Evaluación de las propiedades mecánicas de hidrogeles biodegradables a base de polietilenglicol diacrilado, con potencial uso en el diseño de matrices para úlceras crónicas

La cicatrización de úlceras crónicas de pie diabético (UCPD), es un proceso complejo y dinámico que requiere de una interacción entre factores regulados que trabajan en conjunto para restituir la piel lesionada. Los niveles altos de metaloproteinasas de matriz (MPMs) en las UCPD contribuyen a la cro...

Full description

Autores:
Bayona Velasco, Geydi Alexandra
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2020
Institución:
Universidad Autónoma de Bucaramanga - UNAB
Repositorio:
Repositorio UNAB
Idioma:
spa
OAI Identifier:
oai:repository.unab.edu.co:20.500.12749/11845
Acceso en línea:
http://hdl.handle.net/20.500.12749/11845
Palabra clave:
Biomedical engineering
Engineering
Medical electronics
Biological physics
Bioengineering
Medical instruments and apparatus
Medicine
Diacrylated polyethylene
Glycol
Hydrogels
Mesh size
Modulus of elasticity
Extracellular matrix
Granulation tissue
Foot diseases
Polymethylmethacrylate
Ingeniería biomédica
Ingeniería
Biofísica
Bioingeniería
Medicina
Tejido de granulación
Enfermedades de los pies
Polimetilmetacrilato
Ingeniería clínica
Clinical engineering
Electrónica médica
Instrumentos y aparatos médicos
Polietilenglicol diacrilado
Hidrogeles
Tamaño de poro
Módulo de elasticidad
Matriz extracelular
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UNAB2_ce3573e1b493a7722f1b17172876dd3b
oai_identifier_str oai:repository.unab.edu.co:20.500.12749/11845
network_acronym_str UNAB2
network_name_str Repositorio UNAB
repository_id_str
dc.title.spa.fl_str_mv Evaluación de las propiedades mecánicas de hidrogeles biodegradables a base de polietilenglicol diacrilado, con potencial uso en el diseño de matrices para úlceras crónicas
dc.title.translated.spa.fl_str_mv Evaluation of the mechanical properties of biodegradable hydrogels based on diacrylated polyethylene glycol, with potential use in the design of matrices for chronic ulcers
title Evaluación de las propiedades mecánicas de hidrogeles biodegradables a base de polietilenglicol diacrilado, con potencial uso en el diseño de matrices para úlceras crónicas
spellingShingle Evaluación de las propiedades mecánicas de hidrogeles biodegradables a base de polietilenglicol diacrilado, con potencial uso en el diseño de matrices para úlceras crónicas
Biomedical engineering
Engineering
Medical electronics
Biological physics
Bioengineering
Medical instruments and apparatus
Medicine
Diacrylated polyethylene
Glycol
Hydrogels
Mesh size
Modulus of elasticity
Extracellular matrix
Granulation tissue
Foot diseases
Polymethylmethacrylate
Ingeniería biomédica
Ingeniería
Biofísica
Bioingeniería
Medicina
Tejido de granulación
Enfermedades de los pies
Polimetilmetacrilato
Ingeniería clínica
Clinical engineering
Electrónica médica
Instrumentos y aparatos médicos
Polietilenglicol diacrilado
Hidrogeles
Tamaño de poro
Módulo de elasticidad
Matriz extracelular
title_short Evaluación de las propiedades mecánicas de hidrogeles biodegradables a base de polietilenglicol diacrilado, con potencial uso en el diseño de matrices para úlceras crónicas
title_full Evaluación de las propiedades mecánicas de hidrogeles biodegradables a base de polietilenglicol diacrilado, con potencial uso en el diseño de matrices para úlceras crónicas
title_fullStr Evaluación de las propiedades mecánicas de hidrogeles biodegradables a base de polietilenglicol diacrilado, con potencial uso en el diseño de matrices para úlceras crónicas
title_full_unstemmed Evaluación de las propiedades mecánicas de hidrogeles biodegradables a base de polietilenglicol diacrilado, con potencial uso en el diseño de matrices para úlceras crónicas
title_sort Evaluación de las propiedades mecánicas de hidrogeles biodegradables a base de polietilenglicol diacrilado, con potencial uso en el diseño de matrices para úlceras crónicas
dc.creator.fl_str_mv Bayona Velasco, Geydi Alexandra
dc.contributor.advisor.spa.fl_str_mv Solarte David, Víctor Alfonso
Becerra Bayona, Silvia Milena
dc.contributor.author.spa.fl_str_mv Bayona Velasco, Geydi Alexandra
dc.contributor.cvlac.*.fl_str_mv https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001363781
dc.contributor.cvlac.none.fl_str_mv Becerra Bayona, Silvia Milena [0001568861]
dc.contributor.googlescholar.none.fl_str_mv Becerra Bayona, Silvia Milena [5wr21EQAAAAJ]
dc.contributor.orcid.none.fl_str_mv Becerra Bayona, Silvia Milena [0000-0002-4499-5885]
dc.contributor.scopus.none.fl_str_mv Becerra Bayona, Silvia Milena [36522328100]
dc.contributor.researchgate.none.fl_str_mv Becerra Bayona, Silvia Milena [Silvia-Becerra-Bayona]
dc.contributor.apolounab.none.fl_str_mv Becerra Bayona, Silvia Milena [silvia-milena-becerra-bayona]
dc.contributor.linkedin.none.fl_str_mv Becerra Bayona, Silvia Milena [silvia-becerra-3174455a]
dc.subject.keywords.eng.fl_str_mv Biomedical engineering
Engineering
Medical electronics
Biological physics
Bioengineering
Medical instruments and apparatus
Medicine
Diacrylated polyethylene
Glycol
Hydrogels
Mesh size
Modulus of elasticity
Extracellular matrix
Granulation tissue
Foot diseases
Polymethylmethacrylate
topic Biomedical engineering
Engineering
Medical electronics
Biological physics
Bioengineering
Medical instruments and apparatus
Medicine
Diacrylated polyethylene
Glycol
Hydrogels
Mesh size
Modulus of elasticity
Extracellular matrix
Granulation tissue
Foot diseases
Polymethylmethacrylate
Ingeniería biomédica
Ingeniería
Biofísica
Bioingeniería
Medicina
Tejido de granulación
Enfermedades de los pies
Polimetilmetacrilato
Ingeniería clínica
Clinical engineering
Electrónica médica
Instrumentos y aparatos médicos
Polietilenglicol diacrilado
Hidrogeles
Tamaño de poro
Módulo de elasticidad
Matriz extracelular
dc.subject.lemb.spa.fl_str_mv Ingeniería biomédica
Ingeniería
Biofísica
Bioingeniería
Medicina
Tejido de granulación
Enfermedades de los pies
Polimetilmetacrilato
dc.subject.proposal.spa.fl_str_mv Ingeniería clínica
Clinical engineering
Electrónica médica
Instrumentos y aparatos médicos
Polietilenglicol diacrilado
Hidrogeles
Tamaño de poro
Módulo de elasticidad
Matriz extracelular
description La cicatrización de úlceras crónicas de pie diabético (UCPD), es un proceso complejo y dinámico que requiere de una interacción entre factores regulados que trabajan en conjunto para restituir la piel lesionada. Los niveles altos de metaloproteinasas de matriz (MPMs) en las UCPD contribuyen a la cronicidad de la herida, lo que puede llevar a incrementar el riesgo de infecciones, provocando complicaciones que influyen en la calidad de vida del paciente. Por lo tanto, existe la necesidad de desarrollar alternativas terapéuticas que permitan la correcta cicatrización de la herida; entre los nuevos enfoques se destacan el uso de hidrogeles de polietilenglicol diacrilado (PEGDA), el cual se puede modificar mediante la introducción de dominios de corte para MPMs con el fin de que, las altas concentraciones de estas proteasas en la úlcera sean aprovechadas para degradar el material sintético. En consecuencia, en este estudio se fabricaron hidrogeles biodegradables derivados de PEGDA (7.34 kDa), en tres diferentes concentraciones (10, 20 y 30% p/v); los hidrogeles se polimerizaron en luz UV, en presencia de dos sistemas diferentes de fotoiniciador (Irgacure 2959, disuelto en NVP o en 70% etanol), las propiedades estructurales del hidrogel como la capacidad de hinchamiento, se evaluó a partir de la relación volumétrica de hinchamiento y el tamaño de poro teórico se calculó mediante la correlación con el módulo elástico experimental, mientras que el módulo elástico y de compresión fueron determinados mediante pruebas de tracción y compresión. Los resultados obtenidos de los hidrogeles de PEGDA biodegradables por MPMs, demuestran que, poseen excelentes propiedades mecánicas y físicas, ya que son similares a la piel; por lo tanto, podrían tener gran potencial en la curación de UCPD.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-12-03T17:11:50Z
dc.date.available.none.fl_str_mv 2020-12-03T17:11:50Z
dc.date.issued.none.fl_str_mv 2020
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.local.spa.fl_str_mv Trabajo de Grado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12749/11845
dc.identifier.instname.spa.fl_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UNAB
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.unab.edu.co
url http://hdl.handle.net/20.500.12749/11845
identifier_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
reponame:Repositorio Institucional UNAB
repourl:https://repository.unab.edu.co
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Aguirre-Soto, A., Kim, S., Kaastrup, K., & Sikes, H. D. (2019). On the role of: N vinylpyrrolidone in the aqueous radical-initiated copolymerization with PEGDA mediated by eosin y in the presence of O 2. Polymer Chemistry, 10(8), 926–937. https://doi.org/10.1039/c8py01459k
Aranzana, S. P., Mendel Rezusta, F. J., & Sánchez Somolinos, C. (2016). Modulación mecánica en hidrogeles de polietilenglicol. Universidad de Zaragoza (ICMA) Tesis, 1, 40.
Boyko, T. V., Longaker, M. T., & Yang, G. P. (2018). Review of the Current Management of Pressure Ulcers. Advances in Wound Care, 7(2), 57–67. https://doi.org/10.1089/wound.2016.0697
Buxton, A. N., Zhu, J., Marchant, R., West, J. L., Yoo, J. U., & Johnstone, B. (2007). Design and characterization of poly(ethylene glycol) photopolymerizable semi-interpenetrating networks for chondrogenesis of human mesenchymal stem cells. Tissue Engineering, 13(10), 2549–2560. https://doi.org/10.1089/ten.2007.0075
Canal, T., & Peppas, N. A. (1989). Correlation between mesh size and equilibrium degree of swelling of polymeric networks. Journal of Biomedical Materials Research, 23(10), 1183– 1193. https://doi.org/10.1002/jbm.820231007
Chakrabarti, S., Chattopadhyay, P., Islam, J., Ray, S., Raju, P. S., & Mazumder, B. (2018). Aspects of Nanomaterials in Wound Healing. Current Drug Delivery, 16(1), 26–41. https://doi.org/10.2174/1567201815666180918110134
Charlesby, A. (1992). Elastic modulus formulae for a crosslinked network. International Journal of Radiation Applications and Instrumentation. Part, 40(2), 117–120. https://doi.org/10.1016/1359-0197(92)90068-Q
Chen, S., Zhang, Q., Nakamoto, T., Kawazoe, N., & Chen, G. (2016). Gelatin scaffolds with controlled pore structure and mechanical property for cartilage tissue engineering. Tissue Engineering - Part C: Methods, 22(3), 189–198. https://doi.org/10.1089/ten.tec.2015.0281
Chiang, N., Rodda, O. A., Kang, A., Sleigh, J., & Vasudevan, T. (2018). Clinical Evaluation of Portable Wound Volumetric Measurement Devices. Advances in Skin and Wound Care, 31(8), 374–380. https://doi.org/10.1097/01.ASW.0000540072.52782.24
Diridollou, S., Vabre, V., Berson, M., Vaillant, L., Black, D., Lagarde, J. M., Grégoire, J. M., Gall, Y., & Patat, F. (2001). Skin ageing: Changes of physical properties of human skin in vivo. International Journal of Cosmetic Science, 23(6), 353–362. https://doi.org/10.1046/j.0412-5463.2001.00105.x
Djordjevic, D. M., Cirkovic, S. T., & Mandic, D. S. (2018). Biomedical applications. Magnetic, Ferroelectric, and Multiferroic Metal Oxides, 411–430. https://doi.org/10.1016/B978-0-12- 811180-2.00020-7
Eckes, B., & Krieg, T. (2004). Regulation of connective tissue homeostasis in the skin by mechanical forces. Clinical and Experimental Rheumatology, 22(3 SUPPL. 33).
Flory, P. J., & Rehner, J. (1943). Statistical mechanics of cross-linked polymer networks II. Swelling. The Journal of Chemical Physics, 11(11), 521–526. https://doi.org/10.1063/1.1723792
Gennisson, J. L., Deffieux, T., Macé, E., Montaldo, G., Fink, M., & Tanter, M. (2010). Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging. Ultrasound in Medicine and Biology, 36(5), 789–801. https://doi.org/10.1016/j.ultrasmedbio.2010.02.013
Gibas, I., & Janik, H. (2010). Synthetic polymer hydrogels for biomedical applications. Chemistry and Chemical Technology, 4(4), 297–304.
Goodarzi, P., Falahzadeh, K., Nematizadeh, M., Farazandeh, P., Payab, M., Larijani, B., Tayanloo Beik, A., & Arjmand, B. (2018). Tissue engineered skin substitutes. Advances in Experimental Medicine and Biology, 1107, 143–188. https://doi.org/10.1007/5584_2018_226
Hagel, V., Haraszti, T., & Boehm, H. (2013). Diffusion and interaction in PEG-DA hydrogels. Biointerphases, 8(1), 1–9. https://doi.org/10.1186/1559-4106-8-36
Hahn, M. S., Taite, L. J., Moon, J. J., Rowland, M. C., Ruffino, K. A., & West, J. L. (2006). Photolithographic patterning of polyethylene glycol hydrogels. Biomaterials, 27(12), 2519– 2524. https://doi.org/10.1016/j.biomaterials.2005.11.045
Holback, H., Yeo, Y., & Park, K. (2011). Hydrogel swelling behavior and its biomedical applications. In Biomedical Hydrogels. Woodhead Publishing Limited. https://doi.org/10.1533/9780857091383.1.3
Jimenez-Vergara, A. C., Lewis, J., Hahn, M. S., & Munoz-Pinto, D. J. (2018). An improved correlation to predict molecular weight between crosslinks based on equilibrium degree of swelling of hydrogel networks. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 106(3), 1339–1348. https://doi.org/10.1002/jbm.b.33942
Jin, T., & Stanciulescu, I. (2017). Numerical investigation of the influence of pattern topology on the mechanical behavior of PEGDA hydrogels. Acta Biomaterialia, 49, 247–259. https://doi.org/10.1016/j.actbio.2016.10.041
Johnson, C. P., How, T., Scraggs, M., West, C. R., & Burns, J. (2000). A biomechanical study of the human vertebral artery with implications for fatal arterial injury. Forensic Science International, 109(3), 169–182. https://doi.org/10.1016/S0379-0738(99)00198-X
Joodaki, H., & Panzer, M. B. (2018). Skin mechanical properties and modeling: A review. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 232(4), 323–343. https://doi.org/10.1177/0954411918759801
Lin, C. C., & Anseth, K. S. (2009). PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharmaceutical Research, 26(3), 631–643. https://doi.org/10.1007/s11095-008-9801-2
Lin, W. C., Yu, D. G., & Yang, M. C. (2005). pH-sensitive polyelectrolyte complex gel microspheres composed of chitosan/sodium tripolyphosphate/dextran sulfate: Swelling kinetics and drug delivery properties. Colloids and Surfaces B: Biointerfaces, 44(2–3), 143– 151. https://doi.org/10.1016/j.colsurfb.2005.06.010
Luo, C. C., Qian, L. X., Li, G. Y., Jiang, Y., Liang, S., & Cao, Y. (2015). Determining the in vivo elastic properties of dermis layer of human skin using the supersonic shear imaging technique and inverse analysis. Medical Physics, 42(7), 4106–4115. https://doi.org/10.1118/1.4922133
Martins-Mendes, D., Monteiro-Soares, M., Boyko, E. J., Ribeiro, M., Barata, P., Lima, J., & Soares, R. (2014). The independent contribution of diabetic foot ulcer on lower extremity amputation and mortality risk. Journal of Diabetes and Its Complications, 28(5), 632–638. https://doi.org/10.1016/j.jdiacomp.2014.04.011
Maruyama, K., Asai, J., Ii, M., Thorne, T., Losordo, D. W., & D’Amore, P. A. (2007). Decreased macrophage number and activation lead to reduced lymphatic vessel formation and 66 contribute to impaired diabetic wound healing. American Journal of Pathology, (4), 1178–1191. https://doi.org/10.2353/ajpath.2007.060018
Mehta, S. M., Jin, T., Stanciulescu, I., & Grande-Allen, K. J. (2018). Engineering biologically extensible hydrogels using photolithographic printing. In Acta Biomaterialia (Vol. 75). https://doi.org/10.1016/j.actbio.2018.05.036
Mikesh, L. M., Aramadhaka, L. R., Moskaluk, C., Zigrino, P., Mauch, C., & Fox, J. W. (2013). Proteomic anatomy of human skin. Journal of Proteomics, 84, 190–200. https://doi.org/10.1016/j.jprot.2013.03.019
Munoz-Pinto, D. J., Samavedi, S., Grigoryan, B., & Hahn, M. S. (2015). Impact of secondary reactive species on the apparent decoupling of poly(ethylene glycol) diacrylate hydrogel average mesh size and modulus. Polymer, 77, 227–238. https://doi.org/10.1016/j.polymer.2015.09.032
Nemir, S., & West, J. L. (2010). Synthetic materials in the study of cell response to substrate rigidity. Annals of Biomedical Engineering, 38(1), 2–20. https://doi.org/10.1007/s10439- 009-9811-1
Nguyen, Q. T., Hwang, Y., Chen, A. C., Varghese, S., & Sah, R. L. (2012). Cartilage-like mechanical properties of poly (ethylene glycol)-diacrylate hydrogels. Biomaterials, 33(28), 6682–6690. https://doi.org/10.1016/j.biomaterials.2012.06.005
Nuttelman, C. R., Rice, M. A., Rydholm, A. E., Salinas, C. N., Shah, D. N., & Anseth, K. S. (2008). Macromolecular monomers for the synthesis of hydrogel niches and their application in cell encapsulation and tissue engineering. Progress in Polymer Science (Oxford), 33(2), 167–179. https://doi.org/10.1016/j.progpolymsci.2007.09.006
O’Brien, F. J. (2011). Biomaterials & scaffolds for tissue engineering. Materials Today, 14(3), 88–95. https://doi.org/10.1016/S1369-7021(11)70058-X
Oyen, M. L. (2014). Mechanical characterisation of hydrogel materials. International Materials Reviews, 59(1), 44–59. https://doi.org/10.1179/1743280413Y.0000000022
Papavasiliou, G., Sokic, S., & Turturro, M. (2012). Synthetic PEG Hydrogels as Extracellular Matrix Mimics for Tissue Engineering Applications. Biotechnology - Molecular Studies and Novel Applications for Improved Quality of Human Life. https://doi.org/10.5772/31695
Pawlaczyk, M., Lelonkiewicz, M., & Wieczorowski, M. (2013). Age-dependent biomechanical properties of the skin. Postepy Dermatologii i Alergologii, 30(5), 302–306. https://doi.org/10.5114/pdia.2013.38359
Peppas, N. A., & Merrill, E. W. (1977). Crosslinked poly(vinyl alcohol) hydrogels as swollen elastic networks. Journal of Applied Polymer Science, 21(7), 1763–1770. https://doi.org/10.1002/app.1977.070210704
Piérard, G. E., Piérard, S., Delvenne, P., & Piérard-Franchimont, C. (2013). In Vivo Evaluation of the Skin Tensile Strength by the Suction Method: Pilot Study Coping with Hysteresis and Creep Extension. ISRN Dermatology, 2013, 1–7. https://doi.org/10.1155/2013/841217
Pierre, A. (2000). Collecction explorations fonctionnelles humanies. In Physiologie de la peau et explorations fontionnelles cutanées (Lavoisier). https://www.lavoisier.fr/livre/medecine/physiologie-de-la-peau-et-explorations fonctionnelles-cutanees/agache/descriptif-9782743003609
Reyes-Martínez, J. E., Ruiz-Pacheco, J. A., Flores-Valdéz, M. A., Elsawy, M. A., Vallejo?Cardona, A. A., & Castillo-Díaz, L. A. (2019). Advanced hydrogels for treatment of diabetes. Journal of Tissue Engineering and Regenerative Medicine, 13(8), 1375–1393. https://doi.org/10.1002/term.2880
Ridge, M. D., & Wright, V. (1966). Mechanical properties of skin: a bioengineering study of skin structure. Journal of Applied Physiology, 21(5), 1602–1606. https://doi.org/10.1152/jappl.1966.21.5.1602
Robert J, S., & R, H. J. (2009). Diabetic foot ulcers--effects on QOL, costs, and mortality and the role of standard wound care and advanced-care therapies. 55, 28–38.
Schweller, R. M., & West, J. L. (2015). Encoding Hydrogel Mechanics via Network Cross Linking Structure. ACS Biomaterials Science and Engineering, 1(5), 335–344. https://doi.org/10.1021/acsbiomaterials.5b00064
Seliktar, D., Zisch, A. H., Lutolf, M. P., Wrana, J. L., & Hubbel, J. A. (2004). MMP-2 sensitive, VEGF-bearing bioactive hydrogels for promotion of vascular healing. Journal of Biomedical Materials Research - Part A, 68(4), 704–716. https://doi.org/10.1002/jbm.a.20091
Shah, S. A., Sohail, M., Khan, S., Minhas, M. U., de Matas, M., Sikstone, V., Hussain, Z., Abbasi, M., & Kousar, M. (2019). Biopolymer-based biomaterials for accelerated diabetic wound healing: A critical review. International Journal of Biological Macromolecules, 139, 975–993. https://doi.org/10.1016/j.ijbiomac.2019.08.007
Sokic, S., & Papavasiliou, G. (2012). Controlled proteolytic cleavage site presentation in biomimetic PEGDA hydrogels enhances neovascularization in vitro. Tissue Engineering - Part A, 18(23–24), 2477–2486. https://doi.org/10.1089/ten.tea.2012.0173
Tessmar, J. K., & Göpferich, A. M. (2007). Customized PEG-derived copolymers for tissue engineering applications. Macromolecular Bioscience, 7(1), 23–39. https://doi.org/10.1002/mabi.200600096
Vargas-Uricoechea, H., & Casas-Figueroa, L. Á. (2016). Epidemiology of diabetes mellitus in South America: The experience of Colombia. Clinica e Investigacion En Arteriosclerosis, 28(5), 245–256. https://doi.org/10.1016/j.arteri.2015.12.002
Zahouani, H., Pailler-Mattei, C., Sohm, B., Vargiolu, R., Cenizo, V., & Debret, R. (2009). Characterization of the mechanical properties of a dermal equivalent compared with human skin in vivo by indentation and static friction tests. Skin Research and Technology, 15(1), 68–76. https://doi.org/10.1111/j.1600-0846.2008.00329.x
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.accessrights.spa.fl_str_mv http://purl.org/coar/access_right/c_abf2
info:eu-repo/semantics/openAccess
dc.rights.creativecommons.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
Atribución-NoComercial-SinDerivadas 2.5 Colombia
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.spa.fl_str_mv Colombia
dc.coverage.campus.spa.fl_str_mv UNAB Campus Bucaramanga
dc.publisher.grantor.spa.fl_str_mv Universidad Autónoma de Bucaramanga UNAB
dc.publisher.faculty.spa.fl_str_mv Facultad Ingeniería
dc.publisher.program.spa.fl_str_mv Pregrado Ingeniería Biomédica
institution Universidad Autónoma de Bucaramanga - UNAB
bitstream.url.fl_str_mv https://repository.unab.edu.co/bitstream/20.500.12749/11845/1/2017_Tesis_Geydi_Alexandra_Bayona.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/11845/2/2017_Licencia_Geydi_Alexandra_Bayona_1.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/11845/3/2017_Tesis_Geydi_Alexandra_Bayona.pdf.jpg
https://repository.unab.edu.co/bitstream/20.500.12749/11845/4/2017_Licencia_Geydi_Alexandra_Bayona_1.pdf.jpg
bitstream.checksum.fl_str_mv a7b2c76b701feaa7bc078f6a86c5d41a
0418e1e2efe5e859dc612c5e45e907b0
48be2aeeb6b9a664ca397d13b5c3afd3
e50ca3ee389a095461d700d1ef50d415
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB
repository.mail.fl_str_mv repositorio@unab.edu.co
_version_ 1808410667210768384
spelling Solarte David, Víctor Alfonso54590e96-eda3-4b43-9ffa-14bd35ed7d08Becerra Bayona, Silvia Milenaf59fde3b-924f-4fcc-96e9-5fd6250b2daeBayona Velasco, Geydi Alexandrafed80c46-d18e-473a-b7ef-9ad7bf3688e7https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001363781Becerra Bayona, Silvia Milena [0001568861]Becerra Bayona, Silvia Milena [5wr21EQAAAAJ]Becerra Bayona, Silvia Milena [0000-0002-4499-5885]Becerra Bayona, Silvia Milena [36522328100]Becerra Bayona, Silvia Milena [Silvia-Becerra-Bayona]Becerra Bayona, Silvia Milena [silvia-milena-becerra-bayona]Becerra Bayona, Silvia Milena [silvia-becerra-3174455a]ColombiaUNAB Campus Bucaramanga2020-12-03T17:11:50Z2020-12-03T17:11:50Z2020http://hdl.handle.net/20.500.12749/11845instname:Universidad Autónoma de Bucaramanga - UNABreponame:Repositorio Institucional UNABrepourl:https://repository.unab.edu.coLa cicatrización de úlceras crónicas de pie diabético (UCPD), es un proceso complejo y dinámico que requiere de una interacción entre factores regulados que trabajan en conjunto para restituir la piel lesionada. Los niveles altos de metaloproteinasas de matriz (MPMs) en las UCPD contribuyen a la cronicidad de la herida, lo que puede llevar a incrementar el riesgo de infecciones, provocando complicaciones que influyen en la calidad de vida del paciente. Por lo tanto, existe la necesidad de desarrollar alternativas terapéuticas que permitan la correcta cicatrización de la herida; entre los nuevos enfoques se destacan el uso de hidrogeles de polietilenglicol diacrilado (PEGDA), el cual se puede modificar mediante la introducción de dominios de corte para MPMs con el fin de que, las altas concentraciones de estas proteasas en la úlcera sean aprovechadas para degradar el material sintético. En consecuencia, en este estudio se fabricaron hidrogeles biodegradables derivados de PEGDA (7.34 kDa), en tres diferentes concentraciones (10, 20 y 30% p/v); los hidrogeles se polimerizaron en luz UV, en presencia de dos sistemas diferentes de fotoiniciador (Irgacure 2959, disuelto en NVP o en 70% etanol), las propiedades estructurales del hidrogel como la capacidad de hinchamiento, se evaluó a partir de la relación volumétrica de hinchamiento y el tamaño de poro teórico se calculó mediante la correlación con el módulo elástico experimental, mientras que el módulo elástico y de compresión fueron determinados mediante pruebas de tracción y compresión. Los resultados obtenidos de los hidrogeles de PEGDA biodegradables por MPMs, demuestran que, poseen excelentes propiedades mecánicas y físicas, ya que son similares a la piel; por lo tanto, podrían tener gran potencial en la curación de UCPD.Capítulo 1 Problema u oportunidad ...........................................................................................10 1.1 Introducción ............................................................................................................10 1.2 Planteamiento del problema.....................................................................................11 1.3 Justificación ............................................................................................................12 1.4 Pregunta Problema ..................................................................................................13 1.5 Objetivo General .....................................................................................................13 1.6 Objetivos específicos...............................................................................................13 1.7 Limitaciones y delimitaciones .................................................................................14 Capítulo 2 Marco teórico..........................................................................................................15 2.1 La piel .....................................................................................................................15 2.2 Úlcera de pie diabético ............................................................................................21 2.3 Andamios................................................................................................................24 2.4 Hidrogeles...............................................................................................................25 2.4.1. Estructura de los hidrogeles .................................................................................25 2.4.2. Capacidad de hinchamiento de los hidrogeles.......................................................26 2.4.3. Correlación entre la capacidad de hinchamiento y el tamaño de poro de los hidrogeles..........................................................................................................................27 2.5 Hidrogeles de polietilenglicol diacrilado (PEGDA) .................................................29 2.5.1. Propiedades mecánicas del PEGDA .....................................................................30 2.5.2. Degradación del hidrogel de PEGDA...................................................................31 Capítulo 3 Estado del arte..........................................................................................................33 Capítulo 4 Metodología.............................................................................................................37 4.1 Síntesis del copolímero derivado de PEGDA con secuencias peptídicas degradables (PEGDA-BD)....................................................................................................................37 4.2 Fabricación de los hidrogeles biodegradables derivados de PEGDA. .......................37 4.3 Evaluación de la capacidad de hinchamiento de los hidrogeles ................................38 4.4 Evaluación del tamaño de poro de los hidrogeles.....................................................38 4.5 Caracterización mecánica de los hidrogeles.............................................................39 4.6 Análisis estadísticos.................................................................................................40 Capítulo 5 Resultados y Análisis de Resultados.........................................................................41 5.1 Resultados...................................................................................................................41 5.1.1. Síntesis y fabricación de los hidrogeles de PEGDA-BD .......................................41 5.1.2. Caracterización mecánica de los hidrogeles de PEGDA-BD y PEGDA-Control...42 5.1.3. Evaluación de la capacidad de hinchamiento de los hidrogeles.............................47 5.1.4. Evaluación del tamaño de poro promedio de los hidrogeles..................................51 5.1.5. Relación entre el Módulo elástico y la capacidad de hinchamiento de los hidrogeles en función de la densidad de entrecruzamiento. .................................................................55 5.2 Análisis de resultados..............................................................................................57 Capítulo 6 Conclusiones y recomendaciones.............................................................................62 Lista de referencias ...................................................................................................................64 Apéndice...................................................................................................................................68PregradoHealing of chronic diabetic foot ulcers (CDFU) is a complex and dynamic process that requires an interaction between regulated factors that work together to restore damaged skin. The high levels of matrix metalloproteinases (MMP) in the CDFU affect the chronicity of the wound, which can lead to an increased risk of infections, causing complications that influence the quality of life of the patient. Therefore, there is a need to develop therapeutic alternatives that could correct wound healing; New approaches include the use of diacrylated polyethylene glycol (PEGDA) hydrogels, which can be modified by introducing cut domains for MMPs so that high concentrations of these proteases in the ulcer are exploited to degrade Synthetic material. Consequently, in this study, biodegradable hydrogels derived from PEGDA (7.34 kDa) were manufactured, in three different concentrations (10, 20 and 30% w / v); hydrogels were polymerized in UV light, in the presence of two different photoinitiator systems (Irgacure 2959, dissolved in NVP or in 70% ethanol), the structural properties of the hydrogel, as well as the swelling capacity, were evaluated from the volumetric ratio of swelling and theoretical pore size will be calculated by correlation with the experimental elastic modulus, while the elastic and compression modulus were determined by tensile and compression tests. The results obtained from PEGDA hydrogels biodegradable by MPM, could have excellent mechanical and physical properties, since they are similar to the skin; therefore, it could have great potential in the healing of CDFU.Modalidad Presencialapplication/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)http://purl.org/coar/access_right/c_abf2info:eu-repo/semantics/openAccessAtribución-NoComercial-SinDerivadas 2.5 ColombiaEvaluación de las propiedades mecánicas de hidrogeles biodegradables a base de polietilenglicol diacrilado, con potencial uso en el diseño de matrices para úlceras crónicasEvaluation of the mechanical properties of biodegradable hydrogels based on diacrylated polyethylene glycol, with potential use in the design of matrices for chronic ulcersIngeniero BiomédicoUniversidad Autónoma de Bucaramanga UNABFacultad IngenieríaPregrado Ingeniería Biomédicainfo:eu-repo/semantics/bachelorThesisTrabajo de Gradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/redcol/resource_type/TPBiomedical engineeringEngineeringMedical electronicsBiological physicsBioengineeringMedical instruments and apparatusMedicineDiacrylated polyethyleneGlycolHydrogelsMesh sizeModulus of elasticityExtracellular matrixGranulation tissueFoot diseasesPolymethylmethacrylateIngeniería biomédicaIngenieríaBiofísicaBioingenieríaMedicinaTejido de granulaciónEnfermedades de los piesPolimetilmetacrilatoIngeniería clínicaClinical engineeringElectrónica médicaInstrumentos y aparatos médicosPolietilenglicol diacriladoHidrogelesTamaño de poroMódulo de elasticidadMatriz extracelularAguirre-Soto, A., Kim, S., Kaastrup, K., & Sikes, H. D. (2019). On the role of: N vinylpyrrolidone in the aqueous radical-initiated copolymerization with PEGDA mediated by eosin y in the presence of O 2. Polymer Chemistry, 10(8), 926–937. https://doi.org/10.1039/c8py01459kAranzana, S. P., Mendel Rezusta, F. J., & Sánchez Somolinos, C. (2016). Modulación mecánica en hidrogeles de polietilenglicol. Universidad de Zaragoza (ICMA) Tesis, 1, 40.Boyko, T. V., Longaker, M. T., & Yang, G. P. (2018). Review of the Current Management of Pressure Ulcers. Advances in Wound Care, 7(2), 57–67. https://doi.org/10.1089/wound.2016.0697Buxton, A. N., Zhu, J., Marchant, R., West, J. L., Yoo, J. U., & Johnstone, B. (2007). Design and characterization of poly(ethylene glycol) photopolymerizable semi-interpenetrating networks for chondrogenesis of human mesenchymal stem cells. Tissue Engineering, 13(10), 2549–2560. https://doi.org/10.1089/ten.2007.0075Canal, T., & Peppas, N. A. (1989). Correlation between mesh size and equilibrium degree of swelling of polymeric networks. Journal of Biomedical Materials Research, 23(10), 1183– 1193. https://doi.org/10.1002/jbm.820231007Chakrabarti, S., Chattopadhyay, P., Islam, J., Ray, S., Raju, P. S., & Mazumder, B. (2018). Aspects of Nanomaterials in Wound Healing. Current Drug Delivery, 16(1), 26–41. https://doi.org/10.2174/1567201815666180918110134Charlesby, A. (1992). Elastic modulus formulae for a crosslinked network. International Journal of Radiation Applications and Instrumentation. Part, 40(2), 117–120. https://doi.org/10.1016/1359-0197(92)90068-QChen, S., Zhang, Q., Nakamoto, T., Kawazoe, N., & Chen, G. (2016). Gelatin scaffolds with controlled pore structure and mechanical property for cartilage tissue engineering. Tissue Engineering - Part C: Methods, 22(3), 189–198. https://doi.org/10.1089/ten.tec.2015.0281Chiang, N., Rodda, O. A., Kang, A., Sleigh, J., & Vasudevan, T. (2018). Clinical Evaluation of Portable Wound Volumetric Measurement Devices. Advances in Skin and Wound Care, 31(8), 374–380. https://doi.org/10.1097/01.ASW.0000540072.52782.24Diridollou, S., Vabre, V., Berson, M., Vaillant, L., Black, D., Lagarde, J. M., Grégoire, J. M., Gall, Y., & Patat, F. (2001). Skin ageing: Changes of physical properties of human skin in vivo. International Journal of Cosmetic Science, 23(6), 353–362. https://doi.org/10.1046/j.0412-5463.2001.00105.xDjordjevic, D. M., Cirkovic, S. T., & Mandic, D. S. (2018). Biomedical applications. Magnetic, Ferroelectric, and Multiferroic Metal Oxides, 411–430. https://doi.org/10.1016/B978-0-12- 811180-2.00020-7Eckes, B., & Krieg, T. (2004). Regulation of connective tissue homeostasis in the skin by mechanical forces. Clinical and Experimental Rheumatology, 22(3 SUPPL. 33).Flory, P. J., & Rehner, J. (1943). Statistical mechanics of cross-linked polymer networks II. Swelling. The Journal of Chemical Physics, 11(11), 521–526. https://doi.org/10.1063/1.1723792Gennisson, J. L., Deffieux, T., Macé, E., Montaldo, G., Fink, M., & Tanter, M. (2010). Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging. Ultrasound in Medicine and Biology, 36(5), 789–801. https://doi.org/10.1016/j.ultrasmedbio.2010.02.013Gibas, I., & Janik, H. (2010). Synthetic polymer hydrogels for biomedical applications. Chemistry and Chemical Technology, 4(4), 297–304.Goodarzi, P., Falahzadeh, K., Nematizadeh, M., Farazandeh, P., Payab, M., Larijani, B., Tayanloo Beik, A., & Arjmand, B. (2018). Tissue engineered skin substitutes. Advances in Experimental Medicine and Biology, 1107, 143–188. https://doi.org/10.1007/5584_2018_226Hagel, V., Haraszti, T., & Boehm, H. (2013). Diffusion and interaction in PEG-DA hydrogels. Biointerphases, 8(1), 1–9. https://doi.org/10.1186/1559-4106-8-36Hahn, M. S., Taite, L. J., Moon, J. J., Rowland, M. C., Ruffino, K. A., & West, J. L. (2006). Photolithographic patterning of polyethylene glycol hydrogels. Biomaterials, 27(12), 2519– 2524. https://doi.org/10.1016/j.biomaterials.2005.11.045Holback, H., Yeo, Y., & Park, K. (2011). Hydrogel swelling behavior and its biomedical applications. In Biomedical Hydrogels. Woodhead Publishing Limited. https://doi.org/10.1533/9780857091383.1.3Jimenez-Vergara, A. C., Lewis, J., Hahn, M. S., & Munoz-Pinto, D. J. (2018). An improved correlation to predict molecular weight between crosslinks based on equilibrium degree of swelling of hydrogel networks. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 106(3), 1339–1348. https://doi.org/10.1002/jbm.b.33942Jin, T., & Stanciulescu, I. (2017). Numerical investigation of the influence of pattern topology on the mechanical behavior of PEGDA hydrogels. Acta Biomaterialia, 49, 247–259. https://doi.org/10.1016/j.actbio.2016.10.041Johnson, C. P., How, T., Scraggs, M., West, C. R., & Burns, J. (2000). A biomechanical study of the human vertebral artery with implications for fatal arterial injury. Forensic Science International, 109(3), 169–182. https://doi.org/10.1016/S0379-0738(99)00198-XJoodaki, H., & Panzer, M. B. (2018). Skin mechanical properties and modeling: A review. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 232(4), 323–343. https://doi.org/10.1177/0954411918759801Lin, C. C., & Anseth, K. S. (2009). PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharmaceutical Research, 26(3), 631–643. https://doi.org/10.1007/s11095-008-9801-2Lin, W. C., Yu, D. G., & Yang, M. C. (2005). pH-sensitive polyelectrolyte complex gel microspheres composed of chitosan/sodium tripolyphosphate/dextran sulfate: Swelling kinetics and drug delivery properties. Colloids and Surfaces B: Biointerfaces, 44(2–3), 143– 151. https://doi.org/10.1016/j.colsurfb.2005.06.010Luo, C. C., Qian, L. X., Li, G. Y., Jiang, Y., Liang, S., & Cao, Y. (2015). Determining the in vivo elastic properties of dermis layer of human skin using the supersonic shear imaging technique and inverse analysis. Medical Physics, 42(7), 4106–4115. https://doi.org/10.1118/1.4922133Martins-Mendes, D., Monteiro-Soares, M., Boyko, E. J., Ribeiro, M., Barata, P., Lima, J., & Soares, R. (2014). The independent contribution of diabetic foot ulcer on lower extremity amputation and mortality risk. Journal of Diabetes and Its Complications, 28(5), 632–638. https://doi.org/10.1016/j.jdiacomp.2014.04.011Maruyama, K., Asai, J., Ii, M., Thorne, T., Losordo, D. W., & D’Amore, P. A. (2007). Decreased macrophage number and activation lead to reduced lymphatic vessel formation and 66 contribute to impaired diabetic wound healing. American Journal of Pathology, (4), 1178–1191. https://doi.org/10.2353/ajpath.2007.060018Mehta, S. M., Jin, T., Stanciulescu, I., & Grande-Allen, K. J. (2018). Engineering biologically extensible hydrogels using photolithographic printing. In Acta Biomaterialia (Vol. 75). https://doi.org/10.1016/j.actbio.2018.05.036Mikesh, L. M., Aramadhaka, L. R., Moskaluk, C., Zigrino, P., Mauch, C., & Fox, J. W. (2013). Proteomic anatomy of human skin. Journal of Proteomics, 84, 190–200. https://doi.org/10.1016/j.jprot.2013.03.019Munoz-Pinto, D. J., Samavedi, S., Grigoryan, B., & Hahn, M. S. (2015). Impact of secondary reactive species on the apparent decoupling of poly(ethylene glycol) diacrylate hydrogel average mesh size and modulus. Polymer, 77, 227–238. https://doi.org/10.1016/j.polymer.2015.09.032Nemir, S., & West, J. L. (2010). Synthetic materials in the study of cell response to substrate rigidity. Annals of Biomedical Engineering, 38(1), 2–20. https://doi.org/10.1007/s10439- 009-9811-1Nguyen, Q. T., Hwang, Y., Chen, A. C., Varghese, S., & Sah, R. L. (2012). Cartilage-like mechanical properties of poly (ethylene glycol)-diacrylate hydrogels. Biomaterials, 33(28), 6682–6690. https://doi.org/10.1016/j.biomaterials.2012.06.005Nuttelman, C. R., Rice, M. A., Rydholm, A. E., Salinas, C. N., Shah, D. N., & Anseth, K. S. (2008). Macromolecular monomers for the synthesis of hydrogel niches and their application in cell encapsulation and tissue engineering. Progress in Polymer Science (Oxford), 33(2), 167–179. https://doi.org/10.1016/j.progpolymsci.2007.09.006O’Brien, F. J. (2011). Biomaterials & scaffolds for tissue engineering. Materials Today, 14(3), 88–95. https://doi.org/10.1016/S1369-7021(11)70058-XOyen, M. L. (2014). Mechanical characterisation of hydrogel materials. International Materials Reviews, 59(1), 44–59. https://doi.org/10.1179/1743280413Y.0000000022Papavasiliou, G., Sokic, S., & Turturro, M. (2012). Synthetic PEG Hydrogels as Extracellular Matrix Mimics for Tissue Engineering Applications. Biotechnology - Molecular Studies and Novel Applications for Improved Quality of Human Life. https://doi.org/10.5772/31695Pawlaczyk, M., Lelonkiewicz, M., & Wieczorowski, M. (2013). Age-dependent biomechanical properties of the skin. Postepy Dermatologii i Alergologii, 30(5), 302–306. https://doi.org/10.5114/pdia.2013.38359Peppas, N. A., & Merrill, E. W. (1977). Crosslinked poly(vinyl alcohol) hydrogels as swollen elastic networks. Journal of Applied Polymer Science, 21(7), 1763–1770. https://doi.org/10.1002/app.1977.070210704Piérard, G. E., Piérard, S., Delvenne, P., & Piérard-Franchimont, C. (2013). In Vivo Evaluation of the Skin Tensile Strength by the Suction Method: Pilot Study Coping with Hysteresis and Creep Extension. ISRN Dermatology, 2013, 1–7. https://doi.org/10.1155/2013/841217Pierre, A. (2000). Collecction explorations fonctionnelles humanies. In Physiologie de la peau et explorations fontionnelles cutanées (Lavoisier). https://www.lavoisier.fr/livre/medecine/physiologie-de-la-peau-et-explorations fonctionnelles-cutanees/agache/descriptif-9782743003609Reyes-Martínez, J. E., Ruiz-Pacheco, J. A., Flores-Valdéz, M. A., Elsawy, M. A., Vallejo?Cardona, A. A., & Castillo-Díaz, L. A. (2019). Advanced hydrogels for treatment of diabetes. Journal of Tissue Engineering and Regenerative Medicine, 13(8), 1375–1393. https://doi.org/10.1002/term.2880Ridge, M. D., & Wright, V. (1966). Mechanical properties of skin: a bioengineering study of skin structure. Journal of Applied Physiology, 21(5), 1602–1606. https://doi.org/10.1152/jappl.1966.21.5.1602Robert J, S., & R, H. J. (2009). Diabetic foot ulcers--effects on QOL, costs, and mortality and the role of standard wound care and advanced-care therapies. 55, 28–38.Schweller, R. M., & West, J. L. (2015). Encoding Hydrogel Mechanics via Network Cross Linking Structure. ACS Biomaterials Science and Engineering, 1(5), 335–344. https://doi.org/10.1021/acsbiomaterials.5b00064Seliktar, D., Zisch, A. H., Lutolf, M. P., Wrana, J. L., & Hubbel, J. A. (2004). MMP-2 sensitive, VEGF-bearing bioactive hydrogels for promotion of vascular healing. Journal of Biomedical Materials Research - Part A, 68(4), 704–716. https://doi.org/10.1002/jbm.a.20091Shah, S. A., Sohail, M., Khan, S., Minhas, M. U., de Matas, M., Sikstone, V., Hussain, Z., Abbasi, M., & Kousar, M. (2019). Biopolymer-based biomaterials for accelerated diabetic wound healing: A critical review. International Journal of Biological Macromolecules, 139, 975–993. https://doi.org/10.1016/j.ijbiomac.2019.08.007Sokic, S., & Papavasiliou, G. (2012). Controlled proteolytic cleavage site presentation in biomimetic PEGDA hydrogels enhances neovascularization in vitro. Tissue Engineering - Part A, 18(23–24), 2477–2486. https://doi.org/10.1089/ten.tea.2012.0173Tessmar, J. K., & Göpferich, A. M. (2007). Customized PEG-derived copolymers for tissue engineering applications. Macromolecular Bioscience, 7(1), 23–39. https://doi.org/10.1002/mabi.200600096Vargas-Uricoechea, H., & Casas-Figueroa, L. Á. (2016). Epidemiology of diabetes mellitus in South America: The experience of Colombia. Clinica e Investigacion En Arteriosclerosis, 28(5), 245–256. https://doi.org/10.1016/j.arteri.2015.12.002Zahouani, H., Pailler-Mattei, C., Sohm, B., Vargiolu, R., Cenizo, V., & Debret, R. (2009). Characterization of the mechanical properties of a dermal equivalent compared with human skin in vivo by indentation and static friction tests. Skin Research and Technology, 15(1), 68–76. https://doi.org/10.1111/j.1600-0846.2008.00329.xORIGINAL2017_Tesis_Geydi_Alexandra_Bayona.pdf2017_Tesis_Geydi_Alexandra_Bayona.pdfTesisapplication/pdf900672https://repository.unab.edu.co/bitstream/20.500.12749/11845/1/2017_Tesis_Geydi_Alexandra_Bayona.pdfa7b2c76b701feaa7bc078f6a86c5d41aMD51open access2017_Licencia_Geydi_Alexandra_Bayona_1.pdf2017_Licencia_Geydi_Alexandra_Bayona_1.pdfLicenciaapplication/pdf509121https://repository.unab.edu.co/bitstream/20.500.12749/11845/2/2017_Licencia_Geydi_Alexandra_Bayona_1.pdf0418e1e2efe5e859dc612c5e45e907b0MD52metadata only accessTHUMBNAIL2017_Tesis_Geydi_Alexandra_Bayona.pdf.jpg2017_Tesis_Geydi_Alexandra_Bayona.pdf.jpgimage/jpeg5078https://repository.unab.edu.co/bitstream/20.500.12749/11845/3/2017_Tesis_Geydi_Alexandra_Bayona.pdf.jpg48be2aeeb6b9a664ca397d13b5c3afd3MD53open access2017_Licencia_Geydi_Alexandra_Bayona_1.pdf.jpg2017_Licencia_Geydi_Alexandra_Bayona_1.pdf.jpgIM Thumbnailimage/jpeg9702https://repository.unab.edu.co/bitstream/20.500.12749/11845/4/2017_Licencia_Geydi_Alexandra_Bayona_1.pdf.jpge50ca3ee389a095461d700d1ef50d415MD54metadata only access20.500.12749/11845oai:repository.unab.edu.co:20.500.12749/118452023-11-25 03:47:26.492open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.co