Sistema web de reconocimiento y clasificación de patologías a través de imágenes médicas basado en técnicas de aprendizaje de máquina
La detección de cáncer de tiroides es un proceso que en la actualidad se realiza mediante la interpretación manual que realizan radiólogos especialistas, estas se clasifican utilizando una prueba de tamizaje (discriminatoria) conocida como EU- TIRADS 2017 [2], que determina el grado de malignidad de...
- Autores:
-
Arias Trillos, Yhary Estefanía
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2019
- Institución:
- Universidad Autónoma de Bucaramanga - UNAB
- Repositorio:
- Repositorio UNAB
- Idioma:
- spa
- OAI Identifier:
- oai:repository.unab.edu.co:20.500.12749/7053
- Acceso en línea:
- http://hdl.handle.net/20.500.12749/7053
- Palabra clave:
- Systems engineer
Technological innovations
Data set
Deep learning
Maching
Data increase
Neural networks
Artificial intelligence
Ultrasound
Radiology
Area under the curve
Confusion matrix
Concordance study
Cancer diagnosis
X-rays
Medical examinations
Diagnostic service
Endocrine glands
Ingeniería de sistemas
Innovaciones tecnológicas
Inteligencia artificial
Cáncer diagnóstico
Rayos x
Exámenes médicos
Servicio de diagnóstico
Glándulas endocrinas
Conjunto de datos
Aprendizaje profundo
Aumento de datos
Redes neuronales
Ultrasonido
Radiología
Área bajo la curva
Matriz de confusión
Estudio de concordancia
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id |
UNAB2_dd66118d356dec40db7f05ae070bfd38 |
---|---|
oai_identifier_str |
oai:repository.unab.edu.co:20.500.12749/7053 |
network_acronym_str |
UNAB2 |
network_name_str |
Repositorio UNAB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Sistema web de reconocimiento y clasificación de patologías a través de imágenes médicas basado en técnicas de aprendizaje de máquina |
dc.title.translated.eng.fl_str_mv |
Web recognition and classification system pathologies through medical images based on machine learning techniques |
title |
Sistema web de reconocimiento y clasificación de patologías a través de imágenes médicas basado en técnicas de aprendizaje de máquina |
spellingShingle |
Sistema web de reconocimiento y clasificación de patologías a través de imágenes médicas basado en técnicas de aprendizaje de máquina Systems engineer Technological innovations Data set Deep learning Maching Data increase Neural networks Artificial intelligence Ultrasound Radiology Area under the curve Confusion matrix Concordance study Cancer diagnosis X-rays Medical examinations Diagnostic service Endocrine glands Ingeniería de sistemas Innovaciones tecnológicas Inteligencia artificial Cáncer diagnóstico Rayos x Exámenes médicos Servicio de diagnóstico Glándulas endocrinas Conjunto de datos Aprendizaje profundo Aumento de datos Redes neuronales Ultrasonido Radiología Área bajo la curva Matriz de confusión Estudio de concordancia |
title_short |
Sistema web de reconocimiento y clasificación de patologías a través de imágenes médicas basado en técnicas de aprendizaje de máquina |
title_full |
Sistema web de reconocimiento y clasificación de patologías a través de imágenes médicas basado en técnicas de aprendizaje de máquina |
title_fullStr |
Sistema web de reconocimiento y clasificación de patologías a través de imágenes médicas basado en técnicas de aprendizaje de máquina |
title_full_unstemmed |
Sistema web de reconocimiento y clasificación de patologías a través de imágenes médicas basado en técnicas de aprendizaje de máquina |
title_sort |
Sistema web de reconocimiento y clasificación de patologías a través de imágenes médicas basado en técnicas de aprendizaje de máquina |
dc.creator.fl_str_mv |
Arias Trillos, Yhary Estefanía |
dc.contributor.advisor.spa.fl_str_mv |
Ortiz Beltrán, Ariel |
dc.contributor.author.spa.fl_str_mv |
Arias Trillos, Yhary Estefanía |
dc.contributor.cvlac.*.fl_str_mv |
Ortiz Beltrán, Ariel [0001459925] |
dc.contributor.researchgate.*.fl_str_mv |
Ortiz Beltrán, Ariel [Ariel-Ortiz-Beltran] |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación Tecnologías de Información - GTI Grupo de Investigaciones Clínicas |
dc.subject.keywords.eng.fl_str_mv |
Systems engineer Technological innovations Data set Deep learning Maching Data increase Neural networks Artificial intelligence Ultrasound Radiology Area under the curve Confusion matrix Concordance study Cancer diagnosis X-rays Medical examinations Diagnostic service Endocrine glands |
topic |
Systems engineer Technological innovations Data set Deep learning Maching Data increase Neural networks Artificial intelligence Ultrasound Radiology Area under the curve Confusion matrix Concordance study Cancer diagnosis X-rays Medical examinations Diagnostic service Endocrine glands Ingeniería de sistemas Innovaciones tecnológicas Inteligencia artificial Cáncer diagnóstico Rayos x Exámenes médicos Servicio de diagnóstico Glándulas endocrinas Conjunto de datos Aprendizaje profundo Aumento de datos Redes neuronales Ultrasonido Radiología Área bajo la curva Matriz de confusión Estudio de concordancia |
dc.subject.lemb.spa.fl_str_mv |
Ingeniería de sistemas Innovaciones tecnológicas Inteligencia artificial Cáncer diagnóstico Rayos x Exámenes médicos Servicio de diagnóstico Glándulas endocrinas |
dc.subject.proposal.spa.fl_str_mv |
Conjunto de datos Aprendizaje profundo Aumento de datos Redes neuronales Ultrasonido Radiología Área bajo la curva Matriz de confusión Estudio de concordancia |
description |
La detección de cáncer de tiroides es un proceso que en la actualidad se realiza mediante la interpretación manual que realizan radiólogos especialistas, estas se clasifican utilizando una prueba de tamizaje (discriminatoria) conocida como EU- TIRADS 2017 [2], que determina el grado de malignidad del nódulo tiroideo. La escasez de profesionales y la creciente demanda de este tipo de estudios plantea el problema de la automatización a través de algoritmos de aprendizaje de máquina como los basados en Deep Learning y específicamente, las Redes Neuronales Convolucionales, que han sido probadas anteriormente con éxito para la clasificación de otro tipo de imágenes médicas. En un trabajo anterior, con un dataset de 2000 imágenes balanceado entre 4 categorías (TI-RADS2 - TI-RADS5) se logró una medida de precisión (accuracy) cercana del 65% y una pérdida logarítmica (cross-entropy loss) cercana a 0.78. Sin embargo, este artículo plantea el estudio exploratorio para una posible optimización del algoritmo a través de diferentes pruebas medibles en su parametrización. Las variables que serán ajustadas son: El número de capas convolucionales, el tamaño de la máscara de convolución, las funciones de activación, el número de neuronas en la capa densa, el uso de más capas densas para el aprendizaje, el uso de dropouts aleatorios para controlar el sobreajuste (overfitting), entre otros. La medición comparativa se realiza a través de los valores de precisión, pérdida, la matriz de confusión, y el área bajo la curva ROC. Al final del documento se describe la mejor combinación de los parámetros evaluados y las observaciones pertinentes. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-07-27T19:19:09Z |
dc.date.available.none.fl_str_mv |
2020-07-27T19:19:09Z |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.local.spa.fl_str_mv |
Trabajo de Grado |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12749/7053 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Autónoma de Bucaramanga - UNAB |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional UNAB |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.unab.edu.co |
url |
http://hdl.handle.net/20.500.12749/7053 |
identifier_str_mv |
instname:Universidad Autónoma de Bucaramanga - UNAB reponame:Repositorio Institucional UNAB repourl:https://repository.unab.edu.co |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
[1] Chapter 1: Supervised Learning and Naive Bayes Classification — Part 2 (Coding). (2017). Retrieved from https://medium.com/machine-learning101/chapter-1supervised-learning-and-naive-bayes-classification-part-2coding-5966f25f1475 [2] clinicalkey.es. (2018). Thyroid Imaging. clinicalkey. Retrieved from https://wwwclinicalkey-es.aure.unab.edu.co/service/content/pdf/watermarked/3s2.0B9780323189071000792.pdf?locale=es_ES [3] clinicalkey.es. (2018). Thyroid Neoplasia. Retrieved from https://wwwclinicalkeyes.aure.unab.edu.co/service/content/pdf/watermarked/3s2.0B9780323189071000925.pdf?locale=es_ES [4] ClinicalKey.es. (2018). The Thyroid Gland. Estados Unidos. Retrieved from https://www-clinicalkey- es.aure.unab.edu.co/service/content/pdf/watermarked/3- s2.0B9780323401715000195.pdf?locale=es_ES [5] Department of Computer Science. (1999). Correlation-based Feature Selection for Machine Learning. Hamilton, NewZealand. Retrieved from https://www.lri.fr/~pierres/donn%E9es/save/these/articles/lprqueue/hall99correlationb ased.pdf [6] Department of Computer Science University of Waikato. (1999). Feature Selection for Machine Learning: Comparing a Correlation-based Filter Approach to the Wrapper. New Zealand: waikato. Retrieved from http://www.aaai.org/Papers/FLAIRS/1999/FLAIRS99-042.pdf [7] ESMERILADO - Definición - Significado. (2018). Retrieved from https://diccionario.motorgiga.com/esmerilado [8] Exámenes PET CT y RM: ¿Qué son y cómo usarlos en la medicina diagnóstica?. (2015). Retrieved from http://www.mv.com.br/es/blog/examenes- -pet-ct-y-rm---que-son-y-como-usarlos-en-la-medicina-diagnosticar [9] Medicina nuclear: SPECT y PET en tumores primarios del Sistema Nervioso | NeuroWikia. (2010). Retrieved from http://www.neurowikia.es/content/medicina-nuclear-spect-y-pet-en-tumoresprimariosdel-sn [10] Northside Radiology Associates. (2016). MIBG scintiscan. Atlanta: Editorial team. Retrieved from https://medlineplus.gov/ency/article/003830.htm [11] Positron. (2018). Retrieved from https://en.wikipedia.org/wiki/Positron [12] Pruebas para detectar el cáncer de tiroides. (2016). Retrieved from https://www.cancer.org/es/cancer/cancer-de-tiroides/detecciondiagnosticoclasificacion-por-etapas/como-se-diagnostica.html [13] University of Washington School of Medicine. (2016). Gammagrafía de la tiroides. Seattle: Editorial Director y A.D.A.M. Editorial team. Retrieved from https://medlineplus.gov/spanish/ency/article/003829.htm [14] working paper series. (2000). Correlation - based feature selection ffor discrete and numeric class Machine Learning. New Zealand. Retrieved from https://researchcommons.waikato.ac.nz/bitstream/handle/10289/1024/uow-cswp- 2000-08.pdf?sequence=1&isAllowed=y [15] Yodo-131. (2018). Retrieved from https://es.wikipedia.org/wiki/Yodo-131 [16] ¿Qué es una API REST? - Idento. (2018). Retrieved from https://www.idento.es/blog/desarrollo-web/que-es-una-api-rest/ [17] Cloud AutoML - Custom Machine Learning Models | AutoML | Google Cloud. (2018). Retrieved from https://cloud.google.com/automl/ [18] Convolutional Neural Networks for Visual Recognition. (2018). Retrieved from http://cs231n.github.io/convolutional-networks/ [19] general, M. (2018). Salarios de Médico/a general en Colombia | Indeed.com. Retrieved from https://co.indeed.com/salaries/M%C3%A9dico/a-generalSalaries [20] Journal of Physics: Conference Series. (2016). Recent development of feature extraction and classification multispectral/hyperspectral images: a systematic literature review. Retrieved from http://iopscience.iop.org/article/10.1088/17426596/801/1/012045/pdf [21] Judith Marcin, M. (2018). MRI Scans: Definition, uses, and procedure. Retrieved from https://www.medicalnewstoday.com/articles/146309.php [22] Judith Marcin, M. (2018). MRI Scans: Definition, uses, and procedure. Retrieved from https://www.medicalnewstoday.com/articles/146309.php [21] Principal Component Analysis [PCA]. (2017). Retrieved from https://medium.com/100-days-of-algorithms/day-92-pca-bdb66840a8fb [22] ProClass Software - 2018 Reviews, Pricing & Demo. (2018). Retrieved from https://www.softwareadvice.com/registration/proclass-profile/ [23] ProClass Software - 2018 Reviews, Pricing & Demo. (2018). Retrieved from https://www.softwareadvice.com/registration/proclass-profile/ [24] Purves, D., Augustine, G., Fitzpatrick, D., Katz, L., LaMantia, A., McNamara, J., & Williams, S. (2018). Types of Eye Movements and Their Functions. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK10991/ [25] Robust image hashing using ring partition-PGNMF and local features. (2016). Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5118381/ [26] School of Electronics and Control Engineering Chang'an. (2012). Hyperspectral Image Classification Based on Spectral-Spatial Feature Extraction. Xi’an, China. Retrieved from https://ieeexplore- ieeeorg.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=7958808&tag=1 [27] sistemas, I. (2018). Salarios de Ingeniero/a en sistemas en Colombia | Indeed.com. Retrieved from https://co.indeed.com/salaries/Ingeniero/a-ensistemas-Salaries [26] What is a data set? - Quora. (2017). Retrieved from https://www.quora.com/What-is-adata-set [27] Brownlee, J. (2016). What is Deep Learning? Retrieved from https://machinelearningmastery.com/what-is-deep-learning [27] Brownlee, J. (2016). What is Deep Learning? Retrieved from https://machinelearningmastery.com/what-is-deep-learning [29] Raicea, R. (2018). Want to know how Deep Learning works? Here’s a quick guide for everyone. Retrieved from https://medium.freecodecamp.org/want-toknow-how-deeplearning-works-heres-a-quick-guide-for-everyone1aedeca88076 [30] Tiempo, C. (2018). Sueldo de un profesional con posgrado. Retrieved from https://www.portafolio.co/economia/empleo/un-trabajador-con-posgrado-ganaenpromedio-3-3-millones-mas-que-un-bachiller-512462 [31] School of Electronics and Control Engineering Chang'an University (2017). Hyperspectral Image Classification Based on SpectralSpatial Feature Extraction. Xi’an, China. Retrieved from https://ieeexplore-ieeorg.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=7958808 [32] School of Electronics and Control Engineering. (2013). Using Nonnegative Matrix Factorization with Projected Gradient for Hyperspectral Images Feature Extraction. Retrieved from https://ieeexplore-ieee- org.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=6566423&ta g=1 [33] Dharmsinh Desai University. (2009). Project Classification Using Soft Computing. Nadiad, Gujarat. Retrieved from https://ieeexplore- ieeeorg.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=5376511&ta g=1 [34] Dharmsinh Desai University. (2009). Project Classification Using Soft Computing. Nadiad, Gujarat. Retrieved from https://ieeexplore- ieeeorg.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=5376511&ta g=1 [35] Department of Computer Science California State Polytechnic University. (2016). Oculomotor Plant Feature Extraction from Human Saccadic Eye Movements. Pomona, USA. Retrieved from https://ieeexplore-ieee- org.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=8424698 [36] Bharathidasan College of Arts & Science. (2016). Fusion of Big Data and Neural Networks for Predicting Thyroid. Tamilnadu, India. Retrieved from https://ieeexplore-ieee- org.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=7955223 [36] Bharathidasan College of Arts & Science. (2016). Fusion of Big Data and Neural Networks for Predicting Thyroid. Tamilnadu, India. Retrieved from https://ieeexplore-ieee- org.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=7955223 [37] Bernard, O., Lalande, A., Zotti, C., & Cervenansky, F. (2018). Deep Learning Techniques for Automatic MRI Cardiac Multi-structures Segmentation and Diagnosis: Is the Problem Solved? Retrieved from https://ieeexplore-ieee- org.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=8360453 [38] School of Informatics and Computing, Indiana University. (2015). Temporal Pattern and Association Discovery of Diagnosis Codes using Deep Learning. IN, USA. Retrieved from https://ieeexploreieee- org.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=7349719&ta g=1 [39] Amazon Rekognition – Videos e imágenes – AWS. (2018). Retrieved from https://aws.amazon.com/es/rekognition/?hp=tile&soexp=below [40] AMI de aprendizaje profundo de Amazon. (2018). Retrieved from https://aws.amazon.com/es/machine-learning/amis/?hp=tile&soexp=below [41] Amazon Polly. (2018). Retrieved from https://aws.amazon.com/es/polly/?hp=tile&so-exp=below pruébelo, V. (2018). Chatbot | Deep learning | Amazon Lex. Retrieved from https://aws.amazon.com/es/lex/?hp=tile&soexp=below [42] Amazon Translate – Traducción de máquina neural – AWS. (2018). Retrieved from https://aws.amazon.com/es/translate/?hp=tile&soexp=below [43] What is Watson. (2018). Retrieved from https://www.ibm.com/watson/about/index.html ©2018 IEEE. (2018). Delta Univ. for Science and Technology. Gamasa City, Egypt, from https://ieeexplore-ieee- org.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=8358209 [44] National Chung Hsing University. (2009). Optimal Grouping by using Genetic Algorithm and Support Vector Machines. Retrieved from https://ieeexplore-ieee- org.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=5420079 [45] EEE TRANSACTIONS ON BIOMEDICAL ENGINEERING. (2010). Thyroid Segmentation and Volume Estimation in Ultrasound Images. Retrieved from https://ieeexplore-ieee- org.aure.unab.edu.co/stamp/stamp.jsp tp=&arnumber=5415666&tag=1 [46] IEEE. (2017). Tiroid Kanserinde BilgisayarlÕ Tomografi Temelli Yeni Öznitelikler Computerized Tomography Based Novel Features in Thyroid Cancer. Retrieved from https://ieeexplore-ieee- org.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=8238050 [47] IEEE. (2009). Computer-Aided Diagnosis of Thyroid Malignancy Using an Artificial Immune System Classification Algorithm. Retrieved from https://ieeexplore-ieee- org.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=4539694 [48] AIMBE. (2012). Automated Benign & Malignant Thyroid Lesion Characterization and Classification in 3D Contrast-Enhanced Ultrasound. IEEE. Retrieved from https://ieeexplore-ieee- org.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=6345965 [49] The department of thyroid surgery. (2012). Discussion about misdiagnosed reasons and reoperation of thyroid cancer. Changchun city, China. Retrieved from https://ieeexplore- ieeeorg.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=6291383 [50] Department of Electronics and Computer Engineering, Gifu University Yanagido. (1992). Neural Network Approach for the ComputerAided Diagnosis of Coronary Artery Diseases in Nuclear Medicine. Retrieved from https://ieeexplore-ieeeorg.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=227168 [51] Shandong Provincial Key Laboratory of Computer Networks. (2016). Web Identification Image Recognition Based on Deep Learning. Jinan, China. Retrieved from https://ieeexplore-ieeeorg.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=7726261 [52] College of Computer Science and Technology. (2012). Interface Schema Matching with the Machine Learning for Deep Web. Harbin, P.R. China. Retrieved from https://ieeexplore-ieee.org.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=6526056 [53] Towards Data Science. (2019). Metrics to Evaluate your Machine Learning Algorithm. [online] Available at: https://towardsdatascience.com/metrics-to-evaluate-your-machinelearning-algorithm-f10ba6e38234 [Accessed 5 Jun. 2019]. |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
dc.rights.creativecommons.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 Atribución-NoComercial-SinDerivadas 2.5 Colombia |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.campus.spa.fl_str_mv |
UNAB Campus Bucaramanga |
dc.publisher.grantor.spa.fl_str_mv |
Universidad Autónoma de Bucaramanga UNAB |
dc.publisher.faculty.spa.fl_str_mv |
Facultad Ingeniería |
dc.publisher.program.spa.fl_str_mv |
Pregrado Ingeniería de Sistemas |
institution |
Universidad Autónoma de Bucaramanga - UNAB |
bitstream.url.fl_str_mv |
https://repository.unab.edu.co/bitstream/20.500.12749/7053/1/2019_Tesis_YharyEstefania_Arias_Trillos.pdf https://repository.unab.edu.co/bitstream/20.500.12749/7053/2/2019_Licencia_YharyEstefania_Arias_Trillos.pdf https://repository.unab.edu.co/bitstream/20.500.12749/7053/3/license.txt https://repository.unab.edu.co/bitstream/20.500.12749/7053/4/2019_Tesis_YharyEstefania_Arias_Trillos.pdf.jpg https://repository.unab.edu.co/bitstream/20.500.12749/7053/5/2019_Licencia_YharyEstefania_Arias_Trillos.pdf.jpg |
bitstream.checksum.fl_str_mv |
815ec3b92e577e557b0fa64e12efed4f 6d651538488462f7aa716d7799cf87ee 8a4605be74aa9ea9d79846c1fba20a33 653fc4450edd1bb858f6196ff6a5a77b e8b0c57249de02005e02c1fabed3b95a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB |
repository.mail.fl_str_mv |
repositorio@unab.edu.co |
_version_ |
1814278442523295744 |
spelling |
Ortiz Beltrán, Ariel6f2f1af7-c26f-4acf-88f4-0fdf0fba7842-1Arias Trillos, Yhary Estefanía0bfe4e54-c4a9-465d-9e9a-7b06c7cfbf24-1Ortiz Beltrán, Ariel [0001459925]Ortiz Beltrán, Ariel [Ariel-Ortiz-Beltran]Grupo de Investigación Tecnologías de Información - GTIGrupo de Investigaciones Clínicas2020-07-27T19:19:09Z2020-07-27T19:19:09Z2019http://hdl.handle.net/20.500.12749/7053instname:Universidad Autónoma de Bucaramanga - UNABreponame:Repositorio Institucional UNABrepourl:https://repository.unab.edu.coLa detección de cáncer de tiroides es un proceso que en la actualidad se realiza mediante la interpretación manual que realizan radiólogos especialistas, estas se clasifican utilizando una prueba de tamizaje (discriminatoria) conocida como EU- TIRADS 2017 [2], que determina el grado de malignidad del nódulo tiroideo. La escasez de profesionales y la creciente demanda de este tipo de estudios plantea el problema de la automatización a través de algoritmos de aprendizaje de máquina como los basados en Deep Learning y específicamente, las Redes Neuronales Convolucionales, que han sido probadas anteriormente con éxito para la clasificación de otro tipo de imágenes médicas. En un trabajo anterior, con un dataset de 2000 imágenes balanceado entre 4 categorías (TI-RADS2 - TI-RADS5) se logró una medida de precisión (accuracy) cercana del 65% y una pérdida logarítmica (cross-entropy loss) cercana a 0.78. Sin embargo, este artículo plantea el estudio exploratorio para una posible optimización del algoritmo a través de diferentes pruebas medibles en su parametrización. Las variables que serán ajustadas son: El número de capas convolucionales, el tamaño de la máscara de convolución, las funciones de activación, el número de neuronas en la capa densa, el uso de más capas densas para el aprendizaje, el uso de dropouts aleatorios para controlar el sobreajuste (overfitting), entre otros. La medición comparativa se realiza a través de los valores de precisión, pérdida, la matriz de confusión, y el área bajo la curva ROC. Al final del documento se describe la mejor combinación de los parámetros evaluados y las observaciones pertinentes.Resumen 8 Abstract 8 Introducción 9 Planteamiento del problema 9 Pregunta de investigación 10 Objetivos 10 Objetivo General 10 Objetivos específicos 10 Revisión de literatura 11 Tabla de proyectos 11 Tabla de aplicaciones: 14 Tabla de artículos: 16 Estado del arte 17 Proyectos: 17 Aplicaciones 22 Artículos 26 Marco Teórico 30 Manejo de valores nulos 31 Imputación 32 Estandarización 32 Manejo de variables categóricas 32 La multicolinealidad y su impacto 33 Teorema de Fourier 33 Ultrasonido 34 Extracción de características 37 Pruebas en imágenes 38 Gammagrafía 38 Métricas para evaluar un algoritmo de aprendizaje 39 Precisión de Clasificación 39 Pérdida logarítmica 39 Matriz de confusión 39 Algoritmos de predicción 40 Área bajo la curva 41 Aprendizaje de maquina 42 Metodología 44 Tipo de estudio 45 Población/muestra de referencia 45 Muestra elegible 46 Procesamiento de la imagen 46 Análisis de la imagen: 48 Arquitectura de la red neuronal CNN 48 Entrenamiento de la red neuronal 49 Mediciones de desempeño 50 Resultados 51 Resultados de la prueba 52 Conclusiones 53 Cronograma de actividades 54 Actividades 54 Presupuesto 56 Equipo necesario para el desarrollo 56 Costos: 56 Herramientas: 57 Glosario 58 Referencias 62PregradoDetection of thyroid cancer is a process which is currently done through manual interpretation who perform specialist radiologists, these are classified using a screening test (discriminatory) known as EU- TIRADS 2017 [2], which determines the degree of malignancy of the thyroid nodule. The shortage of professionals and the growing Demand for this type of study raises the problem of automation through machine learning algorithms such as those based on Deep Learning and specifically, Networks Convolutionary neurons, which have been tested formerly successfully for the classification of another type of medical images In a previous job, with a 2000 dataset balanced images between 4 categories (TI-RADS2 - TI-RADS5) a measure of accuracy (accuracy) close to 65% was achieved and a logarithmic loss (cross-entropy loss) close to 0.78. Without However, this article raises the exploratory study for a possible algorithm optimization through different tests Measurable in its parameterization. The variables that will be Fitted are: The number of convolutional layers, the size of the convolution mask, the activation functions, the number of neurons in the dense layer, using more dense layers for the learning, the use of random dropouts to control the overfitting, among others. The comparative measurement is performs through the values of precision, loss, the matrix of confusion, and the area under the ROC curve. At the end of the document describes the best combination of the parameters evaluated and the relevant observations.Modalidad Presencialapplication/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial-SinDerivadas 2.5 ColombiaSistema web de reconocimiento y clasificación de patologías a través de imágenes médicas basado en técnicas de aprendizaje de máquinaWeb recognition and classification system pathologies through medical images based on machine learning techniquesIngeniero de SistemasUniversidad Autónoma de Bucaramanga UNABFacultad IngenieríaPregrado Ingeniería de Sistemasinfo:eu-repo/semantics/bachelorThesisTrabajo de Gradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/redcol/resource_type/TPSystems engineerTechnological innovationsData setDeep learningMachingData increaseNeural networksArtificial intelligenceUltrasoundRadiologyArea under the curveConfusion matrixConcordance studyCancer diagnosisX-raysMedical examinationsDiagnostic serviceEndocrine glandsIngeniería de sistemasInnovaciones tecnológicasInteligencia artificialCáncer diagnósticoRayos xExámenes médicosServicio de diagnósticoGlándulas endocrinasConjunto de datosAprendizaje profundoAumento de datosRedes neuronalesUltrasonidoRadiologíaÁrea bajo la curvaMatriz de confusiónEstudio de concordancia[1] Chapter 1: Supervised Learning and Naive Bayes Classification — Part 2 (Coding). (2017). Retrieved from https://medium.com/machine-learning101/chapter-1supervised-learning-and-naive-bayes-classification-part-2coding-5966f25f1475[2] clinicalkey.es. (2018). Thyroid Imaging. clinicalkey. Retrieved from https://wwwclinicalkey-es.aure.unab.edu.co/service/content/pdf/watermarked/3s2.0B9780323189071000792.pdf?locale=es_ES[3] clinicalkey.es. (2018). Thyroid Neoplasia. Retrieved from https://wwwclinicalkeyes.aure.unab.edu.co/service/content/pdf/watermarked/3s2.0B9780323189071000925.pdf?locale=es_ES[4] ClinicalKey.es. (2018). The Thyroid Gland. Estados Unidos. Retrieved from https://www-clinicalkey- es.aure.unab.edu.co/service/content/pdf/watermarked/3- s2.0B9780323401715000195.pdf?locale=es_ES[5] Department of Computer Science. (1999). Correlation-based Feature Selection for Machine Learning. Hamilton, NewZealand. Retrieved from https://www.lri.fr/~pierres/donn%E9es/save/these/articles/lprqueue/hall99correlationb ased.pdf[6] Department of Computer Science University of Waikato. (1999). Feature Selection for Machine Learning: Comparing a Correlation-based Filter Approach to the Wrapper. New Zealand: waikato. Retrieved from http://www.aaai.org/Papers/FLAIRS/1999/FLAIRS99-042.pdf[7] ESMERILADO - Definición - Significado. (2018). Retrieved from https://diccionario.motorgiga.com/esmerilado[8] Exámenes PET CT y RM: ¿Qué son y cómo usarlos en la medicina diagnóstica?. (2015). Retrieved from http://www.mv.com.br/es/blog/examenes- -pet-ct-y-rm---que-son-y-como-usarlos-en-la-medicina-diagnosticar[9] Medicina nuclear: SPECT y PET en tumores primarios del Sistema Nervioso | NeuroWikia. (2010). Retrieved from http://www.neurowikia.es/content/medicina-nuclear-spect-y-pet-en-tumoresprimariosdel-sn[10] Northside Radiology Associates. (2016). MIBG scintiscan. Atlanta: Editorial team. Retrieved from https://medlineplus.gov/ency/article/003830.htm[11] Positron. (2018). Retrieved from https://en.wikipedia.org/wiki/Positron[12] Pruebas para detectar el cáncer de tiroides. (2016). Retrieved from https://www.cancer.org/es/cancer/cancer-de-tiroides/detecciondiagnosticoclasificacion-por-etapas/como-se-diagnostica.html[13] University of Washington School of Medicine. (2016). Gammagrafía de la tiroides. Seattle: Editorial Director y A.D.A.M. Editorial team. Retrieved from https://medlineplus.gov/spanish/ency/article/003829.htm[14] working paper series. (2000). Correlation - based feature selection ffor discrete and numeric class Machine Learning. New Zealand. Retrieved from https://researchcommons.waikato.ac.nz/bitstream/handle/10289/1024/uow-cswp- 2000-08.pdf?sequence=1&isAllowed=y[15] Yodo-131. (2018). Retrieved from https://es.wikipedia.org/wiki/Yodo-131[16] ¿Qué es una API REST? - Idento. (2018). Retrieved from https://www.idento.es/blog/desarrollo-web/que-es-una-api-rest/[17] Cloud AutoML - Custom Machine Learning Models | AutoML | Google Cloud. (2018). Retrieved from https://cloud.google.com/automl/[18] Convolutional Neural Networks for Visual Recognition. (2018). Retrieved from http://cs231n.github.io/convolutional-networks/[19] general, M. (2018). Salarios de Médico/a general en Colombia | Indeed.com. Retrieved from https://co.indeed.com/salaries/M%C3%A9dico/a-generalSalaries[20] Journal of Physics: Conference Series. (2016). Recent development of feature extraction and classification multispectral/hyperspectral images: a systematic literature review. Retrieved from http://iopscience.iop.org/article/10.1088/17426596/801/1/012045/pdf[21] Judith Marcin, M. (2018). MRI Scans: Definition, uses, and procedure. Retrieved from https://www.medicalnewstoday.com/articles/146309.php[22] Judith Marcin, M. (2018). MRI Scans: Definition, uses, and procedure. Retrieved from https://www.medicalnewstoday.com/articles/146309.php[21] Principal Component Analysis [PCA]. (2017). Retrieved from https://medium.com/100-days-of-algorithms/day-92-pca-bdb66840a8fb[22] ProClass Software - 2018 Reviews, Pricing & Demo. (2018). Retrieved from https://www.softwareadvice.com/registration/proclass-profile/[23] ProClass Software - 2018 Reviews, Pricing & Demo. (2018). Retrieved from https://www.softwareadvice.com/registration/proclass-profile/[24] Purves, D., Augustine, G., Fitzpatrick, D., Katz, L., LaMantia, A., McNamara, J., & Williams, S. (2018). Types of Eye Movements and Their Functions. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK10991/[25] Robust image hashing using ring partition-PGNMF and local features. (2016). Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5118381/[26] School of Electronics and Control Engineering Chang'an. (2012). Hyperspectral Image Classification Based on Spectral-Spatial Feature Extraction. Xi’an, China. Retrieved from https://ieeexplore- ieeeorg.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=7958808&tag=1[27] sistemas, I. (2018). Salarios de Ingeniero/a en sistemas en Colombia | Indeed.com. Retrieved from https://co.indeed.com/salaries/Ingeniero/a-ensistemas-Salaries[26] What is a data set? - Quora. (2017). Retrieved from https://www.quora.com/What-is-adata-set[27] Brownlee, J. (2016). What is Deep Learning? Retrieved from https://machinelearningmastery.com/what-is-deep-learning[27] Brownlee, J. (2016). What is Deep Learning? Retrieved from https://machinelearningmastery.com/what-is-deep-learning[29] Raicea, R. (2018). Want to know how Deep Learning works? Here’s a quick guide for everyone. Retrieved from https://medium.freecodecamp.org/want-toknow-how-deeplearning-works-heres-a-quick-guide-for-everyone1aedeca88076[30] Tiempo, C. (2018). Sueldo de un profesional con posgrado. Retrieved from https://www.portafolio.co/economia/empleo/un-trabajador-con-posgrado-ganaenpromedio-3-3-millones-mas-que-un-bachiller-512462[31] School of Electronics and Control Engineering Chang'an University (2017). Hyperspectral Image Classification Based on SpectralSpatial Feature Extraction. Xi’an, China. Retrieved from https://ieeexplore-ieeorg.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=7958808[32] School of Electronics and Control Engineering. (2013). Using Nonnegative Matrix Factorization with Projected Gradient for Hyperspectral Images Feature Extraction. Retrieved from https://ieeexplore-ieee- org.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=6566423&ta g=1[33] Dharmsinh Desai University. (2009). Project Classification Using Soft Computing. Nadiad, Gujarat. Retrieved from https://ieeexplore- ieeeorg.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=5376511&ta g=1[34] Dharmsinh Desai University. (2009). Project Classification Using Soft Computing. Nadiad, Gujarat. Retrieved from https://ieeexplore- ieeeorg.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=5376511&ta g=1[35] Department of Computer Science California State Polytechnic University. (2016). Oculomotor Plant Feature Extraction from Human Saccadic Eye Movements. Pomona, USA. Retrieved from https://ieeexplore-ieee- org.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=8424698[36] Bharathidasan College of Arts & Science. (2016). Fusion of Big Data and Neural Networks for Predicting Thyroid. Tamilnadu, India. Retrieved from https://ieeexplore-ieee- org.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=7955223[36] Bharathidasan College of Arts & Science. (2016). Fusion of Big Data and Neural Networks for Predicting Thyroid. Tamilnadu, India. Retrieved from https://ieeexplore-ieee- org.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=7955223[37] Bernard, O., Lalande, A., Zotti, C., & Cervenansky, F. (2018). Deep Learning Techniques for Automatic MRI Cardiac Multi-structures Segmentation and Diagnosis: Is the Problem Solved? Retrieved from https://ieeexplore-ieee- org.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=8360453[38] School of Informatics and Computing, Indiana University. (2015). Temporal Pattern and Association Discovery of Diagnosis Codes using Deep Learning. IN, USA. Retrieved from https://ieeexploreieee- org.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=7349719&ta g=1[39] Amazon Rekognition – Videos e imágenes – AWS. (2018). Retrieved from https://aws.amazon.com/es/rekognition/?hp=tile&soexp=below[40] AMI de aprendizaje profundo de Amazon. (2018). Retrieved from https://aws.amazon.com/es/machine-learning/amis/?hp=tile&soexp=below[41] Amazon Polly. (2018). Retrieved from https://aws.amazon.com/es/polly/?hp=tile&so-exp=below pruébelo, V. (2018). Chatbot | Deep learning | Amazon Lex. Retrieved from https://aws.amazon.com/es/lex/?hp=tile&soexp=below[42] Amazon Translate – Traducción de máquina neural – AWS. (2018). Retrieved from https://aws.amazon.com/es/translate/?hp=tile&soexp=below[43] What is Watson. (2018). Retrieved from https://www.ibm.com/watson/about/index.html ©2018 IEEE. (2018). Delta Univ. for Science and Technology. Gamasa City, Egypt, from https://ieeexplore-ieee- org.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=8358209[44] National Chung Hsing University. (2009). Optimal Grouping by using Genetic Algorithm and Support Vector Machines. Retrieved from https://ieeexplore-ieee- org.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=5420079[45] EEE TRANSACTIONS ON BIOMEDICAL ENGINEERING. (2010). Thyroid Segmentation and Volume Estimation in Ultrasound Images. Retrieved from https://ieeexplore-ieee- org.aure.unab.edu.co/stamp/stamp.jsp tp=&arnumber=5415666&tag=1[46] IEEE. (2017). Tiroid Kanserinde BilgisayarlÕ Tomografi Temelli Yeni Öznitelikler Computerized Tomography Based Novel Features in Thyroid Cancer. Retrieved from https://ieeexplore-ieee- org.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=8238050[47] IEEE. (2009). Computer-Aided Diagnosis of Thyroid Malignancy Using an Artificial Immune System Classification Algorithm. Retrieved from https://ieeexplore-ieee- org.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=4539694[48] AIMBE. (2012). Automated Benign & Malignant Thyroid Lesion Characterization and Classification in 3D Contrast-Enhanced Ultrasound. IEEE. Retrieved from https://ieeexplore-ieee- org.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=6345965[49] The department of thyroid surgery. (2012). Discussion about misdiagnosed reasons and reoperation of thyroid cancer. Changchun city, China. Retrieved from https://ieeexplore- ieeeorg.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=6291383[50] Department of Electronics and Computer Engineering, Gifu University Yanagido. (1992). Neural Network Approach for the ComputerAided Diagnosis of Coronary Artery Diseases in Nuclear Medicine. Retrieved from https://ieeexplore-ieeeorg.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=227168[51] Shandong Provincial Key Laboratory of Computer Networks. (2016). Web Identification Image Recognition Based on Deep Learning. Jinan, China. Retrieved from https://ieeexplore-ieeeorg.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=7726261[52] College of Computer Science and Technology. (2012). Interface Schema Matching with the Machine Learning for Deep Web. Harbin, P.R. China. Retrieved from https://ieeexplore-ieee.org.aure.unab.edu.co/stamp/stamp.jsp?tp=&arnumber=6526056[53] Towards Data Science. (2019). Metrics to Evaluate your Machine Learning Algorithm. [online] Available at: https://towardsdatascience.com/metrics-to-evaluate-your-machinelearning-algorithm-f10ba6e38234 [Accessed 5 Jun. 2019].UNAB Campus BucaramangaORIGINAL2019_Tesis_YharyEstefania_Arias_Trillos.pdf2019_Tesis_YharyEstefania_Arias_Trillos.pdfTesisapplication/pdf1653868https://repository.unab.edu.co/bitstream/20.500.12749/7053/1/2019_Tesis_YharyEstefania_Arias_Trillos.pdf815ec3b92e577e557b0fa64e12efed4fMD51open access2019_Licencia_YharyEstefania_Arias_Trillos.pdf2019_Licencia_YharyEstefania_Arias_Trillos.pdfLicenciaapplication/pdf119824https://repository.unab.edu.co/bitstream/20.500.12749/7053/2/2019_Licencia_YharyEstefania_Arias_Trillos.pdf6d651538488462f7aa716d7799cf87eeMD52metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.unab.edu.co/bitstream/20.500.12749/7053/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53open accessTHUMBNAIL2019_Tesis_YharyEstefania_Arias_Trillos.pdf.jpg2019_Tesis_YharyEstefania_Arias_Trillos.pdf.jpgIM Thumbnailimage/jpeg4881https://repository.unab.edu.co/bitstream/20.500.12749/7053/4/2019_Tesis_YharyEstefania_Arias_Trillos.pdf.jpg653fc4450edd1bb858f6196ff6a5a77bMD54open access2019_Licencia_YharyEstefania_Arias_Trillos.pdf.jpg2019_Licencia_YharyEstefania_Arias_Trillos.pdf.jpgIM Thumbnailimage/jpeg11140https://repository.unab.edu.co/bitstream/20.500.12749/7053/5/2019_Licencia_YharyEstefania_Arias_Trillos.pdf.jpge8b0c57249de02005e02c1fabed3b95aMD55metadata only access20.500.12749/7053oai:repository.unab.edu.co:20.500.12749/70532024-01-19 18:57:20.413open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |