Determination and application of a comprehensive sustainability framework for small-scale biomass gasification-based electricity supply in Colombia off-grid rural areas
Esta tesis aborda el complejo panorama de la electrificación de zonas no interconectadas (ZNI) en Colombia, centrándose en la gasificación de la biomasa como una solución prometedora. Partiendo de un contexto de investigación y unos fundamentos metodológicos exhaustivos, el estudio aborda sistemátic...
- Autores:
-
Diaz González, Carlos Alirio
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2024
- Institución:
- Universidad Autónoma de Bucaramanga - UNAB
- Repositorio:
- Repositorio UNAB
- Idioma:
- spa
- OAI Identifier:
- oai:repository.unab.edu.co:20.500.12749/27531
- Acceso en línea:
- http://hdl.handle.net/20.500.12749/27531
- Palabra clave:
- Sustainability framework
Off-grid settlements electrification
Biomass gasification
Sustainability indicators
Gasification model
Energy facilities
Power resources
Rural electrification
Power supply systems in remote areas
Sustainable development
Electrical energy production
Ingeniería
Servicios de suministro de energía
Recursos energéticos
Electrificación rural
Sistemas de suministro de energía en áreas remotas
Desarrollo sostenible
Producción de energía eléctrica
Marco de sostenibilidad
Electrificación en ZNI
Gasificación de biomasa
Indicadores de sostenibilidad
Modelo de gasificación
- Rights
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id |
UNAB2_cd26895f5a9c0f3dd0bca365fd0cf6ec |
---|---|
oai_identifier_str |
oai:repository.unab.edu.co:20.500.12749/27531 |
network_acronym_str |
UNAB2 |
network_name_str |
Repositorio UNAB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Determination and application of a comprehensive sustainability framework for small-scale biomass gasification-based electricity supply in Colombia off-grid rural areas |
dc.title.translated.spa.fl_str_mv |
Determinación y aplicación de un marco integral de sostenibilidad para el suministro eléctrico basado en gasificación de biomasa a pequeña escala en zonas rurales aisladas de Colombia |
title |
Determination and application of a comprehensive sustainability framework for small-scale biomass gasification-based electricity supply in Colombia off-grid rural areas |
spellingShingle |
Determination and application of a comprehensive sustainability framework for small-scale biomass gasification-based electricity supply in Colombia off-grid rural areas Sustainability framework Off-grid settlements electrification Biomass gasification Sustainability indicators Gasification model Energy facilities Power resources Rural electrification Power supply systems in remote areas Sustainable development Electrical energy production Ingeniería Servicios de suministro de energía Recursos energéticos Electrificación rural Sistemas de suministro de energía en áreas remotas Desarrollo sostenible Producción de energía eléctrica Marco de sostenibilidad Electrificación en ZNI Gasificación de biomasa Indicadores de sostenibilidad Modelo de gasificación |
title_short |
Determination and application of a comprehensive sustainability framework for small-scale biomass gasification-based electricity supply in Colombia off-grid rural areas |
title_full |
Determination and application of a comprehensive sustainability framework for small-scale biomass gasification-based electricity supply in Colombia off-grid rural areas |
title_fullStr |
Determination and application of a comprehensive sustainability framework for small-scale biomass gasification-based electricity supply in Colombia off-grid rural areas |
title_full_unstemmed |
Determination and application of a comprehensive sustainability framework for small-scale biomass gasification-based electricity supply in Colombia off-grid rural areas |
title_sort |
Determination and application of a comprehensive sustainability framework for small-scale biomass gasification-based electricity supply in Colombia off-grid rural areas |
dc.creator.fl_str_mv |
Diaz González, Carlos Alirio |
dc.contributor.advisor.none.fl_str_mv |
Pacheco Sandoval, Leonardo Esteban |
dc.contributor.author.none.fl_str_mv |
Diaz González, Carlos Alirio |
dc.contributor.cvlac.spa.fl_str_mv |
Diaz González, Carlos Alirio [0000785806] Pacheco Sandoval, Leonardo Esteban [1478220] |
dc.contributor.googlescholar.spa.fl_str_mv |
Diaz González, Carlos Alirio [nqw4a5gAAAAJ&hl=es] Pacheco Sandoval, Leonardo Esteban [yZ1HEiIAAAAJ] |
dc.contributor.orcid.spa.fl_str_mv |
Diaz González, Carlos Alirio [0000-0001-7869-4610] Pacheco Sandoval, Leonardo Esteban [0000-0001-7262-382X] |
dc.contributor.scopus.spa.fl_str_mv |
Diaz González, Carlos Alirio [56704404900] Pacheco Sandoval, Leonardo Esteban [56117105700] |
dc.contributor.researchgate.spa.fl_str_mv |
Diaz González, Carlos Alirio [Carlos-Diaz-6] Pacheco Sandoval, Leonardo Esteban [Leonardo_Esteban_Pacheco_Sandoval] |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación Recursos, Energía, Sostenibilidad - GIRES |
dc.contributor.apolounab.spa.fl_str_mv |
Diaz González, Carlos Alirio [carlos-alirio-diaz-gonzalez] Pacheco Sandoval, Leonardo Esteban [leonardo-esteban-pacheco-sandoval] |
dc.contributor.linkedin.spa.fl_str_mv |
Diaz González, Carlos Alirio [carlos-alirio-díaz-gonzález-b7194829/] Pacheco Sandoval, Leonardo Esteban [leo-pacheco] |
dc.subject.keywords.spa.fl_str_mv |
Sustainability framework Off-grid settlements electrification Biomass gasification Sustainability indicators Gasification model Energy facilities Power resources Rural electrification Power supply systems in remote areas Sustainable development Electrical energy production |
topic |
Sustainability framework Off-grid settlements electrification Biomass gasification Sustainability indicators Gasification model Energy facilities Power resources Rural electrification Power supply systems in remote areas Sustainable development Electrical energy production Ingeniería Servicios de suministro de energía Recursos energéticos Electrificación rural Sistemas de suministro de energía en áreas remotas Desarrollo sostenible Producción de energía eléctrica Marco de sostenibilidad Electrificación en ZNI Gasificación de biomasa Indicadores de sostenibilidad Modelo de gasificación |
dc.subject.lemb.spa.fl_str_mv |
Ingeniería Servicios de suministro de energía Recursos energéticos Electrificación rural Sistemas de suministro de energía en áreas remotas Desarrollo sostenible Producción de energía eléctrica |
dc.subject.proposal.spa.fl_str_mv |
Marco de sostenibilidad Electrificación en ZNI Gasificación de biomasa Indicadores de sostenibilidad Modelo de gasificación |
description |
Esta tesis aborda el complejo panorama de la electrificación de zonas no interconectadas (ZNI) en Colombia, centrándose en la gasificación de la biomasa como una solución prometedora. Partiendo de un contexto de investigación y unos fundamentos metodológicos exhaustivos, el estudio aborda sistemáticamente las barreras a la electrificación basada en la gasificación de la biomasa mediante una profunda revisión. Los capítulos siguientes desarrollan un completo análisis que incluye un marco para la electrificación sostenible, una clasificación de las localidades de las zonas no interconectadas y una evaluación de la pertinencia de la gasificación de la biomasa, que culmina con explicativos estudios de caso. Las conclusiones derivadas del análisis de los datos, el clustering y la modelización proporcionan una visión detallada de las implicaciones de los resultados. Estos hallazgos tienen implicaciones significativas para el diseño de políticas energéticas de electrificación rural coherentes con los objetivos de desarrollo sostenible de Colombia. La tesis hace contribuciones notables, como la identificación de indicadores clave, el desarrollo de un marco temático de sostenibilidad adaptado a las localidades en zonas no interconectadas y la introducción de un novedoso modelo en Aspen Plus para simular la gasificación en gasificadores tipo downdraft. Este modelo incorpora el análisis de componentes principales, que mejora la precisión y fiabilidad de la predicción de los resultados de la gasificación. Igualmente, se formulan recomendaciones orientadas al futuro, sugiriendo la inclusión de variables categóricas adicionales para el análisis de las localidades, la aplicación de modelos de aprendizaje automático para la comprensión dinámica del servicio energético en estas localidades, y la integración del potencial solar fotovoltaico para un enfoque más completo de la inserción de energías renovables para electrificación de zonas no interconectadas. En conclusión, esta tesis proporciona una perspectiva integral e innovadora sobre la electrificación basada en la gasificación de biomasa, ofreciendo herramientas valiosas para la toma de decisiones informadas en el contexto de localidades no interconectadas de Colombia. A través de un análisis integral de la sostenibilidad, junto con recomendaciones prácticas para futuras investigaciones, la tesis constituye como una contribución significativa al debate sobre la electrificación sostenible en las regiones en desarrollo. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-11-25T13:37:21Z |
dc.date.available.none.fl_str_mv |
2024-11-25T13:37:21Z |
dc.date.issued.none.fl_str_mv |
2024-08-28 |
dc.type.eng.fl_str_mv |
Thesis |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.local.spa.fl_str_mv |
Tesis |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12749/27531 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Autónoma de Bucaramanga - UNAB |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional UNAB |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.unab.edu.co |
url |
http://hdl.handle.net/20.500.12749/27531 |
identifier_str_mv |
instname:Universidad Autónoma de Bucaramanga - UNAB reponame:Repositorio Institucional UNAB repourl:https://repository.unab.edu.co |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
[1] International Energy Agency, International Renewable Energy Agency, United Nations Status Division, World Bank, and World Health Organization, “Tracking SDG 72020 - The energy progress report 2020,” Washington DC, 2020. [Online]. Available: www.worldbank.org [2] DNV GL, “Energy Transition Outlook 2020 - A global and regional forecast to 2050,” Dnv Gl Energy Transition Outlook, p. 306, 2021, [Online]. Available: https://eto.dnvgl.com/2020/index.html [3] International Renewable Energy Agency IRENA, “Off-grid renewable energy solutions to expand electricity access An opportunity not to be missed,” 2019. [Online]. Available: https://www.irena.org/publications/2019/Jan/Off-grid-renewable-energy-solutions-to-expand-electricity-to-access-An-opportunity-not-to-be-missed [4] UNDP and ETH Zurich, “Derisking Renewable Energy Investment: Off-Grid Electrification,” 2018. [5] S. Feron, R. R. Cordero, and F. Labbe, “Rural electrification efforts based on off-grid photovoltaic systems in the Andean Region: Comparative assessment of their sustainability,” Sustainability (Switzerland), vol. 9, no. 10, Oct. 2017, doi: 10.3390/su9101825. [6] S. Moussa Kadri, B. Dakyo, M. B. Camara, and Y. Coulibaly, “Hybrid Diesel/PV Multi-Megawatt Plant Seasonal Behavioral Model to Analyze Microgrid Effectiveness: Case Study of a Mining Site Electrification,” Processes, vol. 10, no. 11, p. 2164, Oct. 2022, doi: 10.3390/pr10112164. [7] I. Hoeck, E. Steurer, D. Ozge, and H. Ileka, “Challenges for off-grid electrification in rural areas. Assessment of the situation in Namibia using the examples of Gam and Tsumkwe,” Energy Ecol Environ, vol. 7, no. 5, pp. 508–522, doi: 10.1007/s40974-021-00214-5. [8] E. I. Come Zebra, H. J. van der Windt, G. Nhumaio, and A. P. C. Faaij, “A review of hybrid renewable energy systems in mini-grids for off-grid electrification in developing countries,” Renewable and Sustainable Energy Reviews, vol. 144, p. 111036, Jul. 2021, doi: 10.1016/J.RSER.2021.111036. [9] E. Garces, J. Tomei, C. J. Franco, and I. Dyner, “Lessons from last mile electrification in Colombia: Examining the policy framework and outcomes for sustainability,” Energy Res Soc Sci, vol. 79, p. 102156, Sep. 2021, doi: 10.1016/J.ERSS.2021.102156. [10] M. Kabeyi and O. Olanrewaju, “Performance analysis of diesel engine power plants for grid electricity supply,” in SAIIE31 Proceedings, Oct. 2020. [11] A. Boute, “Off-grid renewable energy in remote Arctic areas: An analysis of the Russian Far East,” Renewable and Sustainable Energy Reviews, vol. 59, pp. 1029–1037, Jun. 2016, doi: 10.1016/J.RSER.2016.01.034. [12] S. Rodriguez, “Rural Electrification in off-grid areas in Colombia. Case study of Cumaribo Municipality,” Master Thesis, Aalborg University, 2017. [13] CNM-IPSE, “Caracterización Energética en las ZNI (segundo semestre 2020),” 2020. [14] IPSE, “Ficha de caracterizacion energetica ZNI-2020,” 2020. [15] Ministerio de Minas y Energía, Resolución 182138 de 2007. 2007. Accessed: Oct. 06, 2021. [Online]. Available: https://gestornormativo.creg.gov.co/gestor/entorno/docs/resolucion_minminas_182138_2007.htm [16] IPSE, “Resultados encuesta de caracterización ZNI 2019,” 2019. [Online]. Available: http://ipse.gov.co/sigipse/resultados-encuesta-de-caracterizacion-zni/ [17] D. Silva Herran and T. Nakata, “Design of decentralized energy systems for rural electrification in developing countries considering regional disparity,” Appl Energy, vol. 91, no. 1, pp. 130–145, 2012, doi: 10.1016/j.apenergy.2011.09.022. [18] OLADE, “Formulación de una Propuesta para una Acción de Mitigación Nacionalmente Apropiada (NAMA) para las Zonas No Interconectadas (ZNI) de Colombia Informe Final Consolidado Mayo de 2016,” 2016. [19] “IPSE-SIGIPSE – Energía que nos Conecta.” https://ipse.gov.co/sigipse/#contexto-sigipse (accessed Jun. 04, 2023). [20] IEA, “World Energy Outlook 2020,” Paris, 2020. [Online]. Available: https://www.iea.org/reports/world-energy-outlook-2020 [21] Superintendencia de Servicios Públicos Domiciliarios-SSPD, “Zonas No Interconectadas –ZNI Informe sectorial de la prestación del servicio de energía eléctrica 2021,” Bogota, 2021. [22] Superintendencia de Servicios Públicos Domiciliarios SSPD, “Sistema Único de Información.” http://www.sui.gov.co/web/energia (accessed Oct. 06, 2021). [23] R. Jimenez and A. Yepez-Garcia, “Understanding the Drivers of Household Energy Spending: Micro Evidence for Latin America,” 2017. [Online]. Available: http://www.iadb.org [24] “www.xm.com.co/noticias,” 2022. https://www.xm.com.co/noticias/4784-en-febrero-de-2022-el-precio-de-bolsa-de-energia-incremento-4790-respecto-al-precio (accessed Apr. 04, 2022). [25] R. E. H. Sims et al., “Energy Supply,” in Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, B. Metz, O. R. Davidson, P. R. Bosch, R. Dave, and L. A. Meyer, Eds., Cambridge: Cambridge University Press, 2007, pp. 253–315. [26] Unidad de Planeación Minero Energética - UPME, “FACTOR DE EMISIONES DE LA RED DE ENERGÍA ELÉCTRICA EN COLOMBIA,” 2021. Accessed: Apr. 04, 2022. [Online]. Available: https://www1.upme.gov.co/siame/Documents/Calculo-FE-del-SIN/Documento_calculo_Cartilla_Factor_de_emision_2021.pdf [27] E. I. Come Zebra, H. J. van der Windt, G. Nhumaio, and A. P. C. Faaij, “A review of hybrid renewable energy systems in mini-grids for off-grid electrification in developing countries,” Renewable and Sustainable Energy Reviews, vol. 144, Jul. 2021, doi: 10.1016/J.RSER.2021.111036. [28] M. H. Rasool, U. Perwez, Z. Qadir, and S. M. H. Ali, “Scenario-based techno-reliability optimization of an off-grid hybrid renewable energy system: A multi-city study framework,” Sustainable Energy Technologies and Assessments, vol. 53, Oct. 2022, doi: 10.1016/J.SETA.2022.102411. [29] T. Urmee and A. Md, “Social, cultural and political dimensions of off-grid renewable energy programs in developing countries,” Renew Energy, vol. 93, pp. 159–167, Aug. 2016, doi: 10.1016/J.RENENE.2016.02.040. [30] P. Marocco, D. Ferrero, A. Lanzini, and M. Santarelli, “The role of hydrogen in the optimal design of off-grid hybrid renewable energy systems,” J Energy Storage, vol. 46, Feb. 2022, doi: 10.1016/J.EST.2021.103893. [31] “Advantages and disadvantages of Solar Photovoltaic – Quick Pros and Cons of Solar PV - Renewable Energy World.” https://www.renewableenergyworld.com/storage/advantages-and-disadvantages-of-solar-photovoltaic-quick-pros-and-cons-of-solar-pv/#gref (accessed Feb. 12, 2021). [32] S. Morales, C. Álvarez, C. Acevedo, C. Diaz, M. Rodriguez, and L. Pacheco, “An overview of small hydropower plants in Colombia: Status, potential, barriers and perspectives,” Renewable and Sustainable Energy Reviews, vol. 50, pp. 1650–1657, 2015, doi: 10.1016/j.rser.2015.06.026. [33] C. Kinally, F. Antonanzas-Torres, F. Podd, and A. Gallego-Schmid, “Off-grid solar waste in sub-Saharan Africa: Market dynamics, barriers to sustainability, and circular economy solutions,” Energy for Sustainable Development, vol. 70, pp. 415–429, Oct. 2022, doi: 10.1016/J.ESD.2022.08.014. [34] S. Feron, “sustainability Sustainability of Off-Grid Photovoltaic Systems for Rural Electrification in Developing Countries: A Review,” 2016, doi: 10.3390/su8121326. [35] P. G. V. Sampaio and M. O. A. González, “Photovoltaic solar energy: Conceptual framework,” Renewable and Sustainable Energy Reviews, vol. 74, pp. 590–601, 2017, doi: 10.1016/J.RSER.2017.02.081. [36] A. M. Ershad, F. Ueckerdt, R. C. Pietzcker, A. Giannousakis, and G. Luderer, “A further decline in battery storage costs can pave the way for a solar PV-dominated Indian power system,” Renewable and Sustainable Energy Transition, vol. 1, p. 100006, Aug. 2021, doi: 10.1016/J.RSET.2021.100006. [37] S. Schopfer, V. Tiefenbeck, and T. Staake, “Economic assessment of photovoltaic battery systems based on household load profiles,” Appl Energy, vol. 223, pp. 229–248, Aug. 2018, doi: 10.1016/J.APENERGY.2018.03.185. [38] Q. Hassan, B. Pawela, A. Hasan, and M. Jaszczur, “Optimization of Large-Scale Battery Storage Capacity in Conjunction with Photovoltaic Systems for Maximum Self-Sustainability,” Energies 2022, Vol. 15, Page 3845, vol. 15, no. 10, p. 3845, May 2022, doi: 10.3390/EN15103845. [39] DNV, “ENERGY TRANSITION OUTLOOK 2022 A global and regional forecast to 2050,” 2022. [40] P. Malik, M. Awasthi, and S. Sinha, “Biomass-based gaseous fuel for hybrid renewable energy systems: An overview and future research opportunities,” Int J Energy Res, vol. 45, no. 3, pp. 3464–3494, Mar. 2021, doi: 10.1002/ER.6061. [41] D. Fytili and A. Zabaniotou, “Social acceptance of bioenergy in the context of climate change and sustainability – A review,” Curr Opin Green Sustain Chem, vol. 8, no. 2007, pp. 5–9, 2017, doi: 10.1016/j.cogsc.2017.07.006. [42] R. Wüstenhagen, M. Wolsink, and M. J. Bürer, “Social acceptance of renewable energy innovation: An introduction to the concept,” Energy Policy, vol. 35, no. 5, pp. 2683–2691, 2007, doi: 10.1016/j.enpol.2006.12.001. [43] D. Baur, P. Emmerich, M. J. Baumann, and M. Weil, “Assessing the social acceptance of key technologies for the German energy transition,” Energy Sustain Soc, vol. 12, no. 1, p. 4, 2022, doi: 10.1186/s13705-021-00329-x. [44] M. Naqvi, J. Yan, E. Dahlquist, and S. R. Naqvi, “Off-grid electricity generation using mixed biomass compost: A scenario-based study with sensitivity analysis,” Appl Energy, vol. 201, pp. 363–370, 2017, doi: 10.1016/J.APENERGY.2017.02.005. [45] Ž. Zore, L. Čuček, D. Širovnik, Z. Novak Pintarič, and Z. Kravanja, “Maximizing the sustainability net present value of renewable energy supply networks,” Chemical Engineering Research and Design, vol. 131, pp. 245–265, Mar. 2018, doi: 10.1016/J.CHERD.2018.01.035. [46] IEA, “The cost of capital in clean energy transitions – Analysis,” 2021. https://www.iea.org/articles/the-cost-of-capital-in-clean-energy-transitions (accessed Jan. 08, 2023). [47] IEA, “Renewables 2021 – Analysis,” 2021. https://www.iea.org/reports/renewables-2021 (accessed Jan. 08, 2023). [48] “Caracterización Energética de las ZNI – IPSE-CNM.” https://ipse.gov.co/cnm/caracterizacion-de-las-zni/ (accessed Jan. 16, 2023). [49] J. J. C. Eras et al., “A look to the electricity generation from non-conventional renewable energy sources in Colombia,” International Journal of Energy Economics and Policy, vol. 9, no. 1, pp. 15–25, 2019, doi: 10.32479/ijeep.7108. [50] N. E. Ramirez-Contreras and A. P. C. Faaij, “A review of key international biomass and bioenergy sustainability frameworks and certification systems and their application and implications in Colombia,” Renewable and Sustainable Energy Reviews, vol. 96, no. March, pp. 460–478, 2018, doi: 10.1016/j.rser.2018.08.001. [51] DNP-Departamento Nacional de Planeación -, “Implementación y desarrollo de soluciones energéticas a nivel nacional,” 2010. [Online]. Available: https://spi.dnp.gov.co/App_Themes/SeguimientoProyectos/ResumenEjecutivo/IMPLEMENTACION Y DESARROLLO DE SOLUCIONES ENERGETICAS A NI….pdf [52] Ministerio de Minas y Energia - UPME - IPSE, “Plan Nacional de Electrificación Rural PNER,” 2018. [Online]. Available: https://www.minenergia.gov.co/minminas-theme/planclimatico/files/19_UPME_120718_PNER_Jullio260718_publicacion.pdf [53] Centro Nacional de Monitoreo CNM - IPSE, “Informes Consolidados de Telemetría.” https://www1.upme.gov.co/Paginas/Registro.aspx (accessed Feb. 13, 2021). [54] Contraloría General de la Republica, “REGISTRO DE PROYECTOS DE GENERACIÓN DE ENERGÍA ELÉCTRICA,” 2012. [55] Y. D. Urrego Pinto and M. H. Romero Moreno, “Propuesta de gestión para reducción de barreras en la generación eléctrica, a partir de gasificación de residuos de biomasa forestal, para zonas no interconectadas en Colombia (caso Necoclí, Antioquia),” PONTIFICIA UNIVERSIDAD JAVERIANA, 2015. [56] “Centro Nacional de Monitoreo.” http://190.216.196.84/cnm/consolidados.php (accessed Feb. 13, 2021). [57] A. I. Osman, N. Mehta, A. M. Elgarahy, A. Al-Hinai, A. H. Al-Muhtaseb, and D. W. Rooney, “Conversion of biomass to biofuels and life cycle assessment: a review,” Environmental Chemistry Letters 2021 19:6, vol. 19, no. 6, pp. 4075–4118, Jul. 2021, doi: 10.1007/S10311-021-01273-0. [58] F. Ardolino and U. Arena, “Biowaste-to-Biomethane: An LCA study on biogas and syngas roads,” Waste Management, vol. 87, pp. 441–453, Mar. 2019, doi: 10.1016/J.WASMAN.2019.02.030. [59] K. DeRose, C. DeMill, R. W. Davis, and J. C. Quinn, “Integrated techno economic and life cycle assessment of the conversion of high productivity, low lipid algae to renewable fuels,” Algal Res, vol. 38, p. 101412, Mar. 2019, doi: 10.1016/J.ALGAL.2019.101412. [60] J. M. Aberilla, A. Gallego-Schmid, and A. Azapagic, “Environmental sustainability of small-scale biomass power technologies for agricultural communities in developing countries,” Renew Energy, vol. 141, pp. 493–506, Oct. 2019, doi: 10.1016/J.RENENE.2019.04.036. [61] W. Liu, C. Liu, P. Gogoi, and Y. Deng, “Overview of Biomass Conversion to Electricity and Hydrogen and Recent Developments in Low-Temperature Electrochemical Approaches,” Engineering, vol. 6, no. 12, pp. 1351–1363, Dec. 2020, doi: 10.1016/J.ENG.2020.02.021. [62] G. Uchechukwu Megwai, “Process Simulations of Small Scale Biomass Power Plant,” Master Thesis, University of Boras, 2014. Accessed: May 18, 2022. [Online]. Available: https://www.researchgate.net/publication/269036738_Process_Simulations_of_Small_Scale_Biomass_Power_Plant_MSc_Thesis_in_Resource_Recovery-Sustainable_Engineering?channel=doi&linkId=547dec020cf285ad5b08b168&showFulltext=true [63] T. K. Patra and P. N. Sheth, “Techno-economic Assessment of Thermochemical Biomass Conversion Technologies,” in Recent Advancements in Biofuels and Bioenergy Utilization, P. K. Sarangi, S. Nanda, and P. Mohanty, Eds., Singapore: Springer Singapore, 2018, pp. 339–361. doi: 10.1007/978-981-13-1307-3_14. [64] Y. A. Situmorang, Z. Zhao, A. Yoshida, A. Abudula, and G. Guan, “Small-scale biomass gasification systems for power generation (<200 kW class): A review,” Renewable and Sustainable Energy Reviews, vol. 117, p. 109486, Jan. 2020, doi: 10.1016/J.RSER.2019.109486. [65] J. A. Sampson, “Feasibility and Technoeconomic Analysis of Small-Scale Biomass to Power System with Novel Producer Gas Cleanup Technology,” Bachelor of Science, Massachusetts Institute of Technology, 2020. [66] H. Susanto, T. Suria, and S. H. Pranolo, “Economic analysis of biomass gasification for generating electricity in rural areas in Indonesia,” IOP Conf Ser Mater Sci Eng, vol. 334, p. 012012, Mar. 2018, doi: 10.1088/1757-899X/334/1/012012. [67] G. P. M. Fracaro, S. N. M. Souza, M. Medeiros, D. F. Formentini, and C. A. Marques, “Economic feasibility of biomass gasification for small-scale electricity generation in Brazil,” in Word Renewable Energy Congress, 2011. [68] S. Pattanayak, L. Hauchhum, C. Loha, and L. Sailo, “Feasibility study of biomass gasification for power generation in Northeast India,” Biomass Convers Biorefin, vol. 13, no. 2, pp. 999–1011, Jan. 2023, doi: 10.1007/S13399-021-01419-8. [69] International Renewable Energy Agency IRENA, “Renewable Power Generation Costs in 2019,” 2020. doi: 10.1007/SpringerReference_7300. [70] J. Goldember, “Rural Energy in Developing Countries,” in World Energy Assessment: Energy and the challenge of sustainability, United Nations Development Programme, Ed., 1st ed.2000. [71] R. P. Bates and K. Dölle, “Syngas Use in Internal Combustion Engines - A Review,” Adv Res, vol. 10, no. 1, pp. 1–8, 2017, doi: 10.9734/AIR/2017/32896. [72] V. G. Bui et al., “Flexible syngas-biogas-hydrogen fueling spark-ignition engine behaviors with optimized fuel compositions and control parameters,” Int J Hydrogen Energy, vol. 48, no. 18, pp. 6722–6737, Feb. 2023, doi: 10.1016/J.IJHYDENE.2022.09.133. [73] M. Fiore, V. Magi, and A. Viggiano, “Internal combustion engines powered by syngas: A review,” Appl Energy, vol. 276, p. 115415, Oct. 2020, doi: 10.1016/J.APENERGY.2020.115415. [74] COLCIENCIAS, Libro verde 2030. 2018. [Online]. Available: http://libroverde2030.com/#.WyA1lJOBcRM.whatsapp [75] United Nations -UN, “TRANSFORMING OUR WORLD: THE 2030 AGENDA FOR SUSTAINABLE DEVELOPMENT,” 2015. [Online]. Available: https://sustainabledevelopment.un.org/content/documents [76] The International Energy Agency IEA, “Energy Efficiency Indicators: Essentials for Policy Making,” 2014. |
dc.relation.uriapolo.spa.fl_str_mv |
https://apolo.unab.edu.co/en/persons/leonardo-esteban-pacheco-sandoval |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.creativecommons.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Abierto (Texto Completo) Atribución-NoComercial-SinDerivadas 2.5 Colombia http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.spatial.spa.fl_str_mv |
Colombia |
dc.coverage.temporal.spa.fl_str_mv |
2020-2023 |
dc.coverage.campus.spa.fl_str_mv |
UNAB Campus Bucaramanga |
dc.publisher.grantor.spa.fl_str_mv |
Universidad Autónoma de Bucaramanga UNAB |
dc.publisher.faculty.spa.fl_str_mv |
Facultad Ingeniería |
dc.publisher.program.spa.fl_str_mv |
Doctorado en Ingeniería |
dc.publisher.programid.none.fl_str_mv |
DING-1502 |
institution |
Universidad Autónoma de Bucaramanga - UNAB |
bitstream.url.fl_str_mv |
https://repository.unab.edu.co/bitstream/20.500.12749/27531/6/Doctoral%20Thesis%20CADG%20-%20UNAB%202024.pdf.jpg https://repository.unab.edu.co/bitstream/20.500.12749/27531/7/Licencia.pdf.jpg https://repository.unab.edu.co/bitstream/20.500.12749/27531/1/Doctoral%20Thesis%20CADG%20-%20UNAB%202024.pdf https://repository.unab.edu.co/bitstream/20.500.12749/27531/5/Licencia.pdf https://repository.unab.edu.co/bitstream/20.500.12749/27531/4/license.txt |
bitstream.checksum.fl_str_mv |
e46c3360afca252c3c9204d68ea74d09 6a0caef90b1983ac62c599ad32902833 9d3caca1d8661e6220e71f0996df11a3 593af634b7eb248734400af67ec79f42 3755c0cfdb77e29f2b9125d7a45dd316 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB |
repository.mail.fl_str_mv |
repositorio@unab.edu.co |
_version_ |
1828219753209004032 |
spelling |
Pacheco Sandoval, Leonardo Estebaneffbbb92-dd6f-4c7a-af53-409b4a0a744dDiaz González, Carlos Aliriocc65a420-e22f-448a-a3c9-e0fcff047bdcDiaz González, Carlos Alirio [0000785806]Pacheco Sandoval, Leonardo Esteban [1478220]Diaz González, Carlos Alirio [nqw4a5gAAAAJ&hl=es]Pacheco Sandoval, Leonardo Esteban [yZ1HEiIAAAAJ]Diaz González, Carlos Alirio [0000-0001-7869-4610]Pacheco Sandoval, Leonardo Esteban [0000-0001-7262-382X]Diaz González, Carlos Alirio [56704404900]Pacheco Sandoval, Leonardo Esteban [56117105700]Diaz González, Carlos Alirio [Carlos-Diaz-6]Pacheco Sandoval, Leonardo Esteban [Leonardo_Esteban_Pacheco_Sandoval]Grupo de Investigación Recursos, Energía, Sostenibilidad - GIRESDiaz González, Carlos Alirio [carlos-alirio-diaz-gonzalez]Pacheco Sandoval, Leonardo Esteban [leonardo-esteban-pacheco-sandoval]Diaz González, Carlos Alirio [carlos-alirio-díaz-gonzález-b7194829/]Pacheco Sandoval, Leonardo Esteban [leo-pacheco]Colombia2020-2023UNAB Campus Bucaramanga2024-11-25T13:37:21Z2024-11-25T13:37:21Z2024-08-28http://hdl.handle.net/20.500.12749/27531instname:Universidad Autónoma de Bucaramanga - UNABreponame:Repositorio Institucional UNABrepourl:https://repository.unab.edu.coEsta tesis aborda el complejo panorama de la electrificación de zonas no interconectadas (ZNI) en Colombia, centrándose en la gasificación de la biomasa como una solución prometedora. Partiendo de un contexto de investigación y unos fundamentos metodológicos exhaustivos, el estudio aborda sistemáticamente las barreras a la electrificación basada en la gasificación de la biomasa mediante una profunda revisión. Los capítulos siguientes desarrollan un completo análisis que incluye un marco para la electrificación sostenible, una clasificación de las localidades de las zonas no interconectadas y una evaluación de la pertinencia de la gasificación de la biomasa, que culmina con explicativos estudios de caso. Las conclusiones derivadas del análisis de los datos, el clustering y la modelización proporcionan una visión detallada de las implicaciones de los resultados. Estos hallazgos tienen implicaciones significativas para el diseño de políticas energéticas de electrificación rural coherentes con los objetivos de desarrollo sostenible de Colombia. La tesis hace contribuciones notables, como la identificación de indicadores clave, el desarrollo de un marco temático de sostenibilidad adaptado a las localidades en zonas no interconectadas y la introducción de un novedoso modelo en Aspen Plus para simular la gasificación en gasificadores tipo downdraft. Este modelo incorpora el análisis de componentes principales, que mejora la precisión y fiabilidad de la predicción de los resultados de la gasificación. Igualmente, se formulan recomendaciones orientadas al futuro, sugiriendo la inclusión de variables categóricas adicionales para el análisis de las localidades, la aplicación de modelos de aprendizaje automático para la comprensión dinámica del servicio energético en estas localidades, y la integración del potencial solar fotovoltaico para un enfoque más completo de la inserción de energías renovables para electrificación de zonas no interconectadas. En conclusión, esta tesis proporciona una perspectiva integral e innovadora sobre la electrificación basada en la gasificación de biomasa, ofreciendo herramientas valiosas para la toma de decisiones informadas en el contexto de localidades no interconectadas de Colombia. A través de un análisis integral de la sostenibilidad, junto con recomendaciones prácticas para futuras investigaciones, la tesis constituye como una contribución significativa al debate sobre la electrificación sostenible en las regiones en desarrollo.Universidad Autónoma de Manizales UAMUniversidad Autónoma de Occidente UAOINTRODUCTION 1 1. RESEARCH CONTEXT 3 1.1 Electrification issues in Colombia off-grid settlements and their relation to poverty 3 1.2 Biomass gasification for rural electrification in Colombia off-grid settlements 5 1.2.1 General overview of research on renewable resources for rural electrification 6 1.2.2 Use of renewable energy resources for rural electrification in Colombia 7 1.3 Feasibility of biomass gasification in the context of the problem 8 1.4 Formulating the research 12 1.5 References for Chapter 1 14 2. BIOMASS GASIFICATION AND BARRIERS TO SUSTAINABILITY FOR SMALL POWER GENERATION 21 2.1 Gasification and gasifiers 21 2.1.1 Biomass gasification 22 2.1.2 Gasifiers 24 2.2 Barriers to sustainability of biomass gasification systems for small power generation 26 2.2.1 Biomass Supply Chain 27 2.2.2 Biomass pretreatment 27 2.2.3 Gasification process 28 2.2.4 Gas conditioning 29 2.2.5 Power generation from gasification 29 2.2.6 Environmental risks and impacts 29 2.2.7 Other barriers to gasification 30 2.3 Key findings and contributions 31 2.4 References for chapter 2 33 3. SUSTAINABILITY FRAMEWORK 41 3.1 Evolution and Milestones of Sustainable Development: From the Earth Summit to the Sustainable Development Goals (SDGs) 42 3.2 Sustainability frameworks 43 3.2.1 Pressure-response frameworks 43 3.2.2 Systemic Frameworks 45 3.2.3 Thematic Frameworks 47 3.2.4 Selecting the more appropriated sustainability framework 49 3.3 Defining indicators 49 3.3.1 Indicators selection from references 49 3.3.2 Additional indicators 53 3.4 Defined Sustainability Framework 54 3.5 References for Chapter 3 59 4. OFF-GRID SETTLEMENTS CLASSIFICATION 62 4.1 Method of Off-Grid settlements classification 62 4.1.1 Off-grid settlements' current classification issues 62 4.1.2 PCA for analysis of commercial and technical data 63 4.1.3 Data analysis steps 64 4.2 Results 70 4.2.1 Normalization and PCA 70 4.2.2 Clustering 73 4.3 Conclusions and contributions 81 4.4 References for chapter 4 83 5. BIOMASS GASIFICATION PERTIENENCE TO ELECTRIFICATION IN OFF-GRID SETTLEMENTS 87 5.1 Composite index to evaluate the pertinence of biomass gasification-based electrification in off-grid settlements 87 5.1.1 Data collection 88 5.1.2 Method description 88 5.2 Results 94 5.3 Conclusions and contributions 101 5.4 References for chapter 5 102 6. INSERTION OF BIOMASS GASIFICATION-BASED ELECTRIFICATION IN OFF-GRID SETTLEMENTS 105 6.1 Criteria for allocating biomass gasification-based electrification in off-grid settlements 105 6.2 Challenges of energy poverty and the potential of residual biomass gasification: an exploration in off-grid electrification 105 6.3 Integrating Energy Poverty Considerations into Energy Planning 106 6.4 Formulating the study in Colombia's off-grid settlements 108 6.4.1 The composite index approaches 108 6.4.2 Optimization: model formulation and data 110 6.5 Results 116 6.5.1 Non-optimized energy service levels 116 6.5.2 Optimization results 117 6.5.3 Sensitivity analysis 118 6.6 Conclusions and contributions 125 6.7 References for chapter 6 127 7. CASE STUDIES AND RESULTS COMPILATION 134 7.1 Indicators at aggregated level 134 7.1.1 Avoided emissions 135 7.1.2 Access to electricity and affordability 135 7.1.1 COE and subsidies 136 7.2 Case studies characteristics 137 7.2.1 Supplied electricity and load curves 138 7.2.2 Biomass availability in each settlement 139 7.2.3 Gasification of biomass blends 141 7.2.4 Biomass gasification model 143 7.2.5 Proposed schemes of electricity supply 145 7.2.6 Energy, exergy, and exergoeconomic analysis 150 7.2.7 Simulation of cases 156 7.2.8 Results and Indicators for case studies 157 7.3 Conclusions and contributions 165 7.4 References for chapter 7 166 8. CONCLUSIONS AND FINAL COMMENTS 169 8.1 Conclusions 169 8.2 Final comments 173 ANNEXES 175DoctoradoThis thesis addresses the complex landscape of off-grid electrification in Colombia (ZNI), focusing on biomass gasification as a promising solution. Based on comprehensive research context and methodological foundations, the study systematically addresses barriers to biomass gasification-based electrification through an in-depth review. Subsequent chapters develop multidimensional exploration: a framework for sustainable electrification, a classification of settlements, and an assessment of the relevance of biomass gasification, culminating in insightful case studies. Conclusions derived from the analysis of data, clustering, and advanced modeling techniques provide a detailed insight. These findings have significant implications for the design of energy policies for rural electrification that are consistent with Colombia's sustainable development goals. The thesis makes notable contributions, including the identification of key indicators, the development of a thematic sustainability framework tailored to off-grid settlements, and the introduction of a novel Aspen Plus model for simulating gasification in downdraft gasifiers. The model incorporates Principal Component Analysis, which improves the accuracy and reliability of predicting gasification outcomes. Furthermore, the study formulates forward-looking recommendations, suggesting the inclusion of additional cluster variables, the application of machine learning models for dynamic insights of energy performance in off-grid settlements, and the integration of photovoltaic solar potential for a more comprehensive approach of renewable sources in off-grid electrification. In conclusion, this thesis provides a comprehensive and innovative perspective on biomass gasification-based electrification, offering valuable tools for informed decision-making in the context of Colombia's off-grid settlements. Through a comprehensive analysis of sustainability, coupled with practical recommendations for future research, the thesis stands as a significant contribution to the discourse on sustainable electrification in developing regions.Modalidad Presencialapplication/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)Atribución-NoComercial-SinDerivadas 2.5 Colombiahttp://purl.org/coar/access_right/c_abf2Determination and application of a comprehensive sustainability framework for small-scale biomass gasification-based electricity supply in Colombia off-grid rural areasDeterminación y aplicación de un marco integral de sostenibilidad para el suministro eléctrico basado en gasificación de biomasa a pequeña escala en zonas rurales aisladas de ColombiaThesisinfo:eu-repo/semantics/doctoralThesisTesishttp://purl.org/coar/resource_type/c_db06info:eu-repo/semantics/acceptedVersionhttp://purl.org/redcol/resource_type/TDDoctorado en IngenieríaUniversidad Autónoma de Bucaramanga UNABFacultad IngenieríaDoctorado en IngenieríaDING-1502Sustainability frameworkOff-grid settlements electrificationBiomass gasificationSustainability indicatorsGasification modelEnergy facilitiesPower resourcesRural electrificationPower supply systems in remote areasSustainable developmentElectrical energy productionIngenieríaServicios de suministro de energíaRecursos energéticosElectrificación ruralSistemas de suministro de energía en áreas remotasDesarrollo sostenibleProducción de energía eléctricaMarco de sostenibilidadElectrificación en ZNIGasificación de biomasaIndicadores de sostenibilidadModelo de gasificación[1] International Energy Agency, International Renewable Energy Agency, United Nations Status Division, World Bank, and World Health Organization, “Tracking SDG 72020 - The energy progress report 2020,” Washington DC, 2020. [Online]. Available: www.worldbank.org[2] DNV GL, “Energy Transition Outlook 2020 - A global and regional forecast to 2050,” Dnv Gl Energy Transition Outlook, p. 306, 2021, [Online]. Available: https://eto.dnvgl.com/2020/index.html[3] International Renewable Energy Agency IRENA, “Off-grid renewable energy solutions to expand electricity access An opportunity not to be missed,” 2019. [Online]. Available: https://www.irena.org/publications/2019/Jan/Off-grid-renewable-energy-solutions-to-expand-electricity-to-access-An-opportunity-not-to-be-missed[4] UNDP and ETH Zurich, “Derisking Renewable Energy Investment: Off-Grid Electrification,” 2018.[5] S. Feron, R. R. Cordero, and F. Labbe, “Rural electrification efforts based on off-grid photovoltaic systems in the Andean Region: Comparative assessment of their sustainability,” Sustainability (Switzerland), vol. 9, no. 10, Oct. 2017, doi: 10.3390/su9101825.[6] S. Moussa Kadri, B. Dakyo, M. B. Camara, and Y. Coulibaly, “Hybrid Diesel/PV Multi-Megawatt Plant Seasonal Behavioral Model to Analyze Microgrid Effectiveness: Case Study of a Mining Site Electrification,” Processes, vol. 10, no. 11, p. 2164, Oct. 2022, doi: 10.3390/pr10112164.[7] I. Hoeck, E. Steurer, D. Ozge, and H. Ileka, “Challenges for off-grid electrification in rural areas. Assessment of the situation in Namibia using the examples of Gam and Tsumkwe,” Energy Ecol Environ, vol. 7, no. 5, pp. 508–522, doi: 10.1007/s40974-021-00214-5.[8] E. I. Come Zebra, H. J. van der Windt, G. Nhumaio, and A. P. C. Faaij, “A review of hybrid renewable energy systems in mini-grids for off-grid electrification in developing countries,” Renewable and Sustainable Energy Reviews, vol. 144, p. 111036, Jul. 2021, doi: 10.1016/J.RSER.2021.111036.[9] E. Garces, J. Tomei, C. J. Franco, and I. Dyner, “Lessons from last mile electrification in Colombia: Examining the policy framework and outcomes for sustainability,” Energy Res Soc Sci, vol. 79, p. 102156, Sep. 2021, doi: 10.1016/J.ERSS.2021.102156.[10] M. Kabeyi and O. Olanrewaju, “Performance analysis of diesel engine power plants for grid electricity supply,” in SAIIE31 Proceedings, Oct. 2020.[11] A. Boute, “Off-grid renewable energy in remote Arctic areas: An analysis of the Russian Far East,” Renewable and Sustainable Energy Reviews, vol. 59, pp. 1029–1037, Jun. 2016, doi: 10.1016/J.RSER.2016.01.034.[12] S. Rodriguez, “Rural Electrification in off-grid areas in Colombia. Case study of Cumaribo Municipality,” Master Thesis, Aalborg University, 2017.[13] CNM-IPSE, “Caracterización Energética en las ZNI (segundo semestre 2020),” 2020.[14] IPSE, “Ficha de caracterizacion energetica ZNI-2020,” 2020.[15] Ministerio de Minas y Energía, Resolución 182138 de 2007. 2007. Accessed: Oct. 06, 2021. [Online]. Available: https://gestornormativo.creg.gov.co/gestor/entorno/docs/resolucion_minminas_182138_2007.htm[16] IPSE, “Resultados encuesta de caracterización ZNI 2019,” 2019. [Online]. Available: http://ipse.gov.co/sigipse/resultados-encuesta-de-caracterizacion-zni/[17] D. Silva Herran and T. Nakata, “Design of decentralized energy systems for rural electrification in developing countries considering regional disparity,” Appl Energy, vol. 91, no. 1, pp. 130–145, 2012, doi: 10.1016/j.apenergy.2011.09.022.[18] OLADE, “Formulación de una Propuesta para una Acción de Mitigación Nacionalmente Apropiada (NAMA) para las Zonas No Interconectadas (ZNI) de Colombia Informe Final Consolidado Mayo de 2016,” 2016.[19] “IPSE-SIGIPSE – Energía que nos Conecta.” https://ipse.gov.co/sigipse/#contexto-sigipse (accessed Jun. 04, 2023).[20] IEA, “World Energy Outlook 2020,” Paris, 2020. [Online]. Available: https://www.iea.org/reports/world-energy-outlook-2020[21] Superintendencia de Servicios Públicos Domiciliarios-SSPD, “Zonas No Interconectadas –ZNI Informe sectorial de la prestación del servicio de energía eléctrica 2021,” Bogota, 2021.[22] Superintendencia de Servicios Públicos Domiciliarios SSPD, “Sistema Único de Información.” http://www.sui.gov.co/web/energia (accessed Oct. 06, 2021).[23] R. Jimenez and A. Yepez-Garcia, “Understanding the Drivers of Household Energy Spending: Micro Evidence for Latin America,” 2017. [Online]. Available: http://www.iadb.org[24] “www.xm.com.co/noticias,” 2022. https://www.xm.com.co/noticias/4784-en-febrero-de-2022-el-precio-de-bolsa-de-energia-incremento-4790-respecto-al-precio (accessed Apr. 04, 2022).[25] R. E. H. Sims et al., “Energy Supply,” in Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, B. Metz, O. R. Davidson, P. R. Bosch, R. Dave, and L. A. Meyer, Eds., Cambridge: Cambridge University Press, 2007, pp. 253–315.[26] Unidad de Planeación Minero Energética - UPME, “FACTOR DE EMISIONES DE LA RED DE ENERGÍA ELÉCTRICA EN COLOMBIA,” 2021. Accessed: Apr. 04, 2022. [Online]. Available: https://www1.upme.gov.co/siame/Documents/Calculo-FE-del-SIN/Documento_calculo_Cartilla_Factor_de_emision_2021.pdf[27] E. I. Come Zebra, H. J. van der Windt, G. Nhumaio, and A. P. C. Faaij, “A review of hybrid renewable energy systems in mini-grids for off-grid electrification in developing countries,” Renewable and Sustainable Energy Reviews, vol. 144, Jul. 2021, doi: 10.1016/J.RSER.2021.111036.[28] M. H. Rasool, U. Perwez, Z. Qadir, and S. M. H. Ali, “Scenario-based techno-reliability optimization of an off-grid hybrid renewable energy system: A multi-city study framework,” Sustainable Energy Technologies and Assessments, vol. 53, Oct. 2022, doi: 10.1016/J.SETA.2022.102411.[29] T. Urmee and A. Md, “Social, cultural and political dimensions of off-grid renewable energy programs in developing countries,” Renew Energy, vol. 93, pp. 159–167, Aug. 2016, doi: 10.1016/J.RENENE.2016.02.040.[30] P. Marocco, D. Ferrero, A. Lanzini, and M. Santarelli, “The role of hydrogen in the optimal design of off-grid hybrid renewable energy systems,” J Energy Storage, vol. 46, Feb. 2022, doi: 10.1016/J.EST.2021.103893.[31] “Advantages and disadvantages of Solar Photovoltaic – Quick Pros and Cons of Solar PV - Renewable Energy World.” https://www.renewableenergyworld.com/storage/advantages-and-disadvantages-of-solar-photovoltaic-quick-pros-and-cons-of-solar-pv/#gref (accessed Feb. 12, 2021).[32] S. Morales, C. Álvarez, C. Acevedo, C. Diaz, M. Rodriguez, and L. Pacheco, “An overview of small hydropower plants in Colombia: Status, potential, barriers and perspectives,” Renewable and Sustainable Energy Reviews, vol. 50, pp. 1650–1657, 2015, doi: 10.1016/j.rser.2015.06.026.[33] C. Kinally, F. Antonanzas-Torres, F. Podd, and A. Gallego-Schmid, “Off-grid solar waste in sub-Saharan Africa: Market dynamics, barriers to sustainability, and circular economy solutions,” Energy for Sustainable Development, vol. 70, pp. 415–429, Oct. 2022, doi: 10.1016/J.ESD.2022.08.014.[34] S. Feron, “sustainability Sustainability of Off-Grid Photovoltaic Systems for Rural Electrification in Developing Countries: A Review,” 2016, doi: 10.3390/su8121326.[35] P. G. V. Sampaio and M. O. A. González, “Photovoltaic solar energy: Conceptual framework,” Renewable and Sustainable Energy Reviews, vol. 74, pp. 590–601, 2017, doi: 10.1016/J.RSER.2017.02.081.[36] A. M. Ershad, F. Ueckerdt, R. C. Pietzcker, A. Giannousakis, and G. Luderer, “A further decline in battery storage costs can pave the way for a solar PV-dominated Indian power system,” Renewable and Sustainable Energy Transition, vol. 1, p. 100006, Aug. 2021, doi: 10.1016/J.RSET.2021.100006.[37] S. Schopfer, V. Tiefenbeck, and T. Staake, “Economic assessment of photovoltaic battery systems based on household load profiles,” Appl Energy, vol. 223, pp. 229–248, Aug. 2018, doi: 10.1016/J.APENERGY.2018.03.185.[38] Q. Hassan, B. Pawela, A. Hasan, and M. Jaszczur, “Optimization of Large-Scale Battery Storage Capacity in Conjunction with Photovoltaic Systems for Maximum Self-Sustainability,” Energies 2022, Vol. 15, Page 3845, vol. 15, no. 10, p. 3845, May 2022, doi: 10.3390/EN15103845.[39] DNV, “ENERGY TRANSITION OUTLOOK 2022 A global and regional forecast to 2050,” 2022.[40] P. Malik, M. Awasthi, and S. Sinha, “Biomass-based gaseous fuel for hybrid renewable energy systems: An overview and future research opportunities,” Int J Energy Res, vol. 45, no. 3, pp. 3464–3494, Mar. 2021, doi: 10.1002/ER.6061.[41] D. Fytili and A. Zabaniotou, “Social acceptance of bioenergy in the context of climate change and sustainability – A review,” Curr Opin Green Sustain Chem, vol. 8, no. 2007, pp. 5–9, 2017, doi: 10.1016/j.cogsc.2017.07.006.[42] R. Wüstenhagen, M. Wolsink, and M. J. Bürer, “Social acceptance of renewable energy innovation: An introduction to the concept,” Energy Policy, vol. 35, no. 5, pp. 2683–2691, 2007, doi: 10.1016/j.enpol.2006.12.001.[43] D. Baur, P. Emmerich, M. J. Baumann, and M. Weil, “Assessing the social acceptance of key technologies for the German energy transition,” Energy Sustain Soc, vol. 12, no. 1, p. 4, 2022, doi: 10.1186/s13705-021-00329-x.[44] M. Naqvi, J. Yan, E. Dahlquist, and S. R. Naqvi, “Off-grid electricity generation using mixed biomass compost: A scenario-based study with sensitivity analysis,” Appl Energy, vol. 201, pp. 363–370, 2017, doi: 10.1016/J.APENERGY.2017.02.005.[45] Ž. Zore, L. Čuček, D. Širovnik, Z. Novak Pintarič, and Z. Kravanja, “Maximizing the sustainability net present value of renewable energy supply networks,” Chemical Engineering Research and Design, vol. 131, pp. 245–265, Mar. 2018, doi: 10.1016/J.CHERD.2018.01.035.[46] IEA, “The cost of capital in clean energy transitions – Analysis,” 2021. https://www.iea.org/articles/the-cost-of-capital-in-clean-energy-transitions (accessed Jan. 08, 2023).[47] IEA, “Renewables 2021 – Analysis,” 2021. https://www.iea.org/reports/renewables-2021 (accessed Jan. 08, 2023).[48] “Caracterización Energética de las ZNI – IPSE-CNM.” https://ipse.gov.co/cnm/caracterizacion-de-las-zni/ (accessed Jan. 16, 2023).[49] J. J. C. Eras et al., “A look to the electricity generation from non-conventional renewable energy sources in Colombia,” International Journal of Energy Economics and Policy, vol. 9, no. 1, pp. 15–25, 2019, doi: 10.32479/ijeep.7108.[50] N. E. Ramirez-Contreras and A. P. C. Faaij, “A review of key international biomass and bioenergy sustainability frameworks and certification systems and their application and implications in Colombia,” Renewable and Sustainable Energy Reviews, vol. 96, no. March, pp. 460–478, 2018, doi: 10.1016/j.rser.2018.08.001.[51] DNP-Departamento Nacional de Planeación -, “Implementación y desarrollo de soluciones energéticas a nivel nacional,” 2010. [Online]. Available: https://spi.dnp.gov.co/App_Themes/SeguimientoProyectos/ResumenEjecutivo/IMPLEMENTACION Y DESARROLLO DE SOLUCIONES ENERGETICAS A NI….pdf[52] Ministerio de Minas y Energia - UPME - IPSE, “Plan Nacional de Electrificación Rural PNER,” 2018. [Online]. Available: https://www.minenergia.gov.co/minminas-theme/planclimatico/files/19_UPME_120718_PNER_Jullio260718_publicacion.pdf[53] Centro Nacional de Monitoreo CNM - IPSE, “Informes Consolidados de Telemetría.” https://www1.upme.gov.co/Paginas/Registro.aspx (accessed Feb. 13, 2021).[54] Contraloría General de la Republica, “REGISTRO DE PROYECTOS DE GENERACIÓN DE ENERGÍA ELÉCTRICA,” 2012.[55] Y. D. Urrego Pinto and M. H. Romero Moreno, “Propuesta de gestión para reducción de barreras en la generación eléctrica, a partir de gasificación de residuos de biomasa forestal, para zonas no interconectadas en Colombia (caso Necoclí, Antioquia),” PONTIFICIA UNIVERSIDAD JAVERIANA, 2015.[56] “Centro Nacional de Monitoreo.” http://190.216.196.84/cnm/consolidados.php (accessed Feb. 13, 2021).[57] A. I. Osman, N. Mehta, A. M. Elgarahy, A. Al-Hinai, A. H. Al-Muhtaseb, and D. W. Rooney, “Conversion of biomass to biofuels and life cycle assessment: a review,” Environmental Chemistry Letters 2021 19:6, vol. 19, no. 6, pp. 4075–4118, Jul. 2021, doi: 10.1007/S10311-021-01273-0.[58] F. Ardolino and U. Arena, “Biowaste-to-Biomethane: An LCA study on biogas and syngas roads,” Waste Management, vol. 87, pp. 441–453, Mar. 2019, doi: 10.1016/J.WASMAN.2019.02.030.[59] K. DeRose, C. DeMill, R. W. Davis, and J. C. Quinn, “Integrated techno economic and life cycle assessment of the conversion of high productivity, low lipid algae to renewable fuels,” Algal Res, vol. 38, p. 101412, Mar. 2019, doi: 10.1016/J.ALGAL.2019.101412.[60] J. M. Aberilla, A. Gallego-Schmid, and A. Azapagic, “Environmental sustainability of small-scale biomass power technologies for agricultural communities in developing countries,” Renew Energy, vol. 141, pp. 493–506, Oct. 2019, doi: 10.1016/J.RENENE.2019.04.036.[61] W. Liu, C. Liu, P. Gogoi, and Y. Deng, “Overview of Biomass Conversion to Electricity and Hydrogen and Recent Developments in Low-Temperature Electrochemical Approaches,” Engineering, vol. 6, no. 12, pp. 1351–1363, Dec. 2020, doi: 10.1016/J.ENG.2020.02.021.[62] G. Uchechukwu Megwai, “Process Simulations of Small Scale Biomass Power Plant,” Master Thesis, University of Boras, 2014. Accessed: May 18, 2022. [Online]. Available: https://www.researchgate.net/publication/269036738_Process_Simulations_of_Small_Scale_Biomass_Power_Plant_MSc_Thesis_in_Resource_Recovery-Sustainable_Engineering?channel=doi&linkId=547dec020cf285ad5b08b168&showFulltext=true[63] T. K. Patra and P. N. Sheth, “Techno-economic Assessment of Thermochemical Biomass Conversion Technologies,” in Recent Advancements in Biofuels and Bioenergy Utilization, P. K. Sarangi, S. Nanda, and P. Mohanty, Eds., Singapore: Springer Singapore, 2018, pp. 339–361. doi: 10.1007/978-981-13-1307-3_14.[64] Y. A. Situmorang, Z. Zhao, A. Yoshida, A. Abudula, and G. Guan, “Small-scale biomass gasification systems for power generation (<200 kW class): A review,” Renewable and Sustainable Energy Reviews, vol. 117, p. 109486, Jan. 2020, doi: 10.1016/J.RSER.2019.109486.[65] J. A. Sampson, “Feasibility and Technoeconomic Analysis of Small-Scale Biomass to Power System with Novel Producer Gas Cleanup Technology,” Bachelor of Science, Massachusetts Institute of Technology, 2020.[66] H. Susanto, T. Suria, and S. H. Pranolo, “Economic analysis of biomass gasification for generating electricity in rural areas in Indonesia,” IOP Conf Ser Mater Sci Eng, vol. 334, p. 012012, Mar. 2018, doi: 10.1088/1757-899X/334/1/012012.[67] G. P. M. Fracaro, S. N. M. Souza, M. Medeiros, D. F. Formentini, and C. A. Marques, “Economic feasibility of biomass gasification for small-scale electricity generation in Brazil,” in Word Renewable Energy Congress, 2011.[68] S. Pattanayak, L. Hauchhum, C. Loha, and L. Sailo, “Feasibility study of biomass gasification for power generation in Northeast India,” Biomass Convers Biorefin, vol. 13, no. 2, pp. 999–1011, Jan. 2023, doi: 10.1007/S13399-021-01419-8.[69] International Renewable Energy Agency IRENA, “Renewable Power Generation Costs in 2019,” 2020. doi: 10.1007/SpringerReference_7300.[70] J. Goldember, “Rural Energy in Developing Countries,” in World Energy Assessment: Energy and the challenge of sustainability, United Nations Development Programme, Ed., 1st ed.2000.[71] R. P. Bates and K. Dölle, “Syngas Use in Internal Combustion Engines - A Review,” Adv Res, vol. 10, no. 1, pp. 1–8, 2017, doi: 10.9734/AIR/2017/32896.[72] V. G. Bui et al., “Flexible syngas-biogas-hydrogen fueling spark-ignition engine behaviors with optimized fuel compositions and control parameters,” Int J Hydrogen Energy, vol. 48, no. 18, pp. 6722–6737, Feb. 2023, doi: 10.1016/J.IJHYDENE.2022.09.133.[73] M. Fiore, V. Magi, and A. Viggiano, “Internal combustion engines powered by syngas: A review,” Appl Energy, vol. 276, p. 115415, Oct. 2020, doi: 10.1016/J.APENERGY.2020.115415.[74] COLCIENCIAS, Libro verde 2030. 2018. [Online]. Available: http://libroverde2030.com/#.WyA1lJOBcRM.whatsapp[75] United Nations -UN, “TRANSFORMING OUR WORLD: THE 2030 AGENDA FOR SUSTAINABLE DEVELOPMENT,” 2015. [Online]. Available: https://sustainabledevelopment.un.org/content/documents[76] The International Energy Agency IEA, “Energy Efficiency Indicators: Essentials for Policy Making,” 2014.https://apolo.unab.edu.co/en/persons/leonardo-esteban-pacheco-sandovalTHUMBNAILDoctoral Thesis CADG - UNAB 2024.pdf.jpgDoctoral Thesis CADG - UNAB 2024.pdf.jpgIM Thumbnailimage/jpeg7009https://repository.unab.edu.co/bitstream/20.500.12749/27531/6/Doctoral%20Thesis%20CADG%20-%20UNAB%202024.pdf.jpge46c3360afca252c3c9204d68ea74d09MD56open accessLicencia.pdf.jpgLicencia.pdf.jpgIM Thumbnailimage/jpeg12798https://repository.unab.edu.co/bitstream/20.500.12749/27531/7/Licencia.pdf.jpg6a0caef90b1983ac62c599ad32902833MD57metadata only accessORIGINALDoctoral Thesis CADG - UNAB 2024.pdfDoctoral Thesis CADG - UNAB 2024.pdfTesisapplication/pdf6576041https://repository.unab.edu.co/bitstream/20.500.12749/27531/1/Doctoral%20Thesis%20CADG%20-%20UNAB%202024.pdf9d3caca1d8661e6220e71f0996df11a3MD51open accessLicencia.pdfLicencia.pdfLicenciaapplication/pdf360310https://repository.unab.edu.co/bitstream/20.500.12749/27531/5/Licencia.pdf593af634b7eb248734400af67ec79f42MD55metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8829https://repository.unab.edu.co/bitstream/20.500.12749/27531/4/license.txt3755c0cfdb77e29f2b9125d7a45dd316MD54open access20.500.12749/27531oai:repository.unab.edu.co:20.500.12749/275312024-11-25 22:00:19.041open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbi4gRWwgQVVUT1IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVTkFCIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuCgpFbCBBVVRPUiBhdXRvcml6YSBhIGxhIFVuaXZlcnNpZGFkIEF1dMOzbm9tYSBkZSBCdWNhcmFtYW5nYSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24uCg== |