la toma de decisiones antes y durante la conducción. Para desarrollar las estrategias primero se realizó una campaña de monitoreo en condiciones reales de carreta para una muestra de 6 vehículos durante 6 meses, el objetivo de la campaña fue recolectar datos de variables de manejo como la velocidad, aceleración, RPM, consumo de combustible, entre otros, mediante un dispositivo OBD II. Para analizar los estilos de conducción, se implementaron dos modelos de aprendizaje no supervisado: Kmeans y DBSCAN. Utilizando las métricas del coeficiente de silueta y el índice de Davies Boulton, se determinó que el método de mayor calidad para la clasificación es Kmeans cuando se itera con las variables de velocidad promedio y aceleración positiva máxima. Los resultados indicaron la existencia de 3 grupos o clústeres que corresponden a los estilos calmado, normal y agresivo. A partir de esta clasificación, se identificaron las características distintivas de cada estilo, lo que permitió plantear estrategias de Ecodriving a nivel operativo, es decir relacionadas directamente con el comportamiento del conductor en carretera. Finalmente, para estimar el ahorro potencial derivado de estas estrategias, se entrenaron cinco modelos de regresión con aprendizaje supervisado. Cada modelo se evaluó utilizando índices de error como MSE, RMSE y R2, Los resultados indicaron que el modelo óptimo para la estimación es Random forest debido a que tiene un RMSE de 4,99 L/100Km siendo el valor más bajo de error y un coeficiente de determinación de 0.91 siendo el valor más alto obtenido, lo cual es indicador de una alta precisión del modelo entrenado. Según los resultados, se concluyó que el Ecodriving posibilita una reducción de hasta el 30% en el consumo de combustible. Esto se traduce en un ahorro económico para el conductor y una disminución en la producción de emisiones contaminantes.1.INTRODUCCIÓN ............................................................................................ 15 1.1 DEFINICIÓN DEL PROBLEMA ................................................................ 15 1.2 JUSTIFICACIÓN ........................................................................................... 15 2. OBJETIVOS ..................................................................................................... 19 2.1 OBJETIVO GENERAL .................................................................................. 19 2.2 OBJETIVOS ESPECÍFICOS ........................................................................ 19 3. ESTADO DEL ARTE ...................................................................................... 20 4. MARCO TEORICO ......................................................................................... 25 4.2 ESTILOS DE CONDUCCIÓN ....................................................................... 25 4.2.1 Factores que influyen en los estilos de conducción ............................... 25 4.2.2 Tipos de estilos de conducción .............................................................. 25 4.2.3 Tipos de clasificadores de estilos de conducción .................................. 26 4.1 ECO-DRIVING .............................................................................................. 27 4.1.1 Categorías de las guías de Eco-Driving: ................................................ 28 5. METODOLOGÍA ................................................................................................ 31 6. DESARROLLO .................................................................................................. 32 6.1 SELECCIÓN Y CARACTERIZACIÓN TÉCNICA DE LOS VEHÍCULOS ...... 32 6.2 CARACTERIZACIÓN DE LOS CONDUCTORES ........................................ 33 6.3 CAMPAÑA DE MONITOREO ....................................................................... 34 6.3.1 Selección de la ruta ............................................................................... 34 6.3.2 Selección de las variables ..................................................................... 35 6.3.3 Sistema de monitoreo a bordo ............................................................... 35 6.4 REGISTRO DE DATOS ................................................................................ 38 6.4.1 Adquisicion y transmisión de los datos .................................................. 39 6.4.2 Almacenamiento y envío de datos ......................................................... 42 6.5 ELIMINACIÓN DE DATOS ATÍPICOS ......................................................... 43 6.5.1 Filtrado ................................................................................................... 43 6.5.2 Edición ................................................................................................... 44 6.5.3 Adicción ................................................................................................. 45 6.6 METODOLOGÍA PARA LA SELECCIÓN DE PARÁMETROS CARACTERÍSTICOS .......................................................................................... 46 6.6.1 Segmentación ........................................................................................ 48 6.6.2 Calculo de CPS ..................................................................................... 49 6.6.3 Filtrado según correlación de las variables ............................................ 50 6.6.4 Escalado de datos ................................................................................. 51 6.6.5 Aplicación del modelo de selección de parámetros ............................... 51 6.6.6 Selección de características según importancia .................................... 52 6.7 METODOLOGÍA PARA LA CLASIFICACIÓN DE ESTILOS DE CONDUCCIÓN ................................................................................................... 53 6.7.1 Selección de las características para la clasificación............................. 54 6.7.2 Normalización de los datos .................................................................... 56 6.7.3 Construcción del algoritmo usando modelo DBSCAN ........................... 56 6.7.4 Construcción del algoritmo usando modelo K-means ............................ 59 6.7.5 Evaluación de los modelos .................................................................... 62 6.8 METODOLOGÍA PARA LA CUANTIFICACIÓN DEL CONSUMO DE COMBUSTIBLE .................................................................................................. 64 6.8.1 Construcción del modelo de predicción del consumo de combustible ... 65 6.9 POTENCIA ESPECÍFICA DEL VEHÍCULO (VSP) ....................................... 69 6.9.1 Proceso de obtención de obtención del VSP ......................................... 71 6.10 DISTRIBUCIÓN DE FERCUENCIA DE VELOCIDAD ACELERACIÓN (SAFD) ................................................................................................................ 71 6.10.1 Proceso de obtención del diagrama SAFD .......................................... 72 7. ANÁLISIS DE RESULTADOS ........................................................................... 73 7.1 BASE DE DATOS PROYECTO ACTUAL ..................................................... 73 7.2 BASE DE DATOS CONCATENADA ............................................................ 74 7.3 ANÁLISIS DE LA POTENCIA ESPECÍFICA DEL VEHIÍCULO .................... 75 7.4 ANÁLISIS DE LOS DIAGRAMAS SAFD ...................................................... 77 7.4.1 Análisis de la variable velocidad en los diagramas SAFD ..................... 77 7.4.2 Análisis de la variable aceleración en los diagramas SAFD .................. 78 7.4.3 Análisis general de los diagramas SAFD ............................................... 79 7.6 CLASIFICACIÓN DE ESTILOS DE CONDUCCIÓN ..................................... 79 7.6.1 Estilos de conducción de la base de datos concatenada....................... 80 7.6.2 Correlación de los estilos de conducción con el consumo de combustible ........................................................................................................................ 83 7.6.3 Correlación del consumo de combustible y los estilos de conducción para cada conductor ....................................................................................... 84 7.6.4 Correlación de variables con los estilos de conducción ......................... 85 7.7 ESTRATEGIAS DE ECODRIVING ............................................................... 87 7.7.1 Cuantificación del ahorro de las estrategias de Ecodriving .................... 88 8. CONCLUSIONES ........................................................................................... 91 9. RECOMENDACIONES................................................................................... 93 10. ANEXOS ...................................................................................................... 94 10.1 CÓDIGO PARA LA LIMPIEZA DE DATOS ATIPICOS .......................... 94 10.2 CÓDIGO PARA SELECCIÓN DE PARÁMETROS CARACTERÍSTICOS 95 10.3 CODIGO PARA LA CLASIFICACIÓN DE LOS ESTILOS DE CONDUCCIÓN ................................................................................................... 98 10.4 DASHBOARD PARA VISUALIZACIÓN DE LOS ESTILOS DE CONDUCCIÓN POR CONDUCTOR ................................................................ 103 10.5 CÓDIGO PARA LA ESTIMACIÓN/CUANTIFICACIÓN DEL CONSUMO DE COMBUSTIBLE .......................................................................................... 103 10.6 PROGRAMA CON ESTRATEGIAS DE ECO-DRIVING ...................... 110 BIBLIOGRAFÍA ................................................................................................... 111PregradoEco-Driving strategies seek to control and reduce unnecessary fuel consumption by making decisions before and during driving. To develop the strategies, a monitoring campaign was first carried out in real road conditions for a sample of 6 vehicles for 6 months, the goal of the campaign was to collect data on driving variables such as speed, acceleration, RPM, fuel consumption, among others, using an OBD II device. To analyze driving styles, two unsupervised learning models were implemented: Kmeans and DBSCAN. Using the metrics of the silhouette coefficient and the Davies Boulton index, it was determined that the highest quality method for classification is Kmeans when iterated with the variables of average velocity and maximum positive acceleration. The results indicated the existence of 3 groups or clusters corresponding to the styles calm, normal and aggressive. Based on this classification, the distinctive characteristics of each style were identified, which made it possible to propose Ecodriving strategies at the operational level, i.e. directly related to the behaviour of the driver on the road. Finally, to estimate the potential savings derived from these strategies, five regression models with supervised learning were trained. Each model was evaluated using error indices such as MSE, RMSE and R2. The results indicated that the optimal model for estimation is Random forest because it has a RMSE of 4.99 L/100Km being the lowest error value and a coefficient of determination of 0.91 being the highest value obtained, which is an indicator of a high precision of the trained model. According to the results, it was concluded that Ecodriving allows a reduction of up to 30% in fuel consumption. This translates into economic savings for the driver and a reduction in the production of pollutant emissions.Modalidad Presencialapplication/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)Atribución-NoComercial-SinDerivadas 2.5 Colombiahttp://purl.org/coar/access_right/c_abf2Desarrollo de un programa de Eco-Driving a nivel operativo con monitoreo a bordo OBD II en el Área Metropolitana de BucaramangaDevelopment of an Eco-Driving program at an operational level with on-board OBD II monitoring in the metropolitan area of BucaramangaIngeniero MecatrónicoUniversidad Autónoma de Bucaramanga UNABFacultad IngenieríaPregrado Ingeniería Mecatrónicainfo:eu-repo/semantics/bachelorThesisTrabajo de Gradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/acceptedVersionhttp://purl.org/redcol/resource_type/TPDriving stylesEco-drivingRandom forestVehicle drivingEnergetic resourcesEnergy conservationAutomobilesMecatrónicaConducción de vehículosRecursos energéticosConservación de la energíaAutomóvilesEstilos de conducciónConducción ecológicaPCAKmeansRandom forestAgencia Eureopea de Medio Ambiente, «Transporte,» 2020. [En línea].T. Colombo, G. Panzani, S. Savaresi y P. Paparo, «Absolute Driving Style Estimation for Ground Vehicles,» IEEE Conference on Control Technology and Applications (CCTA), 2017.Área metropolitana de Bucaramanga, «Balance mensual del control a fuentes moviles en Bucaramanga,Floridablanca,Piedecuesta y Giron:1350 pruebas realizadas;70% de los vehículos aprobados y 30% restante no cumplen la norma,» 2019. [En línea]. Available: https://www.amb.gov.co/balance-mensual-del-control-a-fuentes-moviles-en-bucaramanga-floridablanca-piedecuesta-y-giron-1350-pruebas-realizadas-70-de-los-vehiculos-aprobados-y-30-restante-no-cumple-la-norma/.P.Fafoutellis, E.G.Mantouka,E.I. Vlahogianni, «Eco-Driving and Its Impacts on Fuel Efficiency: An Overview of Technologies and Data-Driven Methods. Sustainability,» 2021.M. Sivak, B. Schoettle, «Eco-driving: Strategic, tactical, and operational decisions of the driver that influence vehicle fuel economy,» 2012.N.Xu,X. Li,Q. Liu,D. Zhao, «An Overview of Eco-Driving Theory, Capability Evaluation and Training Applications,» 2021.H.Wang, L.Fu,Y.Zhou,H.Li, «Modelling of the fuel consumption for passenger cars regarding,» Beijing, 2008.E. Choi. E. Kim, «Critical aggressive acceleration values and models for fuel consumption when starting and driving a passenger car running on LPG,» 2017.F. Saust, O. Bley, R. Kutzner, J. M. Wille, B. Friedrich and M. Maurer, «Exploitability of vehicle related sensor data in cooperative systems,» 13th International IEEE Conference on Intelligent Transportation Systems, 2010.A.Weber, A. Winckler, «Advanced traffic signal control algorithms, appendix A: Exploratory advanced research project BMW,» 2013.C. Rolim, P. Baptista, G. Duarte, T. Farias, «Impacts of On-board Devices and Training on Light Duty Vehicle Driving Behavior,» 2014.M. H.Almannaa, H. Chen, H. A. Rakha, A. Loulizi, and I. El-Shawarby, «Reducing Vehicle Fuel Consumption and Delay at Signalized Intersections: Controlled-Field Evaluation of Effectiveness of Infrastructure-to-Vehicle Communication,» 2017.P. Hao, G. Wu, K. Boriboonsomsin and M. J. Barth, «Eco-Approach and Departure (EAD) Application for Actuated Signals in Real-World TraffiC,» IEEE Transactions on Intelligent Transportation Systems, 2019.O. Teichert, A. Koch and A. Ongel, «Comparison of Eco-Driving Strategies for Different Traffic-Management Measures,» IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), 2020.P.Arroyo-López, J. C. Velázquez-Martínez & K. M. Gámez-Pérez, «Past behavior as a predictor of eco-driving practices: The case of a sustained intervention in a Mexican transportation company,» 2021.J. Caban, «The investigation of eco-driving possibilities in passenger car used in urban traffic,» 2021.D. Oswald et al, «Real-world Efficacy of a Haptic Accelerator Pedal-based Eco-driving System,» IEEE International Intelligent Transportation Systems Conference (ITSC), 2021.M-H.Yen,S-L. Tian,Y-T.Lin,C-W. Yang y C-C.Chen, «Combining a Universal OBD-II Module with Deep Learning to Develop an Eco-Driving Analysis System,» appl.sci, 2021.F.Kutzner,C.Kacperski,D.Schramm y M.Waenke, «How far can we get with eco driving tech?,» 2021.F. Martín Poó y R. D. Ledesma, «A Study on the Relationship Between Personality and driving styles,» 2013.J. D. Molina y B. F. Acuña, «“Clasificación de estilos de conducción en el área metropolitana de Bucaramanga con monitoreo a bordo (OBDII) en condiciones reales de carretera,» 2022.J. C. Ferreira, J. de Almeida and A. R. da Silva, «The Impact of Driving Styles on Fuel Consumption: A Data-Warehouse-and-Data-Mining-Based Discovery Process,» IEEE Transactions on Intelligent Transportation Systems, 2015.C. Lee y P. Öberg, «Classification of Road Type and Driving Style using OBD Data,» SAE 2015 World Congress & Exhibition, 2015.K.Sentoff,L.Aultman,B.Holmén, «Implications of driving style and road grade for accurate vehicle,» 2015.J. E. Meseguer, C. K. Toh, C. T. Calafate, J. C. Cano and P. Manzoni, «Drivingstyles: a mobile platform for driving styles and fuel consumption characterization,» Journal of Communications and Networks, 2017.F. Martinelli, F. Mercaldo, A. Orlando, V. Nardone, A. Santone y A. Sangaiah, «Human behavior characterization for driving style recognition in vehicle system,» 2018.I. Feraud y J. Naranjo, «A Data-driven Approach to Estimate Driving Style,» ICCMS '19: Proceedings of the 11th International Conference on Computer Modeling and Simulation, 2019.J. Fan, Y. Li, Y. Liu, Y. Zhang and C. Ma, «Analysis of taxi driving behavior and driving risk based on trajectory data,» IEEE Intelligent Vehicles Symposium (IV), 2019.B. Gao, K. Cai, T. Qu, Y. Hu and H. Chen, «Personalized Adaptive Cruise Control Based on Online Driving Style Recognition Technology and Model Predictive Control,» IEEE Transactions on Vehicular Technology, 2020.A. Mohammadnazar, R. Arvin y A. Khattak, «Classifying travelers’ driving style using basic safety messages generated by connected vehicles: Application of unsupervised machine learning,» 2021.M. Rafael, M. Sanchez, V. Mucino, J. Cervantes and A. Lozano, «Impact of driving styles on exhaust emissions and fuel economy from a heavy-duty truck: Laboratory tests,» Revista Internacional de Sistemas de Vehículos Pesados (IJHVS), 2006.C. Marina Martinez, M. Heucke, F. -Y. Wang, B. Gao and D. Cao, «Driving Style Recognition for Intelligent Vehicle Control and Advanced Driver Assistance: A Survey,» IEEE Transactions on Intelligent Transportation Systems, 2018.Z. Constantinescu, C. Marinoiu y M. Vladoiu, «Driving style analysis using data mining techniques,» International Journal of Computers Communications & Control, 2010.De Zepeda, M. V. N., Meng, F., Su, J., Zeng, X.-J., & Wang, Q., Dynamic clustering analysis for driving styles identification, Engineering Applications of Artificial Intelligence, 2021.O. F. Ozgul, M. U. Cakir, M. Tan, M. F. Amasyali y H. T. Hayvaci, «Fully Unsupervised Framework for Scoring Driving Style,» 2018 International Conference on Intelligent Systems (IS), 2018.R. Yu, X. Long y J. Li, «Driving Style Analyses for Car-sharing Users Utilizing Low-frequency Trajectory Data,,» 5th International Conference on Transportation Information and Safety (ICTIS), 2019.H. Strömberg,I.C.Karlsson,O. Rexfelt, «Eco-driving:Drivers’ understanding of the concept and implications for future interventions,» Transport Policy, 2015.R.Tu,J.XU,T.Li y H.Chen, «Effective and Acceptable Eco-Driving Guidance for Human-Driving Vehicles: A Review,» Int. J. Environ. Res. Public Health, 2022.Y. Yao, X. Zhao, C. Liu, J. Rong, Y. Zhang, Z. Dong y Y. Su, Vehicle Fuel Consumption Prediction Method Based on Driving Behavior Data Collected from Smartphones, 2020.A. G. Çapraz, P. Özel, M. Şevkli y Ö. F. Beyca, Fuel Consumption Models Applied to Automobiles Using Real-time Data: A Comparison of Statistical Models, Procedia Comput, 2016, p. pp. 774–781.S. Wickramanayake and H. M. N. Dilum Bandara, «"Fuel consumption prediction of fleet vehicles using Machine Learning: A comparative study,» de 2016 Moratuwa Engineering Research Conference (MERCon), Moratuwa, Sri Lanka, 2016.G. Li, «Machine learning in fuel consumption prediction of aircraft,» de Cogn. Inform. (ICCI), Beijing, China, 2010.F. Schockenhoff, H. Nehse y M. Lienkamp, «Maneuver-based objectification of user comfort affecting aspects of driving style of autonomous vehicle concepts,» Applied Sciences, 2020.P. Jardin, I. Moisidis, S. S. Zetina y S. Rinderknecht, «Rule-Based Driving Style Classification Using Acceleration Data Profiles,» 23rd International Conference on Intelligent Transportation Systems (ITSC), 2020.M. M. Bejani y M. Ghatee, «Convolutional neural network with adaptive regularization to classify driving styles on smartphones,» IEEE transactions on intelligent transportation systems, 2019.O. Shouno, «Deep unsupervised learning of a topological map of vehicle maneuvers for characterizing driving styles,» 2018 21st International Conference on Intelligent Transportation Systems (ITSC), 2018.I. Del Campo, E. Asua, V. Martínez, Ó. Mata-Carballeira y J. Echanobe, «Driving style recognition based on ride comfort using a hybrid machine learning algorithm,» 21st International Conference on Intelligent Transportation Systems (ITSC), 2018.M. Brambilla, P. Mascetti y A. Mauri, «Comparison of different driving style analysis approaches based on trip segmentation over GPS information,» IEEE International Conference on Big Data (Big Data), 2017.D. Dörr, D. Grabengiesser y F. Gauterin, «Online driving style recognition using fuzzy logic,» IEEE International Conference on Intelligent Trasportation Systems, 2014.A. Aljaafreh, N. Alshabatat y Al-Din, «Driving style recognition using fuzzy logic,» International Conference on Vehicular Electronics and Safety, 2012G. Li, F. Zhu, X. Qu, B. Cheng, S. Li y P. Green, «Driving style classification based on driving operational pictures,» IEEE Access, 2019.A. Donkers, D. Yang y M. Viktorović, «Influence of driving style, infrastructure, weather and traffic on electric vehicle performance,» Transportation research part D: transport and environment, 2020.J. Guo, Y. Jiang, Y. Yu y W. Liu, «A novel energy consumption prediction model with combination of road information and driving style of BEVs,» Sustainable Energy Technologies and Assessments, 2020.I. Silva y J. Eugenio Naranjo, «A systematic methodology to evaluate prediction models for driving style classification,» Sensors, 2020.J. Cordero, J. Aguilar, K. Aguilar, D. Chávez y E. Puerto, «Recognition of the driving style in vehicle drivers,» Sensors, 2020.Y. Liu, J. Wang, P. Zhao, D. Qin y Z. Chen, «Research on classification and recognition of driving styles based on feature engineering,» IEEE Access, 2019.R. Liessner, A. Dietermann, B. Bäker y K. Lüpkes, «Derivation of real-world driving cycles corresponding to traffic situation and driving style on the basis of Markov models and cluster analyses,» th Hybrid and Electric Vehicles Conference (HEVC 2016), 2016.V. Nikulin, «Driving style identification with unsupervised learning,» International Conference on Machine Learning and Data Mining in Pattern Recognition, 2016.K. Li, L. Jin, Y. Jiang, H. Xian y L. Gao, «Effects of driver behavior style differences and individual differences on driver sleepiness detection,» Advances in Mechanical Engineering, 2015.K. M. Sentoff, L. Aultman-Hall y B. A. Holmén, «Implications of driving style and road grade for accurate vehicle activity data and emissions estimates,» Transportation Research Part D: Transport and Environment, 2015.O. Derbel y R. Landry, «Driving style assessment based on the GPS data and fuzzy inference systems,» 12th International Multi-Conference on Systems, Signals & Devices, 2015.D. Johnson y M. Trivedi, «Driving style recognition using a smartphone as a sensor platform,» 14th International IEEE Conference on Intelligent Transportation Systems, 2011T. Felstead, M. McDonald y M. Fowkes, «Driving style extremes and potential vehicle emission effects,» Proceedings of the Institution of Civil Engineers-Transport, 2009.J. Gallus, U. Kirchner, R. Vogt y T. Benter, «Impact of driving style and road grade on gaseous exhaust emissions of passenger vehicles measured by a Portable Emission Measurement System (PEMS),» Transportation Research Part D: Transport and Environment, 2017.Y. Feng, S. Pickering, E. Chappell, P. Iravani y C. Brace, «A support vector clustering based approach for driving style classification,» International Journal of Machine Learning and Computing, 2019.W. Han, W. Wang, X. Li y J. Xi, «Statistical-based approach for driving style recognition using Bayesian probability with kernel density estimation,» IET Intelligent Transport Systems, 2019.Y. Feng, S. Pickering, E. Chappell, P. Iravani y C. Brace, «Driving Style Modelling with Adaptive Neuro-Fuzzy Inference System and Real Driving Data,» Conference on Applied Human Factors and Ergonomics, 2018.G. Li, S. E. Li, B. Cheng y P. Green, «Estimation of driving style in naturalistic highway traffic using maneuver transition probabilities,» Transportation Research Part C: Emerging Technologies, 2017.M. Karaduman y H. Eren, «Deep learning based traffic direction sign detection and determining driving style,» 2017 International Conference on Computer Science and Engineering, 2017.F. Jiménez, J. C. Amarillo, J. E. Naranjo, F. Serradilla y A. Díaz, «Energy consumption estimation in electric vehicles considering driving style,,» IEEE 18th International Conference on Intelligent Transportation Systems, 2015.C. Deng, C. Wu, N. Lyu y Z. Huang, «Driving style recognition method using braking characteristics based on hidden Markov model,» PLOS ONE, 2017.Y. Shi, N. Cui y Y. Du, «Energy Management Strategy based on Driving Style Recognition for Plug-in Hybrid Electric Bus,» 2020 39th Chinese Control Conference, 2020.Mensing, F., Bideaux, E., Trigui, R., Ribet, J., & Jeanneret, B., «Mensing, F., Bideaux, E., Trigui, R., Ribet, J., & Jeanneret, B. (2014). Eco-driving: An economic or ecologic driving style? Transportation Research Part C: Emerging Technologies, 38, 110–121. doi:10.1016/j.trc.2013.10.013 ,» Transportation Research Part C: Emerging Technologies, 2014.Mayakuntla, S. K., & Verma, A, «A novel methodology for construction of driving cycles for Indian cities,» Transportation Research Part D: Transport and Environment, 2018.H. Ullerichs, L. Poulsgaard y P. Sørensen, Clustering Based On Driving Style Using Hot Paths.S. J. Navarro & R. A., Desarrollo de un ciclo de conducción bajo condiciones reales en el área metropolitana de Bucaramanga, 2021Y.Huanga, E. C. Y. Ng, J.L Zhou, N.C. Surawskia, E.F Chanb, & G. Hong, «Eco-driving technology for sustainable road transport: A review,» 2018.T. Colombo, G. Panzani, S. Savaresi y P. Paparo, «Absolute driving style estimation for ground vehicles,» IEEE conference on control technology and applications, 2017.https://apolo.unab.edu.co/en/persons/jessica-gissella-maradey-l%C3%A1zaroORIGINALTesis.pdfTesis.pdfTesisapplication/pdf4568257https://repository.unab.edu.co/bitstream/20.500.12749/23191/1/Tesis.pdf01f3ee81c6f558a432a0e3356dba0ee5MD51open accessLicencia.pdfLicencia.pdfLicenciaapplication/pdf324040https://repository.unab.edu.co/bitstream/20.500.12749/23191/5/Licencia.pdf5a0315653bde3b5d344d928eea1f2278MD55metadata only accessTHUMBNAILTesis.pdf.jpgTesis.pdf.jpgIM Thumbnailimage/jpeg4552https://repository.unab.edu.co/bitstream/20.500.12749/23191/6/Tesis.pdf.jpg24528a6df2d58a557a2cd3282977de9bMD56open accessLicencia.pdf.jpgLicencia.pdf.jpgIM Thumbnailimage/jpeg12792https://repository.unab.edu.co/bitstream/20.500.12749/23191/7/Licencia.pdf.jpgea23c5d155d391d1e54dea4ecc9653f9MD57metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8829https://repository.unab.edu.co/bitstream/20.500.12749/23191/4/license.txt3755c0cfdb77e29f2b9125d7a45dd316MD54open access20.500.12749/23191oai:repository.unab.edu.co:20.500.12749/231912024-01-18 22:01:18.856open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbi4gRWwgQVVUT1IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVTkFCIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuCgpFbCBBVVRPUiBhdXRvcml6YSBhIGxhIFVuaXZlcnNpZGFkIEF1dMOzbm9tYSBkZSBCdWNhcmFtYW5nYSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24uCg==