Herramienta de analítica de datos para el mantenimiento de cultivos de cacao bajo escenarios de variabilidad climatológica

El proyecto "Herramienta de Analítica de Datos para el Mantenimiento de Cultivos de Cacao bajo Escenarios de Variabilidad Climatológica" aborda los desafíos que enfrenta la producción de cacao debido a la variabilidad climática. Esta herramienta surge como una respuesta a problemas como se...

Full description

Autores:
Sanabria Romero, Lizeth Johanna
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Autónoma de Bucaramanga - UNAB
Repositorio:
Repositorio UNAB
Idioma:
spa
OAI Identifier:
oai:repository.unab.edu.co:20.500.12749/25165
Acceso en línea:
http://hdl.handle.net/20.500.12749/25165
Palabra clave:
Systems engineer
Software development
Cocoa cultivation
Climatic variability
Forecasting algorithms
Data analytics tool
Neural network
Business intelligence
Climatology
Soils and climate
Vegetation and climate
Crops and soils
Neural networks (Computer science)
Artificial intelligence
Desarrollo de Software
Ingeniería de sistemas
Climatología
Suelos y clima
Vegetación y clima
Cultivos y suelos
Redes neuronales (Computadores)
Inteligencia artificial
Cultivo de cacao
Herramienta de analítica de datos
Aalgoritmos de predicción
Red neuronal
Variabilidad climatológica
Rights
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UNAB2_e6ca28549c6b594bedaf5cab02e6faa7
oai_identifier_str oai:repository.unab.edu.co:20.500.12749/25165
network_acronym_str UNAB2
network_name_str Repositorio UNAB
repository_id_str
dc.title.spa.fl_str_mv Herramienta de analítica de datos para el mantenimiento de cultivos de cacao bajo escenarios de variabilidad climatológica
dc.title.translated.spa.fl_str_mv Data analytics tool for the maintenance of cocoa crops under scenarios of climatic variability
title Herramienta de analítica de datos para el mantenimiento de cultivos de cacao bajo escenarios de variabilidad climatológica
spellingShingle Herramienta de analítica de datos para el mantenimiento de cultivos de cacao bajo escenarios de variabilidad climatológica
Systems engineer
Software development
Cocoa cultivation
Climatic variability
Forecasting algorithms
Data analytics tool
Neural network
Business intelligence
Climatology
Soils and climate
Vegetation and climate
Crops and soils
Neural networks (Computer science)
Artificial intelligence
Desarrollo de Software
Ingeniería de sistemas
Climatología
Suelos y clima
Vegetación y clima
Cultivos y suelos
Redes neuronales (Computadores)
Inteligencia artificial
Cultivo de cacao
Herramienta de analítica de datos
Aalgoritmos de predicción
Red neuronal
Variabilidad climatológica
title_short Herramienta de analítica de datos para el mantenimiento de cultivos de cacao bajo escenarios de variabilidad climatológica
title_full Herramienta de analítica de datos para el mantenimiento de cultivos de cacao bajo escenarios de variabilidad climatológica
title_fullStr Herramienta de analítica de datos para el mantenimiento de cultivos de cacao bajo escenarios de variabilidad climatológica
title_full_unstemmed Herramienta de analítica de datos para el mantenimiento de cultivos de cacao bajo escenarios de variabilidad climatológica
title_sort Herramienta de analítica de datos para el mantenimiento de cultivos de cacao bajo escenarios de variabilidad climatológica
dc.creator.fl_str_mv Sanabria Romero, Lizeth Johanna
dc.contributor.advisor.none.fl_str_mv Talero Sarmiento, Leonardo Hernán
Moreno Corzo, Feisar Enrique
Cárdenas Fontecha, Mauren Slendy
dc.contributor.author.none.fl_str_mv Sanabria Romero, Lizeth Johanna
dc.contributor.cvlac.spa.fl_str_mv Talero Sarmiento, Leonardo Hernán [31387]
Moreno Corzo, Feisar Enrique [1499008]
Cárdenas Fontecha, Mauren Slendy [0001950200]
dc.contributor.googlescholar.spa.fl_str_mv Moreno Corzo, Feisar Enrique [jz75nEcAAAAJ]
dc.contributor.orcid.spa.fl_str_mv Talero Sarmiento, Leonardo Hernán [0000-0002-4129-9163]
Moreno Corzo, Feisar Enrique [0000-0002-5007-3422]
dc.contributor.researchgate.spa.fl_str_mv Talero Sarmiento, Leonardo Hernán [Leonardo_Talero]
dc.contributor.apolounab.spa.fl_str_mv Talero Sarmiento, Leonardo Hernán [leonardo-talero]
Moreno Corzo, Feisar Enrique [feisar-enrique-moreno-corzo]
Cárdenas Fontecha, Mauren Slendy [mauren-slendy-cárdenas-fontecha]
dc.contributor.linkedin.spa.fl_str_mv Talero Sarmiento, Leonardo Hernán [leonardo-talero-sarmiento]
Moreno Corzo, Feisar Enrique [feisar-moreno]
dc.subject.keywords.spa.fl_str_mv Systems engineer
Software development
Cocoa cultivation
Climatic variability
Forecasting algorithms
Data analytics tool
Neural network
Business intelligence
Climatology
Soils and climate
Vegetation and climate
Crops and soils
Neural networks (Computer science)
Artificial intelligence
topic Systems engineer
Software development
Cocoa cultivation
Climatic variability
Forecasting algorithms
Data analytics tool
Neural network
Business intelligence
Climatology
Soils and climate
Vegetation and climate
Crops and soils
Neural networks (Computer science)
Artificial intelligence
Desarrollo de Software
Ingeniería de sistemas
Climatología
Suelos y clima
Vegetación y clima
Cultivos y suelos
Redes neuronales (Computadores)
Inteligencia artificial
Cultivo de cacao
Herramienta de analítica de datos
Aalgoritmos de predicción
Red neuronal
Variabilidad climatológica
dc.subject.lemb.spa.fl_str_mv Desarrollo de Software
Ingeniería de sistemas
Climatología
Suelos y clima
Vegetación y clima
Cultivos y suelos
Redes neuronales (Computadores)
Inteligencia artificial
dc.subject.proposal.spa.fl_str_mv Cultivo de cacao
Herramienta de analítica de datos
Aalgoritmos de predicción
Red neuronal
Variabilidad climatológica
description El proyecto "Herramienta de Analítica de Datos para el Mantenimiento de Cultivos de Cacao bajo Escenarios de Variabilidad Climatológica" aborda los desafíos que enfrenta la producción de cacao debido a la variabilidad climática. Esta herramienta surge como una respuesta a problemas como sequías, inundaciones y extremos térmicos que amenazan la calidad y cantidad de la cosecha de cacao. La herramienta creada utiliza análisis avanzados para comprender los fenómenos ecológicos que afectan la producción de cacao. Se conecta directamente con el API de la NASA para obtener datos climatológicos precisos. Además, implementa Redes Neuronales Recurrentes (RNN) con el modelo LSTM para realizar pronósticos confiables. La herramienta desarrollada con Python y Power BI permite no solo calcular y modelar la biomasa, sino también evaluar la sensibilidad del cacao al estrés hídrico y los índices de cosecha lo cual le confiere al tomador de decisiones una herramienta para afrontar la incertidumbre en el horizonte de planeación. La herramienta se caracteriza por su capacidad de integrar datos climatológicos, datos agrícolas y datos de rendimiento del cultivo, facilitando una visión holística de las interacciones entre estos factores. También incluye funcionalidades de visualización de datos y generación de informes, lo que facilita la interpretación de los resultados y la toma de decisiones informadas. La validación del modelo en un entorno controlado ha demostrado su eficacia y precisión, posicionando esta herramienta como un recurso esencial para mejorar la sostenibilidad y productividad de los cultivos de cacao en condiciones climáticas variables.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-06-14T14:27:36Z
dc.date.available.none.fl_str_mv 2024-06-14T14:27:36Z
dc.date.issued.none.fl_str_mv 2024-06-04
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.local.spa.fl_str_mv Tesis
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12749/25165
dc.identifier.instname.spa.fl_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UNAB
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.unab.edu.co
url http://hdl.handle.net/20.500.12749/25165
identifier_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
reponame:Repositorio Institucional UNAB
repourl:https://repository.unab.edu.co
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Allies, A., Roumiguie, A., Fieuzal, R., Dejoux, J.-F., Jacquin, A., Veloso, A., Champolivier, L., & Baup, F. (2022). Assimilation of Multisensor Optical and Multiorbital SAR Satellite Data in a Simplified Agrometeorological Model for Rapeseed Crops Monitoring. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 1123–1138. https://doi.org/10.1109/JSTARS.2021.3136289
Allen, R. G., Pereira, L. S., Raes, D., Smith, M., & W, a B. (1998). Crop evapotranspiration - Guidelines for computing crop water requirements - FAO Irrigation and drainage paper 56. Irrigation and Drainage. https://doi.org/10.1016/j.eja.2010.12.001
ASSENG, S., FOSTER, I., & TURNER, N. C. (2011). The impact of temperature variability on wheat yields. Global Change Biology, 17(2), 997–1012. https://doi.org/10.1111/j.1365- 2486.2010.02262.x
Barberán, J. R. M., Nevárez, G. J. C., Flor, F. G. I., Caetano, C. M., Flores, J. C. M., & Pacheco, H. (2019). Vulnerability to climate change of smallholder cocoa producers in the province of Manabí, Ecuador. Revista Facultad Nacional De Agronomía, 72(1), 8707–8716. https://doi.org/10.15446/rfnam.v72n1.72564
Cardenas F. M. S, Talero S. L. H., Y Gómez Á. F. L., (2023). Accesibilidad para el pequeño agricultor en el uso de las nuevas Tecnologías. https://www.researchgate.net/publication/373841676_Accesibilidad_para_el_pequeno_agric ultor_en_el_uso_de_las_nuevas_tecnologias
Cock, J. H., & Connor, D. J. (2021). Cassava. In Crop Physiology Case Histories for Major Crops (pp. 588–633). Elsevier. https://doi.org/10.1016/B978-0-12-819194-1.00019-0
colaboradores de Wikipedia. (2023). Sistema de información geográfica. Wikipedia, La Enciclopedia Libre. https://es.wikipedia.org/wiki/Sistema_de_informaci%C3%B3n_geogr%C3%A1fica
C. R. M. Rosa, M. T. A. Steiner and P. J. Steiner Neto, "Knowledge Discovery in Data Bases: a Case Study in a Private Institution of Higher Education," in IEEE Latin America Transactions, vol. 16, no. 7, pp. 2027-2032, July 2018, doi: 10.1109/TLA.2018.8447372.
Díaz, G., & Casanova, E. (2019). Evaluación del impacto del cambio climático en el cultivo de cacao: una revisión. Revista Colombiana de Ciencias Hortícolas, 13(1), 176-187.
E. Jakku et al., “‘If they don’t tell us what they do with it, why would we trust them?’ Trust, transparency and benefit-sharing in Smart Farming,” NJAS - Wageningen J. Life Sci., vol. 90– 91, p. 100285, Dec. 2019, doi: 10.1016/j.njas.2018.11.002.
Extensions, L. M. A. (s/f). Visual Studio Code - code editing. Redefined. Visualstudio.com. Recuperado el 7 de junio de 2023, de https://code.visualstudio.com/
Fuentes, L. F. Q., Castelblanco, S. G., Jerez, A. G., & Guerrero, N. M. (2015). Caracterización de tres índices de cosecha de cacao de los clones CCN51, ICS60 e ICS 95, en la montaña santandereana, Colombia. Revista de Investigación Agraria y Ambiental, 6(1), 252-265.
Gamboa AA, Caceres PA, Lamos H, Zarate DA, Puentes DE. Predictive model for cocoa yield in Santander using Supervised Machine Learning. 2019 XXII Symposium on Image, Signal Processing and Artificial Vision (STSIVA), IEEE; 2019, p. 1–5. https://doi.org/10.1109/STSIVA.2019.8730258
García, S., Luengo, J., & Herrera, F. (2015). Data preprocessing in data mining. Springer.
Gateau-Rey, L., Tanner, E. V. J., Rapidel, B., Marelli, J., & Royaert, S. (2018). Climate change could threaten cocoa production: Effects of 2015-16 El Niño-related drought on cocoa agroforests in Bahia, Brazil. PLOS ONE, 13(7), e0200454. https://doi.org/10.1371/journal.pone.0200454
IBM. (s. f.). https://www.ibm.com/es-es/topics/recurrent-neural-networks
Gstatic.com. Recuperado el 16 de diciembre de 2023, de https://encrypted- tbn0.gstatic.com/images?q=tbn:ANd9GcT1wGD0doEaMjaGTNf_abM2eu2VmmyWwWN9lB8 jdOMhvK0nlOxG
H. L. Penman. (1948). Natural Evaporation from Open Water, Bare Soil and Grass. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 193(1032).
Julien, G. C. (2022, August 19). Análisis de estrategias de adaptación a la variabilidad climática en cacaotales del municipio de Campoalegre - Huila. https://repository.universidadean.edu.co/handle/10882/11903
Imantho, H., Seminar, K. B., Hermawan, W., & Saptomo, S. K. (2022). A Spatial Distribution Empirical Model of Surface Soil Water Content and Soil Workability on an Unplanted Sugarcane Farm Area Using Sentinel-1A Data towards Precision Agriculture Applications. Information, 13(10), 493. https://doi.org/10.3390/info13100493
Kelleher, J. D., Mac Namee, B., & D'Arcy, A. (2015). Fundamentals of machine learning for predictive data analytics: algorithms, worked examples, and case studies. MIT Press.
Khasanah, N., van Noordwijk, M., Slingerland, M., Sofiyudin, M., Stomph, D., Migeon, A. F., & Hairiah, K. (2020). Oil palm agroforestry can achieve economic and environmental gains as indicated by multifunctional land equivalent ratios. Frontiers in sustainable food systems, 3. https://doi.org/10.3389/fsufs.2019.00122
Kong, Q., Kuriyan, K., Shah, N., & Guo, M. (2019). Development of a responsive optimisation framework for decision-making in precision agriculture. Computers & Chemical Engineering, 131, 106585. https://doi.org/10.1016/j.compchemeng.2019.106585
Lahive, F., Hadley, P., & Daymond, A. J. (2019). The physiological responses of cacao to the environment and the implications for climate change resilience. A review. Agronomy for Sustainable Development, 39(1), 5. https://doi.org/10.1007/s13593-018-0552-0
López-López, R., Ojeda-Bustamante, W., Rodríguez-Cuevas, M., Ibarra Inzunza, M. A., & Jiménez-Chong, J. A. (2016). Interception of Photosynthetically Active on Cocoa Plantations in Mexico. International Journal of Environmental & Agriculture Research, 2(10), 1–8.
Marquez, J., Sarmiento, L. H. T., & Lamos, H. (2022). Multistage Stochastic Programming to Support Water Allocation Decision-Making Process in Agriculture: A Literature Review. MDPI. https://doi.org/10.3390/iocag2022-12307
Microsoft Power BI. . Recuperado el 7 de junio de 2023; https://powerbi.microsoft.com/
Modelos De Metodos EN v.. Recuperado el 7 de junio de 2023; calameo.com. https://www.calameo.com/read/000356419f5d318c7eefc
Nyamador, E. N., Owusu-Sekyere, E., & Awunyo-Vitor, D. (2021). Technology adoption and farm performance of cocoa farmers in Ghana. Journal of Agribusiness in Developing and Emerging Economies, 11(1), 22-38.
Nyéki, A., & Neményi, M. (2022). Crop Yield Prediction in Precision Agriculture. Agronomy, 12(10), 2460. https://doi.org/10.3390/agronomy12102460
Osakabe, Y., Osakabe, K., Shinozaki, K., & Tran, L. S. P. (2014). Response of plants to water stress. In Frontiers in Plant Science (Vol. 5, Issue MAR). https://doi.org/10.3389/fpls.2014.00086
Osman, Y., Dennis, R., & Elgazzar, K. (2021). Yield Estimation and Visualization Solution for Precision Agriculture. Sensors, 21(19), 6657. https://doi.org/10.3390/s21196657
Oyekale A. Climate change induced occupational stress and reported morbidity among cocoa farmers in South-Western Nigeria. Annals of Agricultural and Environmental Medicine 2015;22:357–61. https://doi.org/10.5604/12321966.1152095.
pandas - Python Data Analysis Library. (s. f.). https://pandas.pydata.org/
Patiño, V. M., & Lachenaud, P. (2019). Cocoa response to climate change in tropical areas: current knowledge and research gaps. Climate, 7(3), 35.
Python.org. (2023). Recuperado el 7 de junio de 2023; Python.org. https://www.python.org/
Rembold, F., Meroni, M., Urbano, F., Csak, G., Kerdiles, H., Perez-Hoyos, A., Lemoine, G., Leo, O., & Negre, T. (2019). ASAP: A new global early warning system to detect anomaly hot spots of agricultural production for food security analysis. Agricultural Systems, 168, 247–257. https://doi.org/10.1016/j.agsy.2018.07.002
requests. (2023, 22 mayo). PyPI. https://pypi.org/project/requests/
Romero Vergel, A. P., Camargo Rodriguez, A. V., Ramirez, O. D., Arenas Velilla, P. A., & Gallego, A. M. (2022). A Crop Modelling Strategy to Improve Cacao Quality and Productivity. Plants, 11(2), 157. https://doi.org/10.3390/plants11020157
Sánchez, D. T. P., Sarmiento, L. H. T., Cuadros, J., & Guerrero, C. D. (2022). Chief Information Officer’s Role for IoT-based Digital Transformation in Colombian SMEs. Revista Colombiana de Computacion, 23(2), 43-54. https://doi.org/10.29375/25392115.4607
Schroth, G., Läderach, P., Martinez-Valle, A. I., Bunn, C., & Jassogne, L. (2016). Vulnerability to climate change of cocoa in West Africa: Patterns, opportunities and limits to adaptation. Science of the Total Environment, 556, 231–241. https://doi.org/10.1016/j.scitotenv.2016.03.024
sklearn.preprocessing.MinMaxScaler. (s/f.). Scikit-learn. https://scikit- learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
S. S. Sana, G. Herrera-Vidal, and J. Acevedo-Chedid, “Collaborative Model on the Agro-Industrial Supply Chain of Cocoa,” Cybernetics and Systems, vol. 48, no. 4, pp. 325–347, May 2017, doi: 10.1080/01969722.2017.1285160.
Suh NN, Molua EL. Cocoa production under climate variability and farm management challenges: Some farmers’ perspective. J Agric Food Res 2022;8:100282. https://doi.org/10.1016/j.jafr.2022.100282
Superintendencia de Industria y Comercio. (s/f). Gov.co. Recuperado el 24 de mayo de 2023, de https://www.sic.gov.co/sites/default/files/files/Cacao.pdf
Talero L., Weber G., Lamos H., & Parra S. D. T., (2024). Colombian Cocoa Sector: Unveiling the Nexus between Emerging Technologies and Government Policies. https://www.researchgate.net/publication/378149137_Colombian_Cocoa_Sector_Unveiling_t he_Nexus_between_Emerging_Technologies_and_Government_Policies
Talero-Sarmiento, L. H., Escobar-Rodriguez, L. Y., Cupaban, G. A., Cárdenas-Fontecha, M. S., Moreno-Corzo, F. E., & Parra-Sanchez, D. T. (2023). A framework to improve surgery roadmap efficiency based on design thinking, lean manufacturing techniques, and operations research applications. Proceedings INNODOCT/22. International Conference on Innovation, Documentation and Education.
Talero-Sarmiento, L. H., Parra-Sanchez, D. T., & Lamos-Diaz, H. (2023). A bibliometric analysis of computational and mathematical techniques in the cocoa sustainable food value chain. https://doi.org/10.2139/ssrn.4508682
Team, K. (s. f.). Keras: Deep Learning for humans. https://keras.io/
Tenikue, M., Fonta, W. M., & Wünscher, T. (2020). Farmers’ preferences and willingness to pay for climate-smart cocoa practices in Cameroon. Climate Risk Management, 30, 100257.
Torres, T. A. H. (2024, enero 30). Estos son cinco lugares que han registrado mayores temperaturas en la Tierra. El Tiempo. https://www.eltiempo.com/cultura/gente/estos-son- cinco-de-los-lugares-de-la-tierra-que-mayor-temperatura-han-registrado-850018
T. J. A. Bruce, “The CROPROTECT project and wider opportunities to improve farm productivity through web-based knowledge exchange,” Food Energy Secur., vol. 5, no. 2, pp. 89–96, May 2016, doi: 10.1002/fes3.80.
Tosto, A., Morales, A., Rahn, E., Evers, J. B., Zuidema, P. A., & Anten, N. P. R. (2023). Simulating cocoa production: A review of modelling approaches and gaps. Agricultural Systems, 206, 103614. https://doi.org/10.1016/j.agsy.2023.103614
Van Ittersum, M. K., Howden, S. M., & Asseng, S. (2003). Sensitivity of productivity and deep drainage of wheat cropping systems in a Mediterranean environment to changes in CO2, temperature and precipitation. Agriculture, Ecosystems and Environment, 97(1–3). https://doi.org/10.1016/S0167-8809(03)00114-2
Vergel, A. P. R., Rodriguez, A. V. C., Ramirez, O. D., Velilla, P. A. A., & Gallego, A. M. (2022). A Crop Modelling Strategy to Improve Cacao Quality and Productivity. Plants, 11(2), 157. https://doi.org/10.3390/plants11020157
Vogel C, Mathé S, Geitzenauer M, Ndah HT, Sieber S, Bonatti M, et al. Stakeholders’ perceptions on sustainability transition pathways of the cocoa value chain towards improved livelihood of small-scale farming households in Cameroon. Int J Agric Sustain 2020;18:55–69. https://doi.org/10.1080/14735903.2019.1696156.
Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data mining: practical machine learning tools and techniques. Morgan Kaufmann.
Woli, P., Jones, J. W., Ingram, K. T., & Fraisse, C. W. (2012). Agricultural reference index for drought (ARID). Agronomy Journal, 104(2). https://doi.org/10.2134/agronj2011.0286
Zhao, C., Liu, B., Xiao, L., Hoogenboom, G., Boote, K. J., Kassie, B. T., Pavan, W., Shelia, V., Kim, K. S., Hernández-Ochoa, I. M., Wallach, D., Stöckle, C. O., & Asseng, S. (2019). A SIMPLE crop model. European Journal Of Agronomy, 104, 97-106. https://doi.org/10.1016/j.eja.2019.01.009
dc.relation.uriapolo.spa.fl_str_mv https://apolo.unab.edu.co/en/persons/leonardo-talero
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_16ec
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.creativecommons.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://purl.org/coar/access_right/c_16ec
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.spa.fl_str_mv San Vicente de Chucurí (Santander, Colombia)
dc.coverage.campus.spa.fl_str_mv UNAB Campus Bucaramanga
dc.publisher.grantor.spa.fl_str_mv Universidad Autónoma de Bucaramanga UNAB
dc.publisher.faculty.spa.fl_str_mv Facultad Ingeniería
dc.publisher.program.spa.fl_str_mv Maestría en Gestión, Aplicación y Desarrollo de Software
institution Universidad Autónoma de Bucaramanga - UNAB
bitstream.url.fl_str_mv https://repository.unab.edu.co/bitstream/20.500.12749/25165/3/Tesis.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/25165/5/Licencia.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/25165/4/license.txt
https://repository.unab.edu.co/bitstream/20.500.12749/25165/6/Tesis.pdf.jpg
https://repository.unab.edu.co/bitstream/20.500.12749/25165/7/Licencia.pdf.jpg
bitstream.checksum.fl_str_mv da4237713e793b9b42e134d9513e067d
eee9cd2eba27aa394bdba91e4067c41b
3755c0cfdb77e29f2b9125d7a45dd316
74ae925020a982092f53e08295faae6e
47b29c3b95e1dfefe777e287cc50a9df
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB
repository.mail.fl_str_mv repositorio@unab.edu.co
_version_ 1814278448995106816
spelling Talero Sarmiento, Leonardo Hernán52f3ced8-d447-4a4d-a30c-74958c9587aaMoreno Corzo, Feisar Enrique39fad5f7-20f9-47a5-99d6-b2c6d2a32224Cárdenas Fontecha, Mauren Slendya1808959-07eb-4dc8-b9d6-4699c7a357c2Sanabria Romero, Lizeth Johannab2bf78e9-b3d3-4ec2-beb3-6618b1d23a92Talero Sarmiento, Leonardo Hernán [31387]Moreno Corzo, Feisar Enrique [1499008]Cárdenas Fontecha, Mauren Slendy [0001950200]Moreno Corzo, Feisar Enrique [jz75nEcAAAAJ]Talero Sarmiento, Leonardo Hernán [0000-0002-4129-9163]Moreno Corzo, Feisar Enrique [0000-0002-5007-3422]Talero Sarmiento, Leonardo Hernán [Leonardo_Talero]Talero Sarmiento, Leonardo Hernán [leonardo-talero]Moreno Corzo, Feisar Enrique [feisar-enrique-moreno-corzo]Cárdenas Fontecha, Mauren Slendy [mauren-slendy-cárdenas-fontecha]Talero Sarmiento, Leonardo Hernán [leonardo-talero-sarmiento]Moreno Corzo, Feisar Enrique [feisar-moreno]San Vicente de Chucurí (Santander, Colombia)UNAB Campus Bucaramanga2024-06-14T14:27:36Z2024-06-14T14:27:36Z2024-06-04http://hdl.handle.net/20.500.12749/25165instname:Universidad Autónoma de Bucaramanga - UNABreponame:Repositorio Institucional UNABrepourl:https://repository.unab.edu.coEl proyecto "Herramienta de Analítica de Datos para el Mantenimiento de Cultivos de Cacao bajo Escenarios de Variabilidad Climatológica" aborda los desafíos que enfrenta la producción de cacao debido a la variabilidad climática. Esta herramienta surge como una respuesta a problemas como sequías, inundaciones y extremos térmicos que amenazan la calidad y cantidad de la cosecha de cacao. La herramienta creada utiliza análisis avanzados para comprender los fenómenos ecológicos que afectan la producción de cacao. Se conecta directamente con el API de la NASA para obtener datos climatológicos precisos. Además, implementa Redes Neuronales Recurrentes (RNN) con el modelo LSTM para realizar pronósticos confiables. La herramienta desarrollada con Python y Power BI permite no solo calcular y modelar la biomasa, sino también evaluar la sensibilidad del cacao al estrés hídrico y los índices de cosecha lo cual le confiere al tomador de decisiones una herramienta para afrontar la incertidumbre en el horizonte de planeación. La herramienta se caracteriza por su capacidad de integrar datos climatológicos, datos agrícolas y datos de rendimiento del cultivo, facilitando una visión holística de las interacciones entre estos factores. También incluye funcionalidades de visualización de datos y generación de informes, lo que facilita la interpretación de los resultados y la toma de decisiones informadas. La validación del modelo en un entorno controlado ha demostrado su eficacia y precisión, posicionando esta herramienta como un recurso esencial para mejorar la sostenibilidad y productividad de los cultivos de cacao en condiciones climáticas variables.INTRODUCCIÓN...................................................................................................11 1. MARCO TEÓRICO............................................................................................14 1.1. Mantenimiento de cultivos de cacao bajo escenarios de variabilidad climatológica ..........................................................................................................14 1.2. Redes neuronales recurrentes........................................................................15 1.3. Metodología KDD............................................................................................16 1.4. Herramienta de analítica de datos ..................................................................18 1.5. Tecnologías y arquitecturas............................................................................20 1.5.2. Lenguaje de programación, Python .............................................................21 1.5.3. Herramientas de visualización, Power BI.....................................................22 1.5.4. Sistemas de información geográfica (SIG)...................................................23 1.5.5. Metodología de desarrollo, modelo V ..........................................................24 1.5.6. Fuentes de datos .........................................................................................25 2. MARCO METODOLÓGICO...............................................................................26 3. REVISIÓN BIBLIOGRÁFICA Y RECOPILACIÓN DE DATOS...........................27 3.1. Impacto de la Variabilidad Climática en los Cultivos de Cacao.......................27 3.2. Respuestas Fisiológicas del Cacao al Ambiente Climático.............................28 3.3. Tratamientos Agrícolas y Buenas Prácticas para Mitigar los Efectos de la Variabilidad Climática ............................................................................................28 3.4. Recopilación de datos climatológicos .............................................................28 4. DESARROLLO DEL MODELO PARA LA TOMA DE DECISIONES..................30 4.1. Conexión a la API de la NASA Power:............................................................33 4.2. Imputación de datos........................................................................................34 4.3. Modelo de predicción......................................................................................40 4.4. Funciones .......................................................................................................50 4.5. Sensibilidades.................................................................................................59 5. DISEÑO E IMPLEMENTACIÓN DE LA INTERFAZ...........................................65 5.1. Diseño de Arquitectura ...................................................................................65 5.2. Diseño de Interfaz de Usuario.........................................................................66 5.3. Dashboard ......................................................................................................73 6. VERIFICACIÓN, PRUEBAS Y DESPLIEGUE ...................................................82 7. CONCLUSIONES ..............................................................................................99 8. TRABAJOS FUTUROS....................................................................................101 BIBLIOGRAFÍA....................................................................................................102 ANEXOS..............................................................................................................107 ANEXO A.............................................................................................................107MaestríaThe project "Data Analytics Tool for the Maintenance of Cocoa Crops under Scenarios of Climatic Variability" is a significant step in addressing the challenges cocoa production faces due to climatic variability. This tool is a direct response to issues such as droughts, floods, and extreme temperatures that pose a threat to the quality and quantity of the cocoa harvest. It utilizes advanced analysis to comprehend the ecological phenomena affecting cocoa production. By connecting directly with the NASA API, it acquires precise climatological data. Moreover, it implements Recurrent Neural Networks (RNN) with the Long Short-Term Memory (LSTM) model to provide reliable forecasts. The tool, developed with Python and Power BI, not only allows for the calculation and modeling of biomass but also for assessing the sensitivity of cocoa to water stress and harvest indices. This equips decision-makers with a powerful tool to navigate uncertainty in the planning horizon. The tool's standout feature is its ability to seamlessly integrate climatological data, agricultural data, and crop yield data, offering a comprehensive view of the intricate interactions between these factors. It also includes functionalities for data visualization and report generation, which greatly aids in the interpretation of results and informed decision-making. The model's validation in a controlled environment has demonstrated its effectiveness and accuracy, positioning this tool as an indispensable resource for enhancing the sustainability and productivity of cocoa crops under variable climatic conditions.Modalidad Presencialapplication/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)Atribución-NoComercial-SinDerivadas 2.5 Colombiahttp://purl.org/coar/access_right/c_16ecHerramienta de analítica de datos para el mantenimiento de cultivos de cacao bajo escenarios de variabilidad climatológicaData analytics tool for the maintenance of cocoa crops under scenarios of climatic variabilityMagíster en Gestión, Aplicación y Desarrollo de SoftwareUniversidad Autónoma de Bucaramanga UNABFacultad IngenieríaMaestría en Gestión, Aplicación y Desarrollo de Softwareinfo:eu-repo/semantics/masterThesisTesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/redcol/resource_type/TMSystems engineerSoftware developmentCocoa cultivationClimatic variabilityForecasting algorithmsData analytics toolNeural networkBusiness intelligenceClimatologySoils and climateVegetation and climateCrops and soilsNeural networks (Computer science)Artificial intelligenceDesarrollo de SoftwareIngeniería de sistemasClimatologíaSuelos y climaVegetación y climaCultivos y suelosRedes neuronales (Computadores)Inteligencia artificialCultivo de cacaoHerramienta de analítica de datosAalgoritmos de predicciónRed neuronalVariabilidad climatológicaAllies, A., Roumiguie, A., Fieuzal, R., Dejoux, J.-F., Jacquin, A., Veloso, A., Champolivier, L., & Baup, F. (2022). Assimilation of Multisensor Optical and Multiorbital SAR Satellite Data in a Simplified Agrometeorological Model for Rapeseed Crops Monitoring. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 1123–1138. https://doi.org/10.1109/JSTARS.2021.3136289Allen, R. G., Pereira, L. S., Raes, D., Smith, M., & W, a B. (1998). Crop evapotranspiration - Guidelines for computing crop water requirements - FAO Irrigation and drainage paper 56. Irrigation and Drainage. https://doi.org/10.1016/j.eja.2010.12.001ASSENG, S., FOSTER, I., & TURNER, N. C. (2011). The impact of temperature variability on wheat yields. Global Change Biology, 17(2), 997–1012. https://doi.org/10.1111/j.1365- 2486.2010.02262.xBarberán, J. R. M., Nevárez, G. J. C., Flor, F. G. I., Caetano, C. M., Flores, J. C. M., & Pacheco, H. (2019). Vulnerability to climate change of smallholder cocoa producers in the province of Manabí, Ecuador. Revista Facultad Nacional De Agronomía, 72(1), 8707–8716. https://doi.org/10.15446/rfnam.v72n1.72564Cardenas F. M. S, Talero S. L. H., Y Gómez Á. F. L., (2023). Accesibilidad para el pequeño agricultor en el uso de las nuevas Tecnologías. https://www.researchgate.net/publication/373841676_Accesibilidad_para_el_pequeno_agric ultor_en_el_uso_de_las_nuevas_tecnologiasCock, J. H., & Connor, D. J. (2021). Cassava. In Crop Physiology Case Histories for Major Crops (pp. 588–633). Elsevier. https://doi.org/10.1016/B978-0-12-819194-1.00019-0colaboradores de Wikipedia. (2023). Sistema de información geográfica. Wikipedia, La Enciclopedia Libre. https://es.wikipedia.org/wiki/Sistema_de_informaci%C3%B3n_geogr%C3%A1ficaC. R. M. Rosa, M. T. A. Steiner and P. J. Steiner Neto, "Knowledge Discovery in Data Bases: a Case Study in a Private Institution of Higher Education," in IEEE Latin America Transactions, vol. 16, no. 7, pp. 2027-2032, July 2018, doi: 10.1109/TLA.2018.8447372.Díaz, G., & Casanova, E. (2019). Evaluación del impacto del cambio climático en el cultivo de cacao: una revisión. Revista Colombiana de Ciencias Hortícolas, 13(1), 176-187.E. Jakku et al., “‘If they don’t tell us what they do with it, why would we trust them?’ Trust, transparency and benefit-sharing in Smart Farming,” NJAS - Wageningen J. Life Sci., vol. 90– 91, p. 100285, Dec. 2019, doi: 10.1016/j.njas.2018.11.002.Extensions, L. M. A. (s/f). Visual Studio Code - code editing. Redefined. Visualstudio.com. Recuperado el 7 de junio de 2023, de https://code.visualstudio.com/Fuentes, L. F. Q., Castelblanco, S. G., Jerez, A. G., & Guerrero, N. M. (2015). Caracterización de tres índices de cosecha de cacao de los clones CCN51, ICS60 e ICS 95, en la montaña santandereana, Colombia. Revista de Investigación Agraria y Ambiental, 6(1), 252-265.Gamboa AA, Caceres PA, Lamos H, Zarate DA, Puentes DE. Predictive model for cocoa yield in Santander using Supervised Machine Learning. 2019 XXII Symposium on Image, Signal Processing and Artificial Vision (STSIVA), IEEE; 2019, p. 1–5. https://doi.org/10.1109/STSIVA.2019.8730258García, S., Luengo, J., & Herrera, F. (2015). Data preprocessing in data mining. Springer.Gateau-Rey, L., Tanner, E. V. J., Rapidel, B., Marelli, J., & Royaert, S. (2018). Climate change could threaten cocoa production: Effects of 2015-16 El Niño-related drought on cocoa agroforests in Bahia, Brazil. PLOS ONE, 13(7), e0200454. https://doi.org/10.1371/journal.pone.0200454IBM. (s. f.). https://www.ibm.com/es-es/topics/recurrent-neural-networksGstatic.com. Recuperado el 16 de diciembre de 2023, de https://encrypted- tbn0.gstatic.com/images?q=tbn:ANd9GcT1wGD0doEaMjaGTNf_abM2eu2VmmyWwWN9lB8 jdOMhvK0nlOxGH. L. Penman. (1948). Natural Evaporation from Open Water, Bare Soil and Grass. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 193(1032).Julien, G. C. (2022, August 19). Análisis de estrategias de adaptación a la variabilidad climática en cacaotales del municipio de Campoalegre - Huila. https://repository.universidadean.edu.co/handle/10882/11903Imantho, H., Seminar, K. B., Hermawan, W., & Saptomo, S. K. (2022). A Spatial Distribution Empirical Model of Surface Soil Water Content and Soil Workability on an Unplanted Sugarcane Farm Area Using Sentinel-1A Data towards Precision Agriculture Applications. Information, 13(10), 493. https://doi.org/10.3390/info13100493Kelleher, J. D., Mac Namee, B., & D'Arcy, A. (2015). Fundamentals of machine learning for predictive data analytics: algorithms, worked examples, and case studies. MIT Press.Khasanah, N., van Noordwijk, M., Slingerland, M., Sofiyudin, M., Stomph, D., Migeon, A. F., & Hairiah, K. (2020). Oil palm agroforestry can achieve economic and environmental gains as indicated by multifunctional land equivalent ratios. Frontiers in sustainable food systems, 3. https://doi.org/10.3389/fsufs.2019.00122Kong, Q., Kuriyan, K., Shah, N., & Guo, M. (2019). Development of a responsive optimisation framework for decision-making in precision agriculture. Computers & Chemical Engineering, 131, 106585. https://doi.org/10.1016/j.compchemeng.2019.106585Lahive, F., Hadley, P., & Daymond, A. J. (2019). The physiological responses of cacao to the environment and the implications for climate change resilience. A review. Agronomy for Sustainable Development, 39(1), 5. https://doi.org/10.1007/s13593-018-0552-0López-López, R., Ojeda-Bustamante, W., Rodríguez-Cuevas, M., Ibarra Inzunza, M. A., & Jiménez-Chong, J. A. (2016). Interception of Photosynthetically Active on Cocoa Plantations in Mexico. International Journal of Environmental & Agriculture Research, 2(10), 1–8.Marquez, J., Sarmiento, L. H. T., & Lamos, H. (2022). Multistage Stochastic Programming to Support Water Allocation Decision-Making Process in Agriculture: A Literature Review. MDPI. https://doi.org/10.3390/iocag2022-12307Microsoft Power BI. . Recuperado el 7 de junio de 2023; https://powerbi.microsoft.com/Modelos De Metodos EN v.. Recuperado el 7 de junio de 2023; calameo.com. https://www.calameo.com/read/000356419f5d318c7eefcNyamador, E. N., Owusu-Sekyere, E., & Awunyo-Vitor, D. (2021). Technology adoption and farm performance of cocoa farmers in Ghana. Journal of Agribusiness in Developing and Emerging Economies, 11(1), 22-38.Nyéki, A., & Neményi, M. (2022). Crop Yield Prediction in Precision Agriculture. Agronomy, 12(10), 2460. https://doi.org/10.3390/agronomy12102460Osakabe, Y., Osakabe, K., Shinozaki, K., & Tran, L. S. P. (2014). Response of plants to water stress. In Frontiers in Plant Science (Vol. 5, Issue MAR). https://doi.org/10.3389/fpls.2014.00086Osman, Y., Dennis, R., & Elgazzar, K. (2021). Yield Estimation and Visualization Solution for Precision Agriculture. Sensors, 21(19), 6657. https://doi.org/10.3390/s21196657Oyekale A. Climate change induced occupational stress and reported morbidity among cocoa farmers in South-Western Nigeria. Annals of Agricultural and Environmental Medicine 2015;22:357–61. https://doi.org/10.5604/12321966.1152095.pandas - Python Data Analysis Library. (s. f.). https://pandas.pydata.org/Patiño, V. M., & Lachenaud, P. (2019). Cocoa response to climate change in tropical areas: current knowledge and research gaps. Climate, 7(3), 35.Python.org. (2023). Recuperado el 7 de junio de 2023; Python.org. https://www.python.org/Rembold, F., Meroni, M., Urbano, F., Csak, G., Kerdiles, H., Perez-Hoyos, A., Lemoine, G., Leo, O., & Negre, T. (2019). ASAP: A new global early warning system to detect anomaly hot spots of agricultural production for food security analysis. Agricultural Systems, 168, 247–257. https://doi.org/10.1016/j.agsy.2018.07.002requests. (2023, 22 mayo). PyPI. https://pypi.org/project/requests/Romero Vergel, A. P., Camargo Rodriguez, A. V., Ramirez, O. D., Arenas Velilla, P. A., & Gallego, A. M. (2022). A Crop Modelling Strategy to Improve Cacao Quality and Productivity. Plants, 11(2), 157. https://doi.org/10.3390/plants11020157Sánchez, D. T. P., Sarmiento, L. H. T., Cuadros, J., & Guerrero, C. D. (2022). Chief Information Officer’s Role for IoT-based Digital Transformation in Colombian SMEs. Revista Colombiana de Computacion, 23(2), 43-54. https://doi.org/10.29375/25392115.4607Schroth, G., Läderach, P., Martinez-Valle, A. I., Bunn, C., & Jassogne, L. (2016). Vulnerability to climate change of cocoa in West Africa: Patterns, opportunities and limits to adaptation. Science of the Total Environment, 556, 231–241. https://doi.org/10.1016/j.scitotenv.2016.03.024sklearn.preprocessing.MinMaxScaler. (s/f.). Scikit-learn. https://scikit- learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.htmlS. S. Sana, G. Herrera-Vidal, and J. Acevedo-Chedid, “Collaborative Model on the Agro-Industrial Supply Chain of Cocoa,” Cybernetics and Systems, vol. 48, no. 4, pp. 325–347, May 2017, doi: 10.1080/01969722.2017.1285160.Suh NN, Molua EL. Cocoa production under climate variability and farm management challenges: Some farmers’ perspective. J Agric Food Res 2022;8:100282. https://doi.org/10.1016/j.jafr.2022.100282Superintendencia de Industria y Comercio. (s/f). Gov.co. Recuperado el 24 de mayo de 2023, de https://www.sic.gov.co/sites/default/files/files/Cacao.pdfTalero L., Weber G., Lamos H., & Parra S. D. T., (2024). Colombian Cocoa Sector: Unveiling the Nexus between Emerging Technologies and Government Policies. https://www.researchgate.net/publication/378149137_Colombian_Cocoa_Sector_Unveiling_t he_Nexus_between_Emerging_Technologies_and_Government_PoliciesTalero-Sarmiento, L. H., Escobar-Rodriguez, L. Y., Cupaban, G. A., Cárdenas-Fontecha, M. S., Moreno-Corzo, F. E., & Parra-Sanchez, D. T. (2023). A framework to improve surgery roadmap efficiency based on design thinking, lean manufacturing techniques, and operations research applications. Proceedings INNODOCT/22. International Conference on Innovation, Documentation and Education.Talero-Sarmiento, L. H., Parra-Sanchez, D. T., & Lamos-Diaz, H. (2023). A bibliometric analysis of computational and mathematical techniques in the cocoa sustainable food value chain. https://doi.org/10.2139/ssrn.4508682Team, K. (s. f.). Keras: Deep Learning for humans. https://keras.io/Tenikue, M., Fonta, W. M., & Wünscher, T. (2020). Farmers’ preferences and willingness to pay for climate-smart cocoa practices in Cameroon. Climate Risk Management, 30, 100257.Torres, T. A. H. (2024, enero 30). Estos son cinco lugares que han registrado mayores temperaturas en la Tierra. El Tiempo. https://www.eltiempo.com/cultura/gente/estos-son- cinco-de-los-lugares-de-la-tierra-que-mayor-temperatura-han-registrado-850018T. J. A. Bruce, “The CROPROTECT project and wider opportunities to improve farm productivity through web-based knowledge exchange,” Food Energy Secur., vol. 5, no. 2, pp. 89–96, May 2016, doi: 10.1002/fes3.80.Tosto, A., Morales, A., Rahn, E., Evers, J. B., Zuidema, P. A., & Anten, N. P. R. (2023). Simulating cocoa production: A review of modelling approaches and gaps. Agricultural Systems, 206, 103614. https://doi.org/10.1016/j.agsy.2023.103614Van Ittersum, M. K., Howden, S. M., & Asseng, S. (2003). Sensitivity of productivity and deep drainage of wheat cropping systems in a Mediterranean environment to changes in CO2, temperature and precipitation. Agriculture, Ecosystems and Environment, 97(1–3). https://doi.org/10.1016/S0167-8809(03)00114-2Vergel, A. P. R., Rodriguez, A. V. C., Ramirez, O. D., Velilla, P. A. A., & Gallego, A. M. (2022). A Crop Modelling Strategy to Improve Cacao Quality and Productivity. Plants, 11(2), 157. https://doi.org/10.3390/plants11020157Vogel C, Mathé S, Geitzenauer M, Ndah HT, Sieber S, Bonatti M, et al. Stakeholders’ perceptions on sustainability transition pathways of the cocoa value chain towards improved livelihood of small-scale farming households in Cameroon. Int J Agric Sustain 2020;18:55–69. https://doi.org/10.1080/14735903.2019.1696156.Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2016). Data mining: practical machine learning tools and techniques. Morgan Kaufmann.Woli, P., Jones, J. W., Ingram, K. T., & Fraisse, C. W. (2012). Agricultural reference index for drought (ARID). Agronomy Journal, 104(2). https://doi.org/10.2134/agronj2011.0286Zhao, C., Liu, B., Xiao, L., Hoogenboom, G., Boote, K. J., Kassie, B. T., Pavan, W., Shelia, V., Kim, K. S., Hernández-Ochoa, I. M., Wallach, D., Stöckle, C. O., & Asseng, S. (2019). A SIMPLE crop model. European Journal Of Agronomy, 104, 97-106. https://doi.org/10.1016/j.eja.2019.01.009https://apolo.unab.edu.co/en/persons/leonardo-taleroORIGINALTesis.pdfTesis.pdfTesisapplication/pdf3748566https://repository.unab.edu.co/bitstream/20.500.12749/25165/3/Tesis.pdfda4237713e793b9b42e134d9513e067dMD53open accessLicencia.pdfLicencia.pdfLicenciaapplication/pdf383361https://repository.unab.edu.co/bitstream/20.500.12749/25165/5/Licencia.pdfeee9cd2eba27aa394bdba91e4067c41bMD55metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8829https://repository.unab.edu.co/bitstream/20.500.12749/25165/4/license.txt3755c0cfdb77e29f2b9125d7a45dd316MD54open accessTHUMBNAILTesis.pdf.jpgTesis.pdf.jpgIM Thumbnailimage/jpeg4587https://repository.unab.edu.co/bitstream/20.500.12749/25165/6/Tesis.pdf.jpg74ae925020a982092f53e08295faae6eMD56open accessLicencia.pdf.jpgLicencia.pdf.jpgIM Thumbnailimage/jpeg12829https://repository.unab.edu.co/bitstream/20.500.12749/25165/7/Licencia.pdf.jpg47b29c3b95e1dfefe777e287cc50a9dfMD57metadata only access20.500.12749/25165oai:repository.unab.edu.co:20.500.12749/251652024-06-14 22:02:08.313open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbi4gRWwgQVVUT1IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVTkFCIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuCgpFbCBBVVRPUiBhdXRvcml6YSBhIGxhIFVuaXZlcnNpZGFkIEF1dMOzbm9tYSBkZSBCdWNhcmFtYW5nYSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24uCg==