Estimación probabilística de relaciones temporales inciertas
Una amplia gama de aplicaciones de IA debe administrar información variable en el tiempo, por ejemplo, bases de datos temporales, sistemas de reserva, registros médicos, aplicaciones financieras, planificación. Muchos artículos de investigación publicados en el área de representación temporal y razo...
- Autores:
-
Ryabov, Vladimir
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2001
- Institución:
- Universidad Autónoma de Bucaramanga - UNAB
- Repositorio:
- Repositorio UNAB
- Idioma:
- spa
- OAI Identifier:
- oai:repository.unab.edu.co:20.500.12749/9072
- Acceso en línea:
- http://hdl.handle.net/20.500.12749/9072
- Palabra clave:
- Innovaciones tecnológicas
Ciencia de los computadores
Desarrollo de tecnología
Ingeniería de sistemas
Investigaciones
Tecnologías de la información y las comunicaciones
TIC´s
Technological innovations
Computer science
Technology development
Systems engineering
Investigations
Information and communication technologies
ICT's
Point
Interval
Probability
Uncertain temporal relation
Innovaciones tecnológicas
Ciencias de la computación
Desarrollo tecnológico
Ingeniero de sistemas
Investigación
Tecnología de la información y comunicación
Relación temporal incierta
Punto
Intervalo
Probabilidad
- Rights
- License
- Derechos de autor 2001 Revista Colombiana de Computación
id |
UNAB2_becd196839abdf2fecb0a688773cb668 |
---|---|
oai_identifier_str |
oai:repository.unab.edu.co:20.500.12749/9072 |
network_acronym_str |
UNAB2 |
network_name_str |
Repositorio UNAB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Estimación probabilística de relaciones temporales inciertas |
dc.title.translated.eng.fl_str_mv |
Probabilistic estimation of uncertain temporal relations |
title |
Estimación probabilística de relaciones temporales inciertas |
spellingShingle |
Estimación probabilística de relaciones temporales inciertas Innovaciones tecnológicas Ciencia de los computadores Desarrollo de tecnología Ingeniería de sistemas Investigaciones Tecnologías de la información y las comunicaciones TIC´s Technological innovations Computer science Technology development Systems engineering Investigations Information and communication technologies ICT's Point Interval Probability Uncertain temporal relation Innovaciones tecnológicas Ciencias de la computación Desarrollo tecnológico Ingeniero de sistemas Investigación Tecnología de la información y comunicación Relación temporal incierta Punto Intervalo Probabilidad |
title_short |
Estimación probabilística de relaciones temporales inciertas |
title_full |
Estimación probabilística de relaciones temporales inciertas |
title_fullStr |
Estimación probabilística de relaciones temporales inciertas |
title_full_unstemmed |
Estimación probabilística de relaciones temporales inciertas |
title_sort |
Estimación probabilística de relaciones temporales inciertas |
dc.creator.fl_str_mv |
Ryabov, Vladimir |
dc.contributor.author.spa.fl_str_mv |
Ryabov, Vladimir |
dc.contributor.googlescholar.spa.fl_str_mv |
Ryabov, Vladimir [jMVAsaNOmiIC] |
dc.contributor.orcid.spa.fl_str_mv |
Ryabov, Vladimir [0000-0002-9243-7597] |
dc.subject.none.fl_str_mv |
Innovaciones tecnológicas Ciencia de los computadores Desarrollo de tecnología Ingeniería de sistemas Investigaciones Tecnologías de la información y las comunicaciones TIC´s |
topic |
Innovaciones tecnológicas Ciencia de los computadores Desarrollo de tecnología Ingeniería de sistemas Investigaciones Tecnologías de la información y las comunicaciones TIC´s Technological innovations Computer science Technology development Systems engineering Investigations Information and communication technologies ICT's Point Interval Probability Uncertain temporal relation Innovaciones tecnológicas Ciencias de la computación Desarrollo tecnológico Ingeniero de sistemas Investigación Tecnología de la información y comunicación Relación temporal incierta Punto Intervalo Probabilidad |
dc.subject.keywords.eng.fl_str_mv |
Technological innovations Computer science Technology development Systems engineering Investigations Information and communication technologies ICT's Point Interval Probability |
dc.subject.keywords.none.fl_str_mv |
Uncertain temporal relation |
dc.subject.lemb.spa.fl_str_mv |
Innovaciones tecnológicas Ciencias de la computación Desarrollo tecnológico Ingeniero de sistemas Investigación Tecnología de la información y comunicación |
dc.subject.proposal.spa.fl_str_mv |
Relación temporal incierta Punto Intervalo Probabilidad |
description |
Una amplia gama de aplicaciones de IA debe administrar información variable en el tiempo, por ejemplo, bases de datos temporales, sistemas de reserva, registros médicos, aplicaciones financieras, planificación. Muchos artículos de investigación publicados en el área de representación temporal y razonamiento asume que los datos temporales son precisos y ciertos, aunque en realidad esto la suposición es a menudo falsa. En muchas situaciones existe la necesidad de conocer la relación entre dos intervalos temporales, como lo es, por ejemplo, durante el procesamiento de consultas. indeterminación significa que no sabemos exactamente cuándo sucedió un evento en particular. cuando dos intervalos temporales son indeterminados, en muchos casos es imposible derivar un cierto relación temporal entre ellos. En este artículo proponemos un enfoque para representar y estimar valores temporales inciertos relaciones mediante el cálculo de las probabilidades de las relaciones básicas que se pueden mantener entre dos primitivas temporales. Representamos la relación entre dos intervalos temporales como un matriz, cuyos cuatro elementos son las relaciones entre los extremos de estos intervalos. La relación incierta entre dos puntos temporales está representada por un vector con tres valores de probabilidad que denotan las probabilidades de las relaciones básicas (antes, al mismo tiempo, después) entre estos puntos. Las probabilidades de las relaciones de intervalo de Allen entre dos intervalos temporales se componen como probabilidades condicionales conjuntas de la relaciones correspondientes entre los extremos de los intervalos. También consideramos un ejemplo de uso del mecanismo de estimación propuesto, que ayuda a determinar posibles áreas de aplicación del formalismo. |
publishDate |
2001 |
dc.date.issued.none.fl_str_mv |
2001-12-01 |
dc.date.accessioned.none.fl_str_mv |
2020-10-27T00:21:35Z |
dc.date.available.none.fl_str_mv |
2020-10-27T00:21:35Z |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.local.spa.fl_str_mv |
Artículo |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/CJournalArticle |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.issn.none.fl_str_mv |
2539-2115 1657-2831 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12749/9072 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Autónoma de Bucaramanga UNAB |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repository.unab.edu.co |
identifier_str_mv |
2539-2115 1657-2831 instname:Universidad Autónoma de Bucaramanga UNAB repourl:https://repository.unab.edu.co |
url |
http://hdl.handle.net/20.500.12749/9072 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://revistas.unab.edu.co/index.php/rcc/article/view/1115/1086 |
dc.relation.uri.none.fl_str_mv |
https://revistas.unab.edu.co/index.php/rcc/article/view/1115 |
dc.relation.references.none.fl_str_mv |
J. Allen, Maintaining Knowledge about Temporal Intervals. Communications of the ACM (26): 832-843, 1983. J. Allen and P. Hayes, A Common-Sense Theory of Time. In Proceedings of 9 International Joint Conference on Artificial Intelligence, pages 528-531, 1985. D. Barbara, H. Garcia-Molina, and D. Porter, The Management of Probabilistic Data. IEEE Transactions on Knowledge and Data Engineering 4(5): 487-502, 1992. M. Böhlen, R. Busatto, and C. Jensen, Point- Versus Interval-based Temporal Data Models. Technical Report TR-21, Time Center, 1998. L. Chittaro and A. Montanari, Trends in Temporal Representation and Reasoning. The Knowledge Engineering Review 11(3): 281-288, 1996. D. Dey and S. Sarkar, A Probabilistic Relational Model and Algebra. ACM Transactions on Database Systems 21(3): 339-369, 1996. D. Dubois and H. Prade, Possibility Theory: An Approach to the Computerized Processing of Uncertainty. Plenum Press, New York 1988. C. Dyreson, A Bibliography on Uncertain Management in Information Systems. In: A. Motro (ed.), Uncertainty Management in Information Systems: From Needs to Solutions, Kluwer Academic Publishers, pages 415-458, 1997. C. Dyreson and R. Snodgrass, Valid-Time Indeterminacy. In Proceedings of Ninth C. Dyreson and R. Snodgrass, Supporting Valid-Time Indeterminacy. ACM Transactions on Database Systems 23(1): 1-57, 1998. P. Hayes and J. Allen, Short Time Periods. In Proceedings of 10-th International Joint Conference on Artificial Intelligence, pages 981-983, 1987. R. Hirsch, Relational Algebra of Intervals. Artificial Intelligence 83, 267-295, 1996. C. Jensen and C. Dyreson, (eds.), The Consensus Glossary of Temporal Database Concepts. February 1998 Version. In: O. Etzion, S. Jajodia, and S. Spirada, (eds.), Temporal Databases - Research and Practice, Lecture Notes in Computer Science, 1399, 367-405, 1998. C. Jensen and R. Snodgrass, Temporal Data Management. Technical Report TR-17, Time Center, 1997. S. Kwan, F. Olken, and D. Rotem, Uncertain, Incomplete and Inconsistent Data in Scientific and Statistical Databases. In Proceedings of Second Workshop on Uncertainty Management and Information Systems: From Needs to Solutions, Catalina, USA, 1993. A. Motro, Accommodating Imprecision in Database Systems: Issues and Solutions. SIGMOD Record 19(4): 69-74, 1990. A. Motro, Imprecision and Incompleteness in Relational Databases: Survey. Information and Software Technology 32(9): 579-588, 1990. S. Parsons, Current Approaches to Handling Imperfect Information in Data and Knowledge Bases. IEEE Transactions on Knowledge and Data Engineering 8(3): 353- 372, 1996. S. Parsons and A. Hunter, A Review of Uncertainty Handling Formalisms. In: A. Hunter and S. Parsons, (eds.), Applications of Uncertainty Formalisms, Lecture Notes in Artificial Intelligence 1455, Springer-Verlag, 8-37, 1998. V. Ryabov, S. Puuronen, and V. Terziyan, Representation and Reasoning with Uncertain Temporal Relations. In Proceedings of Twelfth International Florida AI Research Society Conference, Orlando, Florida, USA pages 449-453, 1999. G. Shafer, A Mathematical Theory of Evidence. Princeton University Press, 1976. E. Shortliffe, Computer-Based Medical Consultations: MYCIN. Elsevier, New York 1976. R. Snodgrass, I. Ahn, G. Ariav, D. Batory, J. Clifford, C. Dyreson, R. Elmasri, F. Grandi, C. Jensen, W. Käfer, N. Kline, K. Kulkarni, T. Cliff Leung, N. Lorentzos, J. Roddick, A. Segev, M. Soo, M. Suryanarayana, and S. Spirada, The TSQL2 Temporal Query Language. Kluwer Academic Publishers, 1995. P. van Beek, Temporal Query Processing with Indefinite Information. Artificial Intelligence in Medicine 33, 25-339, 1991. P. van Beek and R. Cohen, Exact and Approximate Reasoning about Temporal Relations. Computational Intelligence (6): 132-144, 1990. ] L. Vila, A Survey on Temporal Reasoning in Artificial Intelligence. AI Communications (7): 4-28, 1994. M. Vilain, A System for Reasoning about Time. In Proceedings of National Conference on Artificial Intelligence, 197-201, 1982. |
dc.rights.none.fl_str_mv |
Derechos de autor 2001 Revista Colombiana de Computación |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.creativecommons.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
rights_invalid_str_mv |
Derechos de autor 2001 Revista Colombiana de Computación http://creativecommons.org/licenses/by-nc-sa/4.0/ http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Atribución-NoComercial-SinDerivadas 2.5 Colombia http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidad Autónoma de Bucaramanga UNAB |
publisher.none.fl_str_mv |
Universidad Autónoma de Bucaramanga UNAB |
dc.source.none.fl_str_mv |
Revista Colombiana de Computación; Vol. 2 Núm. 2 (2001): Revista Colombiana de Computación; 1-17 |
institution |
Universidad Autónoma de Bucaramanga - UNAB |
bitstream.url.fl_str_mv |
https://repository.unab.edu.co/bitstream/20.500.12749/9072/1/2001_Articulo_Estimacion%20probabilistica%20de%20relaciones%20temporales%20inciertas.pdf https://repository.unab.edu.co/bitstream/20.500.12749/9072/2/2001_Articulo_Estimacion%20probabilistica%20de%20relaciones%20temporales%20inciertas.pdf.jpg |
bitstream.checksum.fl_str_mv |
867384385bfca9427b2821dadf2466ae 6f26b9fb50ecb445a81d05c9d55d40c2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB |
repository.mail.fl_str_mv |
repositorio@unab.edu.co |
_version_ |
1828219848800337920 |
spelling |
Ryabov, Vladimir4f50ceb7-715e-4ca6-9873-eb07a09dbcabRyabov, Vladimir [jMVAsaNOmiIC]Ryabov, Vladimir [0000-0002-9243-7597]2020-10-27T00:21:35Z2020-10-27T00:21:35Z2001-12-012539-21151657-2831http://hdl.handle.net/20.500.12749/9072instname:Universidad Autónoma de Bucaramanga UNABrepourl:https://repository.unab.edu.coUna amplia gama de aplicaciones de IA debe administrar información variable en el tiempo, por ejemplo, bases de datos temporales, sistemas de reserva, registros médicos, aplicaciones financieras, planificación. Muchos artículos de investigación publicados en el área de representación temporal y razonamiento asume que los datos temporales son precisos y ciertos, aunque en realidad esto la suposición es a menudo falsa. En muchas situaciones existe la necesidad de conocer la relación entre dos intervalos temporales, como lo es, por ejemplo, durante el procesamiento de consultas. indeterminación significa que no sabemos exactamente cuándo sucedió un evento en particular. cuando dos intervalos temporales son indeterminados, en muchos casos es imposible derivar un cierto relación temporal entre ellos. En este artículo proponemos un enfoque para representar y estimar valores temporales inciertos relaciones mediante el cálculo de las probabilidades de las relaciones básicas que se pueden mantener entre dos primitivas temporales. Representamos la relación entre dos intervalos temporales como un matriz, cuyos cuatro elementos son las relaciones entre los extremos de estos intervalos. La relación incierta entre dos puntos temporales está representada por un vector con tres valores de probabilidad que denotan las probabilidades de las relaciones básicas (antes, al mismo tiempo, después) entre estos puntos. Las probabilidades de las relaciones de intervalo de Allen entre dos intervalos temporales se componen como probabilidades condicionales conjuntas de la relaciones correspondientes entre los extremos de los intervalos. También consideramos un ejemplo de uso del mecanismo de estimación propuesto, que ayuda a determinar posibles áreas de aplicación del formalismo.A wide range of AI applications should manage time varying information, for example, temporal databases, reservation systems, keeping medical records, financial applications, planning. Many published research articles in the area of temporal representation and reasoning assume that temporal data is precise and certain, even though in reality this assumption is often false. In many situations there is a need to know the relation between two temporal intervals, as it is, for example, during query processing. Indeterminacy means that we do not know exactly when a particular event happened. When two temporal intervals are indeterminate it is in many cases impossible to derive a certain temporal relation between them. In this paper we propose an approach to represent and estimate uncertain temporal relations by calculating the probabilities of the basic relations that can hold between two temporal primitives. We represent the relation between two temporal intervals as a matrix, four elements of which are the relations between the endpoints of these intervals. The uncertain relation between two temporal points is represented by a vector with three probability values denoting the probabilities of the basic relations (before, at the same time, after) between these points. The probabilities of Allen’s interval relations between two temporal intervals are composed as joint conditional probabilities of the correspondent relations between the endpoints of the intervals. We also consider an example of using the proposed estimation mechanism, which helps to figure out possible application areas of the formalism.application/pdfspaUniversidad Autónoma de Bucaramanga UNABhttps://revistas.unab.edu.co/index.php/rcc/article/view/1115/1086https://revistas.unab.edu.co/index.php/rcc/article/view/1115J. Allen, Maintaining Knowledge about Temporal Intervals. Communications of the ACM (26): 832-843, 1983.J. Allen and P. Hayes, A Common-Sense Theory of Time. In Proceedings of 9 International Joint Conference on Artificial Intelligence, pages 528-531, 1985.D. Barbara, H. Garcia-Molina, and D. Porter, The Management of Probabilistic Data. IEEE Transactions on Knowledge and Data Engineering 4(5): 487-502, 1992.M. Böhlen, R. Busatto, and C. Jensen, Point- Versus Interval-based Temporal Data Models. Technical Report TR-21, Time Center, 1998.L. Chittaro and A. Montanari, Trends in Temporal Representation and Reasoning. The Knowledge Engineering Review 11(3): 281-288, 1996.D. Dey and S. Sarkar, A Probabilistic Relational Model and Algebra. ACM Transactions on Database Systems 21(3): 339-369, 1996.D. Dubois and H. Prade, Possibility Theory: An Approach to the Computerized Processing of Uncertainty. Plenum Press, New York 1988.C. Dyreson, A Bibliography on Uncertain Management in Information Systems. In: A. Motro (ed.), Uncertainty Management in Information Systems: From Needs to Solutions, Kluwer Academic Publishers, pages 415-458, 1997.C. Dyreson and R. Snodgrass, Valid-Time Indeterminacy. In Proceedings of NinthC. Dyreson and R. Snodgrass, Supporting Valid-Time Indeterminacy. ACM Transactions on Database Systems 23(1): 1-57, 1998.P. Hayes and J. Allen, Short Time Periods. In Proceedings of 10-th International Joint Conference on Artificial Intelligence, pages 981-983, 1987.R. Hirsch, Relational Algebra of Intervals. Artificial Intelligence 83, 267-295, 1996.C. Jensen and C. Dyreson, (eds.), The Consensus Glossary of Temporal Database Concepts. February 1998 Version. In: O. Etzion, S. Jajodia, and S. Spirada, (eds.), Temporal Databases - Research and Practice, Lecture Notes in Computer Science, 1399, 367-405, 1998.C. Jensen and R. Snodgrass, Temporal Data Management. Technical Report TR-17, Time Center, 1997.S. Kwan, F. Olken, and D. Rotem, Uncertain, Incomplete and Inconsistent Data in Scientific and Statistical Databases. In Proceedings of Second Workshop on Uncertainty Management and Information Systems: From Needs to Solutions, Catalina, USA, 1993.A. Motro, Accommodating Imprecision in Database Systems: Issues and Solutions. SIGMOD Record 19(4): 69-74, 1990.A. Motro, Imprecision and Incompleteness in Relational Databases: Survey. Information and Software Technology 32(9): 579-588, 1990.S. Parsons, Current Approaches to Handling Imperfect Information in Data and Knowledge Bases. IEEE Transactions on Knowledge and Data Engineering 8(3): 353- 372, 1996.S. Parsons and A. Hunter, A Review of Uncertainty Handling Formalisms. In: A. Hunter and S. Parsons, (eds.), Applications of Uncertainty Formalisms, Lecture Notes in Artificial Intelligence 1455, Springer-Verlag, 8-37, 1998.V. Ryabov, S. Puuronen, and V. Terziyan, Representation and Reasoning with Uncertain Temporal Relations. In Proceedings of Twelfth International Florida AI Research Society Conference, Orlando, Florida, USA pages 449-453, 1999.G. Shafer, A Mathematical Theory of Evidence. Princeton University Press, 1976.E. Shortliffe, Computer-Based Medical Consultations: MYCIN. Elsevier, New York 1976.R. Snodgrass, I. Ahn, G. Ariav, D. Batory, J. Clifford, C. Dyreson, R. Elmasri, F. Grandi, C. Jensen, W. Käfer, N. Kline, K. Kulkarni, T. Cliff Leung, N. Lorentzos, J. Roddick, A. Segev, M. Soo, M. Suryanarayana, and S. Spirada, The TSQL2 Temporal Query Language. Kluwer Academic Publishers, 1995.P. van Beek, Temporal Query Processing with Indefinite Information. Artificial Intelligence in Medicine 33, 25-339, 1991.P. van Beek and R. Cohen, Exact and Approximate Reasoning about Temporal Relations. Computational Intelligence (6): 132-144, 1990.] L. Vila, A Survey on Temporal Reasoning in Artificial Intelligence. AI Communications (7): 4-28, 1994.M. Vilain, A System for Reasoning about Time. In Proceedings of National Conference on Artificial Intelligence, 197-201, 1982.Derechos de autor 2001 Revista Colombiana de Computaciónhttp://creativecommons.org/licenses/by-nc-sa/4.0/http://creativecommons.org/licenses/by-nc-nd/2.5/co/Atribución-NoComercial-SinDerivadas 2.5 Colombiahttp://purl.org/coar/access_right/c_abf2Revista Colombiana de Computación; Vol. 2 Núm. 2 (2001): Revista Colombiana de Computación; 1-17Innovaciones tecnológicasCiencia de los computadoresDesarrollo de tecnologíaIngeniería de sistemasInvestigacionesTecnologías de la información y las comunicacionesTIC´sTechnological innovationsComputer scienceTechnology developmentSystems engineeringInvestigationsInformation and communication technologiesICT'sPointIntervalProbabilityUncertain temporal relationInnovaciones tecnológicasCiencias de la computaciónDesarrollo tecnológicoIngeniero de sistemasInvestigaciónTecnología de la información y comunicaciónRelación temporal inciertaPuntoIntervaloProbabilidadEstimación probabilística de relaciones temporales inciertasProbabilistic estimation of uncertain temporal relationsinfo:eu-repo/semantics/articleArtículohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/redcol/resource_type/CJournalArticlehttp://purl.org/coar/version/c_970fb48d4fbd8a85ORIGINAL2001_Articulo_Estimacion probabilistica de relaciones temporales inciertas.pdf2001_Articulo_Estimacion probabilistica de relaciones temporales inciertas.pdfArtículoapplication/pdf724810https://repository.unab.edu.co/bitstream/20.500.12749/9072/1/2001_Articulo_Estimacion%20probabilistica%20de%20relaciones%20temporales%20inciertas.pdf867384385bfca9427b2821dadf2466aeMD51open accessTHUMBNAIL2001_Articulo_Estimacion probabilistica de relaciones temporales inciertas.pdf.jpg2001_Articulo_Estimacion probabilistica de relaciones temporales inciertas.pdf.jpgIM Thumbnailimage/jpeg7261https://repository.unab.edu.co/bitstream/20.500.12749/9072/2/2001_Articulo_Estimacion%20probabilistica%20de%20relaciones%20temporales%20inciertas.pdf.jpg6f26b9fb50ecb445a81d05c9d55d40c2MD52open access20.500.12749/9072oai:repository.unab.edu.co:20.500.12749/90722023-01-11 16:00:43.713open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.co |