Development of an Energy-Based Model for Forecasting the Energy Demand of Colombia

Para planificar el aumento de la demanda de energía, las empresas de servicios públicos y los gobiernos se basan en modelos de pronóstico. Usando datos históricos y predictivos, los stakeholders determinan la demanda requerida por los accionistas de transmisión y distribución. Una vez determinada la...

Full description

Autores:
Pacheco Sandoval, Leonardo Esteban
González Calderón, William
Suárez Arias, Rafael Enrique
Tipo de recurso:
Investigation report
Fecha de publicación:
2023
Institución:
Universidad Autónoma de Bucaramanga - UNAB
Repositorio:
Repositorio UNAB
Idioma:
spa
OAI Identifier:
oai:repository.unab.edu.co:20.500.12749/20824
Acceso en línea:
http://hdl.handle.net/20.500.12749/20824
Palabra clave:
Energy consumption
Energetic resources
Energy demand
Energy supply
Energetic industry
Economic sector
Energy based model
Consumo de energía
Recursos energéticos
Demanda de energía
Abstecimiento de energía
Industria energética
Colombia
Sector económico
Modelo basado en energía
Rights
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UNAB2_bdc865f9ce87e2f20b427b6461b8ffc9
oai_identifier_str oai:repository.unab.edu.co:20.500.12749/20824
network_acronym_str UNAB2
network_name_str Repositorio UNAB
repository_id_str
dc.title.spa.fl_str_mv Development of an Energy-Based Model for Forecasting the Energy Demand of Colombia
dc.title.translated.spa.fl_str_mv Desarrollo de un modelo basado en energía para proyectar la demanda de energía de Colombia
title Development of an Energy-Based Model for Forecasting the Energy Demand of Colombia
spellingShingle Development of an Energy-Based Model for Forecasting the Energy Demand of Colombia
Energy consumption
Energetic resources
Energy demand
Energy supply
Energetic industry
Economic sector
Energy based model
Consumo de energía
Recursos energéticos
Demanda de energía
Abstecimiento de energía
Industria energética
Colombia
Sector económico
Modelo basado en energía
title_short Development of an Energy-Based Model for Forecasting the Energy Demand of Colombia
title_full Development of an Energy-Based Model for Forecasting the Energy Demand of Colombia
title_fullStr Development of an Energy-Based Model for Forecasting the Energy Demand of Colombia
title_full_unstemmed Development of an Energy-Based Model for Forecasting the Energy Demand of Colombia
title_sort Development of an Energy-Based Model for Forecasting the Energy Demand of Colombia
dc.creator.fl_str_mv Pacheco Sandoval, Leonardo Esteban
González Calderón, William
Suárez Arias, Rafael Enrique
dc.contributor.author.none.fl_str_mv Pacheco Sandoval, Leonardo Esteban
González Calderón, William
Suárez Arias, Rafael Enrique
dc.contributor.cvlac.spa.fl_str_mv Pacheco Sandoval,Leonardo Esteban [
Suárez Arias, Rafael Enrique [0001429372]
González Calderón, William [0001367421]
dc.contributor.googlescholar.spa.fl_str_mv Pacheco Sandoval, Leonardo Esteban [es&oi=ao]
dc.contributor.orcid.spa.fl_str_mv Pacheco Sandoval,Leonardo Esteban [0000-0001-7262-382X]
Suárez Arias, Rafael Enrique [0000-0001-9767-210X]
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación Recursos, Energía, Sostenibilidad - GIRES
Grupo de Investigaciones Clínicas
dc.contributor.apolounab.spa.fl_str_mv Pacheco Sandoval, Leonardo Esteban [leonardo-esteban-pacheco-sandoval]
Suárez Arias, Rafael Enrique [rafael-enrique-suarez-arias]
González Calderón, William [william-gonzález-calderón]
dc.subject.keywords.spa.fl_str_mv Energy consumption
Energetic resources
Energy demand
Energy supply
Energetic industry
Economic sector
Energy based model
topic Energy consumption
Energetic resources
Energy demand
Energy supply
Energetic industry
Economic sector
Energy based model
Consumo de energía
Recursos energéticos
Demanda de energía
Abstecimiento de energía
Industria energética
Colombia
Sector económico
Modelo basado en energía
dc.subject.lemb.spa.fl_str_mv Consumo de energía
Recursos energéticos
Demanda de energía
Abstecimiento de energía
Industria energética
Colombia
dc.subject.proposal.spa.fl_str_mv Sector económico
Modelo basado en energía
description Para planificar el aumento de la demanda de energía, las empresas de servicios públicos y los gobiernos se basan en modelos de pronóstico. Usando datos históricos y predictivos, los stakeholders determinan la demanda requerida por los accionistas de transmisión y distribución. Una vez determinada la demanda, los interesados ​​establecen el recurso de generación de electricidad más adecuado para satisfacer la demanda de energía. Las curvas de demanda representan la relación entre el precio de un bien (precio unitario) y cuánto están dispuestos a pagar los consumidores por el bien o servicio. En consecuencia, la demanda se describe como elástica cuando la demanda disminuye rápidamente a medida que aumenta el precio, o inelástica cuando la demanda disminuye ligeramente a medida que aumenta el precio. Además, las curvas de demanda muestran vívidamente la influencia de la economía que contribuye a las elecciones de los consumidores. Para ejemplificar esto, se han utilizado curvas de demanda para cuantificar la demanda de nicotina, alcohol, gasolina, combustible E85 y bronceadores artificiales, entre muchos otros bienes [1]. Por lo tanto, han demostrado una buena validez predictiva [2] y han sido útiles en la elaboración de políticas públicas [3]. En consecuencia, las curvas de demanda son la base para cualquier estudio prospectivo. Desde el punto de vista del modelo energético, la demanda de energía es la base para planificar el suministro de generación de energía [4]. En Colombia la demanda de energía se encuentra dividida por sectores de consumo en los que la mayoría de los casos corresponden al sector económico del país.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-07-28T18:28:02Z
dc.date.available.none.fl_str_mv 2023-07-28T18:28:02Z
dc.date.issued.none.fl_str_mv 2023-03
dc.type.eng.fl_str_mv Research report
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_8042
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/workingPaper
dc.type.local.spa.fl_str_mv Informe de investigación
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_18ws
dc.type.hasversion.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/IFI
format http://purl.org/coar/resource_type/c_18ws
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12749/20824
dc.identifier.instname.spa.fl_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UNAB
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.unab.edu.co
url http://hdl.handle.net/20.500.12749/20824
identifier_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
reponame:Repositorio Institucional UNAB
repourl:https://repository.unab.edu.co
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv [1] E. F. Furrebøe and I. Sandaker, “Contributions of Behavior Analysis to Behavioral Economics,” The Behavior Analyst, vol. 40, no. 2, pp. 315–327, Nov. 2017
[2] P. G. Roma, D. D. Reed, F. D. DiGennaro Reed, and S. R. Hursh, “Progress of and Prospects for Hypothetical Purchase Task Questionnaires in Consumer Behavior Analysis and Public Policy,” The Behavior Analyst, vol. 40, no. 2, pp. 329–342, Nov. 2017
[3] O. Amir et al., “Psychology, Behavioral Economics, and Public Policy,” Marketing Letters, vol. 16, no. 3–4, pp. 443–454, Dec. 2005
[4] J. W. Grimaldo Guerrero, M. A. Mendoza Becerra, and W. P. Reyes Calle, “Modelo para pronosticar la demanda de energía eléctrica utilizando los producto interno brutos sectoriales: Caso de Colombia,” Revista ESPACIOS.
[5] UPME, “UPME Unidad de Planeación Minero energética. (2017 Updated), Balance Energetico Colombiano BECO. Available from: http://www1.upme.gov.co/InformacionCifras/Paginas/BalanceEnergetico.aspx,” Unidad de Planeacion Energetica de Colombia, Excel Sheet
[6] T. N. Atalla and L. C. Hunt, “Modelling residential electricity demand in the GCC countries,” Energy Economics, vol. 59, pp. 149–158, Sep. 2016.
[7] U. European, Climate East, and AGRICONSULTING, “Euro South Mediterranean Initiative -Long Range Energy alternatives Planning System (LEAP) & Green House Gas Modelling,” . INTROduction, p. 31.
[8] V. J. P. D. Martinho, “Energy consumption across European Union farms: Efficiency in terms of farming output and utilized agricultural area,” Energy, vol. 103, pp. 543–556, May 2016
[9] K. B. Debnath and M. Mourshed, “Forecasting methods in energy planning models,” Renewable and Sustainable Energy Reviews, vol. 88, pp. 297–325, May 2018.
[10] 2015 PROCOLOMBIA, “Electric Power in Colombia,” PROCOLOMBIA, Colombia Energy Sector Outlook Year 2015
[11] C. Congress, “Law 1715 - Integracion de las Energias renovables no coonvencionales al Sistema Energetico Nacional,” May 2014
[12] A. F. Paez et al., “Future Scenarios and Trends of Energy Demand in Colombia using Long-range Energy Alternative Planning,” vol. 7, no. 5, p. 13, 2017.
[13] J. M. Santos and T. Jimeenz, “Final Agreement to End the Armed Conflict and Build a Stable and Lasting Peace National Government of Colombia | Commander-in-chief FARC-EP.,” Capital of the Republic of Cuba, Nov. 2016
[14] ECOPETROL, UPME, UNAB, UIS, and UPB, Prospectiva energética Colombia 2050 - ISBN 978-958-8956-50-3. Bucaramanga: Universidad Industrial de Santander, 2018.
[15] R. Schaeffer et al., “Energy sector vulnerability to climate change: A review,” Energy, vol. 38, no. 1, pp. 1–12, Feb. 2012
[16] P. H. Abreu, D. C. Silva, H. Amaro, and R. Magalhães, “Identification of Residential Energy Consumption Behaviors,” Journal of Energy Engineering, vol. 142, no. 4, p. 04016005, Dec. 2016.
[17] F. deLlano-Paz, A. Calvo-Silvosa, S. I. Antelo, and I. Soares, “Energy planning and modern portfolio theory: A review,” Renewable and Sustainable Energy Reviews, vol. 77, pp. 636–651, Sep. 2017
[18] S. Pfenninger, A. Hawkes, and J. Keirstead, “Energy systems modeling for twenty-first century energy challenges,” Renewable and Sustainable Energy Reviews, vol. 33, pp. 74–86, May 2014.
[19] V. Engineering, “Engineering Village RSS results for database Compendex and search query of Energy Planning Methods AND Forecasting. Retrieved from https://www.engineeringvillage.com/rss/feed.url?queryID=M70d3afaf16a4fc45c9cM7ffd127001&SYSTEM_PT=t.”
[20] J. H. Velasco Castillo and A. M. Castillo, “Prediction Model of Electricity Energy Demand for FCU in Colombia Based on Stacking and Text Mining Methods,” in Advances in Computing, Cham, 2018, vol. 885, pp. 291–300.
[21] U. Leiden, VOSviewer. April 3.
[22] R. Weron, Modeling and forecasting electricity loads and prices: a statistical approach. Chichester, England ; Hoboken, NJ: John Wiley & Sons, 2006.
[23] N. Dementjeva, Energy planning models analysis and their adaptability for Estonian energy sector. Tallinn: TUT Press, 2009.
[24] G. Zhang, B. Eddy Patuwo, and M. Y. Hu, “Forecasting with artificial neural networks:,” International Journal of Forecasting, vol. 14, no. 1, pp. 35–62, Mar. 1998
[25] S. P. Curram and J. Mingers, “Neural Networks, Decision Tree Induction and Discriminant Analysis: an Empirical Comparison,” Journal of the Operational Research Society, vol. 45, no. 4, pp. 440–450, Apr. 1994
[26] M. Fripp, “Switch: A Planning Tool for Power Systems with Large Shares of Intermittent Renewable Energy,” Environmental Science & Technology, vol. 46, no. 11, pp. 6371–6378, Jun. 2012
[27] M. Haller, S. Ludig, and N. Bauer, “Decarbonization scenarios for the EU and MENA power system: Considering spatial distribution and short term dynamics of renewable generation,” Energy Policy, vol. 47, pp. 282–290, Aug. 2012.
[28] S. Awerbuch, “Portfolio-Based Electricity Generation Planning: Implications for Renewables and Energy Security - Prepared as part of a demonstration project funded by REEEP and UNEP and conducted in collaboration with ECN of The Netherlands, the basel agency for sustainable energy (BASE), and project partners: CDER (Morocco), IIE (Mexico) and TERI (India). URL,” p. 13, 2004.
[29] E. A. Hickey, J. Lon Carlson, and D. Loomis, “Issues in the determination of the optimal portfolio of electricity supply options,” Energy Policy, vol. 38, no. 5, pp. 2198–2207, May 2010.
[30] H. Klinge Jacobsen, “Integrating the bottom-up and top-down approach to energy–economy modelling: the case of Denmark,” Energy Economics, vol. 20, no. 4, pp. 443–461, Sep. 1998.
[31] H. L. Lam, P. S. Varbanov, and J. J. Klemeš, “Regional renewable energy and resource planning,” Applied Energy, vol. 88, no. 2, pp. 545–550, Feb. 2011.
[32] S. D. Pohekar and M. Ramachandran, “Application of multi-criteria decision making to sustainable energy planning—A review,” Renewable and Sustainable Energy Reviews, vol. 8, no. 4, pp. 365–381, Aug. 2004.
[33] V. Bianco, O. Manca, and S. Nardini, “Linear Regression Models to Forecast Electricity Consumption in Italy,” Energy Sources, Part B: Economics, Planning, and Policy, vol. 8, no. 1, pp. 86–93, Jan. 2013
[34] X. Shen, L. Ou, X. Chen, X. Zhang, and X. Tan, “The Application of the Grey Disaster Model to Forecast Epidemic Peaks of Typhoid and Paratyphoid Fever in China,” PLoS ONE, vol. 8, no. 4, p. e60601, Apr. 2013.
[35] P. K. Adom and W. Bekoe, “Conditional dynamic forecast of electrical energy consumption requirements in Ghana by 2020: A comparison of ARDL and PAM,” Energy, vol. 44, no. 1, pp. 367–380, Aug. 2012.
[36] LEAP, Heaps, C.G., 2016. Long-range Energy Alternatives Planning (LEAP) system. [Software version: 2018.1.24] Stockholm Environment Institute. Somerville, MA, USA. https://www.energycommunity.org
[37] H. Rudnick and C. Velásquez, Learning from Developing Country Power Market Experiences: The Case of Colombia. The World Bank, 2019
[38] M. Viviana and O. L. Castillo, “Colombian energy planning - Neither for energy, nor for Colombia,” Energy Policy, vol. 129, pp. 1132–1142, Jun. 2019.
[39] C. A. M. Corrales, “Colombia y su inserción a la economía mundial,” Ecos de Economía, p. 23.
[40] IEA, “IEA - Bankground Reference Colombia Report January 7. 2019 https://www.eia.gov/beta/international/analysis_includes/countries_long/Colombia/pdf/colombia_bkgd.pdf,” Jan. 2019
[41] J. Carbo and A. US Embassy, “ITA USA - Electric Power and Renewable Energy Systems- Colombia Report,” Aug. 2018
[42] M. Ministry of Mines and Energy, “Law 1715, regulating the Integration of Non Conventional Renewable Energies to the National Energy System Taken from: http://www.upme.gov.co/Normatividad/Normatividad%20Sectorial/DECRETO_2143_04_N,” Colombia, Mar. 2018.
[43] Government of Colombia, “PROCOLOMBIA - Oil & Gas goods and services -,” 2016
[44] DANE, “Producto Interno Bruto - Departamento Administrativo Nacional de Estadistica de Colombia (DANE).”
[45] J. C. A. Gutiérrez and J. F. A. Mahecha, “República de Colombia Ministerio de Minas y Energía Unidad de Planeación Minero Energética, UPME. www.upme.gov.co Elaboró: Subdirección de Planeación Energética - Grupo de Demanda Energética,” p. 51.
[46] DANE, “Dirección de Síntesis y Cuentas Nacionales Cuentas Nacionales Trimestrales de Colombia -Producto Interno Bruto (GDP) por Ramas de Actividad Económica - https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales/cuentas-nacionales-trimestrales,” 2018
[47] J. A. Ocampo, “Performance and Challenges of the Colombian Economy,” p. 34
[48] United Nations, Ed., International Standard industrial classification of all economic activities (ISIC), Rev. 4. New York: United Nations, 2008.
[49] M. Amer, T. U. Daim, and A. Jetter, “A review of scenario planning,” Futures, vol. 46, pp. 23–40, Feb. 2013.
[50] R. Bradfield, G. Wright, G. Burt, G. Cairns, and K. Van Der Heijden, “The origins and evolution of scenario techniques in long range business planning,” Futures, vol. 37, no. 8, pp. 795–812, Oct. 2005.
[51] B. R. Martin, “The origins of the concept of ‘foresight’ in science and technology: An insider’s perspective,” Technological Forecasting and Social Change, vol. 77, no. 9, pp. 1438–1447, Nov. 2010.
[52] F. A. van Vught, “Pitfalls of forecasting,” Futures, vol. 19, no. 2, pp. 184–196, Apr. 1987.
[53] M. Godet, “From forecasting to ‘la prospective’ a new way of looking at futures,” Journal of Forecasting, vol. 1, no. 3, pp. 293–301, Jul. 1982.
[54] M. Godet, “How to be rigorous with scenario planning,” foresight, vol. 2, no. 1, pp. 5–9, 2000
[55] D. Mindrila, P. Balentyne, and M. Ed, “Scatterplots and Correlation,” p. 14.
[56] S. Loeb, S. Dynarski, D. McFarland, P. Morris, S. Reardon, and S. Reber, “Descriptive analysis in education: A guide for researchers,” p. 53.
[57] J. Korhonen, “Environmental planning vs. systems analysis: Four prescriptive principles vs. four descriptive indicators,” Journal of Environmental Management, vol. 82, no. 1, pp. 51–59, Jan. 2007.
[58] M. Höök, J. Li, N. Oba, and S. Snowden, “Descriptive and Predictive Growth Curves in Energy System Analysis,” Natural Resources Research, vol. 20, no. 2, pp. 103–116, Jun. 2011
[59] N. Gogtay and U. Thatte, “Principles of Correlation Analysis,” p. 4.
[60] D. H. Jonassen, “Toward a design theory of problem solving,” Educational Technology Research and Development, vol. 48, no. 4, pp. 63–85, Dec. 2000.
[61] M. V. F. Pereira and L. M. V. G. Pinto, “Multi-stage stochastic optimization applied to energy planning,” Mathematical Programming, vol. 52, no. 1–3, pp. 359–375, May 1991.
[62] I. BarCharts, Statistics: parameters, variables, intervals, proportions : the basic principles of statistics for introductory courses. 2005
[63] A. C. Rencher and G. B. Schaalje, Linear models in statistics, 2nd ed. Hoboken, N.J: Wiley-Interscience, 2008.
[64] G. W. Snedecor and W. G. Cochran, Statistical methods, 8 ed., 7. print. Ames, Iowa: Iowa State Univ. Press, 1996
[65] N. R. Draper and H. Smith, Applied Regression Analysis, 1st ed. Wiley, 1998.
[66] M. Musiela and T. Zariphopoulou, “Stochastic partial di¤erential equations and portfolio choice,” p. 24.
[67] T. Dahiru, “P - value, a true test of statistical significance? A cautionary note,” Ann Ib Postgrad Med, vol. 6, no. 1, pp. 21–26, Jun. 2008.
[68] J. T. Walker, S. Maddan, and J. T. Walker, Understanding statistics for the social sciences, criminal justice, and criminology. Burlington, Mass: Jones & Bartlett Learning, 2013.
[69] S. K. Haldar, Mineral exploration: principles and applications. 2018
[70] A. S. Goldberger, A course in econometrics. Cambridge, Mass: Harvard University Press, 1991.
[71] P. Toro, A. Garcia, C. Aguilar, J. Perea, and R. Vera, Modelos Econometricos Para el Desarrollo de Funciones de Produccion - ISSN: 1698-4226 DT 13, Vol. 1/2010, Universidad de Cordoba. .
[72] C. Alonso, “Modelo de Regression lineal Multiple - Econometria Universidad Carlos III de Madrid,” p. 40
[73] R. M. Granados, “Montero Granados. R (2016): Modelos de regresión lineal múltiple. Documentos de Trabajo en Economía Aplicada. Universidad de Granada. España.,” p. 61
[74] D. Cardona, M. Rivera, J. González, and E. Cárdenas, “Estimación y predicción con el modelo de regresión cúbica aplicado a un problema de salud,” Ingeniería Solidaria, vol. 10, no. 17, pp. 153–160, Dec. 2014
[75] R. L. Scheaffer and J. T. McClave, Probability and statistics for engineers, 3rd ed. Boston: PWS-Kent Pub. Co, 1990.
[76] X. A. A. Morales, “MÉTODO DE ANÁLISIS ESTRUCTURAL: MATRIZ DE IMPACTOS CRUZADOS MULTIPLICACIÓN APLICADA A UNA CLASIFICACIÓN (MICMAC),” p. 25
[77] M. Godet, Creating futures: scenario planning as a strategic management tool. London: Economica, 2006.
[78] R. Saavedra Mesa, “International Transactions of Electricity in Colombia. Impacts on Domestic demand. FCE N-73,” Centro de Investigacion para Desarrollo CID, 2016
[79] World Bank, DNP, Enersinc, and G. G. Korea, “Energy Demand Situation in Colombia,” 2017.
[80] K. Pilli-Sihvola, P. Aatola, M. Ollikainen, and H. Tuomenvirta, “Climate change and electricity consumption—Witnessing increasing or decreasing use and costs?,” Energy Policy, vol. 38, no. 5, pp. 2409–2419, May 2010.
[81] S. J. Parkpoom and G. P. Harrison, “Analyzing the Impact of Climate Change on Future Electricity Demand in Thailand,” IEEE Transactions on Power Systems, vol. 23, no. 3, pp. 1441–1448, Aug. 2008.
[82] R. F. Engle, C. W. J. Granger, J. Rice, and A. Weiss, “Semiparametric Estimates of the Relation between Weather and Electricity Sales,” Journal of the American Statistical Association, vol. 81, no. 394, pp. 310–320, Jun. 1986
[83] T. J. Considine, “The impacts of weather variations on energy demand and carbon emissions,” Resource and Energy Economics, vol. 22, no. 4, pp. 295–314, Oct. 2000
[84] L. Hernández et al., “A Study of the Relationship between Weather Variables and Electric Power Demand inside a Smart Grid/Smart World Framework,” Sensors, vol. 12, no. 9, pp. 11571–11591, Aug. 2012.
[85] A. Henley and J. Peirson, “Non‐Linearities in Electricity Demand and Temperature: Parametric Versus Non‐Parametric Methods,” Oxford Bulletin of Economics and Statistics, vol. 59, no. 1, pp. 149–162, Feb. 1997.
[86] C.-L. Hor, S. J. Watson, and S. Majithia, “Analyzing the Impact of Weather Variables on Monthly Electricity Demand,” IEEE Transactions on Power Systems, vol. 20, no. 4, pp. 2078–2085, Nov. 2005
[87] M. Nieves Zárate and A. Hernández Vidal, Colombia Energy Investment Report. Energy Charter Secretariat, 2016
[88] J. E. M. Bocanegra, “Modelo institucional del IDEAM sobre el efecto climático de los fenómenos El Niño y La Niña en Colombia,” p. 81
[89] “XM_ Expertos en Mercados, Informe de Operación del Sistema y Administración del Mercado, 2010.”
[90] C. Sheppard, Ed., Ecological Issues and Environmental Impacts, 2nd ed. London: Academic Press, 2018
[91] C. Arrango, D. Guzman, and J. F. Ruiz, “Variabilidad climatica de la precipitacion en Colombia Asociada al Ciclo El Niño, La Niña - OSCILACION DEL SUR (ENSO). Subdireccion de Meterologia IDEAM,” Grupo de Modelamiento de Tiempo, Clima y Escenarios de Cambio Climatico.
[92] S. B. Bruns, C. Gross, and D. I. Stern, “Is There Really Granger Causality Between Energy Use and Output?,” p. 60.
[93] J. Behera, “Examined the Energy-Led Growth Hypothesis in India: Evidence from Time Series Analysis,” Energy Economics Letters, vol. 2, no. 4, pp. 46–65, 2015
[94] “Departamento Administrativo Nacional de Estadística. Producto Interno Bruto (PIB) Históricos. Disponible en: https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales/cuentas-nacionales-trimestrales/historicos-producto-interno-bruto-pib#base-2005.”
[95] “Comisión de regulación de energía y gas. Resolución CREG 119 de 2007. Costo unitario de prestación del servicio de energía eléctrica. Capitulo III, 21 de diciembre de 2007.”
[96] S. Arango-Aramburo et al., “Simulating mining policies in developing countries: The case of Colombia,” Socio-Economic Planning Sciences, vol. 60, pp. 99–113, Dec. 2017.
[97] S. Moret, “Strategic energy planning under uncertainty,” p. 269.
[98] USCIB, “United States Council for International Business. All Rights Reserved. Privacy Policy,” May 25
[99] A. Najmi, H. S. G., and A. Keramati, “Energy consumption in the residential sector: a study on critical factors,” International Journal of Sustainable Energy, vol. 35, no. 7, pp. 645–663, Aug. 2016.
[100] G. Michel and Philipe Durance, Strategic Foresight - Fore Corporate annd Regional Development - United Nations Educational, Scientific and Cultural Organization- UNESCO.
[101] Godet, M. (2019). Methods of prospective : La prospective. Retrieved from http://en.laprospective.fr/methods-of-prospective.html.
[102] J. Geweke, “Endogeneity and Exogeneity,” p. 2.
[103] T. Coladarci, Ed., Fundamentals of statistical reasoning in education, Fourth edition. Hoboken, NJ: Wiley, 2014
[104] H. Pham, Ed., Springer handbook of engineering statistics. London: Springer, 2006.
[105] J. Starmer, Department of Statistics and Operations Research - The University of North Carolina at Chapel Hill. - Statistics and Operations https://statquest.org/.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.creativecommons.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.spa.fl_str_mv Bucaramanga (Santander, Colombia)
dc.coverage.campus.spa.fl_str_mv UNAB Campus Bucaramanga
dc.publisher.grantor.spa.fl_str_mv Universidad Autónoma de Bucaramanga UNAB
dc.publisher.faculty.spa.fl_str_mv Facultad Ingeniería
institution Universidad Autónoma de Bucaramanga - UNAB
bitstream.url.fl_str_mv https://repository.unab.edu.co/bitstream/20.500.12749/20824/1/2023_Development_of_an_.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/20824/2/license.txt
https://repository.unab.edu.co/bitstream/20.500.12749/20824/3/2023_Development_of_an_.pdf.jpg
bitstream.checksum.fl_str_mv ac478999a2e7ba49783bbe5eea3aa2d6
3755c0cfdb77e29f2b9125d7a45dd316
b364182ab6d946a54b6af6920f2cbb19
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB
repository.mail.fl_str_mv repositorio@unab.edu.co
_version_ 1814277271629856768
spelling Pacheco Sandoval, Leonardo Esteban74816790-4dae-46e7-9c12-c14a2704a7d2González Calderón, Williamf902a2c3-b585-4a03-b9b3-029bcf795699Suárez Arias, Rafael Enrique29933aae-f3d5-48dc-af9c-e6f8bd9c5fe1Pacheco Sandoval,Leonardo Esteban [Suárez Arias, Rafael Enrique [0001429372]González Calderón, William [0001367421]Pacheco Sandoval, Leonardo Esteban [es&oi=ao]Pacheco Sandoval,Leonardo Esteban [0000-0001-7262-382X]Suárez Arias, Rafael Enrique [0000-0001-9767-210X]Grupo de Investigación Recursos, Energía, Sostenibilidad - GIRESGrupo de Investigaciones ClínicasPacheco Sandoval, Leonardo Esteban [leonardo-esteban-pacheco-sandoval]Suárez Arias, Rafael Enrique [rafael-enrique-suarez-arias]González Calderón, William [william-gonzález-calderón]Bucaramanga (Santander, Colombia)UNAB Campus Bucaramanga2023-07-28T18:28:02Z2023-07-28T18:28:02Z2023-03http://hdl.handle.net/20.500.12749/20824instname:Universidad Autónoma de Bucaramanga - UNABreponame:Repositorio Institucional UNABrepourl:https://repository.unab.edu.coPara planificar el aumento de la demanda de energía, las empresas de servicios públicos y los gobiernos se basan en modelos de pronóstico. Usando datos históricos y predictivos, los stakeholders determinan la demanda requerida por los accionistas de transmisión y distribución. Una vez determinada la demanda, los interesados ​​establecen el recurso de generación de electricidad más adecuado para satisfacer la demanda de energía. Las curvas de demanda representan la relación entre el precio de un bien (precio unitario) y cuánto están dispuestos a pagar los consumidores por el bien o servicio. En consecuencia, la demanda se describe como elástica cuando la demanda disminuye rápidamente a medida que aumenta el precio, o inelástica cuando la demanda disminuye ligeramente a medida que aumenta el precio. Además, las curvas de demanda muestran vívidamente la influencia de la economía que contribuye a las elecciones de los consumidores. Para ejemplificar esto, se han utilizado curvas de demanda para cuantificar la demanda de nicotina, alcohol, gasolina, combustible E85 y bronceadores artificiales, entre muchos otros bienes [1]. Por lo tanto, han demostrado una buena validez predictiva [2] y han sido útiles en la elaboración de políticas públicas [3]. En consecuencia, las curvas de demanda son la base para cualquier estudio prospectivo. Desde el punto de vista del modelo energético, la demanda de energía es la base para planificar el suministro de generación de energía [4]. En Colombia la demanda de energía se encuentra dividida por sectores de consumo en los que la mayoría de los casos corresponden al sector económico del país.CHAPTER 1 Introduction .......................................................................................................... 5 1.1 Introduction & Project Background ......................................................................................... 5 1.2 Problem Definition ...................................................................................................................... 6 CHAPTER 2 Literature Review ................................................................................................. 8 EPM & Forecasting conceptual approach ............................................................................................ 8 Trajectory of the Colombian Energy Sector ...................................................................................... 14 Current Energy Panorama of Colombia ............................................................................................ 19 CHAPTER 3 Methodology........................................................................................................ 23 3.1. Objective of Study .......................................................................................................................... 26 3.2 Fundamental Analysis .................................................................................................................... 27 3.3 Data Gathering ................................................................................................................................ 29 3.4 Data Selection Criteria ................................................................................................................... 30 3.5 Dataset Definition ............................................................................................................................ 32 3.6 Statistical Significance .................................................................................................................... 33 3.6.1 Variation of Dataset .......................................................................................................... 37 3.6.2 Combination Analysis ....................................................................................................... 39 3.6.3 Significance Test ................................................................................................................ 44 3.7 Significance Analysis ...................................................................................................................... 49 3.8 Confirmation of Variables.............................................................................................................. 60 3.9 Influence of Dependence Analysis ................................................................................................. 65 CHAPTER 4 Applicability and Result Assessment ................................................................ 71 4.1 Applicability .............................................................................................................................. 72 4.1.1 Trading Energy Factor ..................................................................................................... 72 4.1.1 Environmental Factor ....................................................................................................... 74 4.1.2 Demographic Factor ......................................................................................................... 77 4.1.3 Economic Factor ............................................................................................................... 79 4.2 Result Assessment ..................................................................................................................... 82 CHAPTER 5 Conclusions .......................................................................................................... 91 References ...................................................................................................................................... 1To plan for increasing energy demand utilities and governments rely on forecasting models. Using historical and predictive data, stakeholders determine the demand required by transmission and distribution shareholders. Once the demand is determined, stakeholders establish the electricity generation resource that will be best suited to meet the energy demand. The demand curves represent the relationship between the price of a good (unit price) and how much consumers are willing to pay for the good or service. Correspondingly demand is described as elastic when demand quickly decreases as price increases, or inelastic when the demand slightly decreases as price increases. Furthermore, the demand curves vividly display the influence of economics that contribute to consumer choices. To exemplify this, demand curves have been used to quantify demand for nicotine, alcohol, gasoline, E85 fuel, and artificial sun tanning amongst many other goods [1]. Hence they have demonstrated good predictive validity [2] and have been useful in crafting public policies [3]. Correspondingly demand curves are the basis for any prospective study. From an energy model point of view, energy demand is the foundation for planning the energy generation supply [4]. In Colombia, the energy demand is divided by sectors of consumption in which most cases correspond to the economic sector of the country. The Energy-Mining Planning Unit of Colombia (UPME) has identified the representative energy consumption sectors over the total energy demand of Colombia. In 2017 the energy demand of Colombia was driven by 17.48% Residential, 5.21% Commercial, 33.19% Industrial, 34.99% Transportation, 4.18% Non-Identified, and 1.51% Non-Energetic with 3.44% utilized by agricultural, mining, and construction sectors [5]. Each of these sectors is comprised of different factors with unique variables that dictate the behavior of each energy sector and thus, the overall energy demand of the country. The understanding of these variables is an important problem for the economy of the world due to the unobserved influence that the variables have at the time of planning the energy demand of any country. Thus researchers have been actively developing mathematical and statistical 6 techniques to untangle the relationship of each variable with regards to the energy demand [6]. However, as is the case of Colombia, many developing countries have founded their energy planning decisions in economic variables; ignoring sociocultural and environmental factors that own a certain level of influence at the time of representing a real approximation of the behavior of the energy demand [6]. Thus energy planning entities have disclosed different evaluations about the impact of social and environmental factors demonstrating that current energy planning practices must be improved [7]. To provide a better understanding of the energy demand and thus the decision-making that is reflected in the economic growth of any country [6,8], researchers also emphasize in the importance of Energy Planning Models (EPMs). EPM is a type of forecasting approach that countries and stakeholders rely on making appropriate decisions in terms of the formulation of energy policies and the sustainability of the energy sector[9]. Consequently, the selection of a forecasting methodology is dictated by the data availability, the objectives of the planning exercise, and the conceptual approach of the selected methodology. Currently, EPMs can be divided into five categories: Energy Information Systems, Systems Macroeconomics, Energy Supply, Energy Demand, and Integrated Models [9]. Although EPMs are worldwide tools designed to focus on energy demand and load forecasting this study has found that EPMs’ applicability is focused on developing nations where the study of new factors have been added into energy planning practices, putting aside those developing countries that have not moved from outdated EPM techniques [9]. Given the factors that influence the focus of EPMs in the light of developing an interdisciplinary, international work, this master project will define an energy planning methodology that will allow Colombia, as well as other developing countries, to improve their current EPM practices. Furthermore, this research aims to create an energy-based model that will be used to untangle the variables dictating the behavior of the social, environmental, economic, trading, and energy transformation factors that represent the energy demand of Colombia, using the residential energy sector of the country as a planning exercise.Modalidad Presencialapplication/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)Atribución-NoComercial-SinDerivadas 2.5 Colombiahttp://purl.org/coar/access_right/c_abf2Development of an Energy-Based Model for Forecasting the Energy Demand of ColombiaDesarrollo de un modelo basado en energía para proyectar la demanda de energía de ColombiaResearch reportinfo:eu-repo/semantics/workingPaperInforme de investigaciónhttp://purl.org/coar/resource_type/c_18wshttp://purl.org/coar/resource_type/c_8042info:eu-repo/semantics/acceptedVersionhttp://purl.org/redcol/resource_type/IFIUniversidad Autónoma de Bucaramanga UNABFacultad IngenieríaEnergy consumptionEnergetic resourcesEnergy demandEnergy supplyEnergetic industryEconomic sectorEnergy based modelConsumo de energíaRecursos energéticosDemanda de energíaAbstecimiento de energíaIndustria energéticaColombiaSector económicoModelo basado en energía[1] E. F. Furrebøe and I. Sandaker, “Contributions of Behavior Analysis to Behavioral Economics,” The Behavior Analyst, vol. 40, no. 2, pp. 315–327, Nov. 2017[2] P. G. Roma, D. D. Reed, F. D. DiGennaro Reed, and S. R. Hursh, “Progress of and Prospects for Hypothetical Purchase Task Questionnaires in Consumer Behavior Analysis and Public Policy,” The Behavior Analyst, vol. 40, no. 2, pp. 329–342, Nov. 2017[3] O. Amir et al., “Psychology, Behavioral Economics, and Public Policy,” Marketing Letters, vol. 16, no. 3–4, pp. 443–454, Dec. 2005[4] J. W. Grimaldo Guerrero, M. A. Mendoza Becerra, and W. P. Reyes Calle, “Modelo para pronosticar la demanda de energía eléctrica utilizando los producto interno brutos sectoriales: Caso de Colombia,” Revista ESPACIOS.[5] UPME, “UPME Unidad de Planeación Minero energética. (2017 Updated), Balance Energetico Colombiano BECO. Available from: http://www1.upme.gov.co/InformacionCifras/Paginas/BalanceEnergetico.aspx,” Unidad de Planeacion Energetica de Colombia, Excel Sheet[6] T. N. Atalla and L. C. Hunt, “Modelling residential electricity demand in the GCC countries,” Energy Economics, vol. 59, pp. 149–158, Sep. 2016.[7] U. European, Climate East, and AGRICONSULTING, “Euro South Mediterranean Initiative -Long Range Energy alternatives Planning System (LEAP) & Green House Gas Modelling,” . INTROduction, p. 31.[8] V. J. P. D. Martinho, “Energy consumption across European Union farms: Efficiency in terms of farming output and utilized agricultural area,” Energy, vol. 103, pp. 543–556, May 2016[9] K. B. Debnath and M. Mourshed, “Forecasting methods in energy planning models,” Renewable and Sustainable Energy Reviews, vol. 88, pp. 297–325, May 2018.[10] 2015 PROCOLOMBIA, “Electric Power in Colombia,” PROCOLOMBIA, Colombia Energy Sector Outlook Year 2015[11] C. Congress, “Law 1715 - Integracion de las Energias renovables no coonvencionales al Sistema Energetico Nacional,” May 2014[12] A. F. Paez et al., “Future Scenarios and Trends of Energy Demand in Colombia using Long-range Energy Alternative Planning,” vol. 7, no. 5, p. 13, 2017.[13] J. M. Santos and T. Jimeenz, “Final Agreement to End the Armed Conflict and Build a Stable and Lasting Peace National Government of Colombia | Commander-in-chief FARC-EP.,” Capital of the Republic of Cuba, Nov. 2016[14] ECOPETROL, UPME, UNAB, UIS, and UPB, Prospectiva energética Colombia 2050 - ISBN 978-958-8956-50-3. Bucaramanga: Universidad Industrial de Santander, 2018.[15] R. Schaeffer et al., “Energy sector vulnerability to climate change: A review,” Energy, vol. 38, no. 1, pp. 1–12, Feb. 2012[16] P. H. Abreu, D. C. Silva, H. Amaro, and R. Magalhães, “Identification of Residential Energy Consumption Behaviors,” Journal of Energy Engineering, vol. 142, no. 4, p. 04016005, Dec. 2016.[17] F. deLlano-Paz, A. Calvo-Silvosa, S. I. Antelo, and I. Soares, “Energy planning and modern portfolio theory: A review,” Renewable and Sustainable Energy Reviews, vol. 77, pp. 636–651, Sep. 2017[18] S. Pfenninger, A. Hawkes, and J. Keirstead, “Energy systems modeling for twenty-first century energy challenges,” Renewable and Sustainable Energy Reviews, vol. 33, pp. 74–86, May 2014.[19] V. Engineering, “Engineering Village RSS results for database Compendex and search query of Energy Planning Methods AND Forecasting. Retrieved from https://www.engineeringvillage.com/rss/feed.url?queryID=M70d3afaf16a4fc45c9cM7ffd127001&SYSTEM_PT=t.”[20] J. H. Velasco Castillo and A. M. Castillo, “Prediction Model of Electricity Energy Demand for FCU in Colombia Based on Stacking and Text Mining Methods,” in Advances in Computing, Cham, 2018, vol. 885, pp. 291–300.[21] U. Leiden, VOSviewer. April 3.[22] R. Weron, Modeling and forecasting electricity loads and prices: a statistical approach. Chichester, England ; Hoboken, NJ: John Wiley & Sons, 2006.[23] N. Dementjeva, Energy planning models analysis and their adaptability for Estonian energy sector. Tallinn: TUT Press, 2009.[24] G. Zhang, B. Eddy Patuwo, and M. Y. Hu, “Forecasting with artificial neural networks:,” International Journal of Forecasting, vol. 14, no. 1, pp. 35–62, Mar. 1998[25] S. P. Curram and J. Mingers, “Neural Networks, Decision Tree Induction and Discriminant Analysis: an Empirical Comparison,” Journal of the Operational Research Society, vol. 45, no. 4, pp. 440–450, Apr. 1994[26] M. Fripp, “Switch: A Planning Tool for Power Systems with Large Shares of Intermittent Renewable Energy,” Environmental Science & Technology, vol. 46, no. 11, pp. 6371–6378, Jun. 2012[27] M. Haller, S. Ludig, and N. Bauer, “Decarbonization scenarios for the EU and MENA power system: Considering spatial distribution and short term dynamics of renewable generation,” Energy Policy, vol. 47, pp. 282–290, Aug. 2012.[28] S. Awerbuch, “Portfolio-Based Electricity Generation Planning: Implications for Renewables and Energy Security - Prepared as part of a demonstration project funded by REEEP and UNEP and conducted in collaboration with ECN of The Netherlands, the basel agency for sustainable energy (BASE), and project partners: CDER (Morocco), IIE (Mexico) and TERI (India). URL,” p. 13, 2004.[29] E. A. Hickey, J. Lon Carlson, and D. Loomis, “Issues in the determination of the optimal portfolio of electricity supply options,” Energy Policy, vol. 38, no. 5, pp. 2198–2207, May 2010.[30] H. Klinge Jacobsen, “Integrating the bottom-up and top-down approach to energy–economy modelling: the case of Denmark,” Energy Economics, vol. 20, no. 4, pp. 443–461, Sep. 1998.[31] H. L. Lam, P. S. Varbanov, and J. J. Klemeš, “Regional renewable energy and resource planning,” Applied Energy, vol. 88, no. 2, pp. 545–550, Feb. 2011.[32] S. D. Pohekar and M. Ramachandran, “Application of multi-criteria decision making to sustainable energy planning—A review,” Renewable and Sustainable Energy Reviews, vol. 8, no. 4, pp. 365–381, Aug. 2004.[33] V. Bianco, O. Manca, and S. Nardini, “Linear Regression Models to Forecast Electricity Consumption in Italy,” Energy Sources, Part B: Economics, Planning, and Policy, vol. 8, no. 1, pp. 86–93, Jan. 2013[34] X. Shen, L. Ou, X. Chen, X. Zhang, and X. Tan, “The Application of the Grey Disaster Model to Forecast Epidemic Peaks of Typhoid and Paratyphoid Fever in China,” PLoS ONE, vol. 8, no. 4, p. e60601, Apr. 2013.[35] P. K. Adom and W. Bekoe, “Conditional dynamic forecast of electrical energy consumption requirements in Ghana by 2020: A comparison of ARDL and PAM,” Energy, vol. 44, no. 1, pp. 367–380, Aug. 2012.[36] LEAP, Heaps, C.G., 2016. Long-range Energy Alternatives Planning (LEAP) system. [Software version: 2018.1.24] Stockholm Environment Institute. Somerville, MA, USA. https://www.energycommunity.org[37] H. Rudnick and C. Velásquez, Learning from Developing Country Power Market Experiences: The Case of Colombia. The World Bank, 2019[38] M. Viviana and O. L. Castillo, “Colombian energy planning - Neither for energy, nor for Colombia,” Energy Policy, vol. 129, pp. 1132–1142, Jun. 2019.[39] C. A. M. Corrales, “Colombia y su inserción a la economía mundial,” Ecos de Economía, p. 23.[40] IEA, “IEA - Bankground Reference Colombia Report January 7. 2019 https://www.eia.gov/beta/international/analysis_includes/countries_long/Colombia/pdf/colombia_bkgd.pdf,” Jan. 2019[41] J. Carbo and A. US Embassy, “ITA USA - Electric Power and Renewable Energy Systems- Colombia Report,” Aug. 2018[42] M. Ministry of Mines and Energy, “Law 1715, regulating the Integration of Non Conventional Renewable Energies to the National Energy System Taken from: http://www.upme.gov.co/Normatividad/Normatividad%20Sectorial/DECRETO_2143_04_N,” Colombia, Mar. 2018.[43] Government of Colombia, “PROCOLOMBIA - Oil & Gas goods and services -,” 2016[44] DANE, “Producto Interno Bruto - Departamento Administrativo Nacional de Estadistica de Colombia (DANE).”[45] J. C. A. Gutiérrez and J. F. A. Mahecha, “República de Colombia Ministerio de Minas y Energía Unidad de Planeación Minero Energética, UPME. www.upme.gov.co Elaboró: Subdirección de Planeación Energética - Grupo de Demanda Energética,” p. 51.[46] DANE, “Dirección de Síntesis y Cuentas Nacionales Cuentas Nacionales Trimestrales de Colombia -Producto Interno Bruto (GDP) por Ramas de Actividad Económica - https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales/cuentas-nacionales-trimestrales,” 2018[47] J. A. Ocampo, “Performance and Challenges of the Colombian Economy,” p. 34[48] United Nations, Ed., International Standard industrial classification of all economic activities (ISIC), Rev. 4. New York: United Nations, 2008.[49] M. Amer, T. U. Daim, and A. Jetter, “A review of scenario planning,” Futures, vol. 46, pp. 23–40, Feb. 2013.[50] R. Bradfield, G. Wright, G. Burt, G. Cairns, and K. Van Der Heijden, “The origins and evolution of scenario techniques in long range business planning,” Futures, vol. 37, no. 8, pp. 795–812, Oct. 2005.[51] B. R. Martin, “The origins of the concept of ‘foresight’ in science and technology: An insider’s perspective,” Technological Forecasting and Social Change, vol. 77, no. 9, pp. 1438–1447, Nov. 2010.[52] F. A. van Vught, “Pitfalls of forecasting,” Futures, vol. 19, no. 2, pp. 184–196, Apr. 1987.[53] M. Godet, “From forecasting to ‘la prospective’ a new way of looking at futures,” Journal of Forecasting, vol. 1, no. 3, pp. 293–301, Jul. 1982.[54] M. Godet, “How to be rigorous with scenario planning,” foresight, vol. 2, no. 1, pp. 5–9, 2000[55] D. Mindrila, P. Balentyne, and M. Ed, “Scatterplots and Correlation,” p. 14.[56] S. Loeb, S. Dynarski, D. McFarland, P. Morris, S. Reardon, and S. Reber, “Descriptive analysis in education: A guide for researchers,” p. 53.[57] J. Korhonen, “Environmental planning vs. systems analysis: Four prescriptive principles vs. four descriptive indicators,” Journal of Environmental Management, vol. 82, no. 1, pp. 51–59, Jan. 2007.[58] M. Höök, J. Li, N. Oba, and S. Snowden, “Descriptive and Predictive Growth Curves in Energy System Analysis,” Natural Resources Research, vol. 20, no. 2, pp. 103–116, Jun. 2011[59] N. Gogtay and U. Thatte, “Principles of Correlation Analysis,” p. 4.[60] D. H. Jonassen, “Toward a design theory of problem solving,” Educational Technology Research and Development, vol. 48, no. 4, pp. 63–85, Dec. 2000.[61] M. V. F. Pereira and L. M. V. G. Pinto, “Multi-stage stochastic optimization applied to energy planning,” Mathematical Programming, vol. 52, no. 1–3, pp. 359–375, May 1991.[62] I. BarCharts, Statistics: parameters, variables, intervals, proportions : the basic principles of statistics for introductory courses. 2005[63] A. C. Rencher and G. B. Schaalje, Linear models in statistics, 2nd ed. Hoboken, N.J: Wiley-Interscience, 2008.[64] G. W. Snedecor and W. G. Cochran, Statistical methods, 8 ed., 7. print. Ames, Iowa: Iowa State Univ. Press, 1996[65] N. R. Draper and H. Smith, Applied Regression Analysis, 1st ed. Wiley, 1998.[66] M. Musiela and T. Zariphopoulou, “Stochastic partial di¤erential equations and portfolio choice,” p. 24.[67] T. Dahiru, “P - value, a true test of statistical significance? A cautionary note,” Ann Ib Postgrad Med, vol. 6, no. 1, pp. 21–26, Jun. 2008.[68] J. T. Walker, S. Maddan, and J. T. Walker, Understanding statistics for the social sciences, criminal justice, and criminology. Burlington, Mass: Jones & Bartlett Learning, 2013.[69] S. K. Haldar, Mineral exploration: principles and applications. 2018[70] A. S. Goldberger, A course in econometrics. Cambridge, Mass: Harvard University Press, 1991.[71] P. Toro, A. Garcia, C. Aguilar, J. Perea, and R. Vera, Modelos Econometricos Para el Desarrollo de Funciones de Produccion - ISSN: 1698-4226 DT 13, Vol. 1/2010, Universidad de Cordoba. .[72] C. Alonso, “Modelo de Regression lineal Multiple - Econometria Universidad Carlos III de Madrid,” p. 40[73] R. M. Granados, “Montero Granados. R (2016): Modelos de regresión lineal múltiple. Documentos de Trabajo en Economía Aplicada. Universidad de Granada. España.,” p. 61[74] D. Cardona, M. Rivera, J. González, and E. Cárdenas, “Estimación y predicción con el modelo de regresión cúbica aplicado a un problema de salud,” Ingeniería Solidaria, vol. 10, no. 17, pp. 153–160, Dec. 2014[75] R. L. Scheaffer and J. T. McClave, Probability and statistics for engineers, 3rd ed. Boston: PWS-Kent Pub. Co, 1990.[76] X. A. A. Morales, “MÉTODO DE ANÁLISIS ESTRUCTURAL: MATRIZ DE IMPACTOS CRUZADOS MULTIPLICACIÓN APLICADA A UNA CLASIFICACIÓN (MICMAC),” p. 25[77] M. Godet, Creating futures: scenario planning as a strategic management tool. London: Economica, 2006.[78] R. Saavedra Mesa, “International Transactions of Electricity in Colombia. Impacts on Domestic demand. FCE N-73,” Centro de Investigacion para Desarrollo CID, 2016[79] World Bank, DNP, Enersinc, and G. G. Korea, “Energy Demand Situation in Colombia,” 2017.[80] K. Pilli-Sihvola, P. Aatola, M. Ollikainen, and H. Tuomenvirta, “Climate change and electricity consumption—Witnessing increasing or decreasing use and costs?,” Energy Policy, vol. 38, no. 5, pp. 2409–2419, May 2010.[81] S. J. Parkpoom and G. P. Harrison, “Analyzing the Impact of Climate Change on Future Electricity Demand in Thailand,” IEEE Transactions on Power Systems, vol. 23, no. 3, pp. 1441–1448, Aug. 2008.[82] R. F. Engle, C. W. J. Granger, J. Rice, and A. Weiss, “Semiparametric Estimates of the Relation between Weather and Electricity Sales,” Journal of the American Statistical Association, vol. 81, no. 394, pp. 310–320, Jun. 1986[83] T. J. Considine, “The impacts of weather variations on energy demand and carbon emissions,” Resource and Energy Economics, vol. 22, no. 4, pp. 295–314, Oct. 2000[84] L. Hernández et al., “A Study of the Relationship between Weather Variables and Electric Power Demand inside a Smart Grid/Smart World Framework,” Sensors, vol. 12, no. 9, pp. 11571–11591, Aug. 2012.[85] A. Henley and J. Peirson, “Non‐Linearities in Electricity Demand and Temperature: Parametric Versus Non‐Parametric Methods,” Oxford Bulletin of Economics and Statistics, vol. 59, no. 1, pp. 149–162, Feb. 1997.[86] C.-L. Hor, S. J. Watson, and S. Majithia, “Analyzing the Impact of Weather Variables on Monthly Electricity Demand,” IEEE Transactions on Power Systems, vol. 20, no. 4, pp. 2078–2085, Nov. 2005[87] M. Nieves Zárate and A. Hernández Vidal, Colombia Energy Investment Report. Energy Charter Secretariat, 2016[88] J. E. M. Bocanegra, “Modelo institucional del IDEAM sobre el efecto climático de los fenómenos El Niño y La Niña en Colombia,” p. 81[89] “XM_ Expertos en Mercados, Informe de Operación del Sistema y Administración del Mercado, 2010.”[90] C. Sheppard, Ed., Ecological Issues and Environmental Impacts, 2nd ed. London: Academic Press, 2018[91] C. Arrango, D. Guzman, and J. F. Ruiz, “Variabilidad climatica de la precipitacion en Colombia Asociada al Ciclo El Niño, La Niña - OSCILACION DEL SUR (ENSO). Subdireccion de Meterologia IDEAM,” Grupo de Modelamiento de Tiempo, Clima y Escenarios de Cambio Climatico.[92] S. B. Bruns, C. Gross, and D. I. Stern, “Is There Really Granger Causality Between Energy Use and Output?,” p. 60.[93] J. Behera, “Examined the Energy-Led Growth Hypothesis in India: Evidence from Time Series Analysis,” Energy Economics Letters, vol. 2, no. 4, pp. 46–65, 2015[94] “Departamento Administrativo Nacional de Estadística. Producto Interno Bruto (PIB) Históricos. Disponible en: https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales/cuentas-nacionales-trimestrales/historicos-producto-interno-bruto-pib#base-2005.”[95] “Comisión de regulación de energía y gas. Resolución CREG 119 de 2007. Costo unitario de prestación del servicio de energía eléctrica. Capitulo III, 21 de diciembre de 2007.”[96] S. Arango-Aramburo et al., “Simulating mining policies in developing countries: The case of Colombia,” Socio-Economic Planning Sciences, vol. 60, pp. 99–113, Dec. 2017.[97] S. Moret, “Strategic energy planning under uncertainty,” p. 269.[98] USCIB, “United States Council for International Business. All Rights Reserved. Privacy Policy,” May 25[99] A. Najmi, H. S. G., and A. Keramati, “Energy consumption in the residential sector: a study on critical factors,” International Journal of Sustainable Energy, vol. 35, no. 7, pp. 645–663, Aug. 2016.[100] G. Michel and Philipe Durance, Strategic Foresight - Fore Corporate annd Regional Development - United Nations Educational, Scientific and Cultural Organization- UNESCO.[101] Godet, M. (2019). Methods of prospective : La prospective. Retrieved from http://en.laprospective.fr/methods-of-prospective.html.[102] J. Geweke, “Endogeneity and Exogeneity,” p. 2.[103] T. Coladarci, Ed., Fundamentals of statistical reasoning in education, Fourth edition. Hoboken, NJ: Wiley, 2014[104] H. Pham, Ed., Springer handbook of engineering statistics. London: Springer, 2006.[105] J. Starmer, Department of Statistics and Operations Research - The University of North Carolina at Chapel Hill. - Statistics and Operations https://statquest.org/.ORIGINAL2023_Development_of_an_.pdf2023_Development_of_an_.pdfInformeapplication/pdf1794967https://repository.unab.edu.co/bitstream/20.500.12749/20824/1/2023_Development_of_an_.pdfac478999a2e7ba49783bbe5eea3aa2d6MD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8829https://repository.unab.edu.co/bitstream/20.500.12749/20824/2/license.txt3755c0cfdb77e29f2b9125d7a45dd316MD52open accessTHUMBNAIL2023_Development_of_an_.pdf.jpg2023_Development_of_an_.pdf.jpgIM Thumbnailimage/jpeg6811https://repository.unab.edu.co/bitstream/20.500.12749/20824/3/2023_Development_of_an_.pdf.jpgb364182ab6d946a54b6af6920f2cbb19MD53open access20.500.12749/20824oai:repository.unab.edu.co:20.500.12749/208242024-01-18 10:05:05.854open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbi4gRWwgQVVUT1IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVTkFCIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuCgpFbCBBVVRPUiBhdXRvcml6YSBhIGxhIFVuaXZlcnNpZGFkIEF1dMOzbm9tYSBkZSBCdWNhcmFtYW5nYSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24uCg==