Visual hemifield differences in contextual cueing performance

Las escenas visuales son complejas y sobrecargadas de información pero, aún así, contienen elementos invariables que se mantienen a través del tiempo. El contextual cueing paradigm demuestra la existencia de una forma implícita de memoria para el contexto visual que guía la atención a los aspectos m...

Full description

Autores:
Herrera Chaves, Daniela
Mateus Vélez, Sandra
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2017
Institución:
Universidad Autónoma de Bucaramanga - UNAB
Repositorio:
Repositorio UNAB
Idioma:
spa
OAI Identifier:
oai:repository.unab.edu.co:20.500.12749/364
Acceso en línea:
http://hdl.handle.net/20.500.12749/364
Palabra clave:
Memory
Visual perception
Psychology
Research
Visual scenes
Visuospatial attention
Memoria
Percepción visual
Psicología
Investigaciones
Escenas visuales
Atención visuoespacial
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UNAB2_d58d467e423213a581ed48a35abf9cb7
oai_identifier_str oai:repository.unab.edu.co:20.500.12749/364
network_acronym_str UNAB2
network_name_str Repositorio UNAB
repository_id_str
dc.title.spa.fl_str_mv Visual hemifield differences in contextual cueing performance
dc.title.translated.eng.fl_str_mv Visual hemifield differences in contextual cueing performance
title Visual hemifield differences in contextual cueing performance
spellingShingle Visual hemifield differences in contextual cueing performance
Memory
Visual perception
Psychology
Research
Visual scenes
Visuospatial attention
Memoria
Percepción visual
Psicología
Investigaciones
Escenas visuales
Atención visuoespacial
title_short Visual hemifield differences in contextual cueing performance
title_full Visual hemifield differences in contextual cueing performance
title_fullStr Visual hemifield differences in contextual cueing performance
title_full_unstemmed Visual hemifield differences in contextual cueing performance
title_sort Visual hemifield differences in contextual cueing performance
dc.creator.fl_str_mv Herrera Chaves, Daniela
Mateus Vélez, Sandra
dc.contributor.advisor.spa.fl_str_mv Rosero Pahi, Mario Alberto
dc.contributor.author.spa.fl_str_mv Herrera Chaves, Daniela
Mateus Vélez, Sandra
dc.contributor.cvlac.*.fl_str_mv Rosero Pahi, Mario Alberto [0001356760]
dc.contributor.googlescholar.*.fl_str_mv Rosero Pahi, Mario Alberto [lmqwzwUAAAAJ&hl=en]
dc.contributor.orcid.*.fl_str_mv Rosero Pahi, Mario Alberto [0000-0002-9546-4064]
dc.contributor.researchgate.*.fl_str_mv Rosero Pahi, Mario Alberto [Mario-Alberto-Rosero-Pahi]
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Violencia, Lenguaje y Estudios Culturales
dc.subject.keywords.eng.fl_str_mv Memory
Visual perception
Psychology
Research
Visual scenes
Visuospatial attention
topic Memory
Visual perception
Psychology
Research
Visual scenes
Visuospatial attention
Memoria
Percepción visual
Psicología
Investigaciones
Escenas visuales
Atención visuoespacial
dc.subject.lemb.spa.fl_str_mv Memoria
Percepción visual
Psicología
Investigaciones
dc.subject.proposal.spa.fl_str_mv Escenas visuales
Atención visuoespacial
description Las escenas visuales son complejas y sobrecargadas de información pero, aún así, contienen elementos invariables que se mantienen a través del tiempo. El contextual cueing paradigm demuestra la existencia de una forma implícita de memoria para el contexto visual que guía la atención a los aspectos más relevantes de una escena, optimizando así la búsqueda visual. Varios estudios han encontrado un sesgo hacia el hemisferio derecho en la atención visuoespacial, pero los resultados han sido menos concluyentes en lo referente a las diferencias hemisféricas en el contextual cueing. Debido a que la atención visuoespacial es un mecanismo crucial en el contextual cuieng task, hipotetizamos que el desempeño en esta tarea sería superior cuando los estímulos fueran presentados en el hemicampo izquierdo. Siendo así, comparamos el desempeño en la tarea dependiendo de la ubicación visuoespacial de los estímulos (hemicampo visual izquierdo o derecho) y no encontramos diferencias significativas entre hemicampos. Estos resultados pueden deberse a diferencias individuales entre sujetos y a que en el contextual cueing participan la atención dirigida por objetivos y la atención dirigida por estímulos, las cuales tienen diferentes patrones de lateralización en el cerebro.
publishDate 2017
dc.date.issued.none.fl_str_mv 2017-05-17
dc.date.accessioned.none.fl_str_mv 2020-06-26T16:15:06Z
dc.date.available.none.fl_str_mv 2020-06-26T16:15:06Z
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.local.spa.fl_str_mv Trabajo de Grado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12749/364
dc.identifier.instname.spa.fl_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UNAB
url http://hdl.handle.net/20.500.12749/364
identifier_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
reponame:Repositorio Institucional UNAB
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Herrera Chaves, Daniela, Mateus Vélez, Sandra (2017). Visual hemifield differences in contextual cueing performance. Bucaramanga (Colombia) : Universidad Autónoma de Bucaramanga UNAB
Becker, E. & Karnath, H., (2007). Incidence of visual extinction after left versus right hemisphere stroke. Stroke, 38(12), 3172-3174. doi: 10.1161/STROKEAHA.107.489096
Bertels, J., Boursain, E., Destrebecqz, A. & Gaillard, V. (2015). Visual statistical learning in children and young adults: How implicit? Frontiers in Psychology, 5(1541), 111. doi: 10.3389/fpsyg.2014.01541
Buckner, A. & Wippich, W. (1998). Differences and commonalities between implicit learning and implicit memory. In Stadler, M.A. & Frensch, P.A., (Eds.) Handbook of implicit learning (pp. 3-46). Thousand Oaks, CA, US: Sage Publications, Inc.
Cai, Q., Van der Haegen, L. & Brysbaert, M. (2013). Complementary hemispheric specialization for language production and visuospatial attention. Proceedings of the National Academy of Science, 110(4), E322–E330. doi: 10.1073/pnas.1212956110
Chokron, S., Brickman, A.M., Wei, T. & Buchsbaum, M.S. (2000). Hemispheric asymmetry for selective attention. Cognitive Brain Research, 9, 85-90. doi: http://doi.org/10.1016/S0006-8993(99)02169-1
Chun, M.M. (2000). Contextual cueing of visual attention. Trends in Cognitive Sciences, 4(5), 170-177. doi: http://dx.doi.org/10.1016/S1364-6613(00)01476-5
Chun, M.M. & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36, 28–71. doi: http://doi.org/10.1006/cogp.1998.0681
Chun, M.M. & Nakayama, K. (2000). On the functional role of implicit visual memory for the adaptive deployment of attention across scenes. Visual Cognition, 7, 65-81. doi: http://dx.doi.org/10.1080/135062800394685
Chun, M.M. & Phelps, E.A. (1999). Memory deficits for implicit contextual information in amnesic subjects with hippocampal damage. Nature America, 2(9), 844-847. doi: 10.1038/12222
Cleeremans, A., Destrebecqz, A. & Boyer, M. (1998). Implicit learning: News from the front. Trends in Cognitive Sciences, 2(10), 406-416. doi: http://doi.org/10.1016/S1364-6613(98)01232-7
Corbetta, M. & Shulman, G.L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201-215. doi: 10.1038/nrn755
Corbetta, M. & Shulman, G.L. (2011). Spatial neglect and attention networks. Annual Review of Neuroscience, 34, 569-599. doi: 10.1146/annurev-neuro-061010-113731
Gotts, S.J., Joon Jo, H., Wallace, G.L., Saad., Z.S., Cox, R.W. & Martin, A. (2013). Two distinct forms of functional lateralization in the human brain. Proceedings of the National Academy of Science, 110(36), E3435–E3444. doi: 10.1073/pnas.1302581110
Goujon, A., Didierjean, A. & Thorpe, S. (2015). Investigating implicit statistical learning mechanisms through contextual cueing. Trends in Cognitive Sciences, 19(9), 524-533. doi: http://dx.doi.org/10.1016/j.tics.2015.07.0
Greene, A.J., Gross, W.L., Elsinger, C.L., & Rao, S.M. (2007). Hippocampal differentiation without recognition: An fMRI analysis of the contextual cueing task. Learning & Memory, 14, 548-553. Retrieved from: http://www.learnmem.org/cgi/doi/10.1101/lm.609807
Goldstein, E.B. (2008). Cognitive Psychology (2nd ed.). Belmont, CA: Wadsworth Cengage Learning.
Güntürkün, O. & Ocklenburg, S. (2017). Ontogenesis of lateralization. Neuron, 94, 249-263. doi: http://dx.doi.org/10.1016/j.neuron.2017.02.045
Hellige, J.B., Laeng, B. & Michimata, C. (2010). Processing asymmetries in the visual system. In Hughdal, K. & Westerhausen, R. (Eds.), The two halves of the brain: Information processing in the cerebral hemispheres (pp. 379-416). Cambridge, MA: The MIT Press
Hopkins, W.D. (2007). Hemispheric specialization in chimpanzees: Evolution of hand and brain. In Platek, S.M.,
Keenan, J.P. & Shackelford, T.K. (Eds.), Evolutionary Cognitive Neuroscience. (pp. 95-119). Cambridge, MA: The MIT Press
Hutchinson, J.B. & Turk-Browne, N.B. (2012). Memory-guided attention: control from multiple memory systems. Trends in Cognitive Sciences, 16(12), 576-579. doi: 10.1016/j.tics.2012.10.003
Janacsek, K., Ambrus, G.G., Paulus, W., Antal, A. & Nemeth, D. (2015). Right Hemisphere Advantage in Statistical Learning: Evidence From a Probabilistic Sequence Learning Task. Brain Stimulation, 8, 277-282. doi: http://dx.doi.org/10.1016/j.brs.2014.11.008
Kingstone, A.K., Enns, J.T., Mangun, G.R. & Gazzaniga, M.S. (1995). Guided visual search is a left-hemisphere process in split-brain patients. Psychological Science, 6(2), 118121. doi: 10.1111/j.1467-9280.1995.tb00317.x
Kolb, B. & Wishaw, I.Q. (2003). Fundamentals of Human Neuropsychology (5th ed.). New York, NY: W.H. Freeman.
Kornrumpf, B., Dimigen, O. & Sommer, W. (2017). Lateralization of posterior alpha EEG reflects the distribution of spatial attention during saccadic Reading. Psychophysiology, doi: 10.1111/psyp.12849
Kosslyn, S.M., Chabris, C.F. & Laeng, B. Asymmetries in encoding spatial relations. In Davidson, R. & Hugdahl, K. (Eds.), The asymmetrical brain (pp. 303-339). Cambridge, MA: The MIT Press.
Krogh, L., Vlach, H.A., Johnson, S.P. (2013). Statistical learning across development: flexible yet constrained. Frontiers in Psychology, 3(598), 1- 11. doi: 10.3389/fpsyg.2012.00598
Laeng , B. (1994). Lateralization of categorical and coordinate spatial functions: A study of unilateral stroke patients. Journal of Cognitive Neuroscience, 6, 189–203. doi: 10.1162/jocn.1994.6.3.189
Laeng , B. ( 2006 ). Constructional apraxia after left or right unilateral stroke. Neuropsychologia, 44, 1595–1606.doi: 10.1016/j.neuropsychologia.2006.01.023
Malhotra, P., Coulthard, E.J. & Husain, M. (2009). Role of right posterior parietal cortex in maintaining attention to spatial locations over time. A Journal of Neurology, 132, 643-660. doi:10.1093/brain/awn350
Manelis, A. & Reder, L.M. (2012). Procedural learning and associative memory mechanisms contribute to contextual cueing: Evidence from fMRI and eye-tracking. Learning & Memory, 19, 527-534. Retrieved from: http://www.learnmem.org/cgi/doi/10.1101/lm.025973.112.
Meador, K.J., Allison, J.D., Loring, D.W., Lavin, T.B. & Pillai, J.J. (2002). Topography of somatosensory processing: Cerebral lateralization and focused attention. Journal of the International Neuropsychological Society, 8, 349-359. doi: 10.1017.S1355617701020161
Miniussi, C., Rao, A. & Nobre, A.C. (2002). Watching where you look: modulation of visual processing of foveal stimuli by spatial attention. Neuropsychologia, 40, 2448-2460.doi: http://doi.org/10.1016/S0028-3932(02)00080-5
Müri, R.M., Bühler, R., Heinemann, D., Mosimann, U.P., Felblinger, J., Schlaepfer, T.E. & Hess, C.W. (2002).
Hemispheric asymmetry in visuospatial attention assessed with transcranial magnetic stimulation. Experimental Brain Research, 143, 426-430. doi: 10.1007/s00221-002-1009-9
Negash, S., Kliot, D., Howard, V., Howard, J.H., Das, S.R., Yushkevich, P.A., Pluta, J.B., Arnold, S.E. & Wolk, D.A. (2015). Relationship of contextual cueing and hippocampal volume in amnestic mild cognitive impairment patients and cognitively normal older adults. Journal of the International Neuropsychological Society, 21, 285-296. doi: https://doi.org/10.1017/S1355617715000223
Ocklenburg, S. & Güntürkün, O. (2012). Hemispheric asymmetries: The comparative view. Frontiers in Psychology, 3(5), 19.doi: 10.3389/fpsyg.2012.00005
O’Connell, R.G., Schneider, D., Hester, R., Mattingley, J.B. & Bellgrove, M.A. (2010). Attentional load asymmetrically affects early electrophysiological indices of visual orienting. Cerebral Cortex, 21(5), 1056-1065. doi: https://doi.org/10.1093/cercor/bhq178
Oldfield, R.C. (1971). The assessment and analysis of handedness: The Edinburgh Inventory. Neuropsychologia, 9, 97-113. Retrieved from: http://gade.psy.ku.dk/Readings/Oldfield1971.pdf
Olson, I.R. & Chun, M.M. (2002). Perceptual constraints on implicit learning of spatial context. Visual Cognition, 9(3), 273-302. doi:10.1080/13506280042000162
Park, H., Quinlan, J., Thornton, E. & Reder, L. (2004). The effect of midazolam on visual search: Implications for understanding amnesia. Proceedings of the National Academy of Science, 101(51), 17879-17883. Retreived from: www.pnas.org_cgi_doi_10.1073_pnas.0408075101
Purves, D., Augustine, G.J., Fitzpatrick, D., Hall, W.C., LaMantia, A., McNamara, J.O. & Williams, S.M. (2004) Neuroscience (3rd ed.). Sunderland, MA: Sinauer Associates, Inc
Reber, P.J. (2008). Cognitive neuroscience of declarative and nondeclarative memory. Human Learning, 139, 113-123. doi: http://doi.org/10.1016/S0166-4115(08)10010-3
Reber, P.J. (2013). The neural basis of implicit learning and memory: A review of neuropsychological and neuroimaging research. Neuropsychologia, 51, 2026-2042. doi: http://dx.doi.org/10.1016/j.neuropsychologia.2013.06.019
Reddon, A.R. & Hurd, P.L. (2009). Individual differences in cerebral lateralization are associated with shy-bold variation in convict cichlid. Animal Behaviour, 77, 189193. doi:10.1016/j.anbehav.2008.09.026
Roser, M.E., Fiser, J., Aslin, R.N. & Gazzaniga, M.S. (2011). Right hemisphere dominance in visual statistical learning. Journal of Cognitive Neuroscience, 23(5), 1088-1099. doi:10.1162/jocn.2010.21508
Rushworth, M.F.S., Ellison, A. & Walsh, V. (2001). Complementary localization and lateralization of orienting and motor attention. Nature Neuroscience, 4(6), 656-661. doi:10.1038/88492
Rushworth, M.F.S., Krams, M. & Passingham, R.E. (2001). The attentional role of the left parietal cortex: The distinct lateralization and localization of motor attention in the human brain. Journal of Cognitive Neuroscience, 13(5), 698-710. doi:10.1162/089892901750363244
Schott, B.H., Henson, R.N., Richardson-Klavehn, A., Becker, C., Thoma, V., Heinze, H. & Düzel, E. (2004). Redefining implicit and explicit memory: The functional neuroanatomy of priming, remembering, and control of retrieval. Procedings of the National Academy of Science, 102(4), 1257-1262. Retrieved from www.pnas.org_cgi_doi_10.1073_pnas.0409070102
Shulman, G.L, Pope, D.L.W., Astafiev, S.V., McAvoy, M.P., Snyder, A.Z. & Corbetta, M. (2010). Right hemisphere dominance during spatial selective attention and target detection occurs outside the dorsal fronto-parietal network. The Journal of Neuroscience, 30(10), 3640-3651. doi:10.1523/JNEUROSCI.4085-09.2010
Squire, L.R, Bloom, F.E., Spitzer, N.C., du Lac, S., Ghosh, A. & Berg, D. (2008). Fundamental Neuroscience (3rd ed.) San Diego, CA: Elsevier
Stevens, M.C., Calhoun, V.D. & Kiehl, K.A. (2005). Hemispheric differences in hemodynamics elicited by auditory oddball stimuli. Neuroimage, 26(3), 782-792. doi:10.1016/j.neuroimage.2005.02.044
Thiebaut de Schotten, M., Dell’Acqua, F., Forkel, S.J., Simmons, A., Vergani, F., Murphy, D.G.M. & Catani, M. (2011). A lateralized brain network for visuospatial attention. Nature Neuroscience, 14(10), 1245-1246. doi:10.1038/nn.2905
Vauclair, J., Yamazaki, Y. & Güntürkün, O. (2006). The study of hemispheric specialization for categorical and coordinate spatial relations in animals. Neuropsychologia, 44(9), 1524-1534. doi: http://doi.org/10.1016/j.neuropsychologia.2006.01.021
Vossel, S., Geng, J.J. & Fink, G.R. (2014). Dorsal and ventral attention systems: Distinct neural circuits but collaborative roles. Neuroscientist, 20(2), 150-159. doi: 10.1177/1073858413494269
Wu, Y., Wang, J., Zhang, Y., Zheng, D., Zhang, J., Rong, M., Wu., H., Wang, Y., Zhou, K. & Jiang, T. (2016). The neuroanatomical basis for posterior superior parietal lobule control lateralization of visuospatial attention. Frontiers in Neuroanatomy, 10(32), 1-9. doi: 10.3389/fnana.2016.00032
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
Atribución-NoComercial-SinDerivadas 2.5 Colombia
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spa.fl_str_mv Bucaramanga (Colombia)
dc.coverage.campus.spa.fl_str_mv UNAB Campus Bucaramanga
dc.publisher.grantor.spa.fl_str_mv Universidad Autónoma de Bucaramanga UNAB
dc.publisher.faculty.spa.fl_str_mv Facultad Ciencias de la Salud
dc.publisher.program.spa.fl_str_mv Pregrado Psicología
institution Universidad Autónoma de Bucaramanga - UNAB
bitstream.url.fl_str_mv https://repository.unab.edu.co/bitstream/20.500.12749/364/1/2017_Tesis_Daniela_Herrera.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/364/2/2017_Licencia_Daniela_Herrera.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/364/3/2017_Tesis_Daniela_Herrera.pdf.jpg
https://repository.unab.edu.co/bitstream/20.500.12749/364/4/2017_Licencia_Daniela_Herrera.pdf.jpg
bitstream.checksum.fl_str_mv 5f7df299ef0aee2b6341288890d7bd08
ee9e913b3717378b7e55ca95fc01b819
b98c0d194f4b251d1330fcfb3f6c8128
6a2a112853228ce3ce6c6fd396d8c600
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB
repository.mail.fl_str_mv repositorio@unab.edu.co
_version_ 1814277243053015040
spelling Rosero Pahi, Mario Alberto90e7a2c5-a5dd-4f9b-868e-c927dccb2a3a-1Herrera Chaves, Daniela90631338-6859-4e7a-951b-6c5f344d08f0-1Mateus Vélez, Sandrae78dc091-6dae-459f-b07d-3838faf81eb6-1Rosero Pahi, Mario Alberto [0001356760]Rosero Pahi, Mario Alberto [lmqwzwUAAAAJ&hl=en]Rosero Pahi, Mario Alberto [0000-0002-9546-4064]Rosero Pahi, Mario Alberto [Mario-Alberto-Rosero-Pahi]Grupo de Investigación en Violencia, Lenguaje y Estudios Culturales2020-06-26T16:15:06Z2020-06-26T16:15:06Z2017-05-17http://hdl.handle.net/20.500.12749/364instname:Universidad Autónoma de Bucaramanga - UNABreponame:Repositorio Institucional UNABLas escenas visuales son complejas y sobrecargadas de información pero, aún así, contienen elementos invariables que se mantienen a través del tiempo. El contextual cueing paradigm demuestra la existencia de una forma implícita de memoria para el contexto visual que guía la atención a los aspectos más relevantes de una escena, optimizando así la búsqueda visual. Varios estudios han encontrado un sesgo hacia el hemisferio derecho en la atención visuoespacial, pero los resultados han sido menos concluyentes en lo referente a las diferencias hemisféricas en el contextual cueing. Debido a que la atención visuoespacial es un mecanismo crucial en el contextual cuieng task, hipotetizamos que el desempeño en esta tarea sería superior cuando los estímulos fueran presentados en el hemicampo izquierdo. Siendo así, comparamos el desempeño en la tarea dependiendo de la ubicación visuoespacial de los estímulos (hemicampo visual izquierdo o derecho) y no encontramos diferencias significativas entre hemicampos. Estos resultados pueden deberse a diferencias individuales entre sujetos y a que en el contextual cueing participan la atención dirigida por objetivos y la atención dirigida por estímulos, las cuales tienen diferentes patrones de lateralización en el cerebro.Introduction ................................................ 8 Problem statement .......................................... 12 Research question .......................................... 13 Hypothesis ................................................. 13 Null Hypothesis ............................................. 14 Justification .............................................. 14 Objectives ................................................. 15 General objective ........................................... 15 Specific objectives ......................................... 15 Background of the study .................................... 16 Theoretical Framework ...................................... 21 The visual pathway .......................................... 21 The dorsal and ventral attentional networks ................. 23 Hemispheric asymmetry in the human brain .................... 25 Hemispheric asymmetries in visuospatial attention. ........ 27 Implicit memory and implicit learning ....................... 32 Statistical learning. ..................................... 36 Contextual cueing and memory-guided attention ............... 39 Variables .................................................. 42 Independent variables ....................................... 42 Dependent variables ......................................... 43 Method ..................................................... 43 Design and Type of Study .................................... 43 Subjects .................................................... 44 Task ........................................................ 44 Procedure ................................................... 46 Data Analysis ............................................... 47 Results .................................................... 48 Discussion ................................................. 49 Conclusion ................................................. 53 References ................................................. 54PregradoVisual scenes are complex and overloaded by information, yet they contain invariants that are stable over time. The contextual cueing paradigm demonstrates the existence of an implicit form of memory for visual context that guides attention to relevant aspects of a scene, thus optimizing visual search. Studies have found a right-hemispheric bias for visuospatial attention, but results have been less conclusive regarding hemispheric differences in contextual cueing. Since visuospatial attention is a crucial mechanism in contextual cueing, we hypothesized that performance on the task would be enhanced when stimuli were presented in the left visual hemifield. We compared performance depending on the visuospatial location of the stimuli (left or right visual hemifield) and did not find significant differences between hemifields. Such results may be due to individual variation and the participation of both goal-directed and stimuli-driven attentional mechanisms in contextual cueing, which show different patterns of lateralization in the brain.Modalidad Presencialapplication/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial-SinDerivadas 2.5 ColombiaVisual hemifield differences in contextual cueing performanceVisual hemifield differences in contextual cueing performancePsicólogoBucaramanga (Colombia)UNAB Campus BucaramangaUniversidad Autónoma de Bucaramanga UNABFacultad Ciencias de la SaludPregrado Psicologíainfo:eu-repo/semantics/bachelorThesisTrabajo de Gradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/redcol/resource_type/TPMemoryVisual perceptionPsychologyResearchVisual scenesVisuospatial attentionMemoriaPercepción visualPsicologíaInvestigacionesEscenas visualesAtención visuoespacialHerrera Chaves, Daniela, Mateus Vélez, Sandra (2017). Visual hemifield differences in contextual cueing performance. Bucaramanga (Colombia) : Universidad Autónoma de Bucaramanga UNABBecker, E. & Karnath, H., (2007). Incidence of visual extinction after left versus right hemisphere stroke. Stroke, 38(12), 3172-3174. doi: 10.1161/STROKEAHA.107.489096Bertels, J., Boursain, E., Destrebecqz, A. & Gaillard, V. (2015). Visual statistical learning in children and young adults: How implicit? Frontiers in Psychology, 5(1541), 111. doi: 10.3389/fpsyg.2014.01541Buckner, A. & Wippich, W. (1998). Differences and commonalities between implicit learning and implicit memory. In Stadler, M.A. & Frensch, P.A., (Eds.) Handbook of implicit learning (pp. 3-46). Thousand Oaks, CA, US: Sage Publications, Inc.Cai, Q., Van der Haegen, L. & Brysbaert, M. (2013). Complementary hemispheric specialization for language production and visuospatial attention. Proceedings of the National Academy of Science, 110(4), E322–E330. doi: 10.1073/pnas.1212956110Chokron, S., Brickman, A.M., Wei, T. & Buchsbaum, M.S. (2000). Hemispheric asymmetry for selective attention. Cognitive Brain Research, 9, 85-90. doi: http://doi.org/10.1016/S0006-8993(99)02169-1Chun, M.M. (2000). Contextual cueing of visual attention. Trends in Cognitive Sciences, 4(5), 170-177. doi: http://dx.doi.org/10.1016/S1364-6613(00)01476-5Chun, M.M. & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36, 28–71. doi: http://doi.org/10.1006/cogp.1998.0681Chun, M.M. & Nakayama, K. (2000). On the functional role of implicit visual memory for the adaptive deployment of attention across scenes. Visual Cognition, 7, 65-81. doi: http://dx.doi.org/10.1080/135062800394685Chun, M.M. & Phelps, E.A. (1999). Memory deficits for implicit contextual information in amnesic subjects with hippocampal damage. Nature America, 2(9), 844-847. doi: 10.1038/12222Cleeremans, A., Destrebecqz, A. & Boyer, M. (1998). Implicit learning: News from the front. Trends in Cognitive Sciences, 2(10), 406-416. doi: http://doi.org/10.1016/S1364-6613(98)01232-7Corbetta, M. & Shulman, G.L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201-215. doi: 10.1038/nrn755Corbetta, M. & Shulman, G.L. (2011). Spatial neglect and attention networks. Annual Review of Neuroscience, 34, 569-599. doi: 10.1146/annurev-neuro-061010-113731Gotts, S.J., Joon Jo, H., Wallace, G.L., Saad., Z.S., Cox, R.W. & Martin, A. (2013). Two distinct forms of functional lateralization in the human brain. Proceedings of the National Academy of Science, 110(36), E3435–E3444. doi: 10.1073/pnas.1302581110Goujon, A., Didierjean, A. & Thorpe, S. (2015). Investigating implicit statistical learning mechanisms through contextual cueing. Trends in Cognitive Sciences, 19(9), 524-533. doi: http://dx.doi.org/10.1016/j.tics.2015.07.0Greene, A.J., Gross, W.L., Elsinger, C.L., & Rao, S.M. (2007). Hippocampal differentiation without recognition: An fMRI analysis of the contextual cueing task. Learning & Memory, 14, 548-553. Retrieved from: http://www.learnmem.org/cgi/doi/10.1101/lm.609807Goldstein, E.B. (2008). Cognitive Psychology (2nd ed.). Belmont, CA: Wadsworth Cengage Learning.Güntürkün, O. & Ocklenburg, S. (2017). Ontogenesis of lateralization. Neuron, 94, 249-263. doi: http://dx.doi.org/10.1016/j.neuron.2017.02.045Hellige, J.B., Laeng, B. & Michimata, C. (2010). Processing asymmetries in the visual system. In Hughdal, K. & Westerhausen, R. (Eds.), The two halves of the brain: Information processing in the cerebral hemispheres (pp. 379-416). Cambridge, MA: The MIT PressHopkins, W.D. (2007). Hemispheric specialization in chimpanzees: Evolution of hand and brain. In Platek, S.M.,Keenan, J.P. & Shackelford, T.K. (Eds.), Evolutionary Cognitive Neuroscience. (pp. 95-119). Cambridge, MA: The MIT PressHutchinson, J.B. & Turk-Browne, N.B. (2012). Memory-guided attention: control from multiple memory systems. Trends in Cognitive Sciences, 16(12), 576-579. doi: 10.1016/j.tics.2012.10.003Janacsek, K., Ambrus, G.G., Paulus, W., Antal, A. & Nemeth, D. (2015). Right Hemisphere Advantage in Statistical Learning: Evidence From a Probabilistic Sequence Learning Task. Brain Stimulation, 8, 277-282. doi: http://dx.doi.org/10.1016/j.brs.2014.11.008Kingstone, A.K., Enns, J.T., Mangun, G.R. & Gazzaniga, M.S. (1995). Guided visual search is a left-hemisphere process in split-brain patients. Psychological Science, 6(2), 118121. doi: 10.1111/j.1467-9280.1995.tb00317.xKolb, B. & Wishaw, I.Q. (2003). Fundamentals of Human Neuropsychology (5th ed.). New York, NY: W.H. Freeman.Kornrumpf, B., Dimigen, O. & Sommer, W. (2017). Lateralization of posterior alpha EEG reflects the distribution of spatial attention during saccadic Reading. Psychophysiology, doi: 10.1111/psyp.12849Kosslyn, S.M., Chabris, C.F. & Laeng, B. Asymmetries in encoding spatial relations. In Davidson, R. & Hugdahl, K. (Eds.), The asymmetrical brain (pp. 303-339). Cambridge, MA: The MIT Press.Krogh, L., Vlach, H.A., Johnson, S.P. (2013). Statistical learning across development: flexible yet constrained. Frontiers in Psychology, 3(598), 1- 11. doi: 10.3389/fpsyg.2012.00598Laeng , B. (1994). Lateralization of categorical and coordinate spatial functions: A study of unilateral stroke patients. Journal of Cognitive Neuroscience, 6, 189–203. doi: 10.1162/jocn.1994.6.3.189Laeng , B. ( 2006 ). Constructional apraxia after left or right unilateral stroke. Neuropsychologia, 44, 1595–1606.doi: 10.1016/j.neuropsychologia.2006.01.023Malhotra, P., Coulthard, E.J. & Husain, M. (2009). Role of right posterior parietal cortex in maintaining attention to spatial locations over time. A Journal of Neurology, 132, 643-660. doi:10.1093/brain/awn350Manelis, A. & Reder, L.M. (2012). Procedural learning and associative memory mechanisms contribute to contextual cueing: Evidence from fMRI and eye-tracking. Learning & Memory, 19, 527-534. Retrieved from: http://www.learnmem.org/cgi/doi/10.1101/lm.025973.112.Meador, K.J., Allison, J.D., Loring, D.W., Lavin, T.B. & Pillai, J.J. (2002). Topography of somatosensory processing: Cerebral lateralization and focused attention. Journal of the International Neuropsychological Society, 8, 349-359. doi: 10.1017.S1355617701020161Miniussi, C., Rao, A. & Nobre, A.C. (2002). Watching where you look: modulation of visual processing of foveal stimuli by spatial attention. Neuropsychologia, 40, 2448-2460.doi: http://doi.org/10.1016/S0028-3932(02)00080-5Müri, R.M., Bühler, R., Heinemann, D., Mosimann, U.P., Felblinger, J., Schlaepfer, T.E. & Hess, C.W. (2002).Hemispheric asymmetry in visuospatial attention assessed with transcranial magnetic stimulation. Experimental Brain Research, 143, 426-430. doi: 10.1007/s00221-002-1009-9Negash, S., Kliot, D., Howard, V., Howard, J.H., Das, S.R., Yushkevich, P.A., Pluta, J.B., Arnold, S.E. & Wolk, D.A. (2015). Relationship of contextual cueing and hippocampal volume in amnestic mild cognitive impairment patients and cognitively normal older adults. Journal of the International Neuropsychological Society, 21, 285-296. doi: https://doi.org/10.1017/S1355617715000223Ocklenburg, S. & Güntürkün, O. (2012). Hemispheric asymmetries: The comparative view. Frontiers in Psychology, 3(5), 19.doi: 10.3389/fpsyg.2012.00005O’Connell, R.G., Schneider, D., Hester, R., Mattingley, J.B. & Bellgrove, M.A. (2010). Attentional load asymmetrically affects early electrophysiological indices of visual orienting. Cerebral Cortex, 21(5), 1056-1065. doi: https://doi.org/10.1093/cercor/bhq178Oldfield, R.C. (1971). The assessment and analysis of handedness: The Edinburgh Inventory. Neuropsychologia, 9, 97-113. Retrieved from: http://gade.psy.ku.dk/Readings/Oldfield1971.pdfOlson, I.R. & Chun, M.M. (2002). Perceptual constraints on implicit learning of spatial context. Visual Cognition, 9(3), 273-302. doi:10.1080/13506280042000162Park, H., Quinlan, J., Thornton, E. & Reder, L. (2004). The effect of midazolam on visual search: Implications for understanding amnesia. Proceedings of the National Academy of Science, 101(51), 17879-17883. Retreived from: www.pnas.org_cgi_doi_10.1073_pnas.0408075101Purves, D., Augustine, G.J., Fitzpatrick, D., Hall, W.C., LaMantia, A., McNamara, J.O. & Williams, S.M. (2004) Neuroscience (3rd ed.). Sunderland, MA: Sinauer Associates, IncReber, P.J. (2008). Cognitive neuroscience of declarative and nondeclarative memory. Human Learning, 139, 113-123. doi: http://doi.org/10.1016/S0166-4115(08)10010-3Reber, P.J. (2013). The neural basis of implicit learning and memory: A review of neuropsychological and neuroimaging research. Neuropsychologia, 51, 2026-2042. doi: http://dx.doi.org/10.1016/j.neuropsychologia.2013.06.019Reddon, A.R. & Hurd, P.L. (2009). Individual differences in cerebral lateralization are associated with shy-bold variation in convict cichlid. Animal Behaviour, 77, 189193. doi:10.1016/j.anbehav.2008.09.026Roser, M.E., Fiser, J., Aslin, R.N. & Gazzaniga, M.S. (2011). Right hemisphere dominance in visual statistical learning. Journal of Cognitive Neuroscience, 23(5), 1088-1099. doi:10.1162/jocn.2010.21508Rushworth, M.F.S., Ellison, A. & Walsh, V. (2001). Complementary localization and lateralization of orienting and motor attention. Nature Neuroscience, 4(6), 656-661. doi:10.1038/88492Rushworth, M.F.S., Krams, M. & Passingham, R.E. (2001). The attentional role of the left parietal cortex: The distinct lateralization and localization of motor attention in the human brain. Journal of Cognitive Neuroscience, 13(5), 698-710. doi:10.1162/089892901750363244Schott, B.H., Henson, R.N., Richardson-Klavehn, A., Becker, C., Thoma, V., Heinze, H. & Düzel, E. (2004). Redefining implicit and explicit memory: The functional neuroanatomy of priming, remembering, and control of retrieval. Procedings of the National Academy of Science, 102(4), 1257-1262. Retrieved from www.pnas.org_cgi_doi_10.1073_pnas.0409070102Shulman, G.L, Pope, D.L.W., Astafiev, S.V., McAvoy, M.P., Snyder, A.Z. & Corbetta, M. (2010). Right hemisphere dominance during spatial selective attention and target detection occurs outside the dorsal fronto-parietal network. The Journal of Neuroscience, 30(10), 3640-3651. doi:10.1523/JNEUROSCI.4085-09.2010Squire, L.R, Bloom, F.E., Spitzer, N.C., du Lac, S., Ghosh, A. & Berg, D. (2008). Fundamental Neuroscience (3rd ed.) San Diego, CA: ElsevierStevens, M.C., Calhoun, V.D. & Kiehl, K.A. (2005). Hemispheric differences in hemodynamics elicited by auditory oddball stimuli. Neuroimage, 26(3), 782-792. doi:10.1016/j.neuroimage.2005.02.044Thiebaut de Schotten, M., Dell’Acqua, F., Forkel, S.J., Simmons, A., Vergani, F., Murphy, D.G.M. & Catani, M. (2011). A lateralized brain network for visuospatial attention. Nature Neuroscience, 14(10), 1245-1246. doi:10.1038/nn.2905Vauclair, J., Yamazaki, Y. & Güntürkün, O. (2006). The study of hemispheric specialization for categorical and coordinate spatial relations in animals. Neuropsychologia, 44(9), 1524-1534. doi: http://doi.org/10.1016/j.neuropsychologia.2006.01.021Vossel, S., Geng, J.J. & Fink, G.R. (2014). Dorsal and ventral attention systems: Distinct neural circuits but collaborative roles. Neuroscientist, 20(2), 150-159. doi: 10.1177/1073858413494269Wu, Y., Wang, J., Zhang, Y., Zheng, D., Zhang, J., Rong, M., Wu., H., Wang, Y., Zhou, K. & Jiang, T. (2016). The neuroanatomical basis for posterior superior parietal lobule control lateralization of visuospatial attention. Frontiers in Neuroanatomy, 10(32), 1-9. doi: 10.3389/fnana.2016.00032ORIGINAL2017_Tesis_Daniela_Herrera.pdf2017_Tesis_Daniela_Herrera.pdfTesisapplication/pdf677724https://repository.unab.edu.co/bitstream/20.500.12749/364/1/2017_Tesis_Daniela_Herrera.pdf5f7df299ef0aee2b6341288890d7bd08MD51open access2017_Licencia_Daniela_Herrera.pdf2017_Licencia_Daniela_Herrera.pdfLicenciaapplication/pdf617566https://repository.unab.edu.co/bitstream/20.500.12749/364/2/2017_Licencia_Daniela_Herrera.pdfee9e913b3717378b7e55ca95fc01b819MD52metadata only accessTHUMBNAIL2017_Tesis_Daniela_Herrera.pdf.jpg2017_Tesis_Daniela_Herrera.pdf.jpgIM Thumbnailimage/jpeg4022https://repository.unab.edu.co/bitstream/20.500.12749/364/3/2017_Tesis_Daniela_Herrera.pdf.jpgb98c0d194f4b251d1330fcfb3f6c8128MD53open access2017_Licencia_Daniela_Herrera.pdf.jpg2017_Licencia_Daniela_Herrera.pdf.jpgIM Thumbnailimage/jpeg11215https://repository.unab.edu.co/bitstream/20.500.12749/364/4/2017_Licencia_Daniela_Herrera.pdf.jpg6a2a112853228ce3ce6c6fd396d8c600MD54metadata only access20.500.12749/364oai:repository.unab.edu.co:20.500.12749/3642023-03-15 10:07:47.271open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.co