Evaluación de las propiedades mecánicas de hidrogeles biodegradables a base de polietilenglicol diacrilado, con potencial uso en el diseño de matrices para úlceras crónicas
La cicatrización de úlceras crónicas de pie diabético (UCPD), es un proceso complejo y dinámico que requiere de una interacción entre factores regulados que trabajan en conjunto para restituir la piel lesionada. Los niveles altos de metaloproteinasas de matriz (MPMs) en las UCPD contribuyen a la cro...
- Autores:
-
Bayona Velasco, Geydi Alexandra
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2020
- Institución:
- Universidad Autónoma de Bucaramanga - UNAB
- Repositorio:
- Repositorio UNAB
- Idioma:
- spa
- OAI Identifier:
- oai:repository.unab.edu.co:20.500.12749/11845
- Acceso en línea:
- http://hdl.handle.net/20.500.12749/11845
- Palabra clave:
- Biomedical engineering
Engineering
Medical electronics
Biological physics
Bioengineering
Medical instruments and apparatus
Medicine
Diacrylated polyethylene
Glycol
Hydrogels
Mesh size
Modulus of elasticity
Extracellular matrix
Granulation tissue
Foot diseases
Polymethylmethacrylate
Ingeniería biomédica
Ingeniería
Biofísica
Bioingeniería
Medicina
Tejido de granulación
Enfermedades de los pies
Polimetilmetacrilato
Ingeniería clínica
Clinical engineering
Electrónica médica
Instrumentos y aparatos médicos
Polietilenglicol diacrilado
Hidrogeles
Tamaño de poro
Módulo de elasticidad
Matriz extracelular
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id |
UNAB2_ce3573e1b493a7722f1b17172876dd3b |
---|---|
oai_identifier_str |
oai:repository.unab.edu.co:20.500.12749/11845 |
network_acronym_str |
UNAB2 |
network_name_str |
Repositorio UNAB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Evaluación de las propiedades mecánicas de hidrogeles biodegradables a base de polietilenglicol diacrilado, con potencial uso en el diseño de matrices para úlceras crónicas |
dc.title.translated.spa.fl_str_mv |
Evaluation of the mechanical properties of biodegradable hydrogels based on diacrylated polyethylene glycol, with potential use in the design of matrices for chronic ulcers |
title |
Evaluación de las propiedades mecánicas de hidrogeles biodegradables a base de polietilenglicol diacrilado, con potencial uso en el diseño de matrices para úlceras crónicas |
spellingShingle |
Evaluación de las propiedades mecánicas de hidrogeles biodegradables a base de polietilenglicol diacrilado, con potencial uso en el diseño de matrices para úlceras crónicas Biomedical engineering Engineering Medical electronics Biological physics Bioengineering Medical instruments and apparatus Medicine Diacrylated polyethylene Glycol Hydrogels Mesh size Modulus of elasticity Extracellular matrix Granulation tissue Foot diseases Polymethylmethacrylate Ingeniería biomédica Ingeniería Biofísica Bioingeniería Medicina Tejido de granulación Enfermedades de los pies Polimetilmetacrilato Ingeniería clínica Clinical engineering Electrónica médica Instrumentos y aparatos médicos Polietilenglicol diacrilado Hidrogeles Tamaño de poro Módulo de elasticidad Matriz extracelular |
title_short |
Evaluación de las propiedades mecánicas de hidrogeles biodegradables a base de polietilenglicol diacrilado, con potencial uso en el diseño de matrices para úlceras crónicas |
title_full |
Evaluación de las propiedades mecánicas de hidrogeles biodegradables a base de polietilenglicol diacrilado, con potencial uso en el diseño de matrices para úlceras crónicas |
title_fullStr |
Evaluación de las propiedades mecánicas de hidrogeles biodegradables a base de polietilenglicol diacrilado, con potencial uso en el diseño de matrices para úlceras crónicas |
title_full_unstemmed |
Evaluación de las propiedades mecánicas de hidrogeles biodegradables a base de polietilenglicol diacrilado, con potencial uso en el diseño de matrices para úlceras crónicas |
title_sort |
Evaluación de las propiedades mecánicas de hidrogeles biodegradables a base de polietilenglicol diacrilado, con potencial uso en el diseño de matrices para úlceras crónicas |
dc.creator.fl_str_mv |
Bayona Velasco, Geydi Alexandra |
dc.contributor.advisor.spa.fl_str_mv |
Solarte David, Víctor Alfonso Becerra Bayona, Silvia Milena |
dc.contributor.author.spa.fl_str_mv |
Bayona Velasco, Geydi Alexandra |
dc.contributor.cvlac.*.fl_str_mv |
https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001363781 |
dc.contributor.cvlac.none.fl_str_mv |
Becerra Bayona, Silvia Milena [0001568861] |
dc.contributor.googlescholar.none.fl_str_mv |
Becerra Bayona, Silvia Milena [5wr21EQAAAAJ] |
dc.contributor.orcid.none.fl_str_mv |
Becerra Bayona, Silvia Milena [0000-0002-4499-5885] |
dc.contributor.scopus.none.fl_str_mv |
Becerra Bayona, Silvia Milena [36522328100] |
dc.contributor.researchgate.none.fl_str_mv |
Becerra Bayona, Silvia Milena [Silvia-Becerra-Bayona] |
dc.contributor.apolounab.none.fl_str_mv |
Becerra Bayona, Silvia Milena [silvia-milena-becerra-bayona] |
dc.contributor.linkedin.none.fl_str_mv |
Becerra Bayona, Silvia Milena [silvia-becerra-3174455a] |
dc.subject.keywords.eng.fl_str_mv |
Biomedical engineering Engineering Medical electronics Biological physics Bioengineering Medical instruments and apparatus Medicine Diacrylated polyethylene Glycol Hydrogels Mesh size Modulus of elasticity Extracellular matrix Granulation tissue Foot diseases Polymethylmethacrylate |
topic |
Biomedical engineering Engineering Medical electronics Biological physics Bioengineering Medical instruments and apparatus Medicine Diacrylated polyethylene Glycol Hydrogels Mesh size Modulus of elasticity Extracellular matrix Granulation tissue Foot diseases Polymethylmethacrylate Ingeniería biomédica Ingeniería Biofísica Bioingeniería Medicina Tejido de granulación Enfermedades de los pies Polimetilmetacrilato Ingeniería clínica Clinical engineering Electrónica médica Instrumentos y aparatos médicos Polietilenglicol diacrilado Hidrogeles Tamaño de poro Módulo de elasticidad Matriz extracelular |
dc.subject.lemb.spa.fl_str_mv |
Ingeniería biomédica Ingeniería Biofísica Bioingeniería Medicina Tejido de granulación Enfermedades de los pies Polimetilmetacrilato |
dc.subject.proposal.spa.fl_str_mv |
Ingeniería clínica Clinical engineering Electrónica médica Instrumentos y aparatos médicos Polietilenglicol diacrilado Hidrogeles Tamaño de poro Módulo de elasticidad Matriz extracelular |
description |
La cicatrización de úlceras crónicas de pie diabético (UCPD), es un proceso complejo y dinámico que requiere de una interacción entre factores regulados que trabajan en conjunto para restituir la piel lesionada. Los niveles altos de metaloproteinasas de matriz (MPMs) en las UCPD contribuyen a la cronicidad de la herida, lo que puede llevar a incrementar el riesgo de infecciones, provocando complicaciones que influyen en la calidad de vida del paciente. Por lo tanto, existe la necesidad de desarrollar alternativas terapéuticas que permitan la correcta cicatrización de la herida; entre los nuevos enfoques se destacan el uso de hidrogeles de polietilenglicol diacrilado (PEGDA), el cual se puede modificar mediante la introducción de dominios de corte para MPMs con el fin de que, las altas concentraciones de estas proteasas en la úlcera sean aprovechadas para degradar el material sintético. En consecuencia, en este estudio se fabricaron hidrogeles biodegradables derivados de PEGDA (7.34 kDa), en tres diferentes concentraciones (10, 20 y 30% p/v); los hidrogeles se polimerizaron en luz UV, en presencia de dos sistemas diferentes de fotoiniciador (Irgacure 2959, disuelto en NVP o en 70% etanol), las propiedades estructurales del hidrogel como la capacidad de hinchamiento, se evaluó a partir de la relación volumétrica de hinchamiento y el tamaño de poro teórico se calculó mediante la correlación con el módulo elástico experimental, mientras que el módulo elástico y de compresión fueron determinados mediante pruebas de tracción y compresión. Los resultados obtenidos de los hidrogeles de PEGDA biodegradables por MPMs, demuestran que, poseen excelentes propiedades mecánicas y físicas, ya que son similares a la piel; por lo tanto, podrían tener gran potencial en la curación de UCPD. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-12-03T17:11:50Z |
dc.date.available.none.fl_str_mv |
2020-12-03T17:11:50Z |
dc.date.issued.none.fl_str_mv |
2020 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.local.spa.fl_str_mv |
Trabajo de Grado |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12749/11845 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Autónoma de Bucaramanga - UNAB |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional UNAB |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.unab.edu.co |
url |
http://hdl.handle.net/20.500.12749/11845 |
identifier_str_mv |
instname:Universidad Autónoma de Bucaramanga - UNAB reponame:Repositorio Institucional UNAB repourl:https://repository.unab.edu.co |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Aguirre-Soto, A., Kim, S., Kaastrup, K., & Sikes, H. D. (2019). On the role of: N vinylpyrrolidone in the aqueous radical-initiated copolymerization with PEGDA mediated by eosin y in the presence of O 2. Polymer Chemistry, 10(8), 926–937. https://doi.org/10.1039/c8py01459k Aranzana, S. P., Mendel Rezusta, F. J., & Sánchez Somolinos, C. (2016). Modulación mecánica en hidrogeles de polietilenglicol. Universidad de Zaragoza (ICMA) Tesis, 1, 40. Boyko, T. V., Longaker, M. T., & Yang, G. P. (2018). Review of the Current Management of Pressure Ulcers. Advances in Wound Care, 7(2), 57–67. https://doi.org/10.1089/wound.2016.0697 Buxton, A. N., Zhu, J., Marchant, R., West, J. L., Yoo, J. U., & Johnstone, B. (2007). Design and characterization of poly(ethylene glycol) photopolymerizable semi-interpenetrating networks for chondrogenesis of human mesenchymal stem cells. Tissue Engineering, 13(10), 2549–2560. https://doi.org/10.1089/ten.2007.0075 Canal, T., & Peppas, N. A. (1989). Correlation between mesh size and equilibrium degree of swelling of polymeric networks. Journal of Biomedical Materials Research, 23(10), 1183– 1193. https://doi.org/10.1002/jbm.820231007 Chakrabarti, S., Chattopadhyay, P., Islam, J., Ray, S., Raju, P. S., & Mazumder, B. (2018). Aspects of Nanomaterials in Wound Healing. Current Drug Delivery, 16(1), 26–41. https://doi.org/10.2174/1567201815666180918110134 Charlesby, A. (1992). Elastic modulus formulae for a crosslinked network. International Journal of Radiation Applications and Instrumentation. Part, 40(2), 117–120. https://doi.org/10.1016/1359-0197(92)90068-Q Chen, S., Zhang, Q., Nakamoto, T., Kawazoe, N., & Chen, G. (2016). Gelatin scaffolds with controlled pore structure and mechanical property for cartilage tissue engineering. Tissue Engineering - Part C: Methods, 22(3), 189–198. https://doi.org/10.1089/ten.tec.2015.0281 Chiang, N., Rodda, O. A., Kang, A., Sleigh, J., & Vasudevan, T. (2018). Clinical Evaluation of Portable Wound Volumetric Measurement Devices. Advances in Skin and Wound Care, 31(8), 374–380. https://doi.org/10.1097/01.ASW.0000540072.52782.24 Diridollou, S., Vabre, V., Berson, M., Vaillant, L., Black, D., Lagarde, J. M., Grégoire, J. M., Gall, Y., & Patat, F. (2001). Skin ageing: Changes of physical properties of human skin in vivo. International Journal of Cosmetic Science, 23(6), 353–362. https://doi.org/10.1046/j.0412-5463.2001.00105.x Djordjevic, D. M., Cirkovic, S. T., & Mandic, D. S. (2018). Biomedical applications. Magnetic, Ferroelectric, and Multiferroic Metal Oxides, 411–430. https://doi.org/10.1016/B978-0-12- 811180-2.00020-7 Eckes, B., & Krieg, T. (2004). Regulation of connective tissue homeostasis in the skin by mechanical forces. Clinical and Experimental Rheumatology, 22(3 SUPPL. 33). Flory, P. J., & Rehner, J. (1943). Statistical mechanics of cross-linked polymer networks II. Swelling. The Journal of Chemical Physics, 11(11), 521–526. https://doi.org/10.1063/1.1723792 Gennisson, J. L., Deffieux, T., Macé, E., Montaldo, G., Fink, M., & Tanter, M. (2010). Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging. Ultrasound in Medicine and Biology, 36(5), 789–801. https://doi.org/10.1016/j.ultrasmedbio.2010.02.013 Gibas, I., & Janik, H. (2010). Synthetic polymer hydrogels for biomedical applications. Chemistry and Chemical Technology, 4(4), 297–304. Goodarzi, P., Falahzadeh, K., Nematizadeh, M., Farazandeh, P., Payab, M., Larijani, B., Tayanloo Beik, A., & Arjmand, B. (2018). Tissue engineered skin substitutes. Advances in Experimental Medicine and Biology, 1107, 143–188. https://doi.org/10.1007/5584_2018_226 Hagel, V., Haraszti, T., & Boehm, H. (2013). Diffusion and interaction in PEG-DA hydrogels. Biointerphases, 8(1), 1–9. https://doi.org/10.1186/1559-4106-8-36 Hahn, M. S., Taite, L. J., Moon, J. J., Rowland, M. C., Ruffino, K. A., & West, J. L. (2006). Photolithographic patterning of polyethylene glycol hydrogels. Biomaterials, 27(12), 2519– 2524. https://doi.org/10.1016/j.biomaterials.2005.11.045 Holback, H., Yeo, Y., & Park, K. (2011). Hydrogel swelling behavior and its biomedical applications. In Biomedical Hydrogels. Woodhead Publishing Limited. https://doi.org/10.1533/9780857091383.1.3 Jimenez-Vergara, A. C., Lewis, J., Hahn, M. S., & Munoz-Pinto, D. J. (2018). An improved correlation to predict molecular weight between crosslinks based on equilibrium degree of swelling of hydrogel networks. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 106(3), 1339–1348. https://doi.org/10.1002/jbm.b.33942 Jin, T., & Stanciulescu, I. (2017). Numerical investigation of the influence of pattern topology on the mechanical behavior of PEGDA hydrogels. Acta Biomaterialia, 49, 247–259. https://doi.org/10.1016/j.actbio.2016.10.041 Johnson, C. P., How, T., Scraggs, M., West, C. R., & Burns, J. (2000). A biomechanical study of the human vertebral artery with implications for fatal arterial injury. Forensic Science International, 109(3), 169–182. https://doi.org/10.1016/S0379-0738(99)00198-X Joodaki, H., & Panzer, M. B. (2018). Skin mechanical properties and modeling: A review. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 232(4), 323–343. https://doi.org/10.1177/0954411918759801 Lin, C. C., & Anseth, K. S. (2009). PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharmaceutical Research, 26(3), 631–643. https://doi.org/10.1007/s11095-008-9801-2 Lin, W. C., Yu, D. G., & Yang, M. C. (2005). pH-sensitive polyelectrolyte complex gel microspheres composed of chitosan/sodium tripolyphosphate/dextran sulfate: Swelling kinetics and drug delivery properties. Colloids and Surfaces B: Biointerfaces, 44(2–3), 143– 151. https://doi.org/10.1016/j.colsurfb.2005.06.010 Luo, C. C., Qian, L. X., Li, G. Y., Jiang, Y., Liang, S., & Cao, Y. (2015). Determining the in vivo elastic properties of dermis layer of human skin using the supersonic shear imaging technique and inverse analysis. Medical Physics, 42(7), 4106–4115. https://doi.org/10.1118/1.4922133 Martins-Mendes, D., Monteiro-Soares, M., Boyko, E. J., Ribeiro, M., Barata, P., Lima, J., & Soares, R. (2014). The independent contribution of diabetic foot ulcer on lower extremity amputation and mortality risk. Journal of Diabetes and Its Complications, 28(5), 632–638. https://doi.org/10.1016/j.jdiacomp.2014.04.011 Maruyama, K., Asai, J., Ii, M., Thorne, T., Losordo, D. W., & D’Amore, P. A. (2007). Decreased macrophage number and activation lead to reduced lymphatic vessel formation and 66 contribute to impaired diabetic wound healing. American Journal of Pathology, (4), 1178–1191. https://doi.org/10.2353/ajpath.2007.060018 Mehta, S. M., Jin, T., Stanciulescu, I., & Grande-Allen, K. J. (2018). Engineering biologically extensible hydrogels using photolithographic printing. In Acta Biomaterialia (Vol. 75). https://doi.org/10.1016/j.actbio.2018.05.036 Mikesh, L. M., Aramadhaka, L. R., Moskaluk, C., Zigrino, P., Mauch, C., & Fox, J. W. (2013). Proteomic anatomy of human skin. Journal of Proteomics, 84, 190–200. https://doi.org/10.1016/j.jprot.2013.03.019 Munoz-Pinto, D. J., Samavedi, S., Grigoryan, B., & Hahn, M. S. (2015). Impact of secondary reactive species on the apparent decoupling of poly(ethylene glycol) diacrylate hydrogel average mesh size and modulus. Polymer, 77, 227–238. https://doi.org/10.1016/j.polymer.2015.09.032 Nemir, S., & West, J. L. (2010). Synthetic materials in the study of cell response to substrate rigidity. Annals of Biomedical Engineering, 38(1), 2–20. https://doi.org/10.1007/s10439- 009-9811-1 Nguyen, Q. T., Hwang, Y., Chen, A. C., Varghese, S., & Sah, R. L. (2012). Cartilage-like mechanical properties of poly (ethylene glycol)-diacrylate hydrogels. Biomaterials, 33(28), 6682–6690. https://doi.org/10.1016/j.biomaterials.2012.06.005 Nuttelman, C. R., Rice, M. A., Rydholm, A. E., Salinas, C. N., Shah, D. N., & Anseth, K. S. (2008). Macromolecular monomers for the synthesis of hydrogel niches and their application in cell encapsulation and tissue engineering. Progress in Polymer Science (Oxford), 33(2), 167–179. https://doi.org/10.1016/j.progpolymsci.2007.09.006 O’Brien, F. J. (2011). Biomaterials & scaffolds for tissue engineering. Materials Today, 14(3), 88–95. https://doi.org/10.1016/S1369-7021(11)70058-X Oyen, M. L. (2014). Mechanical characterisation of hydrogel materials. International Materials Reviews, 59(1), 44–59. https://doi.org/10.1179/1743280413Y.0000000022 Papavasiliou, G., Sokic, S., & Turturro, M. (2012). Synthetic PEG Hydrogels as Extracellular Matrix Mimics for Tissue Engineering Applications. Biotechnology - Molecular Studies and Novel Applications for Improved Quality of Human Life. https://doi.org/10.5772/31695 Pawlaczyk, M., Lelonkiewicz, M., & Wieczorowski, M. (2013). Age-dependent biomechanical properties of the skin. Postepy Dermatologii i Alergologii, 30(5), 302–306. https://doi.org/10.5114/pdia.2013.38359 Peppas, N. A., & Merrill, E. W. (1977). Crosslinked poly(vinyl alcohol) hydrogels as swollen elastic networks. Journal of Applied Polymer Science, 21(7), 1763–1770. https://doi.org/10.1002/app.1977.070210704 Piérard, G. E., Piérard, S., Delvenne, P., & Piérard-Franchimont, C. (2013). In Vivo Evaluation of the Skin Tensile Strength by the Suction Method: Pilot Study Coping with Hysteresis and Creep Extension. ISRN Dermatology, 2013, 1–7. https://doi.org/10.1155/2013/841217 Pierre, A. (2000). Collecction explorations fonctionnelles humanies. In Physiologie de la peau et explorations fontionnelles cutanées (Lavoisier). https://www.lavoisier.fr/livre/medecine/physiologie-de-la-peau-et-explorations fonctionnelles-cutanees/agache/descriptif-9782743003609 Reyes-Martínez, J. E., Ruiz-Pacheco, J. A., Flores-Valdéz, M. A., Elsawy, M. A., Vallejo?Cardona, A. A., & Castillo-Díaz, L. A. (2019). Advanced hydrogels for treatment of diabetes. Journal of Tissue Engineering and Regenerative Medicine, 13(8), 1375–1393. https://doi.org/10.1002/term.2880 Ridge, M. D., & Wright, V. (1966). Mechanical properties of skin: a bioengineering study of skin structure. Journal of Applied Physiology, 21(5), 1602–1606. https://doi.org/10.1152/jappl.1966.21.5.1602 Robert J, S., & R, H. J. (2009). Diabetic foot ulcers--effects on QOL, costs, and mortality and the role of standard wound care and advanced-care therapies. 55, 28–38. Schweller, R. M., & West, J. L. (2015). Encoding Hydrogel Mechanics via Network Cross Linking Structure. ACS Biomaterials Science and Engineering, 1(5), 335–344. https://doi.org/10.1021/acsbiomaterials.5b00064 Seliktar, D., Zisch, A. H., Lutolf, M. P., Wrana, J. L., & Hubbel, J. A. (2004). MMP-2 sensitive, VEGF-bearing bioactive hydrogels for promotion of vascular healing. Journal of Biomedical Materials Research - Part A, 68(4), 704–716. https://doi.org/10.1002/jbm.a.20091 Shah, S. A., Sohail, M., Khan, S., Minhas, M. U., de Matas, M., Sikstone, V., Hussain, Z., Abbasi, M., & Kousar, M. (2019). Biopolymer-based biomaterials for accelerated diabetic wound healing: A critical review. International Journal of Biological Macromolecules, 139, 975–993. https://doi.org/10.1016/j.ijbiomac.2019.08.007 Sokic, S., & Papavasiliou, G. (2012). Controlled proteolytic cleavage site presentation in biomimetic PEGDA hydrogels enhances neovascularization in vitro. Tissue Engineering - Part A, 18(23–24), 2477–2486. https://doi.org/10.1089/ten.tea.2012.0173 Tessmar, J. K., & Göpferich, A. M. (2007). Customized PEG-derived copolymers for tissue engineering applications. Macromolecular Bioscience, 7(1), 23–39. https://doi.org/10.1002/mabi.200600096 Vargas-Uricoechea, H., & Casas-Figueroa, L. Á. (2016). Epidemiology of diabetes mellitus in South America: The experience of Colombia. Clinica e Investigacion En Arteriosclerosis, 28(5), 245–256. https://doi.org/10.1016/j.arteri.2015.12.002 Zahouani, H., Pailler-Mattei, C., Sohm, B., Vargiolu, R., Cenizo, V., & Debret, R. (2009). Characterization of the mechanical properties of a dermal equivalent compared with human skin in vivo by indentation and static friction tests. Skin Research and Technology, 15(1), 68–76. https://doi.org/10.1111/j.1600-0846.2008.00329.x |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.accessrights.spa.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 info:eu-repo/semantics/openAccess |
dc.rights.creativecommons.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 Atribución-NoComercial-SinDerivadas 2.5 Colombia |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.spatial.spa.fl_str_mv |
Colombia |
dc.coverage.campus.spa.fl_str_mv |
UNAB Campus Bucaramanga |
dc.publisher.grantor.spa.fl_str_mv |
Universidad Autónoma de Bucaramanga UNAB |
dc.publisher.faculty.spa.fl_str_mv |
Facultad Ingeniería |
dc.publisher.program.spa.fl_str_mv |
Pregrado Ingeniería Biomédica |
institution |
Universidad Autónoma de Bucaramanga - UNAB |
bitstream.url.fl_str_mv |
https://repository.unab.edu.co/bitstream/20.500.12749/11845/1/2017_Tesis_Geydi_Alexandra_Bayona.pdf https://repository.unab.edu.co/bitstream/20.500.12749/11845/2/2017_Licencia_Geydi_Alexandra_Bayona_1.pdf https://repository.unab.edu.co/bitstream/20.500.12749/11845/3/2017_Tesis_Geydi_Alexandra_Bayona.pdf.jpg https://repository.unab.edu.co/bitstream/20.500.12749/11845/4/2017_Licencia_Geydi_Alexandra_Bayona_1.pdf.jpg |
bitstream.checksum.fl_str_mv |
a7b2c76b701feaa7bc078f6a86c5d41a 0418e1e2efe5e859dc612c5e45e907b0 48be2aeeb6b9a664ca397d13b5c3afd3 e50ca3ee389a095461d700d1ef50d415 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB |
repository.mail.fl_str_mv |
repositorio@unab.edu.co |
_version_ |
1828219889987354624 |
spelling |
Solarte David, Víctor Alfonso54590e96-eda3-4b43-9ffa-14bd35ed7d08Becerra Bayona, Silvia Milenaf59fde3b-924f-4fcc-96e9-5fd6250b2daeBayona Velasco, Geydi Alexandrafed80c46-d18e-473a-b7ef-9ad7bf3688e7https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001363781Becerra Bayona, Silvia Milena [0001568861]Becerra Bayona, Silvia Milena [5wr21EQAAAAJ]Becerra Bayona, Silvia Milena [0000-0002-4499-5885]Becerra Bayona, Silvia Milena [36522328100]Becerra Bayona, Silvia Milena [Silvia-Becerra-Bayona]Becerra Bayona, Silvia Milena [silvia-milena-becerra-bayona]Becerra Bayona, Silvia Milena [silvia-becerra-3174455a]ColombiaUNAB Campus Bucaramanga2020-12-03T17:11:50Z2020-12-03T17:11:50Z2020http://hdl.handle.net/20.500.12749/11845instname:Universidad Autónoma de Bucaramanga - UNABreponame:Repositorio Institucional UNABrepourl:https://repository.unab.edu.coLa cicatrización de úlceras crónicas de pie diabético (UCPD), es un proceso complejo y dinámico que requiere de una interacción entre factores regulados que trabajan en conjunto para restituir la piel lesionada. Los niveles altos de metaloproteinasas de matriz (MPMs) en las UCPD contribuyen a la cronicidad de la herida, lo que puede llevar a incrementar el riesgo de infecciones, provocando complicaciones que influyen en la calidad de vida del paciente. Por lo tanto, existe la necesidad de desarrollar alternativas terapéuticas que permitan la correcta cicatrización de la herida; entre los nuevos enfoques se destacan el uso de hidrogeles de polietilenglicol diacrilado (PEGDA), el cual se puede modificar mediante la introducción de dominios de corte para MPMs con el fin de que, las altas concentraciones de estas proteasas en la úlcera sean aprovechadas para degradar el material sintético. En consecuencia, en este estudio se fabricaron hidrogeles biodegradables derivados de PEGDA (7.34 kDa), en tres diferentes concentraciones (10, 20 y 30% p/v); los hidrogeles se polimerizaron en luz UV, en presencia de dos sistemas diferentes de fotoiniciador (Irgacure 2959, disuelto en NVP o en 70% etanol), las propiedades estructurales del hidrogel como la capacidad de hinchamiento, se evaluó a partir de la relación volumétrica de hinchamiento y el tamaño de poro teórico se calculó mediante la correlación con el módulo elástico experimental, mientras que el módulo elástico y de compresión fueron determinados mediante pruebas de tracción y compresión. Los resultados obtenidos de los hidrogeles de PEGDA biodegradables por MPMs, demuestran que, poseen excelentes propiedades mecánicas y físicas, ya que son similares a la piel; por lo tanto, podrían tener gran potencial en la curación de UCPD.Capítulo 1 Problema u oportunidad ...........................................................................................10 1.1 Introducción ............................................................................................................10 1.2 Planteamiento del problema.....................................................................................11 1.3 Justificación ............................................................................................................12 1.4 Pregunta Problema ..................................................................................................13 1.5 Objetivo General .....................................................................................................13 1.6 Objetivos específicos...............................................................................................13 1.7 Limitaciones y delimitaciones .................................................................................14 Capítulo 2 Marco teórico..........................................................................................................15 2.1 La piel .....................................................................................................................15 2.2 Úlcera de pie diabético ............................................................................................21 2.3 Andamios................................................................................................................24 2.4 Hidrogeles...............................................................................................................25 2.4.1. Estructura de los hidrogeles .................................................................................25 2.4.2. Capacidad de hinchamiento de los hidrogeles.......................................................26 2.4.3. Correlación entre la capacidad de hinchamiento y el tamaño de poro de los hidrogeles..........................................................................................................................27 2.5 Hidrogeles de polietilenglicol diacrilado (PEGDA) .................................................29 2.5.1. Propiedades mecánicas del PEGDA .....................................................................30 2.5.2. Degradación del hidrogel de PEGDA...................................................................31 Capítulo 3 Estado del arte..........................................................................................................33 Capítulo 4 Metodología.............................................................................................................37 4.1 Síntesis del copolímero derivado de PEGDA con secuencias peptídicas degradables (PEGDA-BD)....................................................................................................................37 4.2 Fabricación de los hidrogeles biodegradables derivados de PEGDA. .......................37 4.3 Evaluación de la capacidad de hinchamiento de los hidrogeles ................................38 4.4 Evaluación del tamaño de poro de los hidrogeles.....................................................38 4.5 Caracterización mecánica de los hidrogeles.............................................................39 4.6 Análisis estadísticos.................................................................................................40 Capítulo 5 Resultados y Análisis de Resultados.........................................................................41 5.1 Resultados...................................................................................................................41 5.1.1. Síntesis y fabricación de los hidrogeles de PEGDA-BD .......................................41 5.1.2. Caracterización mecánica de los hidrogeles de PEGDA-BD y PEGDA-Control...42 5.1.3. Evaluación de la capacidad de hinchamiento de los hidrogeles.............................47 5.1.4. Evaluación del tamaño de poro promedio de los hidrogeles..................................51 5.1.5. Relación entre el Módulo elástico y la capacidad de hinchamiento de los hidrogeles en función de la densidad de entrecruzamiento. .................................................................55 5.2 Análisis de resultados..............................................................................................57 Capítulo 6 Conclusiones y recomendaciones.............................................................................62 Lista de referencias ...................................................................................................................64 Apéndice...................................................................................................................................68PregradoHealing of chronic diabetic foot ulcers (CDFU) is a complex and dynamic process that requires an interaction between regulated factors that work together to restore damaged skin. The high levels of matrix metalloproteinases (MMP) in the CDFU affect the chronicity of the wound, which can lead to an increased risk of infections, causing complications that influence the quality of life of the patient. Therefore, there is a need to develop therapeutic alternatives that could correct wound healing; New approaches include the use of diacrylated polyethylene glycol (PEGDA) hydrogels, which can be modified by introducing cut domains for MMPs so that high concentrations of these proteases in the ulcer are exploited to degrade Synthetic material. Consequently, in this study, biodegradable hydrogels derived from PEGDA (7.34 kDa) were manufactured, in three different concentrations (10, 20 and 30% w / v); hydrogels were polymerized in UV light, in the presence of two different photoinitiator systems (Irgacure 2959, dissolved in NVP or in 70% ethanol), the structural properties of the hydrogel, as well as the swelling capacity, were evaluated from the volumetric ratio of swelling and theoretical pore size will be calculated by correlation with the experimental elastic modulus, while the elastic and compression modulus were determined by tensile and compression tests. The results obtained from PEGDA hydrogels biodegradable by MPM, could have excellent mechanical and physical properties, since they are similar to the skin; therefore, it could have great potential in the healing of CDFU.Modalidad Presencialapplication/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 2.5 ColombiaEvaluación de las propiedades mecánicas de hidrogeles biodegradables a base de polietilenglicol diacrilado, con potencial uso en el diseño de matrices para úlceras crónicasEvaluation of the mechanical properties of biodegradable hydrogels based on diacrylated polyethylene glycol, with potential use in the design of matrices for chronic ulcersIngeniero BiomédicoUniversidad Autónoma de Bucaramanga UNABFacultad IngenieríaPregrado Ingeniería Biomédicainfo:eu-repo/semantics/bachelorThesisTrabajo de Gradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/redcol/resource_type/TPBiomedical engineeringEngineeringMedical electronicsBiological physicsBioengineeringMedical instruments and apparatusMedicineDiacrylated polyethyleneGlycolHydrogelsMesh sizeModulus of elasticityExtracellular matrixGranulation tissueFoot diseasesPolymethylmethacrylateIngeniería biomédicaIngenieríaBiofísicaBioingenieríaMedicinaTejido de granulaciónEnfermedades de los piesPolimetilmetacrilatoIngeniería clínicaClinical engineeringElectrónica médicaInstrumentos y aparatos médicosPolietilenglicol diacriladoHidrogelesTamaño de poroMódulo de elasticidadMatriz extracelularAguirre-Soto, A., Kim, S., Kaastrup, K., & Sikes, H. D. (2019). On the role of: N vinylpyrrolidone in the aqueous radical-initiated copolymerization with PEGDA mediated by eosin y in the presence of O 2. Polymer Chemistry, 10(8), 926–937. https://doi.org/10.1039/c8py01459kAranzana, S. P., Mendel Rezusta, F. J., & Sánchez Somolinos, C. (2016). Modulación mecánica en hidrogeles de polietilenglicol. Universidad de Zaragoza (ICMA) Tesis, 1, 40.Boyko, T. V., Longaker, M. T., & Yang, G. P. (2018). Review of the Current Management of Pressure Ulcers. Advances in Wound Care, 7(2), 57–67. https://doi.org/10.1089/wound.2016.0697Buxton, A. N., Zhu, J., Marchant, R., West, J. L., Yoo, J. U., & Johnstone, B. (2007). Design and characterization of poly(ethylene glycol) photopolymerizable semi-interpenetrating networks for chondrogenesis of human mesenchymal stem cells. Tissue Engineering, 13(10), 2549–2560. https://doi.org/10.1089/ten.2007.0075Canal, T., & Peppas, N. A. (1989). Correlation between mesh size and equilibrium degree of swelling of polymeric networks. Journal of Biomedical Materials Research, 23(10), 1183– 1193. https://doi.org/10.1002/jbm.820231007Chakrabarti, S., Chattopadhyay, P., Islam, J., Ray, S., Raju, P. S., & Mazumder, B. (2018). Aspects of Nanomaterials in Wound Healing. Current Drug Delivery, 16(1), 26–41. https://doi.org/10.2174/1567201815666180918110134Charlesby, A. (1992). Elastic modulus formulae for a crosslinked network. International Journal of Radiation Applications and Instrumentation. Part, 40(2), 117–120. https://doi.org/10.1016/1359-0197(92)90068-QChen, S., Zhang, Q., Nakamoto, T., Kawazoe, N., & Chen, G. (2016). Gelatin scaffolds with controlled pore structure and mechanical property for cartilage tissue engineering. Tissue Engineering - Part C: Methods, 22(3), 189–198. https://doi.org/10.1089/ten.tec.2015.0281Chiang, N., Rodda, O. A., Kang, A., Sleigh, J., & Vasudevan, T. (2018). Clinical Evaluation of Portable Wound Volumetric Measurement Devices. Advances in Skin and Wound Care, 31(8), 374–380. https://doi.org/10.1097/01.ASW.0000540072.52782.24Diridollou, S., Vabre, V., Berson, M., Vaillant, L., Black, D., Lagarde, J. M., Grégoire, J. M., Gall, Y., & Patat, F. (2001). Skin ageing: Changes of physical properties of human skin in vivo. International Journal of Cosmetic Science, 23(6), 353–362. https://doi.org/10.1046/j.0412-5463.2001.00105.xDjordjevic, D. M., Cirkovic, S. T., & Mandic, D. S. (2018). Biomedical applications. Magnetic, Ferroelectric, and Multiferroic Metal Oxides, 411–430. https://doi.org/10.1016/B978-0-12- 811180-2.00020-7Eckes, B., & Krieg, T. (2004). Regulation of connective tissue homeostasis in the skin by mechanical forces. Clinical and Experimental Rheumatology, 22(3 SUPPL. 33).Flory, P. J., & Rehner, J. (1943). Statistical mechanics of cross-linked polymer networks II. Swelling. The Journal of Chemical Physics, 11(11), 521–526. https://doi.org/10.1063/1.1723792Gennisson, J. L., Deffieux, T., Macé, E., Montaldo, G., Fink, M., & Tanter, M. (2010). Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging. Ultrasound in Medicine and Biology, 36(5), 789–801. https://doi.org/10.1016/j.ultrasmedbio.2010.02.013Gibas, I., & Janik, H. (2010). Synthetic polymer hydrogels for biomedical applications. Chemistry and Chemical Technology, 4(4), 297–304.Goodarzi, P., Falahzadeh, K., Nematizadeh, M., Farazandeh, P., Payab, M., Larijani, B., Tayanloo Beik, A., & Arjmand, B. (2018). Tissue engineered skin substitutes. Advances in Experimental Medicine and Biology, 1107, 143–188. https://doi.org/10.1007/5584_2018_226Hagel, V., Haraszti, T., & Boehm, H. (2013). Diffusion and interaction in PEG-DA hydrogels. Biointerphases, 8(1), 1–9. https://doi.org/10.1186/1559-4106-8-36Hahn, M. S., Taite, L. J., Moon, J. J., Rowland, M. C., Ruffino, K. A., & West, J. L. (2006). Photolithographic patterning of polyethylene glycol hydrogels. Biomaterials, 27(12), 2519– 2524. https://doi.org/10.1016/j.biomaterials.2005.11.045Holback, H., Yeo, Y., & Park, K. (2011). Hydrogel swelling behavior and its biomedical applications. In Biomedical Hydrogels. Woodhead Publishing Limited. https://doi.org/10.1533/9780857091383.1.3Jimenez-Vergara, A. C., Lewis, J., Hahn, M. S., & Munoz-Pinto, D. J. (2018). An improved correlation to predict molecular weight between crosslinks based on equilibrium degree of swelling of hydrogel networks. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 106(3), 1339–1348. https://doi.org/10.1002/jbm.b.33942Jin, T., & Stanciulescu, I. (2017). Numerical investigation of the influence of pattern topology on the mechanical behavior of PEGDA hydrogels. Acta Biomaterialia, 49, 247–259. https://doi.org/10.1016/j.actbio.2016.10.041Johnson, C. P., How, T., Scraggs, M., West, C. R., & Burns, J. (2000). A biomechanical study of the human vertebral artery with implications for fatal arterial injury. Forensic Science International, 109(3), 169–182. https://doi.org/10.1016/S0379-0738(99)00198-XJoodaki, H., & Panzer, M. B. (2018). Skin mechanical properties and modeling: A review. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 232(4), 323–343. https://doi.org/10.1177/0954411918759801Lin, C. C., & Anseth, K. S. (2009). PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharmaceutical Research, 26(3), 631–643. https://doi.org/10.1007/s11095-008-9801-2Lin, W. C., Yu, D. G., & Yang, M. C. (2005). pH-sensitive polyelectrolyte complex gel microspheres composed of chitosan/sodium tripolyphosphate/dextran sulfate: Swelling kinetics and drug delivery properties. Colloids and Surfaces B: Biointerfaces, 44(2–3), 143– 151. https://doi.org/10.1016/j.colsurfb.2005.06.010Luo, C. C., Qian, L. X., Li, G. Y., Jiang, Y., Liang, S., & Cao, Y. (2015). Determining the in vivo elastic properties of dermis layer of human skin using the supersonic shear imaging technique and inverse analysis. Medical Physics, 42(7), 4106–4115. https://doi.org/10.1118/1.4922133Martins-Mendes, D., Monteiro-Soares, M., Boyko, E. J., Ribeiro, M., Barata, P., Lima, J., & Soares, R. (2014). The independent contribution of diabetic foot ulcer on lower extremity amputation and mortality risk. Journal of Diabetes and Its Complications, 28(5), 632–638. https://doi.org/10.1016/j.jdiacomp.2014.04.011Maruyama, K., Asai, J., Ii, M., Thorne, T., Losordo, D. W., & D’Amore, P. A. (2007). Decreased macrophage number and activation lead to reduced lymphatic vessel formation and 66 contribute to impaired diabetic wound healing. American Journal of Pathology, (4), 1178–1191. https://doi.org/10.2353/ajpath.2007.060018Mehta, S. M., Jin, T., Stanciulescu, I., & Grande-Allen, K. J. (2018). Engineering biologically extensible hydrogels using photolithographic printing. In Acta Biomaterialia (Vol. 75). https://doi.org/10.1016/j.actbio.2018.05.036Mikesh, L. M., Aramadhaka, L. R., Moskaluk, C., Zigrino, P., Mauch, C., & Fox, J. W. (2013). Proteomic anatomy of human skin. Journal of Proteomics, 84, 190–200. https://doi.org/10.1016/j.jprot.2013.03.019Munoz-Pinto, D. J., Samavedi, S., Grigoryan, B., & Hahn, M. S. (2015). Impact of secondary reactive species on the apparent decoupling of poly(ethylene glycol) diacrylate hydrogel average mesh size and modulus. Polymer, 77, 227–238. https://doi.org/10.1016/j.polymer.2015.09.032Nemir, S., & West, J. L. (2010). Synthetic materials in the study of cell response to substrate rigidity. Annals of Biomedical Engineering, 38(1), 2–20. https://doi.org/10.1007/s10439- 009-9811-1Nguyen, Q. T., Hwang, Y., Chen, A. C., Varghese, S., & Sah, R. L. (2012). Cartilage-like mechanical properties of poly (ethylene glycol)-diacrylate hydrogels. Biomaterials, 33(28), 6682–6690. https://doi.org/10.1016/j.biomaterials.2012.06.005Nuttelman, C. R., Rice, M. A., Rydholm, A. E., Salinas, C. N., Shah, D. N., & Anseth, K. S. (2008). Macromolecular monomers for the synthesis of hydrogel niches and their application in cell encapsulation and tissue engineering. Progress in Polymer Science (Oxford), 33(2), 167–179. https://doi.org/10.1016/j.progpolymsci.2007.09.006O’Brien, F. J. (2011). Biomaterials & scaffolds for tissue engineering. Materials Today, 14(3), 88–95. https://doi.org/10.1016/S1369-7021(11)70058-XOyen, M. L. (2014). Mechanical characterisation of hydrogel materials. International Materials Reviews, 59(1), 44–59. https://doi.org/10.1179/1743280413Y.0000000022Papavasiliou, G., Sokic, S., & Turturro, M. (2012). Synthetic PEG Hydrogels as Extracellular Matrix Mimics for Tissue Engineering Applications. Biotechnology - Molecular Studies and Novel Applications for Improved Quality of Human Life. https://doi.org/10.5772/31695Pawlaczyk, M., Lelonkiewicz, M., & Wieczorowski, M. (2013). Age-dependent biomechanical properties of the skin. Postepy Dermatologii i Alergologii, 30(5), 302–306. https://doi.org/10.5114/pdia.2013.38359Peppas, N. A., & Merrill, E. W. (1977). Crosslinked poly(vinyl alcohol) hydrogels as swollen elastic networks. Journal of Applied Polymer Science, 21(7), 1763–1770. https://doi.org/10.1002/app.1977.070210704Piérard, G. E., Piérard, S., Delvenne, P., & Piérard-Franchimont, C. (2013). In Vivo Evaluation of the Skin Tensile Strength by the Suction Method: Pilot Study Coping with Hysteresis and Creep Extension. ISRN Dermatology, 2013, 1–7. https://doi.org/10.1155/2013/841217Pierre, A. (2000). Collecction explorations fonctionnelles humanies. In Physiologie de la peau et explorations fontionnelles cutanées (Lavoisier). https://www.lavoisier.fr/livre/medecine/physiologie-de-la-peau-et-explorations fonctionnelles-cutanees/agache/descriptif-9782743003609Reyes-Martínez, J. E., Ruiz-Pacheco, J. A., Flores-Valdéz, M. A., Elsawy, M. A., Vallejo?Cardona, A. A., & Castillo-Díaz, L. A. (2019). Advanced hydrogels for treatment of diabetes. Journal of Tissue Engineering and Regenerative Medicine, 13(8), 1375–1393. https://doi.org/10.1002/term.2880Ridge, M. D., & Wright, V. (1966). Mechanical properties of skin: a bioengineering study of skin structure. Journal of Applied Physiology, 21(5), 1602–1606. https://doi.org/10.1152/jappl.1966.21.5.1602Robert J, S., & R, H. J. (2009). Diabetic foot ulcers--effects on QOL, costs, and mortality and the role of standard wound care and advanced-care therapies. 55, 28–38.Schweller, R. M., & West, J. L. (2015). Encoding Hydrogel Mechanics via Network Cross Linking Structure. ACS Biomaterials Science and Engineering, 1(5), 335–344. https://doi.org/10.1021/acsbiomaterials.5b00064Seliktar, D., Zisch, A. H., Lutolf, M. P., Wrana, J. L., & Hubbel, J. A. (2004). MMP-2 sensitive, VEGF-bearing bioactive hydrogels for promotion of vascular healing. Journal of Biomedical Materials Research - Part A, 68(4), 704–716. https://doi.org/10.1002/jbm.a.20091Shah, S. A., Sohail, M., Khan, S., Minhas, M. U., de Matas, M., Sikstone, V., Hussain, Z., Abbasi, M., & Kousar, M. (2019). Biopolymer-based biomaterials for accelerated diabetic wound healing: A critical review. International Journal of Biological Macromolecules, 139, 975–993. https://doi.org/10.1016/j.ijbiomac.2019.08.007Sokic, S., & Papavasiliou, G. (2012). Controlled proteolytic cleavage site presentation in biomimetic PEGDA hydrogels enhances neovascularization in vitro. Tissue Engineering - Part A, 18(23–24), 2477–2486. https://doi.org/10.1089/ten.tea.2012.0173Tessmar, J. K., & Göpferich, A. M. (2007). Customized PEG-derived copolymers for tissue engineering applications. Macromolecular Bioscience, 7(1), 23–39. https://doi.org/10.1002/mabi.200600096Vargas-Uricoechea, H., & Casas-Figueroa, L. Á. (2016). Epidemiology of diabetes mellitus in South America: The experience of Colombia. Clinica e Investigacion En Arteriosclerosis, 28(5), 245–256. https://doi.org/10.1016/j.arteri.2015.12.002Zahouani, H., Pailler-Mattei, C., Sohm, B., Vargiolu, R., Cenizo, V., & Debret, R. (2009). Characterization of the mechanical properties of a dermal equivalent compared with human skin in vivo by indentation and static friction tests. Skin Research and Technology, 15(1), 68–76. https://doi.org/10.1111/j.1600-0846.2008.00329.xORIGINAL2017_Tesis_Geydi_Alexandra_Bayona.pdf2017_Tesis_Geydi_Alexandra_Bayona.pdfTesisapplication/pdf900672https://repository.unab.edu.co/bitstream/20.500.12749/11845/1/2017_Tesis_Geydi_Alexandra_Bayona.pdfa7b2c76b701feaa7bc078f6a86c5d41aMD51open access2017_Licencia_Geydi_Alexandra_Bayona_1.pdf2017_Licencia_Geydi_Alexandra_Bayona_1.pdfLicenciaapplication/pdf509121https://repository.unab.edu.co/bitstream/20.500.12749/11845/2/2017_Licencia_Geydi_Alexandra_Bayona_1.pdf0418e1e2efe5e859dc612c5e45e907b0MD52metadata only accessTHUMBNAIL2017_Tesis_Geydi_Alexandra_Bayona.pdf.jpg2017_Tesis_Geydi_Alexandra_Bayona.pdf.jpgimage/jpeg5078https://repository.unab.edu.co/bitstream/20.500.12749/11845/3/2017_Tesis_Geydi_Alexandra_Bayona.pdf.jpg48be2aeeb6b9a664ca397d13b5c3afd3MD53open access2017_Licencia_Geydi_Alexandra_Bayona_1.pdf.jpg2017_Licencia_Geydi_Alexandra_Bayona_1.pdf.jpgIM Thumbnailimage/jpeg9702https://repository.unab.edu.co/bitstream/20.500.12749/11845/4/2017_Licencia_Geydi_Alexandra_Bayona_1.pdf.jpge50ca3ee389a095461d700d1ef50d415MD54metadata only access20.500.12749/11845oai:repository.unab.edu.co:20.500.12749/118452023-11-25 03:47:26.492open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.co |