Estudio del comportamiento dinámico del sistema caldera-intercambiador de calor del laboratorio planta piloto mediante modelamiento matemático
En los procesos industriales, es muy común la búsqueda de modelos o estructuras matemáticas implementadas para la simulación y diseño de equipos industriales, con estos modelos el objetivo es controlar, crear, mejorar y entender de forma precisa procesos complejos, por lo tanto, el objetivo principa...
- Autores:
-
Figueroa Pérez, Daniel Andrés
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2020
- Institución:
- Universidad Autónoma de Bucaramanga - UNAB
- Repositorio:
- Repositorio UNAB
- Idioma:
- spa
- OAI Identifier:
- oai:repository.unab.edu.co:20.500.12749/14908
- Acceso en línea:
- http://hdl.handle.net/20.500.12749/14908
- Palabra clave:
- Energy engineering
Technological innovations
Energy
Mathematical models
Data processing
Simulation
Industrial processes
Automation
Automatic control
Manufacture process
Simulation methods
Ingeniería en energía
Innovaciones tecnológicas
Energía
Automatización
Control automático
Procesos de manufactura
Metodos de simulación
Modelos matemáticos
Procesamiento de datos
Simulación
Procesos industriales
- Rights
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id |
UNAB2_ded6db716331a2623df62f5203d50285 |
---|---|
oai_identifier_str |
oai:repository.unab.edu.co:20.500.12749/14908 |
network_acronym_str |
UNAB2 |
network_name_str |
Repositorio UNAB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Estudio del comportamiento dinámico del sistema caldera-intercambiador de calor del laboratorio planta piloto mediante modelamiento matemático |
dc.title.translated.spa.fl_str_mv |
Study of the dynamic behavior of the boiler-heat exchanger system of the pilot plant laboratory through mathematical modeling |
title |
Estudio del comportamiento dinámico del sistema caldera-intercambiador de calor del laboratorio planta piloto mediante modelamiento matemático |
spellingShingle |
Estudio del comportamiento dinámico del sistema caldera-intercambiador de calor del laboratorio planta piloto mediante modelamiento matemático Energy engineering Technological innovations Energy Mathematical models Data processing Simulation Industrial processes Automation Automatic control Manufacture process Simulation methods Ingeniería en energía Innovaciones tecnológicas Energía Automatización Control automático Procesos de manufactura Metodos de simulación Modelos matemáticos Procesamiento de datos Simulación Procesos industriales |
title_short |
Estudio del comportamiento dinámico del sistema caldera-intercambiador de calor del laboratorio planta piloto mediante modelamiento matemático |
title_full |
Estudio del comportamiento dinámico del sistema caldera-intercambiador de calor del laboratorio planta piloto mediante modelamiento matemático |
title_fullStr |
Estudio del comportamiento dinámico del sistema caldera-intercambiador de calor del laboratorio planta piloto mediante modelamiento matemático |
title_full_unstemmed |
Estudio del comportamiento dinámico del sistema caldera-intercambiador de calor del laboratorio planta piloto mediante modelamiento matemático |
title_sort |
Estudio del comportamiento dinámico del sistema caldera-intercambiador de calor del laboratorio planta piloto mediante modelamiento matemático |
dc.creator.fl_str_mv |
Figueroa Pérez, Daniel Andrés |
dc.contributor.advisor.none.fl_str_mv |
Díaz González, Carlos Alirio González Acevedo, Hernando |
dc.contributor.author.none.fl_str_mv |
Figueroa Pérez, Daniel Andrés |
dc.contributor.cvlac.spa.fl_str_mv |
Díaz González, Carlos Alirio [0000785806] González Acevedo, Hernando [0000544655] |
dc.contributor.googlescholar.spa.fl_str_mv |
Díaz González, Carlos Alirio [es&oi=ao] González Acevedo, Hernando [V8tga0cAAAAJ&hl=es&oi=ao] |
dc.contributor.orcid.spa.fl_str_mv |
Díaz González, Carlos Alirio [0000-0001-7869-4610] González Acevedo, Hernando [0000-0001-6242-3939] |
dc.contributor.researchgate.spa.fl_str_mv |
González Acevedo, Hernando [Hernando-Gonzalez-Acevedo-2199006362] |
dc.subject.keywords.spa.fl_str_mv |
Energy engineering Technological innovations Energy Mathematical models Data processing Simulation Industrial processes Automation Automatic control Manufacture process Simulation methods |
topic |
Energy engineering Technological innovations Energy Mathematical models Data processing Simulation Industrial processes Automation Automatic control Manufacture process Simulation methods Ingeniería en energía Innovaciones tecnológicas Energía Automatización Control automático Procesos de manufactura Metodos de simulación Modelos matemáticos Procesamiento de datos Simulación Procesos industriales |
dc.subject.lemb.spa.fl_str_mv |
Ingeniería en energía Innovaciones tecnológicas Energía Automatización Control automático Procesos de manufactura Metodos de simulación |
dc.subject.proposal.spa.fl_str_mv |
Modelos matemáticos Procesamiento de datos Simulación Procesos industriales |
description |
En los procesos industriales, es muy común la búsqueda de modelos o estructuras matemáticas implementadas para la simulación y diseño de equipos industriales, con estos modelos el objetivo es controlar, crear, mejorar y entender de forma precisa procesos complejos, por lo tanto, el objetivo principal es hallar un modelo matemático que describa el comportamiento del sistema caldera-intercambiador de calor de casco y tubos, por medio de una recopilación de datos experimentales, tratamiento de datos para la debida implementación del modelo, el cual es un paso fundamental para evitar crear modelos complejos que no sea viables de implementar, búsqueda de modelos pertinentes al comportamiento del sistema calderaintercambiador de casco y tubos, los cuales definen en su estructura el comportamiento matemático y físico del proceso; y la debida simulaci´on y validación del modelo matemático que mejor se ajuste al sistema seleccionado de planta piloto. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020-08 |
dc.date.accessioned.none.fl_str_mv |
2021-11-12T18:38:59Z |
dc.date.available.none.fl_str_mv |
2021-11-12T18:38:59Z |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.local.spa.fl_str_mv |
Trabajo de Grado |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12749/14908 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Autónoma de Bucaramanga - UNAB |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional UNAB |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.unab.edu.co |
url |
http://hdl.handle.net/20.500.12749/14908 |
identifier_str_mv |
instname:Universidad Autónoma de Bucaramanga - UNAB reponame:Repositorio Institucional UNAB repourl:https://repository.unab.edu.co |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
[1] S. Moral, “Modelos de computaci´on i,” Granada, Espa˜na: Guias de asignatura. Universidad de Granada, 2006. [2] E. ul Haq, T. U. Rahman, A. Ahad, F. Ali, and M. Ijaz, “Modeling and simulation of an industrial steam boiler,” International Journal of Computer Engineering and Information Technology, vol. 8, no. 1, p. 7, 2016 [3] J. Makovicka, V. Havlena, and M. Beneˇs, “Mathematical modelling of steam and flue gas flow in a heat exchanger of a steam boiler,” in Proceedings of ALGORITMY–2002: Conference of Scientific Computing, pp. 171–178, Citeseer, 2002. [4] J. Bujak, “Mathematical modelling of a steam boiler room to research thermal efficiency,” Energy, vol. 33, no. 12, pp. 1779–1787, 2008 [5] M.-N. Dumont and G. Heyen, “Mathematical modelling and design of an advanced once-through heat recovery steam generator,” Computers & chemical engineering, vol. 28, no. 5, pp. 651–660, 2004 [6] S.-X. Li and J.-S. Wang, “Dynamic modeling of steam condenser and design of pi controller based on grey wolf optimizer,” Mathematical Problems in Engineering, vol. 2015, 2015. [7] S.ChenandS.Billings,“Neuralnetworksfornonlineardynamicsystemmodellingand identification,” International journal of control, vol. 56, no. 2, pp. 319–346, 1992. [8] M. Electronics, “Skelprom.com,” 2008. [9] C. Leys, C. Ley, O. Klein, P. Bernard, and L. Licata, “Detecting outliers: Do not use standarddeviationaroundthemean,useabsolutedeviationaroundthemedian,”Journal of Experimental Social Psychology, vol. 49, no. 4, pp. 764–766, 2013 [10] P. J. Rousseeuw and C. Croux, “Alternatives to the median absolute deviation,” Journal of the American Statistical association, vol. 88, no. 424, pp. 1273–1283, 1993. [11] H. Akima, “A new method of interpolation and smooth curve fitting based on local procedures,” Journal of the ACM (JACM), vol. 17, no. 4, pp. 589–602, 1970. [12] “Modified akima piecewise cubic hermite interpolation - matlab makima.” [13] D.Gonz´alez-Mendizabal,“Gu´ıadeintercambiadoresdecalor:tiposgeneralesyaplicaciones,” Universidad Sim´on Bol´ıvar, 2002 [14] Y.A.C¸engel,Transferenciadecalorymasa:unenfoquepr´actico. McGraw-Hill,2007. [15] F. G. Ortiz, “Modeling of fire-tube boilers,” Applied Thermal Engineering, vol. 31, no. 16, pp. 3463–3478, 2011. [16] L. Ljung, “Black-box models from input-output measurements,” in Imtc 2001. proceedingsofthe18thieeeinstrumentationandmeasurementtechnologyconference.rediscoveringmeasurementintheageofinformatics(cat.no.01ch37188),vol.1,pp.138–146, IEEE, 2001. [17] E.B.AlbertoHerreros,“Cursodeprogramacionenmatlabysimulink,”tech.rep.,Universidad de Valladolid, 2013. [18] J. C. M. Eugenio, “Neural network toolbox de matlab,” tech. rep., Ciencias Computacionales - INAOE, 2006. [19] Mathworks, “Matlab product description,” 2020 [20] E. W. Kamen and B. S. Heck, Fundamentos de se˜nales y sistemas usando la web y Matlab. Pearson Educaci´on, 2008 [21] “Filtrado digital lectura 3: Dise˜no de filtros fir.” [22] “Choose a multilayer neural network training function - matlab and simulink.” [23] H. Bastida, C. E. Ugalde-Loo, M. Abeysekera, and M. Qadrdan, “Dynamic modeling and control of a plate heat exchanger,” in 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2), pp. 1–6, IEEE, 2017. [24] A. A. Emhemed, R. B. Mamat, and D. Hanafi, “Mathematical modeling of industrial heatexchangersystem,”inAppliedMechanicsandMaterials,vol.229,pp.2122–2124, Trans Tech Publ, 2012. [25] S. Y. Gandur Adarme, “Dise˜no de control ´optimo y control robusto para regular la temperatura de un intercambiador de calor,” 2016. [26] D. N. L´opez and R. M. Mart´ınez, “Memoria: Control de una caldera de vapor,” 2012. [27] G. Vanti, “¿qu´e es? - grupo vanti,” 2020. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.creativecommons.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Abierto (Texto Completo) Atribución-NoComercial-SinDerivadas 2.5 Colombia http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.spatial.spa.fl_str_mv |
Bucaramanga (Santander, Colombia) |
dc.coverage.campus.spa.fl_str_mv |
UNAB Campus Bucaramanga |
dc.publisher.grantor.spa.fl_str_mv |
Universidad Autónoma de Bucaramanga UNAB |
dc.publisher.program.spa.fl_str_mv |
Pregrado Ingeniería en Energía |
institution |
Universidad Autónoma de Bucaramanga - UNAB |
bitstream.url.fl_str_mv |
https://repository.unab.edu.co/bitstream/20.500.12749/14908/1/Tesis%20de%20Grado%202020_Tesis_Daniel_Figueroa.pdf https://repository.unab.edu.co/bitstream/20.500.12749/14908/2/2020_Licencia_Daniel_Figueroa.pdf https://repository.unab.edu.co/bitstream/20.500.12749/14908/3/license.txt https://repository.unab.edu.co/bitstream/20.500.12749/14908/4/Tesis%20de%20Grado%202020_Tesis_Daniel_Figueroa.pdf.jpg https://repository.unab.edu.co/bitstream/20.500.12749/14908/5/2020_Licencia_Daniel_Figueroa.pdf.jpg |
bitstream.checksum.fl_str_mv |
49cee662ee4f045ed6ff6754c1805072 1431c577fcfc1abff626de26b040796b 3755c0cfdb77e29f2b9125d7a45dd316 acb7e6c099b332c0f870d9756b5c7877 89b52b4120df63f71e7a5dd689958e70 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB |
repository.mail.fl_str_mv |
repositorio@unab.edu.co |
_version_ |
1814277257991028736 |
spelling |
Díaz González, Carlos Aliriod02efae7-81a1-4da5-b326-4d265ff0602a-1González Acevedo, Hernando490b15a6-3d80-4525-a9a0-44e34b8f0937-1Figueroa Pérez, Daniel Andrés0d6227ca-f39c-4daf-a6f5-0dff15d6964a-1Díaz González, Carlos Alirio [0000785806]González Acevedo, Hernando [0000544655]Díaz González, Carlos Alirio [es&oi=ao]González Acevedo, Hernando [V8tga0cAAAAJ&hl=es&oi=ao]Díaz González, Carlos Alirio [0000-0001-7869-4610]González Acevedo, Hernando [0000-0001-6242-3939]González Acevedo, Hernando [Hernando-Gonzalez-Acevedo-2199006362]Bucaramanga (Santander, Colombia)UNAB Campus Bucaramanga2021-11-12T18:38:59Z2021-11-12T18:38:59Z2020-08http://hdl.handle.net/20.500.12749/14908instname:Universidad Autónoma de Bucaramanga - UNABreponame:Repositorio Institucional UNABrepourl:https://repository.unab.edu.coEn los procesos industriales, es muy común la búsqueda de modelos o estructuras matemáticas implementadas para la simulación y diseño de equipos industriales, con estos modelos el objetivo es controlar, crear, mejorar y entender de forma precisa procesos complejos, por lo tanto, el objetivo principal es hallar un modelo matemático que describa el comportamiento del sistema caldera-intercambiador de calor de casco y tubos, por medio de una recopilación de datos experimentales, tratamiento de datos para la debida implementación del modelo, el cual es un paso fundamental para evitar crear modelos complejos que no sea viables de implementar, búsqueda de modelos pertinentes al comportamiento del sistema calderaintercambiador de casco y tubos, los cuales definen en su estructura el comportamiento matemático y físico del proceso; y la debida simulaci´on y validación del modelo matemático que mejor se ajuste al sistema seleccionado de planta piloto.INTRODUCCI´ON 3 1. MARCOTE´ORICO 6 1.1. ANALIZADOR DE GASES . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2. DESVIACI´ON ABSOLUTA DE LA MEDIANA . . . . . . . . . . . . . . . 7 1.3. INTERPOLACI´ON POR EL M´ETODO AKIMA . . . . . . . . . . . . . . . 8 1.4. INTERCAMBIADOR DE CASCO Y TUBOS . . . . . . . . . . . . . . . . 10 1.5. CALDERA PIROTUBULAR . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.6. MODELO CAJA BLANCA, NEGRA Y GRIS . . . . . . . . . . . . . . . . 12 1.7. ESPACIO DE ESTADOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.8. REDES NEURONALES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2. ALMACENAMIENTODEDATOS 15 2.1. TOMA DE DATOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2. BASE DE DATOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3. PROCESAMIENTODEDATOS 23 3.1. VALORES AT´IPICOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2. FILTRADO DE DATOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.2.1. Dise˜no Filtro FIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 4. MODELOMATEM´ATICO 39 4.1. MODELO CAJA NEGRA LINEAL . . . . . . . . . . . . . . . . . . . . . . 39 4.2. MODELO DE REDES NEURONALES . . . . . . . . . . . . . . . . . . . . 45 4.3. CARACTER´ISTICAS RED NEURONAL . . . . . . . . . . . . . . . . . . . 52 4.4. MODELO INTERCAMBIADOR . . . . . . . . . . . . . . . . . . . . . . . 53 5. RESULTADOS 60 5.1. SIMULACI´ON DEL MODELO . . . . . . . . . . . . . . . . . . . . . . . . 60 5.2. VALIDACI´ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 CONCLUSIONES 72 RECOMENDACIONES 73 BIBLIOGRAF´IA 74PregradoIn industrial processes, it is very common to search for models or mathematical structures implemented for the simulation and design of industrial equipment, with these models the objective is to control, create, improve and accurately understand complex processes, therefore, the objective The main thing is to find a mathematical model that describes the behavior of the boiler-shell and tube heat exchanger system, through a compilation of experimental data, data treatment for the proper implementation of the model, which is a fundamental step for avoid creating complex models that are not feasible to implement, search for models relevant to the behavior of the shell and tube boiler-exchanger system, which define in their structure the mathematical and physical behavior of the process; and the due simulation and validation of the mathematical model that best fits the selected pilot plant system.Modalidad Presencialapplication/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)Atribución-NoComercial-SinDerivadas 2.5 Colombiahttp://purl.org/coar/access_right/c_abf2Estudio del comportamiento dinámico del sistema caldera-intercambiador de calor del laboratorio planta piloto mediante modelamiento matemáticoStudy of the dynamic behavior of the boiler-heat exchanger system of the pilot plant laboratory through mathematical modelingIngeniero en EnergíaUniversidad Autónoma de Bucaramanga UNABPregrado Ingeniería en Energíainfo:eu-repo/semantics/bachelorThesisTrabajo de Gradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/redcol/resource_type/TPEnergy engineeringTechnological innovationsEnergyMathematical modelsData processingSimulationIndustrial processesAutomationAutomatic controlManufacture processSimulation methodsIngeniería en energíaInnovaciones tecnológicasEnergíaAutomatizaciónControl automáticoProcesos de manufacturaMetodos de simulaciónModelos matemáticosProcesamiento de datosSimulaciónProcesos industriales[1] S. Moral, “Modelos de computaci´on i,” Granada, Espa˜na: Guias de asignatura. Universidad de Granada, 2006.[2] E. ul Haq, T. U. Rahman, A. Ahad, F. Ali, and M. Ijaz, “Modeling and simulation of an industrial steam boiler,” International Journal of Computer Engineering and Information Technology, vol. 8, no. 1, p. 7, 2016[3] J. Makovicka, V. Havlena, and M. Beneˇs, “Mathematical modelling of steam and flue gas flow in a heat exchanger of a steam boiler,” in Proceedings of ALGORITMY–2002: Conference of Scientific Computing, pp. 171–178, Citeseer, 2002.[4] J. Bujak, “Mathematical modelling of a steam boiler room to research thermal efficiency,” Energy, vol. 33, no. 12, pp. 1779–1787, 2008[5] M.-N. Dumont and G. Heyen, “Mathematical modelling and design of an advanced once-through heat recovery steam generator,” Computers & chemical engineering, vol. 28, no. 5, pp. 651–660, 2004[6] S.-X. Li and J.-S. Wang, “Dynamic modeling of steam condenser and design of pi controller based on grey wolf optimizer,” Mathematical Problems in Engineering, vol. 2015, 2015.[7] S.ChenandS.Billings,“Neuralnetworksfornonlineardynamicsystemmodellingand identification,” International journal of control, vol. 56, no. 2, pp. 319–346, 1992.[8] M. Electronics, “Skelprom.com,” 2008.[9] C. Leys, C. Ley, O. Klein, P. Bernard, and L. Licata, “Detecting outliers: Do not use standarddeviationaroundthemean,useabsolutedeviationaroundthemedian,”Journal of Experimental Social Psychology, vol. 49, no. 4, pp. 764–766, 2013[10] P. J. Rousseeuw and C. Croux, “Alternatives to the median absolute deviation,” Journal of the American Statistical association, vol. 88, no. 424, pp. 1273–1283, 1993.[11] H. Akima, “A new method of interpolation and smooth curve fitting based on local procedures,” Journal of the ACM (JACM), vol. 17, no. 4, pp. 589–602, 1970.[12] “Modified akima piecewise cubic hermite interpolation - matlab makima.”[13] D.Gonz´alez-Mendizabal,“Gu´ıadeintercambiadoresdecalor:tiposgeneralesyaplicaciones,” Universidad Sim´on Bol´ıvar, 2002[14] Y.A.C¸engel,Transferenciadecalorymasa:unenfoquepr´actico. McGraw-Hill,2007.[15] F. G. Ortiz, “Modeling of fire-tube boilers,” Applied Thermal Engineering, vol. 31, no. 16, pp. 3463–3478, 2011.[16] L. Ljung, “Black-box models from input-output measurements,” in Imtc 2001. proceedingsofthe18thieeeinstrumentationandmeasurementtechnologyconference.rediscoveringmeasurementintheageofinformatics(cat.no.01ch37188),vol.1,pp.138–146, IEEE, 2001.[17] E.B.AlbertoHerreros,“Cursodeprogramacionenmatlabysimulink,”tech.rep.,Universidad de Valladolid, 2013.[18] J. C. M. Eugenio, “Neural network toolbox de matlab,” tech. rep., Ciencias Computacionales - INAOE, 2006.[19] Mathworks, “Matlab product description,” 2020[20] E. W. Kamen and B. S. Heck, Fundamentos de se˜nales y sistemas usando la web y Matlab. Pearson Educaci´on, 2008[21] “Filtrado digital lectura 3: Dise˜no de filtros fir.”[22] “Choose a multilayer neural network training function - matlab and simulink.”[23] H. Bastida, C. E. Ugalde-Loo, M. Abeysekera, and M. Qadrdan, “Dynamic modeling and control of a plate heat exchanger,” in 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2), pp. 1–6, IEEE, 2017.[24] A. A. Emhemed, R. B. Mamat, and D. Hanafi, “Mathematical modeling of industrial heatexchangersystem,”inAppliedMechanicsandMaterials,vol.229,pp.2122–2124, Trans Tech Publ, 2012.[25] S. Y. Gandur Adarme, “Dise˜no de control ´optimo y control robusto para regular la temperatura de un intercambiador de calor,” 2016.[26] D. N. L´opez and R. M. Mart´ınez, “Memoria: Control de una caldera de vapor,” 2012.[27] G. Vanti, “¿qu´e es? - grupo vanti,” 2020.ORIGINALTesis de Grado 2020_Tesis_Daniel_Figueroa.pdfTesis de Grado 2020_Tesis_Daniel_Figueroa.pdfTesisapplication/pdf7059412https://repository.unab.edu.co/bitstream/20.500.12749/14908/1/Tesis%20de%20Grado%202020_Tesis_Daniel_Figueroa.pdf49cee662ee4f045ed6ff6754c1805072MD51open access2020_Licencia_Daniel_Figueroa.pdf2020_Licencia_Daniel_Figueroa.pdfLicenciaapplication/pdf566535https://repository.unab.edu.co/bitstream/20.500.12749/14908/2/2020_Licencia_Daniel_Figueroa.pdf1431c577fcfc1abff626de26b040796bMD52metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8829https://repository.unab.edu.co/bitstream/20.500.12749/14908/3/license.txt3755c0cfdb77e29f2b9125d7a45dd316MD53open accessTHUMBNAILTesis de Grado 2020_Tesis_Daniel_Figueroa.pdf.jpgTesis de Grado 2020_Tesis_Daniel_Figueroa.pdf.jpgIM Thumbnailimage/jpeg5872https://repository.unab.edu.co/bitstream/20.500.12749/14908/4/Tesis%20de%20Grado%202020_Tesis_Daniel_Figueroa.pdf.jpgacb7e6c099b332c0f870d9756b5c7877MD54open access2020_Licencia_Daniel_Figueroa.pdf.jpg2020_Licencia_Daniel_Figueroa.pdf.jpgIM Thumbnailimage/jpeg10583https://repository.unab.edu.co/bitstream/20.500.12749/14908/5/2020_Licencia_Daniel_Figueroa.pdf.jpg89b52b4120df63f71e7a5dd689958e70MD55metadata only access20.500.12749/14908oai:repository.unab.edu.co:20.500.12749/149082023-03-15 09:57:46.02open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbi4gRWwgQVVUT1IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVTkFCIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuCgpFbCBBVVRPUiBhdXRvcml6YSBhIGxhIFVuaXZlcnNpZGFkIEF1dMOzbm9tYSBkZSBCdWNhcmFtYW5nYSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24uCg== |