Diseño de un sistema para el registro de la posición de los ciclistas de ruta usando sensores inerciales para potenciar el gesto deportivo

Hay un gran desafío de analizar las variables biomecánicas a ciclistas en campo. Los sistemas como los sensores inerciales que, permiten analizar el movimiento en diferentes ejes, pueden ser portables y hasta más precisos que un sistema de cámaras. Por ello se desarrolló un sistema para el registro...

Full description

Autores:
Uribe Rojas, Santiago
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2022
Institución:
Universidad Autónoma de Bucaramanga - UNAB
Repositorio:
Repositorio UNAB
Idioma:
spa
OAI Identifier:
oai:repository.unab.edu.co:20.500.12749/17711
Acceso en línea:
http://hdl.handle.net/20.500.12749/17711
Palabra clave:
Biomedical engineering
Engineering
Medical electronics
Biological physics
Bioengineering
Medical instruments and apparatus
Medicine
Biomedical
Clinical engineering
Biomechanical variables
Cyclists
Pedaling
Bikes
Cycling
Prototype development
Ingeniería biomédica
Ingeniería
Biofísica
Bioingeniería
Medicina
Biomédica
Bicicletas
Ciclismo
Desarrollo de prototipos
Ingeniería clínica
Electrónica médica
Instrumentos y aparatos médicos
Variables biomecánicas
Ciclistas
Pedaleo
Rights
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UNAB2_ce71c60372fda8d1d1e0c2c286166116
oai_identifier_str oai:repository.unab.edu.co:20.500.12749/17711
network_acronym_str UNAB2
network_name_str Repositorio UNAB
repository_id_str
dc.title.spa.fl_str_mv Diseño de un sistema para el registro de la posición de los ciclistas de ruta usando sensores inerciales para potenciar el gesto deportivo
dc.title.translated.spa.fl_str_mv Design of a system for recording the position of road cyclists using inertial sensors to enhance sports gesture
title Diseño de un sistema para el registro de la posición de los ciclistas de ruta usando sensores inerciales para potenciar el gesto deportivo
spellingShingle Diseño de un sistema para el registro de la posición de los ciclistas de ruta usando sensores inerciales para potenciar el gesto deportivo
Biomedical engineering
Engineering
Medical electronics
Biological physics
Bioengineering
Medical instruments and apparatus
Medicine
Biomedical
Clinical engineering
Biomechanical variables
Cyclists
Pedaling
Bikes
Cycling
Prototype development
Ingeniería biomédica
Ingeniería
Biofísica
Bioingeniería
Medicina
Biomédica
Bicicletas
Ciclismo
Desarrollo de prototipos
Ingeniería clínica
Electrónica médica
Instrumentos y aparatos médicos
Variables biomecánicas
Ciclistas
Pedaleo
title_short Diseño de un sistema para el registro de la posición de los ciclistas de ruta usando sensores inerciales para potenciar el gesto deportivo
title_full Diseño de un sistema para el registro de la posición de los ciclistas de ruta usando sensores inerciales para potenciar el gesto deportivo
title_fullStr Diseño de un sistema para el registro de la posición de los ciclistas de ruta usando sensores inerciales para potenciar el gesto deportivo
title_full_unstemmed Diseño de un sistema para el registro de la posición de los ciclistas de ruta usando sensores inerciales para potenciar el gesto deportivo
title_sort Diseño de un sistema para el registro de la posición de los ciclistas de ruta usando sensores inerciales para potenciar el gesto deportivo
dc.creator.fl_str_mv Uribe Rojas, Santiago
dc.contributor.advisor.none.fl_str_mv Amado Forero, Lusvin Javier
Leguizamo Herrera, Jenaro
dc.contributor.author.none.fl_str_mv Uribe Rojas, Santiago
dc.contributor.cvlac.spa.fl_str_mv Amado Forero, Lusvin Javier [0001376723]
dc.contributor.googlescholar.spa.fl_str_mv Amado Forero, Lusvin Javier [dqrfjJMAAAAJ]
dc.contributor.orcid.spa.fl_str_mv Amado Forero, Lusvin Javier [0000-0001-5104-9080]
dc.contributor.scopus.spa.fl_str_mv Amado Forero, Lusvin Javier [57204652964]
dc.contributor.researchgate.spa.fl_str_mv Amado Forero, Lusvin Javier [Lusvin_Amado]
dc.subject.keywords.spa.fl_str_mv Biomedical engineering
Engineering
Medical electronics
Biological physics
Bioengineering
Medical instruments and apparatus
Medicine
Biomedical
Clinical engineering
Biomechanical variables
Cyclists
Pedaling
Bikes
Cycling
Prototype development
topic Biomedical engineering
Engineering
Medical electronics
Biological physics
Bioengineering
Medical instruments and apparatus
Medicine
Biomedical
Clinical engineering
Biomechanical variables
Cyclists
Pedaling
Bikes
Cycling
Prototype development
Ingeniería biomédica
Ingeniería
Biofísica
Bioingeniería
Medicina
Biomédica
Bicicletas
Ciclismo
Desarrollo de prototipos
Ingeniería clínica
Electrónica médica
Instrumentos y aparatos médicos
Variables biomecánicas
Ciclistas
Pedaleo
dc.subject.lemb.spa.fl_str_mv Ingeniería biomédica
Ingeniería
Biofísica
Bioingeniería
Medicina
Biomédica
Bicicletas
Ciclismo
Desarrollo de prototipos
dc.subject.proposal.spa.fl_str_mv Ingeniería clínica
Electrónica médica
Instrumentos y aparatos médicos
Variables biomecánicas
Ciclistas
Pedaleo
description Hay un gran desafío de analizar las variables biomecánicas a ciclistas en campo. Los sistemas como los sensores inerciales que, permiten analizar el movimiento en diferentes ejes, pueden ser portables y hasta más precisos que un sistema de cámaras. Por ello se desarrolló un sistema para el registro de la posición de los ciclistas en ruta usando sensores inerciales para potenciar el gesto deportivo. Se realizó una prueba experimental para verificar la funcionalidad del sistema a diferentes cadencias y posiciones del ciclista. Un ciclista sobre un simulador realizó dos pruebas pedaleando a diferentes cadencias, una de 60 rpm y la otra de 80 rpm. También se pedaleó a diferentes posiciones, 3 cm arriba de la altura base y 3 cm debajo de la altura base. Cuando se modifica la posición base del ciclista, los valores como la rotación de cadera y movimiento del talón cambian. Por ello, el sistema desarrollado identifica y permite analizar cambios de posición de los ciclistas de ruta.
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-09-16T15:51:36Z
dc.date.available.none.fl_str_mv 2022-09-16T15:51:36Z
dc.date.issued.none.fl_str_mv 2022
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.local.spa.fl_str_mv Trabajo de Grado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12749/17711
dc.identifier.instname.spa.fl_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UNAB
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.unab.edu.co
url http://hdl.handle.net/20.500.12749/17711
identifier_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
reponame:Repositorio Institucional UNAB
repourl:https://repository.unab.edu.co
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Allen, H. & Group, P. C. (2015, November 25,). Balance: An introduction to left/right power data. Retrieved from https://www.hunterallenpowerblog.com/2015/11/balance-introduction-to leftright-power.html
Adafruit BNO055 Absolute Orientation Sensor. (2015, 22 abril). Adafruit Learning System. https://learn.adafruit.com/adafruit-bno055-absolute-orientation-sensor
Adam Hansen Bike Fitting Protocol webinar. (2020, 31 enero). YouTube. https://www.youtube.com/watch?v=mt9zFVQHiSo&ab_channel=LEOMO
Arduino Nano. (s. f.). Arduino. Recuperado 7 de enero de 2021, de https://arduino.cl/arduino nano/
Bini, R. R., Dagnese, F., Rocha, E., Silveira, M. C., Carpes, F. P., & Mota, C. B. (2016). Three-dimensional kinematics of competitive and recreational cyclists across different workloads during cycling. European Journal of Sport Science, 16(5), 553-559. doi:10.1080/17461391.2015.1135984
Bini, R. R., Tamborindeguy, A. C., & Mota, C. B. (2010). Effects of saddle height, pedaling cadence, and workload on joint kinetics and kinematics during cycling. Journal of Sport Rehabilitation, 19(3), 301-314.doi:10.1123/jsr.19.3.301
Bini, R. R., & Carpes, F. P. (2014). Biomechanics of cycling (2014th ed.). Cham: Springer Verlag. doi:10.1007/978-3-319-05539-8 Retrieved from https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=1731058
Burt, P. (2014). BikeFit, Optimise your bike position for high performance and injury avoidance, UK, Bloomsbury Sport. Cain, Stephen. (2016). Measurement of bicycle and rider kinematics during real-world cycling using a wireless array of inertial sensors Figshare. doi:10.6084/M9.FIGSHARE.3851883.V2
Cockcroft, J. (2011). An evaluation of inertial motion capture technology for use in the analysis and optimization of road cycling kinematics. Engineering
Cockcroft, J., Muller, J. H., & Scheffer, C. (2014). A novel complementary filter for tracking hip angles during cycling using wireless inertial sensors and dynamic acceleration estimation. IEEE Sensors Journal, 14(8), 2864-2871. doi:10.1109/JSEN.2014.2318897
Cockcroft, J., H. Muller, & C. Scheffer. (2015). A complementary filter for tracking bicycle crank angles using inertial sensors, kinematic constraints, and vertical acceleration updates doi:10.1109/JSEN.2015.2409314
Cordillet, S., Bideau, N., Bideau, B., & Nicolas, G. (2019). Estimation of 3D knee joint angles during cycling using inertial sensors: Accuracy of a novel sensor-to-sgment calibration procedure based on pedaling motion. Sensors (Basel, Switzerland), 19(11), 2474. doi:10.3390/s19112474
Cummins, C., Orr, R., O’Connor, H., & West, C. (2013). Global positioning systems (GPS) and microtechnology sensors in team sports: A systematic review. Sports Medicine, 43(10), 1025-1042. doi:10.1007/s40279-013-0069-2
Cramblett C,Moen E, Timmerman M, et al.Medicine of cycling bike fit task force consensus statement. Medicine of Cycling. 2013. [cited 2019 October 22]. Available from: https://www.medicineofcycling.com/finalmocpositionstatement8-21/.
Davis, R. R., & Hull, M. L. (1981). Measurement of pedal loading in bicycling: II. analysis and results. Journal of Biomechanics, 14(12), 857-872. doi:10.1016/0021 9290(81)90013-0
Dorel, S., Couturier, A., & Hug, F. (2008). Intra-session repeatability of lower limb muscles activation pattern during pedaling. Journal of Electromyography and Kinesiology: Official Journal of the International Society of Electrophysiological Kinesiology, 18(5), 857-865. doi:10.1016/j.jelekin.2007.03.002
Gharghan, S.K.; Nordin, R.; Ismail, M. An Ultra-Low Power Wireless Sensor Network for Bicycle Torque Performance Measurements. Sensors 2015, 15, 11741-11768. https://doi.org/10.3390/s150511741
García-López, J., Díez-Leal, S., Ogueta-Alday, A., Larrazabal, J., & amp; Rodríguez-Marroyo, J. A. (2016). Differences in pedalling technique between road cyclists of different competitive levels. Journal of Sports Sciences, 34(17), 1619-1626. doi:10.1080/02640414.2015.1127987
García-Rubio, J., Pino, J., Olivares, P. R., & Ibáñez, S. J. (2019). Validity and reliability of the WIMU ™ inertial device for the assessment of joint angulations. International Journal of Environmental Research and Public Health, 17(1) doi:10.3390/ijerph17010193
Gómez-Carmona, C. D., Pino-Ortega, J., & Ibáñez, S. J. (2020). Design and validity of a field test battery for assessing multi-location external load profile in invasion team sports. Journal Sports Science. Recuperado de http://www.e balonmano.com/ojs/index.php/revista/article/view/509
Gregersen, C. S., & Hull, M. L. (2003). Non-driving intersegmental knee moments in cycling computed using a model that includes three-dimensional kinematics of the shank/foot and the effect of simplifying assumptions. Journal of Biomechanics, 36(6), 803-813. doi:10.1016/s0021-9290(03)00014-9
Gregor, R. J., Broker, J. P., & Ryan, M. M. (1991). The biomechanics of cycling. Exercise and Sport Sciences Reviews, 19, 127-169. Groot, G. D., Welbergen, E., Clusen, L.
Clarus, J., Cabri, J., & amp; Antonis, J. (1994). Power, muscular work, and external forces in cycling. Ergonomics, 37(1), 31-42. doi:10.1080/00140139408963620
Jenaro Sport. (s. f.). Bike Fit [Fotografia]. ¿Qué es el Bike Fit? https://jenarosport.com/bike fit.php
Johnston, William. Martin O’Reilly, Rob Argent & Brian Caulfield. (2019). Reliability, validity and utility of inertial sensor systems for postural control assessment in sport science and medicine applications: A systematic review [Abstract]. Sport Medicine, Retrieved from https://link.springer.com/article/10.1007/s40279-019-01095-9
Leomo. (2017). Using LEOMO type-R to analyze performance — A case study. Retrieved from https://blog.leomo.io/using-leomo-type-r-to-analyze-performance-a-case-study-part-2 ca5e46e1face
Leomo. (s. f.). Leomo Cycling [Fotografia]. https://www.leomo.io/pages/cycling
Llamas. (2020, 2 mayo). El bus I2C en Arduino. Luis Llamas. https://www.luisllamas.es/arduino-i2c/
McGrath, T., Fineman, R., & Stirling, L. (2018). An auto-calibrating knee flexion extension axis estimator using principal component analysis with inertial sensors. Sensors (Basel, Switzerland), 18(6) doi:10.3390/s18061882
Mellion, M. B. (1991). Common cycling injuries. Sports Med, 11, 50-70
Muyor, J. M., Granero-Gil, P., & Pino-Ortega, J. (2017). Reliability and validity of a new accelerometer (wimu®) system for measuring velocity during resistance exercises: Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, doi:10.1177/1754337117731700
Peveler, W., & Green, J. (2011). Effects of saddle height on economy and anaerobic power in well-trained cyclists. Journal of Strength and Conditioning Research, 25(3), 629-633. doi:10.1519/JSC.0b013e3181d09e60
Rannama, Indrek. Kirsti Pedak, Karmen Reinpõld, Kristjan Port. (2016). Pedalling technique and postural stability during incremental cycling exercise – relationship with cyclist fmstm score. Lase Journal of Sport Science
RealTrack Systems. (2014). Cycling: Discovering brand new horizons with wimu and moxy | RealTrack systems. Retrieved from http://blog.realtracksystems.com/2014/09/11/cycling dicovering-brand-new- horizons-with-wimu-and-moxy/
Rodríguez Munca, J. D. (2016). dispositivo lora de comunicación a largo alcance y bajo consumo energético para aplicaciones del ámbito del desarrollo. Universidad Politécnica de Madrid. Retrieved from https://oa.upm.es/44890/1/TFM_JOSE_DANIEL_RODRIGUEZ_MUNCA.pdf
Sabatini, A. M. (2011). Estimating three-dimensional orientation of human body parts by inertial/magnetic sensing. Sensors (Basel, Switzerland), 11(2), 1489-1525. doi:10.3390/s110201489
Sanner, W. H., & O'Halloran, W. D. (2000). The biomechanics, etiology, and treatment of cycling injuries. Journal of the American Podiatric Medical Association, 90(7), 354-376. doi:10.7547/87507315-90-7-354
Sensor inercial o Sensor IMU Ingeniería Mecafenix. (2018, 23 julio). [Ilustración]. https://www.ingmecafenix.com/automatizacion/sensores/sensor-inercial/
STT Systems. (2018). Cycling 3DMA [Ilustración]. https://www.stt-systems.com/motion analysis/3d-optical-motion-capture/cycling-3dma/?cn-reloaded=1
Swart, J., & Holliday, W. (2019). Cycling biomechanics optimization-the (R) evolution of bicycle fitting. Current Sports Medicine Reports, 18(12), 490-496. doi:10.1249/JSR.0000000000000665
Tan, H., Wilson, A. M., & Lowe, J. (2008). Measurement of stride parameters using a wearable GPS and inertial measurement unit. Journal of Biomechanics, 41(7), 1398 1406. doi:10.1016/j.jbiomech.2008.02.021
Theurel, J., Crepin, M., Foissac, M., & Temprado, J. J. (2012). Effects of different pedalling techniques on muscle fatigue and mechanical efficiency during prolonged cycling. Scandinavian Journal of Medicine & Science in Sports, 22(6), 714-721. doi:10.1111/j.1600-0838.2011.01313.x
The I2C Bus Specification (version 2.1, January 2000) URL http://www.semiconductors.philips.com/acrobat/literature/9398/39340011.pdf
Toapanta, C., Villafuerte, J., & Cruz, P. J. (Oct 2018). 3DoF multi-rotor experimental testbed for teaching control systems. Paper presented at the 1-6. doi:10.1109/ETCM.2018.8580337 Retrieved from https://ieeexplore.ieee.org/document/8580337
Townsend, K. (2015). Adafruit BNO055 absolute orientation sensor. Retrieved from https://learn.adafruit.com/adafruit-bno055-absolute-orientation-sensor/overview
Wanich, T., Hodgkins, C., Columbier, J., Muraski, E., & Kennedy, J. G. (2007). Cycling injuries of the lower extremity. The Journal of the American Academy of Orthopaedic Surgeons, 15(12), 748-756. doi:10.5435/00124635-200712000-00008
Wiva. Inertial system for cycling performance analysis. (2020, mayo 7). Recuperado de http://www.e-wiva.com/wiva_cycle.html
Xu, J. Y. X. Nan, V. Ebken, Y. Wang, G. J. Pottie, & W. J. Kaiser. (2015). Integrated inertial sensors and mobile computing for real-time cycling performance guidance via pedaling profile classification doi:10.1109/JBHI.2014.2322871
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.creativecommons.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.spa.fl_str_mv Bucaramanga (Santander, Colombia)
dc.publisher.grantor.spa.fl_str_mv Universidad Autónoma de Bucaramanga UNAB
dc.publisher.faculty.spa.fl_str_mv Facultad Ingeniería
dc.publisher.program.spa.fl_str_mv Pregrado Ingeniería Biomédica
institution Universidad Autónoma de Bucaramanga - UNAB
bitstream.url.fl_str_mv https://repository.unab.edu.co/bitstream/20.500.12749/17711/1/2022_Tesis_Santiago_Uribe_Rojas.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/17711/2/2022_Licencia_Santiago_Uribe_Rojas.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/17711/3/license.txt
https://repository.unab.edu.co/bitstream/20.500.12749/17711/4/2022_Tesis_Santiago_Uribe_Rojas.pdf.jpg
https://repository.unab.edu.co/bitstream/20.500.12749/17711/5/2022_Licencia_Santiago_Uribe_Rojas.pdf.jpg
bitstream.checksum.fl_str_mv cb14b03165ce8d226b296a054f2755e4
35c9af327ebb7976d5ca2861a1478837
3755c0cfdb77e29f2b9125d7a45dd316
b7059174d789f282af3930b8493d5430
f22cb64896ba87f6f26687888249a882
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB
repository.mail.fl_str_mv repositorio@unab.edu.co
_version_ 1808410742568779776
spelling Amado Forero, Lusvin Javier5b8ff26f-ab75-458c-8567-50557c0077e4Leguizamo Herrera, Jenaro3c73b217-82d3-4c14-9d3a-643388000b91Uribe Rojas, Santiago358fdb80-f71d-43b2-ba1e-66ed951e185aAmado Forero, Lusvin Javier [0001376723]Amado Forero, Lusvin Javier [dqrfjJMAAAAJ]Amado Forero, Lusvin Javier [0000-0001-5104-9080]Amado Forero, Lusvin Javier [57204652964]Amado Forero, Lusvin Javier [Lusvin_Amado]Bucaramanga (Santander, Colombia)2022-09-16T15:51:36Z2022-09-16T15:51:36Z2022http://hdl.handle.net/20.500.12749/17711instname:Universidad Autónoma de Bucaramanga - UNABreponame:Repositorio Institucional UNABrepourl:https://repository.unab.edu.coHay un gran desafío de analizar las variables biomecánicas a ciclistas en campo. Los sistemas como los sensores inerciales que, permiten analizar el movimiento en diferentes ejes, pueden ser portables y hasta más precisos que un sistema de cámaras. Por ello se desarrolló un sistema para el registro de la posición de los ciclistas en ruta usando sensores inerciales para potenciar el gesto deportivo. Se realizó una prueba experimental para verificar la funcionalidad del sistema a diferentes cadencias y posiciones del ciclista. Un ciclista sobre un simulador realizó dos pruebas pedaleando a diferentes cadencias, una de 60 rpm y la otra de 80 rpm. También se pedaleó a diferentes posiciones, 3 cm arriba de la altura base y 3 cm debajo de la altura base. Cuando se modifica la posición base del ciclista, los valores como la rotación de cadera y movimiento del talón cambian. Por ello, el sistema desarrollado identifica y permite analizar cambios de posición de los ciclistas de ruta.CAPÍTULO 1 .................................................................................................................... 10 Problema u Oportunidad ............................................................................................... 10 Pregunta problema ........................................................................................................ 11 Justificación................................................................................................................... 11 Objetivo general ............................................................................................................ 12 Objetivos específicos .................................................................................................... 12 Limitaciones y delimitaciones....................................................................................... 13 CAPÍTULO 2 .................................................................................................................... 14 Marco Conceptual ......................................................................................................... 14 Estado del arte ............................................................................................................... 18 Capítulo 3 .......................................................................................................................... 24 Metodología .................................................................................................................. 24 Diseño y construcción del sistema ............................................................................ 25 Desarrollo del software ............................................................................................. 26 Protocolo experimental y registro de datos ............................................................... 26 Capítulo 4 .......................................................................................................................... 27 Resultados ..................................................................................................................... 27 Diseño y construcción las placas............................................................................... 27 Desarrollo del software ............................................................................................. 38 Protocolo experimental y registro de datos ............................................................... 44 Análisis de resultados .................................................................................................... 48 Capítulo 5 .......................................................................................................................... 55 Conclusiones ................................................................................................................. 55 Bibliografía ....................................................................................................................... 56 Anexos............................................................................................................................... 64PregradoThere is a great challenge to analyze the biomechanical variables of cyclists in the field. Systems such as inertial sensors, which allow to analyze the movement in different axes, can be portable and even more accurate than a camera system. Therefore, a system was developed to record the position of cyclists on the road using inertial sensors to enhance the sporting gesture. An experimental test was carried out to verify the functionality of the system at different cadences and positions of the cyclist. A cyclist on a simulator performed two tests pedaling at different cadences, one at 60 rpm and the other at 80 rpm. They also pedaled at different positions, 3 cm above the base height and 3 cm below the base height. When the base position of the cyclist is modified, values such as hip rotation and heel movement change. Therefore, the developed system identifies and allows to analyze position changes of road cyclists.application/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)Atribución-NoComercial-SinDerivadas 2.5 Colombiahttp://purl.org/coar/access_right/c_abf2Diseño de un sistema para el registro de la posición de los ciclistas de ruta usando sensores inerciales para potenciar el gesto deportivoDesign of a system for recording the position of road cyclists using inertial sensors to enhance sports gestureIngeniero BiomédicoUniversidad Autónoma de Bucaramanga UNABFacultad IngenieríaPregrado Ingeniería Biomédicainfo:eu-repo/semantics/bachelorThesisTrabajo de Gradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/acceptedVersionhttp://purl.org/redcol/resource_type/TPBiomedical engineeringEngineeringMedical electronicsBiological physicsBioengineeringMedical instruments and apparatusMedicineBiomedicalClinical engineeringBiomechanical variablesCyclistsPedalingBikesCyclingPrototype developmentIngeniería biomédicaIngenieríaBiofísicaBioingenieríaMedicinaBiomédicaBicicletasCiclismoDesarrollo de prototiposIngeniería clínicaElectrónica médicaInstrumentos y aparatos médicosVariables biomecánicasCiclistasPedaleoAllen, H. & Group, P. C. (2015, November 25,). Balance: An introduction to left/right power data. Retrieved from https://www.hunterallenpowerblog.com/2015/11/balance-introduction-to leftright-power.htmlAdafruit BNO055 Absolute Orientation Sensor. (2015, 22 abril). Adafruit Learning System. https://learn.adafruit.com/adafruit-bno055-absolute-orientation-sensorAdam Hansen Bike Fitting Protocol webinar. (2020, 31 enero). YouTube. https://www.youtube.com/watch?v=mt9zFVQHiSo&ab_channel=LEOMOArduino Nano. (s. f.). Arduino. Recuperado 7 de enero de 2021, de https://arduino.cl/arduino nano/Bini, R. R., Dagnese, F., Rocha, E., Silveira, M. C., Carpes, F. P., & Mota, C. B. (2016). Three-dimensional kinematics of competitive and recreational cyclists across different workloads during cycling. European Journal of Sport Science, 16(5), 553-559. doi:10.1080/17461391.2015.1135984Bini, R. R., Tamborindeguy, A. C., & Mota, C. B. (2010). Effects of saddle height, pedaling cadence, and workload on joint kinetics and kinematics during cycling. Journal of Sport Rehabilitation, 19(3), 301-314.doi:10.1123/jsr.19.3.301Bini, R. R., & Carpes, F. P. (2014). Biomechanics of cycling (2014th ed.). Cham: Springer Verlag. doi:10.1007/978-3-319-05539-8 Retrieved from https://ebookcentral.proquest.com/lib/[SITE_ID]/detail.action?docID=1731058Burt, P. (2014). BikeFit, Optimise your bike position for high performance and injury avoidance, UK, Bloomsbury Sport. Cain, Stephen. (2016). Measurement of bicycle and rider kinematics during real-world cycling using a wireless array of inertial sensors Figshare. doi:10.6084/M9.FIGSHARE.3851883.V2Cockcroft, J. (2011). An evaluation of inertial motion capture technology for use in the analysis and optimization of road cycling kinematics. EngineeringCockcroft, J., Muller, J. H., & Scheffer, C. (2014). A novel complementary filter for tracking hip angles during cycling using wireless inertial sensors and dynamic acceleration estimation. IEEE Sensors Journal, 14(8), 2864-2871. doi:10.1109/JSEN.2014.2318897Cockcroft, J., H. Muller, & C. Scheffer. (2015). A complementary filter for tracking bicycle crank angles using inertial sensors, kinematic constraints, and vertical acceleration updates doi:10.1109/JSEN.2015.2409314Cordillet, S., Bideau, N., Bideau, B., & Nicolas, G. (2019). Estimation of 3D knee joint angles during cycling using inertial sensors: Accuracy of a novel sensor-to-sgment calibration procedure based on pedaling motion. Sensors (Basel, Switzerland), 19(11), 2474. doi:10.3390/s19112474Cummins, C., Orr, R., O’Connor, H., & West, C. (2013). Global positioning systems (GPS) and microtechnology sensors in team sports: A systematic review. Sports Medicine, 43(10), 1025-1042. doi:10.1007/s40279-013-0069-2Cramblett C,Moen E, Timmerman M, et al.Medicine of cycling bike fit task force consensus statement. Medicine of Cycling. 2013. [cited 2019 October 22]. Available from: https://www.medicineofcycling.com/finalmocpositionstatement8-21/.Davis, R. R., & Hull, M. L. (1981). Measurement of pedal loading in bicycling: II. analysis and results. Journal of Biomechanics, 14(12), 857-872. doi:10.1016/0021 9290(81)90013-0Dorel, S., Couturier, A., & Hug, F. (2008). Intra-session repeatability of lower limb muscles activation pattern during pedaling. Journal of Electromyography and Kinesiology: Official Journal of the International Society of Electrophysiological Kinesiology, 18(5), 857-865. doi:10.1016/j.jelekin.2007.03.002Gharghan, S.K.; Nordin, R.; Ismail, M. An Ultra-Low Power Wireless Sensor Network for Bicycle Torque Performance Measurements. Sensors 2015, 15, 11741-11768. https://doi.org/10.3390/s150511741García-López, J., Díez-Leal, S., Ogueta-Alday, A., Larrazabal, J., & amp; Rodríguez-Marroyo, J. A. (2016). Differences in pedalling technique between road cyclists of different competitive levels. Journal of Sports Sciences, 34(17), 1619-1626. doi:10.1080/02640414.2015.1127987García-Rubio, J., Pino, J., Olivares, P. R., & Ibáñez, S. J. (2019). Validity and reliability of the WIMU ™ inertial device for the assessment of joint angulations. International Journal of Environmental Research and Public Health, 17(1) doi:10.3390/ijerph17010193Gómez-Carmona, C. D., Pino-Ortega, J., & Ibáñez, S. J. (2020). Design and validity of a field test battery for assessing multi-location external load profile in invasion team sports. Journal Sports Science. Recuperado de http://www.e balonmano.com/ojs/index.php/revista/article/view/509Gregersen, C. S., & Hull, M. L. (2003). Non-driving intersegmental knee moments in cycling computed using a model that includes three-dimensional kinematics of the shank/foot and the effect of simplifying assumptions. Journal of Biomechanics, 36(6), 803-813. doi:10.1016/s0021-9290(03)00014-9Gregor, R. J., Broker, J. P., & Ryan, M. M. (1991). The biomechanics of cycling. Exercise and Sport Sciences Reviews, 19, 127-169. Groot, G. D., Welbergen, E., Clusen, L.Clarus, J., Cabri, J., & amp; Antonis, J. (1994). Power, muscular work, and external forces in cycling. Ergonomics, 37(1), 31-42. doi:10.1080/00140139408963620Jenaro Sport. (s. f.). Bike Fit [Fotografia]. ¿Qué es el Bike Fit? https://jenarosport.com/bike fit.phpJohnston, William. Martin O’Reilly, Rob Argent & Brian Caulfield. (2019). Reliability, validity and utility of inertial sensor systems for postural control assessment in sport science and medicine applications: A systematic review [Abstract]. Sport Medicine, Retrieved from https://link.springer.com/article/10.1007/s40279-019-01095-9Leomo. (2017). Using LEOMO type-R to analyze performance — A case study. Retrieved from https://blog.leomo.io/using-leomo-type-r-to-analyze-performance-a-case-study-part-2 ca5e46e1faceLeomo. (s. f.). Leomo Cycling [Fotografia]. https://www.leomo.io/pages/cyclingLlamas. (2020, 2 mayo). El bus I2C en Arduino. Luis Llamas. https://www.luisllamas.es/arduino-i2c/McGrath, T., Fineman, R., & Stirling, L. (2018). An auto-calibrating knee flexion extension axis estimator using principal component analysis with inertial sensors. Sensors (Basel, Switzerland), 18(6) doi:10.3390/s18061882Mellion, M. B. (1991). Common cycling injuries. Sports Med, 11, 50-70Muyor, J. M., Granero-Gil, P., & Pino-Ortega, J. (2017). Reliability and validity of a new accelerometer (wimu®) system for measuring velocity during resistance exercises: Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, doi:10.1177/1754337117731700Peveler, W., & Green, J. (2011). Effects of saddle height on economy and anaerobic power in well-trained cyclists. Journal of Strength and Conditioning Research, 25(3), 629-633. doi:10.1519/JSC.0b013e3181d09e60Rannama, Indrek. Kirsti Pedak, Karmen Reinpõld, Kristjan Port. (2016). Pedalling technique and postural stability during incremental cycling exercise – relationship with cyclist fmstm score. Lase Journal of Sport ScienceRealTrack Systems. (2014). Cycling: Discovering brand new horizons with wimu and moxy | RealTrack systems. Retrieved from http://blog.realtracksystems.com/2014/09/11/cycling dicovering-brand-new- horizons-with-wimu-and-moxy/Rodríguez Munca, J. D. (2016). dispositivo lora de comunicación a largo alcance y bajo consumo energético para aplicaciones del ámbito del desarrollo. Universidad Politécnica de Madrid. Retrieved from https://oa.upm.es/44890/1/TFM_JOSE_DANIEL_RODRIGUEZ_MUNCA.pdfSabatini, A. M. (2011). Estimating three-dimensional orientation of human body parts by inertial/magnetic sensing. Sensors (Basel, Switzerland), 11(2), 1489-1525. doi:10.3390/s110201489Sanner, W. H., & O'Halloran, W. D. (2000). The biomechanics, etiology, and treatment of cycling injuries. Journal of the American Podiatric Medical Association, 90(7), 354-376. doi:10.7547/87507315-90-7-354Sensor inercial o Sensor IMU Ingeniería Mecafenix. (2018, 23 julio). [Ilustración]. https://www.ingmecafenix.com/automatizacion/sensores/sensor-inercial/STT Systems. (2018). Cycling 3DMA [Ilustración]. https://www.stt-systems.com/motion analysis/3d-optical-motion-capture/cycling-3dma/?cn-reloaded=1Swart, J., & Holliday, W. (2019). Cycling biomechanics optimization-the (R) evolution of bicycle fitting. Current Sports Medicine Reports, 18(12), 490-496. doi:10.1249/JSR.0000000000000665Tan, H., Wilson, A. M., & Lowe, J. (2008). Measurement of stride parameters using a wearable GPS and inertial measurement unit. Journal of Biomechanics, 41(7), 1398 1406. doi:10.1016/j.jbiomech.2008.02.021Theurel, J., Crepin, M., Foissac, M., & Temprado, J. J. (2012). Effects of different pedalling techniques on muscle fatigue and mechanical efficiency during prolonged cycling. Scandinavian Journal of Medicine & Science in Sports, 22(6), 714-721. doi:10.1111/j.1600-0838.2011.01313.xThe I2C Bus Specification (version 2.1, January 2000) URL http://www.semiconductors.philips.com/acrobat/literature/9398/39340011.pdfToapanta, C., Villafuerte, J., & Cruz, P. J. (Oct 2018). 3DoF multi-rotor experimental testbed for teaching control systems. Paper presented at the 1-6. doi:10.1109/ETCM.2018.8580337 Retrieved from https://ieeexplore.ieee.org/document/8580337Townsend, K. (2015). Adafruit BNO055 absolute orientation sensor. Retrieved from https://learn.adafruit.com/adafruit-bno055-absolute-orientation-sensor/overviewWanich, T., Hodgkins, C., Columbier, J., Muraski, E., & Kennedy, J. G. (2007). Cycling injuries of the lower extremity. The Journal of the American Academy of Orthopaedic Surgeons, 15(12), 748-756. doi:10.5435/00124635-200712000-00008Wiva. Inertial system for cycling performance analysis. (2020, mayo 7). Recuperado de http://www.e-wiva.com/wiva_cycle.htmlXu, J. Y. X. Nan, V. Ebken, Y. Wang, G. J. Pottie, & W. J. Kaiser. (2015). Integrated inertial sensors and mobile computing for real-time cycling performance guidance via pedaling profile classification doi:10.1109/JBHI.2014.2322871ORIGINAL2022_Tesis_Santiago_Uribe_Rojas.pdf2022_Tesis_Santiago_Uribe_Rojas.pdfTesisapplication/pdf4333090https://repository.unab.edu.co/bitstream/20.500.12749/17711/1/2022_Tesis_Santiago_Uribe_Rojas.pdfcb14b03165ce8d226b296a054f2755e4MD51open access2022_Licencia_Santiago_Uribe_Rojas.pdf2022_Licencia_Santiago_Uribe_Rojas.pdfLicenciaapplication/pdf813268https://repository.unab.edu.co/bitstream/20.500.12749/17711/2/2022_Licencia_Santiago_Uribe_Rojas.pdf35c9af327ebb7976d5ca2861a1478837MD52metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8829https://repository.unab.edu.co/bitstream/20.500.12749/17711/3/license.txt3755c0cfdb77e29f2b9125d7a45dd316MD53open accessTHUMBNAIL2022_Tesis_Santiago_Uribe_Rojas.pdf.jpg2022_Tesis_Santiago_Uribe_Rojas.pdf.jpgIM Thumbnailimage/jpeg5293https://repository.unab.edu.co/bitstream/20.500.12749/17711/4/2022_Tesis_Santiago_Uribe_Rojas.pdf.jpgb7059174d789f282af3930b8493d5430MD54open access2022_Licencia_Santiago_Uribe_Rojas.pdf.jpg2022_Licencia_Santiago_Uribe_Rojas.pdf.jpgIM Thumbnailimage/jpeg10106https://repository.unab.edu.co/bitstream/20.500.12749/17711/5/2022_Licencia_Santiago_Uribe_Rojas.pdf.jpgf22cb64896ba87f6f26687888249a882MD55metadata only access20.500.12749/17711oai:repository.unab.edu.co:20.500.12749/177112022-09-16 22:01:32.74open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbi4gRWwgQVVUT1IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVTkFCIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuCgpFbCBBVVRPUiBhdXRvcml6YSBhIGxhIFVuaXZlcnNpZGFkIEF1dMOzbm9tYSBkZSBCdWNhcmFtYW5nYSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24uCg==