Evaluación de desempeño energético de vehículos: Caso bus UNAB

Actualmente existe gran interés por parte de los conductores de vehículos de reducir el consumo de combustible, ya que cada vez el precio del galón sigue siendo más alto, esto por distintos factores, Colombia no produce la cantidad de combustible necesaria por mes, actualmente produce un poco más de...

Full description

Autores:
Suarez Rivera, Diego Alexander
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2024
Institución:
Universidad Autónoma de Bucaramanga - UNAB
Repositorio:
Repositorio UNAB
Idioma:
spa
OAI Identifier:
oai:repository.unab.edu.co:20.500.12749/23175
Acceso en línea:
http://hdl.handle.net/20.500.12749/23175
Palabra clave:
Mechatronic
Vehicle performance
Fuel consumption
Measure fuel consumption
Energetic resources
Energy consumption
Energy efficiency
Vehicle driving
Mecatrónica
Recursos energéticos
Consumo de energía
Rendimiento energético
Conducción de vehículos
Consumo de combustible
Medir el consumo de combustible
Rendimiento del vehículo
Rights
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UNAB2_bb83490e792d99093a508209d12462be
oai_identifier_str oai:repository.unab.edu.co:20.500.12749/23175
network_acronym_str UNAB2
network_name_str Repositorio UNAB
repository_id_str
dc.title.spa.fl_str_mv Evaluación de desempeño energético de vehículos: Caso bus UNAB
dc.title.translated.spa.fl_str_mv Vehicle energy performance evaluation: UNAB bus case
title Evaluación de desempeño energético de vehículos: Caso bus UNAB
spellingShingle Evaluación de desempeño energético de vehículos: Caso bus UNAB
Mechatronic
Vehicle performance
Fuel consumption
Measure fuel consumption
Energetic resources
Energy consumption
Energy efficiency
Vehicle driving
Mecatrónica
Recursos energéticos
Consumo de energía
Rendimiento energético
Conducción de vehículos
Consumo de combustible
Medir el consumo de combustible
Rendimiento del vehículo
title_short Evaluación de desempeño energético de vehículos: Caso bus UNAB
title_full Evaluación de desempeño energético de vehículos: Caso bus UNAB
title_fullStr Evaluación de desempeño energético de vehículos: Caso bus UNAB
title_full_unstemmed Evaluación de desempeño energético de vehículos: Caso bus UNAB
title_sort Evaluación de desempeño energético de vehículos: Caso bus UNAB
dc.creator.fl_str_mv Suarez Rivera, Diego Alexander
dc.contributor.advisor.none.fl_str_mv Maradey Lázaro, Jessica Gisella
dc.contributor.advisor.spa.fl_str_mv Cordero Moreno, Daniel
dc.contributor.author.none.fl_str_mv Suarez Rivera, Diego Alexander
dc.contributor.cvlac.spa.fl_str_mv Suarez Rivera, Diego Alexander [1005012150]
Maradey Lázaro, Jessica Gisella [0000040553]
dc.contributor.googlescholar.spa.fl_str_mv Suarez Rivera, Diego Alexander [ENXbA6oAAAAJ]
Cordero Moreno, Daniel [es&oi=ao]
dc.contributor.orcid.spa.fl_str_mv Suarez Rivera, Diego Alexander [0009-0006-9307-7454]
Maradey Lázaro, Jessica Gisella [0000-0003-2319-1965]
Cordero Moreno, Daniel [0000-0002-2155-2627]
dc.contributor.apolounab.spa.fl_str_mv Maradey Lázaro, Jessica Gisella [jessica-gissella-maradey-lázaro]
dc.subject.keywords.spa.fl_str_mv Mechatronic
Vehicle performance
Fuel consumption
Measure fuel consumption
Energetic resources
Energy consumption
Energy efficiency
Vehicle driving
topic Mechatronic
Vehicle performance
Fuel consumption
Measure fuel consumption
Energetic resources
Energy consumption
Energy efficiency
Vehicle driving
Mecatrónica
Recursos energéticos
Consumo de energía
Rendimiento energético
Conducción de vehículos
Consumo de combustible
Medir el consumo de combustible
Rendimiento del vehículo
dc.subject.lemb.spa.fl_str_mv Mecatrónica
Recursos energéticos
Consumo de energía
Rendimiento energético
Conducción de vehículos
dc.subject.proposal.spa.fl_str_mv Consumo de combustible
Medir el consumo de combustible
Rendimiento del vehículo
description Actualmente existe gran interés por parte de los conductores de vehículos de reducir el consumo de combustible, ya que cada vez el precio del galón sigue siendo más alto, esto por distintos factores, Colombia no produce la cantidad de combustible necesaria por mes, actualmente produce un poco más del 70% y el restante es importado. También existe un déficit del Fondo de Estabilización de Precios de los Combustibles (FEPC), por lo que también se hace necesario elevar los precios del galón. Según la literatura la conducción presenta una notable influencia sobre el consumo de energía, si se realiza de manera eficiente puede generar un ahorro entre un 5% y un 25% en condiciones reales de operación [1]. La Universidad Autónoma de Bucaramanga (UNAB) cuenta con un bus para el traslado de su comunidad de una sede a otra. En el proyecto desarrollado se evaluó el desempeño energético del bus UNAB en operación normal a través del monitoreo a bordo (OBD II). Se describió el patrón de conducción y a partir de este se desarrolló el ciclo de conducción basado en Micro Trips Fuel Based (MTFBM) alcanzo una similitud <20% de las diferencias relativas promedio de los CP’s, la clasificación de los estilos de conducción por medio del SAFD indico que las velocidades que se conducen en la ruta del bus son velocidades bajas, se realizó una comparación del método de aceleración vs el método del jerk, donde se validó que un estilo de conducción agresivo aumenta el consumo de combustible.
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-01-17T19:17:54Z
dc.date.available.none.fl_str_mv 2024-01-17T19:17:54Z
dc.date.issued.none.fl_str_mv 2024-01-17
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.local.spa.fl_str_mv Trabajo de Grado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12749/23175
dc.identifier.instname.spa.fl_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UNAB
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.unab.edu.co
url http://hdl.handle.net/20.500.12749/23175
identifier_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
reponame:Repositorio Institucional UNAB
repourl:https://repository.unab.edu.co
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv K. Bohórquez. "Combustibles: crece el consumo y el billonario hueco fiscal". Colombia Forbes. https://forbes.co/2022/08/17/editors-picks/combustibles-crece-el-consumo-de-la-mano-de-un-billonariohueco-fiscal.
S.A.S., E.L.R. Cada mes, Colombia consume alrededor de 428 millones de galones de combustible, Diario La República. Available at: https://www.larepublica.co/economia/cada-mes-colombia-consume-alrededor-de-428- millones-de-galones-de-combustible-3451998.
UPME, “TRANSPORTE ELECTRICO EN COLOMBIA,” Bogotá D.C, 2017.
Redacción vanguardia. "Presentarán plan para mejorar la calidad del aire en Bucaramanga y el área". Vanguardia. https://www.vanguardia.com/area-metropolitana/bucaramanga/presentaran-plan-para-mejorar-lacalidad-del-aire-en-bucaramanga-y-el-area-YI5192199.
CTS Embarq México, “Documento base para la elaboración de la Estrategia de Transición para promover el uso de Tecnologías y Combustibles más Limpios” en el tema de ahorro de energía en transporte,” 2015.
J. N. Barkenbus, “Eco-driving: An overlooked climate change initiative,” Energy Policy, vol. 38, no. 2, pp. 762–769, 2010. doi: 10.1016/j.enpol.2009.10.021.
J. Van Mierlo, G. Maggetto, E. Van de Burgwal, and R. Gense, “Driving style and traffic measures-influence on vehicle emissions and fuel consumption,” Proc. Inst. Mech. Eng. Part D J. Automob. Eng., vol. 218, no. 1, pp. 43–50, Jan. 2004. doi: 10.1243/095440704322829155.
M. Andrejić, N. Bojović, and M. Kilibarda, “A framework for measuring transport efficiency in distribution centers,” Transp. Policy, vol. 45, pp. 99–106, 2016. doi: 10.1016/j.tranpol.2015.09.013.
P.Fafoutellis, E.G.Mantouka,E.I. Vlahogianni, “Eco-Driving and Its Impacts on Fuel Efficiency: An Overview of Technologies and Data-Driven Methods. Sustainability” 2021, 13, 226. https://doi.org/10.3390/su13010226
E. Choi. E. Kim, “Critical aggressive acceleration values and models for fuel consumption when starting and driving a passenger car running on LPG”, 2017. https://doi.org/10.1080/15568318.2016.1262928.
N.Xu,X. Li,Q. Liu,D. Zhao, “An Overview of Eco-Driving Theory, Capability Evaluation and Training Applications”, 2021. https://doi.org/10.3390/s21196547
H.Wang, L.Fu,Y.Zhou,H.Li, “Modelling of the fuel consumption for passenger cars regarding”, Beijing, 2008. https://doi.org/10.1016/j.trd.2008.09.002
Gaur, D. R., Mudgal, A., & Singh, R. R. (2013). Routing vehicles to minimize fuel consumption. Operations Research Letters, 41(6), 576–580. https://doi.org/10.1016/j.orl.2013.07.007
Zhou, X., Huang, J., Lv, W., & Li, D. (2013). Fuel consumption estimates based on driving pattern recognition. Proceedings - 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, GreenCom-IThings-CPSCom 2013, 496–503. https://doi.org/10.1109/GreenCom-iThings-CPSCom.2013.99
Ho, S. H., Wong, Y. D., & Chang, V. W. C. (2014). Developing Singapore Driving Cycle for passenger cars to estimate fuel consumption and vehicular emissions. Atmospheric Environment, 97, 353–362. https://doi.org/10.1016/j.atmosenv.2014.08.042
Ma, H., Xie, H., Chen, S., Yan, Y., & Huang, D. (2014). Effects of driver acceleration behavior on fuel consumption of city buses. SAE Technical Papers, 1. https://doi.org/10.4271/2014-01-0389
Ma, H., Xie, H., Huang, D., & Xiong, S. (2015). Effects of driving style on the fuel consumption of city buses under different road conditions and vehicle masses. Transportation Research Part D: Transport and Environment, 41, 205–216. https://doi.org/10.1016/j.trd.2015.10.003
Alves, M., & Macedo, H. (n.d.). Análisis de conducción de vehículos con respecto al consumo de combustible. utilizando dispositivos Fuzzy Logic y OBD-II avner pereira. www.onlinedoctranslator.com
Wang, J., & Rakha, H. A. (2016). Fuel consumption model for conventional diesel buses. Applied Energy, 170, 394–402. https://doi.org/10.1016/j.apenergy.2016.02.124.
Ozener, O. (2017). Real driving emissions and fuel consumption characteristics of Istanbul public transportation. Thermal Science, 21, 665–667. https://doi.org/10.2298/TSCI161112308O
Yamashita, R. J., Yao, H. H., Hung, S. W., & Hackman, A. (2018). Accessing and constructing driving data to develop fuel consumption forecast model. IOP Conference Series: Earth and Environmental Science, 113(1). https://doi.org/10.1088/1755-1315/113/1/012217
Rios-Torres, J., Liu, J., & Khattak, A. (2019). Fuel consumption for various driving styles in conventional and hybrid electric vehicles: Integrating driving cycle predictions with fuel consumption optimization*. International Journal of Sustainable Transportation, 13(2), 123–137. https://doi.org/10.1080/15568318.2018.1445321
Zheng, X., Lu, S., Yang, L., Yan, M., Xu, G., Wu, X., Fu, L., & Wu, Y. (2020). Real-world fuel consumption of light-duty passenger vehicles using on-board diagnostic (OBD) systems. Frontiers of Environmental Science and Engineering, 14(2). https://doi.org/10.1007/
Huzayyin, O. A., Salem, H., & Hassan, M. A. (2021). A representative urban driving cycle for passenger vehicles to estimate fuel consumption and emission rates under real-world driving conditions. Urban Climate, 36. https://doi.org/10.1016/j.uclim.2021.100810
Pirayre, A., Michel, P., Rodriguez, S. S., & Chasse, A. (2022). Driving Behavior Identification and RealWorld Fuel Consumption Estimation With Crowdsensing Data. IEEE Transactions on Intelligent Transportation Systems, 23(10), 18378–18391. https://doi.org/10.1109/TITS.2022.3169534
F. y. N. (. Academia Colombiana de Ciencias Exactas, «Factores de emision de los combustibles colombianos,» Bogota, 2003
Y.Huanga, E. C. Y. Ng, J.L Zhou, N.C. Surawskia, E.F Chanb, & G. Hong, “Eco-driving technology for sustainable road transport: A review.”, 2018, https://doi.org/10.1016/j.rser.2018.05.030
M. Rafael, M. Sanchez, V. Mucino, J. Cervantes and A. Lozano ,“Impact of driving styles on exhaust emissions and fuel economy from a heavy-duty truck: Laboratory tests”, 2006. https://doi.org/10.1504/IJHVS.2006.009117.
C. Marina Martinez, M. Heucke, F. -Y. Wang, B. Gao and D. Cao, “Driving Style Recognition for Intelligent Vehicle Control and Advanced Driver Assistance: A Survey,” in IEEE Transactions on Intelligent Transportation Systems, vol 19, no. 3, pp. 666-676, March 2018, doi: 101109/TITS.2017.2706978.
J. D. Molina y B. F. Acuña, “Clasificación de estilos de conducción en el área metropolitana de Bucaramanga con monitoreo a bordo (OBDII) en condiciones reales de carretera.”, 2022.
H. A. Gomez, «DESARROLLO DE CICLOS DE CONDUCCION PARA EL ÁREA METROPOLITANA CENTRO OCCIDENTE – AMCO.,» pereira, 2014.
P. Nouri y C. Morency, «Evaluating Microtrip Definitions for Developing Driving Cycles,» Transportation Research Record, pp. 86-92, 2017.
J. Huertas, L. Quirama, M. Giraldo y J. Díaz, «Comparison of Three Methods for Constructing Real Driving Cycles,» Energies, 2019.
J. Huertas, M. Giraldo, L. Quirama y J. Díaz, «Driving Cycles Based on Fuel Consumption,» energies, vol. 11, 2018
ELM Electronics, «ELM electronics,» 2015. [En línea]. Available: Recuperado de:http://elmelectronics.com/DSheets/ELM327DS.pdf. [Último acceso: 22 09 2021].
A. Mohammadnazar, R. Arvin y A. Khattak, «Classifying travelers’ driving style using basic safety messages generated by connected vehicles: Application of unsupervised machine learning,» Transportation Research Part C, nº 122, 2021.
F. Schockenhoff, H. Nehse y M. Lienkamp, «Maneuver-based objectification of user comfort affecting aspects of driving style of autonomous vehicle concepts,» Applied Sciences, vol. 10, nº 11, 2020.
B. Gao, K. Cai, T. Qu, Y. Hu y H. Chen, «Personalized adaptive cruise control based on online driving style recognition technology and model predictive control,» IEEE transactions on vehicular technology, vol. 69, nº 11, pp. 12482-12496, 2020.
R. Yu, X. Long y J. Li, «Driving Style Analyses for Car-sharing Users Utilizing Lowfrequency Trajectory Data,» de 5th International Conference on Transportation Information and Safety (ICTIS), 2019.
A. Donkers, D. Yang y M. Viktorović, «Influence of driving style, infrastructure, weather and traffic on electric vehicle performance,» Transportation research part D: transport and environment, 2020.
Y. Shi, N. Cui y Y. Du, «Energy Management Strategy based on Driving Style Recognition for Plug-in Hybrid Electric Bus,» de 2020 39th Chinese Control Conference, pp. 5511-5516, 2020.
J. Guo, Y. Jiang, Y. Yu y W. Liu, «A novel energy consumption prediction model with combination of road information and driving style of BEVs,» Sustainable Energy Technologies and Assessments, 42, 100826, 2020.
I. Silva y J. Eugenio Naranjo, «A systematic methodology to evaluate prediction models for driving style classification,» Sensors, vol. 20, nº 6, 2020.
G. Li, F. Zhu, X. Qu, B. Cheng, S. Li y P. Green, «Driving style classification based on driving operational pictures,» IEEE Access, 1-1, 2019.
Y. Feng, S. Pickering, E. Chappell, P. Iravani y C. Brace, «A support vector clustering based approach for driving style classification,» International Journal of Machine Learning and Computing, vol. 9, nº 3, pp. 344-350, 2019.
Y. Liu, J. Wang, P. Zhao, D. Qin y Z. Chen, «Research on classification and recognition of driving styles based on feature engineering,» IEEE Access, vol. 7, pp. 89245-89255, 2019.
J. Cordero, J. Aguilar, K. Aguilar, D. Chávez y E. Puerto, «Recognition of the driving style in vehicle drivers,» Sensors, vol. 20, nº 9, 2020.
W. Han, W. Wang, X. Li y J. Xi, «Statistical-based approach for driving style recognition using Bayesian probability with kernel density estimation,» IET Intelligent Transport Systems, vol. 13, nº 1, pp. 22-30, 2019.
M. M. Bejani y M. Ghatee, «Convolutional neural network with adaptive regularization to classify driving styles on smartphones,» IEEE transactions on intelligent transportation systems, vol. 21, nº 2, pp. 543-552, 2019.
P. Jardin, I. Moisidis, S. S. Zetina y S. Rinderknecht, «Rule-Based Driving Style Classification Using Acceleration Data Profiles,» 23rd International Conference on Intelligent Transportation Systems (ITSC), 2020.
M. Brambilla, P. Mascetti y A. Mauri, «Comparison of different driving style analysis approaches based on trip segmentation over GPS information,» de IEEE International Conference on Big Data (Big Data), 2017.
I. Del Campo, E. Asua, V. Martínez, Ó. Mata-Carballeira y J. Echanobe, «Driving style recognition based on ride comfort using a hybrid machine learning algorithm,» 21st International Conference on Intelligent Transportation Systems (ITSC), pp. 3251-3258, 2018.
T. Colombo, G. Panzani, S. Savaresi y P. Paparo, «Absolute driving style estimation for ground vehicles,» IEEE conference on control technology and applications, pp. 2196-2201, 2017.
J. Gallus, U. Kirchner, R. Vogt y T. Benter, «Impact of driving style and road grade on gaseous exhaust emissions of passenger vehicles measured by a Portable Emission 95 Measurement System (PEMS),» Transportation Research Part D: Transport and Environment 52, 215-226, 2017.
Y. Feng, S. Pickering, E. Chappell, P. Iravani y C. Brace, «Driving Style Modelling with Adaptive Neuro-Fuzzy Inference System and Real Driving Data,» In International Conference on Applied Human Factors and Ergonomics, pp. 481-490, 2018.
C. Deng, C. Wu, N. Lyu y Z. Huang, «Driving style recognition method using braking characteristics based on hidden Markov model,» PLOS ONE, vol. 12, nº 8, 2017.
O. Shouno, «Deep unsupervised learning of a topological map of vehicle maneuvers for characterizing driving styles,» de In 2018 21st International Conference on Intelligent Transportation Systems (ITSC), pp. 2917-2922, 2018.
G. Li, S. E. Li, B. Cheng y P. Green, «Estimation of driving style in naturalistic highway traffic using maneuver transition probabilities,» Transportation Research Part C: Emerging Technologies, vol. 74, pp. 113-125, 2017.
O. F. Ozgul, M. U. Cakir, M. Tan, M. F. Amasyali y H. T. Hayvaci, «Fully Unsupervised Framework for Scoring Driving Style,» de 2018 International Conference on Intelligent Systems (IS), 2018.
R. Liessner, A. Dietermann, B. Bäker y K. Lüpkes, «Derivation of real-world driving cycles corresponding to traffic situation and driving style on the basis of Markov models and cluster analyses,» de 6th Hybrid and Electric Vehicles Conference (HEVC 2016) , 2016.
K. Li, L. Jin, Y. Jiang, H. Xian y L. Gao, «Effects of driver behavior style differences and individual differences on driver sleepiness detection,» Advances in Mechanical Engineering, vol. 7, nº 4, 2015.
T. Felstead, M. McDonald y M. Fowkes, «Driving style extremes and potential vehicle emission effects,» In Proceedings of the Institution of Civil Engineers-Transport, vol. 162, nº 3, pp. 141-148, 2009.
V. Nikulin, «Driving style identification with unsupervised learning,» de In International Conference on Machine Learning and Data Mining in Pattern Recognition, Springer, Cham, 2016.
M. Karaduman y H. Eren, «Deep learning based traffic direction sign detection and determining driving style,» 2017 International Conference on Computer Science and Engineering, pp. 1046-1050, 2017.
K. M. Sentoff, L. Aultman-Hall y B. A. Holmén, «Implications of driving style and road grade for accurate vehicle activity data and emissions estimates,» Transportation Research Part D: Transport and Environment, vol. 35, pp. 175-188, 2015.
W. Wang, J. Xi, A. Chong y L. Li, «Driving Style Classification Using a Semisupervised Support Vector Machine,» IEEE Transactions on Human-Machine Systems, vol. 47, nº 5, pp. 650-660, 2017.
O. Derbel y R. Landry, «Driving style assessment based on the GPS data and fuzzy inference systems,» de 12th International Multi-Conference on Systems, Signals & Devices, doi:10.1109/ssd.2015.7348214 , 2015.
D. Johnson y M. Trivedi, «Driving style recognition using a smartphone as a sensor platform,» 14th International IEEE Conference on Intelligent Transportation Systems, pp. 1609-1615, 2011.
F. Jiménez, J. C. Amarillo, J. E. Naranjo, F. Serradilla y A. Díaz, «Energy consumption estimation in electric vehicles considering driving style,» de IEEE 18th International Conference on Intelligent Transportation Systems, 2015.
J. C. Ferreira, J. de Almeida y R. A. da Silva, «The Impact of Driving Styles on Fuel Consumption: A Data-Warehouse-and-Data-Mining-Based Discovery Process,» IEEE Transactions on Intelligent Transportation Systems, vol. 16, nº 5, pp. 2653-2662, 2015.
A. Aljaafreh, N. Alshabatat y Al-Din, «Driving style recognition using fuzzy logic,» de International Conference on Vehicular Electronics and Safety, 2012.
Z. Constantinescu, C. Marinoiu y M. Vladoiu, «Driving style analysis using data mining techniques,» International Journal of Computers Communications & Control, vol. 5, nº 5, pp. 654-663, 2010.
Universidad Industrial de Santander, «Plan maestro de movilidad, área metropolitana de Bucaramanga 2011-2030,» Bucaramanga.
Yu, L., Wang, Z., Qiao, F., & Qi, Y. (2008). Approach to Development and Evaluation of Driving Cycles for Classified Roads Based on Vehicle Emission Characteristics. Transportation Research Record, 2058(1), 58–67.
Sawyer, R. F., R. A. Harley, S. H. Cadle, J. M. Norbeck, R. Slott, H. A. Bravo, K. L. Schere, G. M. Hidy, and H. B. Singh. Mobile Sources Critical Review: 1998 NARSTO Assessment. Journal of Atmospheric Environment, Vol. 34, No. 12–14, 2000, pp. 2161–2181.
Jiménez-Palacios, J. L. Understanding and Quantifying Motor Vehicle Emissions with Vehicle Specific Power and TILDAS Remote Sensing. PhD dissertation. Massachusetts Institute of Technology, Cambridge, Mass., Feb. 1999. http://cires.colorado.edu/jimenez/Papers/Jimenez_ PhD_Thesis.pdf. Accessed May 16, 2007.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.creativecommons.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.spa.fl_str_mv Bucaramanga (Santander, Colombia)
dc.coverage.temporal.spa.fl_str_mv Enero de 2023 a Diciembre de 2023
dc.coverage.campus.spa.fl_str_mv UNAB Campus Bucaramanga
dc.publisher.grantor.spa.fl_str_mv Universidad Autónoma de Bucaramanga UNAB
dc.publisher.faculty.spa.fl_str_mv Facultad Ingeniería
dc.publisher.program.spa.fl_str_mv Pregrado Ingeniería Mecatrónica
institution Universidad Autónoma de Bucaramanga - UNAB
bitstream.url.fl_str_mv https://repository.unab.edu.co/bitstream/20.500.12749/23175/4/license.txt
https://repository.unab.edu.co/bitstream/20.500.12749/23175/6/2024_Tesis_Diego_Alexander_Suarez_Rivera.pdf.jpg
https://repository.unab.edu.co/bitstream/20.500.12749/23175/7/Licencia.pdf.jpg
https://repository.unab.edu.co/bitstream/20.500.12749/23175/1/2024_Tesis_Diego_Alexander_Suarez_Rivera.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/23175/5/Licencia.pdf
bitstream.checksum.fl_str_mv 3755c0cfdb77e29f2b9125d7a45dd316
a924ac0cc2128f792d23d214536750e1
5649f3423d58a7c72674fa377ba8c133
047fd0df7ce1db4a0346ee7efbb710e6
0944882edd89dbe84a60dea3aa73eb3e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB
repository.mail.fl_str_mv repositorio@unab.edu.co
_version_ 1828219860385005568
spelling Maradey Lázaro, Jessica Gisellac62c58d1-ff01-4441-8b8c-a1cad8a021a7Cordero Moreno, Danielab3d0fc7-1292-4a5c-8d58-5e7c4b1525b1300Suarez Rivera, Diego Alexander939377c7-9484-42ae-b682-f48798b52dc1Suarez Rivera, Diego Alexander [1005012150]Maradey Lázaro, Jessica Gisella [0000040553]Suarez Rivera, Diego Alexander [ENXbA6oAAAAJ]Cordero Moreno, Daniel [es&oi=ao]Suarez Rivera, Diego Alexander [0009-0006-9307-7454]Maradey Lázaro, Jessica Gisella [0000-0003-2319-1965]Cordero Moreno, Daniel [0000-0002-2155-2627]Maradey Lázaro, Jessica Gisella [jessica-gissella-maradey-lázaro]Bucaramanga (Santander, Colombia)Enero de 2023 a Diciembre de 2023UNAB Campus Bucaramanga2024-01-17T19:17:54Z2024-01-17T19:17:54Z2024-01-17http://hdl.handle.net/20.500.12749/23175instname:Universidad Autónoma de Bucaramanga - UNABreponame:Repositorio Institucional UNABrepourl:https://repository.unab.edu.coActualmente existe gran interés por parte de los conductores de vehículos de reducir el consumo de combustible, ya que cada vez el precio del galón sigue siendo más alto, esto por distintos factores, Colombia no produce la cantidad de combustible necesaria por mes, actualmente produce un poco más del 70% y el restante es importado. También existe un déficit del Fondo de Estabilización de Precios de los Combustibles (FEPC), por lo que también se hace necesario elevar los precios del galón. Según la literatura la conducción presenta una notable influencia sobre el consumo de energía, si se realiza de manera eficiente puede generar un ahorro entre un 5% y un 25% en condiciones reales de operación [1]. La Universidad Autónoma de Bucaramanga (UNAB) cuenta con un bus para el traslado de su comunidad de una sede a otra. En el proyecto desarrollado se evaluó el desempeño energético del bus UNAB en operación normal a través del monitoreo a bordo (OBD II). Se describió el patrón de conducción y a partir de este se desarrolló el ciclo de conducción basado en Micro Trips Fuel Based (MTFBM) alcanzo una similitud <20% de las diferencias relativas promedio de los CP’s, la clasificación de los estilos de conducción por medio del SAFD indico que las velocidades que se conducen en la ruta del bus son velocidades bajas, se realizó una comparación del método de aceleración vs el método del jerk, donde se validó que un estilo de conducción agresivo aumenta el consumo de combustible.1. INTRODUCCIÓN ............................................................................................ 13 1.1 DESCRIPCIÓN DEL PROBLEMA ............................................................ 13 1.2 JUSTIFICACIÓN DEL PROBLEMA .......................................................... 14 1.3 OBJETIVOS .............................................................................................. 16 1.3.1 Objetivo general ................................................................................. 16 1.3.2 Objetivos específicos ......................................................................... 16 2 ESTADO DEL ARTE ...................................................................................... 17 3. MARCO TEÓRICO ......................................................................................... 23 3.1 Combustible ................................................................................................. 23 3.1.1 Diesel ..................................................................................................... 23 3.2 Consumo de combustible ............................................................................. 23 3.2.1 Fases de un motor de combustión interna ............................................. 23 3.2.2 Tipos de combustión .............................................................................. 24 3.2.2.1 Combustión completa ...................................................................... 24 3.2.2.2 Combustión incompleta ................................................................... 24 3.2.2.3 Combustión estequiométrica ........................................................... 24 3.2.2.4 Combustión real .............................................................................. 24 3.2.3 Mediciones del consumo de combustible .............................................. 24 3.2.3.1 Dinamómetro de motor .................................................................... 25 3.2.3.2 Dinamómetro de chasis ................................................................... 25 3.2.3.3 Tecnologías a bordo ........................................................................ 25 3.2.3.4 Simulador de manejo ...................................................................... 26 3.2.4 Factores que influyen en el consumo de combustible ........................ 26 3.3 Estilos de conducción ................................................................................... 27 3.3.1 Factores que influyen en los estilos de conducción ............................... 27 3.3.2 Tipo de estilos de conducción ............................................................ 27 3.4 Ciclos de conducción ................................................................................... 27 3.4.1 Tipos de ciclos de conducción ............................................................... 27 3.4.2. Los ciclos de conducción para representar condiciones operativas reales ........................................................................................................................ 28 3.4.3 Métodos de elaboración de ciclos de conducción .................................. 28 3.4.3.1 Métodos estocásticos ...................................................................... 28 3.4.3.2 Métodos determinísticos ................................................................. 29 4. METODOLOGÍA ............................................................................................. 30 4.1 MODELADO/SIMULACIÓN .......................................................................... 30 4.1.1 Actividad 1, reconocer la necesidad. ..................................................... 31 4.1.2 Actividad 2, Investigar la literatura. ........................................................ 31 4.1.2.1 Resultados de la investigación del estado del arte.......................... 31 4.1.2.2. Investigación del marco teórico sobre consumo de combustible, diferentes metodologías para poder medir o determinar el consumo, estilos de conducción y ciclos de conducción. ....................................................... 31 4.1.3 Actividad 3, investigar la instrumentación. ............................................. 31 4.1.3.1 Definición del sistema de diagnóstico a bordo (OBD). .................... 32 4.1.3.2 Aplicación del diagnóstico a bordo (OBD). ...................................... 32 4.1.3.3 Interfaz ELM 327 OBD2 .................................................................. 32 4.1.3.4 Puerto OBD II .................................................................................. 32 4.1.3.5 Selección de dispositivos ................................................................ 34 4.1.3.7 Características de cada dispositivo ................................................. 35 4.1.3.8 Criterios para la elección de los dispositivos. .................................. 37 4.1.4 Actividad 4, Implementación del dispositivo. .......................................... 38 4.1.4.1 Selección y caracterización técnica del vehículo............................. 38 4.1.4.2 Caracterización sociodemográfica del conductor. ........................... 41 4.1.4.3 Campaña de monitoreo. .................................................................. 42 4.2 ADQUISICIÓN .............................................................................................. 47 4.2.1 Realizar pruebas de adquisición de datos. ............................................ 47 4.3 ELIMINACION DE DATOS ATIPICOS ......................................................... 48 4.3.1 Etapa 1 de eliminación de datos atípicos manualmente. ....................... 48 4.3.2 Etapa 2 y 3 eliminación de datos atípicos por código. ........................... 49 4.3.3 Etapa 4 de eliminación de datos atípicos manualmente. ....................... 50 4.4 METODOLOGIA ESTABLECIDA PARA LA CONSTRUCCION DEL CICLO DE CONDUCCION ............................................................................................. 51 4.4.1 Método micro-trips fuel based method (MTFBM) ................................... 51 4.4.2 Selección de parámetros característicos ............................................... 51 4.4.3 Ecuaciones para el cálculo de los parámetros característicos. .............. 52 4.4.4 Calculo de los parámetros característicos de los datos monitoreados .. 53 4.4.5 Obtención de los micro viajes ................................................................ 54 4.4.6 Clúster y distribución de probabilidad .................................................... 54 4.4.7 Selección cuasi aleatoria y empalme de los micro viajes ...................... 55 4.4.8 Validación del ciclo de conducción ........................................................ 56 4.5 POTENCIA ESPECÍFICA DEL VEHICULO (VSP) ....................................... 57 4.5.1 Proceso de obtención de las variables para calcular el VSP ................. 60 4.6 METODOLOGIA APLICADA PARA LA CLASIFICACION DE LOS ESTILOS DE CONDUCCION ............................................................................................. 60 4.6.1 Selección de las características para la clasificación de los estilos de conducción ...................................................................................................... 62 4.6.2 Diagrama de frecuencia – velocidad – aceleración (SAFD) ................... 63 4.6.3 Metodología aceleración ........................................................................ 64 4.6.4 Metodología Jerk ................................................................................... 64 4.6.5 Construcción del algoritmo desarrollado ................................................ 64 Donde, || es el valor absoluto calculado a partir de la derivada de la aceleración. .................................................................................................... 65 4.6.6 Metodología DBSCAN ........................................................................... 66 4.6.7. Metodología KMEANS .......................................................................... 66 La metodología Kmeans es un algoritmo de clasificación no supervisada por medio de clusterización, donde se agrupan objetos en “k” grupos basándose en sus características. Este agrupamiento se realiza minimizando la suma de distancias entre cada objeto y el centroide de su clúster. ............................... 66 4.6.7 Construcción del algoritmo desarrollado ................................................ 66 5 RESULTADOS Y ANALISIS DE DATOS ............................................................ 68 5.1 CICLO DE CONDUCCION OBTENIDO ....................................................... 68 5.2 PARAMETROS CARACTERISTICOS – DIFERENCIAS RELATIVAS ......... 68 5.3 ANALISIS DE LA POTENCIA ESPECÍFICA DEL VEHICULO (VSP) ........... 70 5.4 DIAGRAMA VELOCIDAD VS CONSUMO Y ACELERACION VS CONSUMO ........................................................................................................................... 72 5.4.1 Velocidad vs consumo ........................................................................... 72 5.4.2 Aceleración vs consumo ........................................................................ 73 5.5 CLASIFICACION DE LOS ESTILOS DE CONDUCCION POR MEDIO DEL DIAGRAMA SAFD .............................................................................................. 74 5.4.1 Análisis de la variable velocidad del diagrama SAFD ............................ 74 5.4.2 Análisis de la variable aceleración del diagrama SAFD. ........................ 75 5.6 CLASIFICACION DE LOS ESTILOS DE CONDUCCION METODO DE ACELERACION Y METODO DEL JERK ........................................................... 77 5.6.1 Correlación del consumo de combustible y los estilos de conducción ... 78 5.7 CLASIFICACION DE LOS ESTILOS DE CONDUCCION METODOLOGIA DBSCAN Y KMEANS ......................................................................................... 79 5.5.1 Análisis de los datos .............................................................................. 79 5.5.1.1 Variación estadística por medio de la varianza ............................... 79 5.5.1.2 Preparación del PCA para observar el impacto de las features ...... 80 5.5.2 Metodología DBSCAN ........................................................................... 81 5.5.2.1Segmentación de datos para aplicar DBSCAN ................................ 81 5.5.2.2 Detección y eliminación de outliers para cada base de datos ......... 82 5.5.3 Metodología KMEANS ........................................................................... 84 5.5.3.1 Resultados de la metodología KMEANS ......................................... 85 5.7 ESTRATEGIAS DE MEJORA PARA REDUCIR EL CONSUMO DE COMBUSTIBLE DEL BUS UNAB. ..................................................................... 86 6 CONCLUSIONES ............................................................................................... 88 7. RECOMENDACIONES Y TRABAJOS A FUTURO ........................................... 90 BIBLIOGRAFIA ...................................................................................................... 91 8 ANEXOS ............................................................................................................. 97 8.1 CODIGO PARA LA CONSTRUCCION DEL CICLO DE CONDUCCION CANDIDATO (MTFBM) ...................................................................................... 97 8.2 CODIGO PARA LA CLASIFICACION DE LOS ESTILOS DE CONDUCCION (DBSCAN - K-MEANS) .................................................................................... 109PregradoCurrently there is great interest on the part of vehicle drivers to reduce fuel consumption, since the price per gallon continues to be higher and higher, this is due to different factors, Colombia does not produce the necessary amount of fuel per month, it currently produces a just over 70% and the rest is imported. There is also a deficit in the Fuel Price Stabilization Fund (FEPC), so it is also necessary to raise prices per gallon. According to the literature, driving has a notable influence on energy consumption; if done efficiently it can generate savings between 5% and 25% in real operating conditions [1]. The Autonomous University of Bucaramanga (UNAB) has a bus to transport its community from one location to another. In the developed project, the energy performance of the UNAB bus in normal operation was evaluated through on-board monitoring (OBD II). The driving pattern was described and from this the driving cycle based on Micro Trips Fuel Based (MTFBM) was developed, achieving a similarity <20% of the average relative differences of the CP's, the classification of driving styles through the SAFD indicated that the speeds driven on the bus route are low speeds, a comparison of the acceleration method vs. the jerk method was carried out, where it was validated that an aggressive driving style increases fuel consumption.Modalidad Presencialapplication/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)Atribución-NoComercial-SinDerivadas 2.5 Colombiahttp://purl.org/coar/access_right/c_abf2Evaluación de desempeño energético de vehículos: Caso bus UNABVehicle energy performance evaluation: UNAB bus caseIngeniero MecatrónicoUniversidad Autónoma de Bucaramanga UNABFacultad IngenieríaPregrado Ingeniería Mecatrónicainfo:eu-repo/semantics/bachelorThesisTrabajo de Gradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/acceptedVersionhttp://purl.org/redcol/resource_type/TPMechatronicVehicle performanceFuel consumptionMeasure fuel consumptionEnergetic resourcesEnergy consumptionEnergy efficiencyVehicle drivingMecatrónicaRecursos energéticosConsumo de energíaRendimiento energéticoConducción de vehículosConsumo de combustibleMedir el consumo de combustibleRendimiento del vehículoK. Bohórquez. "Combustibles: crece el consumo y el billonario hueco fiscal". Colombia Forbes. https://forbes.co/2022/08/17/editors-picks/combustibles-crece-el-consumo-de-la-mano-de-un-billonariohueco-fiscal.S.A.S., E.L.R. Cada mes, Colombia consume alrededor de 428 millones de galones de combustible, Diario La República. Available at: https://www.larepublica.co/economia/cada-mes-colombia-consume-alrededor-de-428- millones-de-galones-de-combustible-3451998.UPME, “TRANSPORTE ELECTRICO EN COLOMBIA,” Bogotá D.C, 2017.Redacción vanguardia. "Presentarán plan para mejorar la calidad del aire en Bucaramanga y el área". Vanguardia. https://www.vanguardia.com/area-metropolitana/bucaramanga/presentaran-plan-para-mejorar-lacalidad-del-aire-en-bucaramanga-y-el-area-YI5192199.CTS Embarq México, “Documento base para la elaboración de la Estrategia de Transición para promover el uso de Tecnologías y Combustibles más Limpios” en el tema de ahorro de energía en transporte,” 2015.J. N. Barkenbus, “Eco-driving: An overlooked climate change initiative,” Energy Policy, vol. 38, no. 2, pp. 762–769, 2010. doi: 10.1016/j.enpol.2009.10.021.J. Van Mierlo, G. Maggetto, E. Van de Burgwal, and R. Gense, “Driving style and traffic measures-influence on vehicle emissions and fuel consumption,” Proc. Inst. Mech. Eng. Part D J. Automob. Eng., vol. 218, no. 1, pp. 43–50, Jan. 2004. doi: 10.1243/095440704322829155.M. Andrejić, N. Bojović, and M. Kilibarda, “A framework for measuring transport efficiency in distribution centers,” Transp. Policy, vol. 45, pp. 99–106, 2016. doi: 10.1016/j.tranpol.2015.09.013.P.Fafoutellis, E.G.Mantouka,E.I. Vlahogianni, “Eco-Driving and Its Impacts on Fuel Efficiency: An Overview of Technologies and Data-Driven Methods. Sustainability” 2021, 13, 226. https://doi.org/10.3390/su13010226E. Choi. E. Kim, “Critical aggressive acceleration values and models for fuel consumption when starting and driving a passenger car running on LPG”, 2017. https://doi.org/10.1080/15568318.2016.1262928.N.Xu,X. Li,Q. Liu,D. Zhao, “An Overview of Eco-Driving Theory, Capability Evaluation and Training Applications”, 2021. https://doi.org/10.3390/s21196547H.Wang, L.Fu,Y.Zhou,H.Li, “Modelling of the fuel consumption for passenger cars regarding”, Beijing, 2008. https://doi.org/10.1016/j.trd.2008.09.002Gaur, D. R., Mudgal, A., & Singh, R. R. (2013). Routing vehicles to minimize fuel consumption. Operations Research Letters, 41(6), 576–580. https://doi.org/10.1016/j.orl.2013.07.007Zhou, X., Huang, J., Lv, W., & Li, D. (2013). Fuel consumption estimates based on driving pattern recognition. Proceedings - 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, GreenCom-IThings-CPSCom 2013, 496–503. https://doi.org/10.1109/GreenCom-iThings-CPSCom.2013.99Ho, S. H., Wong, Y. D., & Chang, V. W. C. (2014). Developing Singapore Driving Cycle for passenger cars to estimate fuel consumption and vehicular emissions. Atmospheric Environment, 97, 353–362. https://doi.org/10.1016/j.atmosenv.2014.08.042Ma, H., Xie, H., Chen, S., Yan, Y., & Huang, D. (2014). Effects of driver acceleration behavior on fuel consumption of city buses. SAE Technical Papers, 1. https://doi.org/10.4271/2014-01-0389Ma, H., Xie, H., Huang, D., & Xiong, S. (2015). Effects of driving style on the fuel consumption of city buses under different road conditions and vehicle masses. Transportation Research Part D: Transport and Environment, 41, 205–216. https://doi.org/10.1016/j.trd.2015.10.003Alves, M., & Macedo, H. (n.d.). Análisis de conducción de vehículos con respecto al consumo de combustible. utilizando dispositivos Fuzzy Logic y OBD-II avner pereira. www.onlinedoctranslator.comWang, J., & Rakha, H. A. (2016). Fuel consumption model for conventional diesel buses. Applied Energy, 170, 394–402. https://doi.org/10.1016/j.apenergy.2016.02.124.Ozener, O. (2017). Real driving emissions and fuel consumption characteristics of Istanbul public transportation. Thermal Science, 21, 665–667. https://doi.org/10.2298/TSCI161112308OYamashita, R. J., Yao, H. H., Hung, S. W., & Hackman, A. (2018). Accessing and constructing driving data to develop fuel consumption forecast model. IOP Conference Series: Earth and Environmental Science, 113(1). https://doi.org/10.1088/1755-1315/113/1/012217Rios-Torres, J., Liu, J., & Khattak, A. (2019). Fuel consumption for various driving styles in conventional and hybrid electric vehicles: Integrating driving cycle predictions with fuel consumption optimization*. International Journal of Sustainable Transportation, 13(2), 123–137. https://doi.org/10.1080/15568318.2018.1445321Zheng, X., Lu, S., Yang, L., Yan, M., Xu, G., Wu, X., Fu, L., & Wu, Y. (2020). Real-world fuel consumption of light-duty passenger vehicles using on-board diagnostic (OBD) systems. Frontiers of Environmental Science and Engineering, 14(2). https://doi.org/10.1007/Huzayyin, O. A., Salem, H., & Hassan, M. A. (2021). A representative urban driving cycle for passenger vehicles to estimate fuel consumption and emission rates under real-world driving conditions. Urban Climate, 36. https://doi.org/10.1016/j.uclim.2021.100810Pirayre, A., Michel, P., Rodriguez, S. S., & Chasse, A. (2022). Driving Behavior Identification and RealWorld Fuel Consumption Estimation With Crowdsensing Data. IEEE Transactions on Intelligent Transportation Systems, 23(10), 18378–18391. https://doi.org/10.1109/TITS.2022.3169534F. y. N. (. Academia Colombiana de Ciencias Exactas, «Factores de emision de los combustibles colombianos,» Bogota, 2003Y.Huanga, E. C. Y. Ng, J.L Zhou, N.C. Surawskia, E.F Chanb, & G. Hong, “Eco-driving technology for sustainable road transport: A review.”, 2018, https://doi.org/10.1016/j.rser.2018.05.030M. Rafael, M. Sanchez, V. Mucino, J. Cervantes and A. Lozano ,“Impact of driving styles on exhaust emissions and fuel economy from a heavy-duty truck: Laboratory tests”, 2006. https://doi.org/10.1504/IJHVS.2006.009117.C. Marina Martinez, M. Heucke, F. -Y. Wang, B. Gao and D. Cao, “Driving Style Recognition for Intelligent Vehicle Control and Advanced Driver Assistance: A Survey,” in IEEE Transactions on Intelligent Transportation Systems, vol 19, no. 3, pp. 666-676, March 2018, doi: 101109/TITS.2017.2706978.J. D. Molina y B. F. Acuña, “Clasificación de estilos de conducción en el área metropolitana de Bucaramanga con monitoreo a bordo (OBDII) en condiciones reales de carretera.”, 2022.H. A. Gomez, «DESARROLLO DE CICLOS DE CONDUCCION PARA EL ÁREA METROPOLITANA CENTRO OCCIDENTE – AMCO.,» pereira, 2014.P. Nouri y C. Morency, «Evaluating Microtrip Definitions for Developing Driving Cycles,» Transportation Research Record, pp. 86-92, 2017.J. Huertas, L. Quirama, M. Giraldo y J. Díaz, «Comparison of Three Methods for Constructing Real Driving Cycles,» Energies, 2019.J. Huertas, M. Giraldo, L. Quirama y J. Díaz, «Driving Cycles Based on Fuel Consumption,» energies, vol. 11, 2018ELM Electronics, «ELM electronics,» 2015. [En línea]. Available: Recuperado de:http://elmelectronics.com/DSheets/ELM327DS.pdf. [Último acceso: 22 09 2021].A. Mohammadnazar, R. Arvin y A. Khattak, «Classifying travelers’ driving style using basic safety messages generated by connected vehicles: Application of unsupervised machine learning,» Transportation Research Part C, nº 122, 2021.F. Schockenhoff, H. Nehse y M. Lienkamp, «Maneuver-based objectification of user comfort affecting aspects of driving style of autonomous vehicle concepts,» Applied Sciences, vol. 10, nº 11, 2020.B. Gao, K. Cai, T. Qu, Y. Hu y H. Chen, «Personalized adaptive cruise control based on online driving style recognition technology and model predictive control,» IEEE transactions on vehicular technology, vol. 69, nº 11, pp. 12482-12496, 2020.R. Yu, X. Long y J. Li, «Driving Style Analyses for Car-sharing Users Utilizing Lowfrequency Trajectory Data,» de 5th International Conference on Transportation Information and Safety (ICTIS), 2019.A. Donkers, D. Yang y M. Viktorović, «Influence of driving style, infrastructure, weather and traffic on electric vehicle performance,» Transportation research part D: transport and environment, 2020.Y. Shi, N. Cui y Y. Du, «Energy Management Strategy based on Driving Style Recognition for Plug-in Hybrid Electric Bus,» de 2020 39th Chinese Control Conference, pp. 5511-5516, 2020.J. Guo, Y. Jiang, Y. Yu y W. Liu, «A novel energy consumption prediction model with combination of road information and driving style of BEVs,» Sustainable Energy Technologies and Assessments, 42, 100826, 2020.I. Silva y J. Eugenio Naranjo, «A systematic methodology to evaluate prediction models for driving style classification,» Sensors, vol. 20, nº 6, 2020.G. Li, F. Zhu, X. Qu, B. Cheng, S. Li y P. Green, «Driving style classification based on driving operational pictures,» IEEE Access, 1-1, 2019.Y. Feng, S. Pickering, E. Chappell, P. Iravani y C. Brace, «A support vector clustering based approach for driving style classification,» International Journal of Machine Learning and Computing, vol. 9, nº 3, pp. 344-350, 2019.Y. Liu, J. Wang, P. Zhao, D. Qin y Z. Chen, «Research on classification and recognition of driving styles based on feature engineering,» IEEE Access, vol. 7, pp. 89245-89255, 2019.J. Cordero, J. Aguilar, K. Aguilar, D. Chávez y E. Puerto, «Recognition of the driving style in vehicle drivers,» Sensors, vol. 20, nº 9, 2020.W. Han, W. Wang, X. Li y J. Xi, «Statistical-based approach for driving style recognition using Bayesian probability with kernel density estimation,» IET Intelligent Transport Systems, vol. 13, nº 1, pp. 22-30, 2019.M. M. Bejani y M. Ghatee, «Convolutional neural network with adaptive regularization to classify driving styles on smartphones,» IEEE transactions on intelligent transportation systems, vol. 21, nº 2, pp. 543-552, 2019.P. Jardin, I. Moisidis, S. S. Zetina y S. Rinderknecht, «Rule-Based Driving Style Classification Using Acceleration Data Profiles,» 23rd International Conference on Intelligent Transportation Systems (ITSC), 2020.M. Brambilla, P. Mascetti y A. Mauri, «Comparison of different driving style analysis approaches based on trip segmentation over GPS information,» de IEEE International Conference on Big Data (Big Data), 2017.I. Del Campo, E. Asua, V. Martínez, Ó. Mata-Carballeira y J. Echanobe, «Driving style recognition based on ride comfort using a hybrid machine learning algorithm,» 21st International Conference on Intelligent Transportation Systems (ITSC), pp. 3251-3258, 2018.T. Colombo, G. Panzani, S. Savaresi y P. Paparo, «Absolute driving style estimation for ground vehicles,» IEEE conference on control technology and applications, pp. 2196-2201, 2017.J. Gallus, U. Kirchner, R. Vogt y T. Benter, «Impact of driving style and road grade on gaseous exhaust emissions of passenger vehicles measured by a Portable Emission 95 Measurement System (PEMS),» Transportation Research Part D: Transport and Environment 52, 215-226, 2017.Y. Feng, S. Pickering, E. Chappell, P. Iravani y C. Brace, «Driving Style Modelling with Adaptive Neuro-Fuzzy Inference System and Real Driving Data,» In International Conference on Applied Human Factors and Ergonomics, pp. 481-490, 2018.C. Deng, C. Wu, N. Lyu y Z. Huang, «Driving style recognition method using braking characteristics based on hidden Markov model,» PLOS ONE, vol. 12, nº 8, 2017.O. Shouno, «Deep unsupervised learning of a topological map of vehicle maneuvers for characterizing driving styles,» de In 2018 21st International Conference on Intelligent Transportation Systems (ITSC), pp. 2917-2922, 2018.G. Li, S. E. Li, B. Cheng y P. Green, «Estimation of driving style in naturalistic highway traffic using maneuver transition probabilities,» Transportation Research Part C: Emerging Technologies, vol. 74, pp. 113-125, 2017.O. F. Ozgul, M. U. Cakir, M. Tan, M. F. Amasyali y H. T. Hayvaci, «Fully Unsupervised Framework for Scoring Driving Style,» de 2018 International Conference on Intelligent Systems (IS), 2018.R. Liessner, A. Dietermann, B. Bäker y K. Lüpkes, «Derivation of real-world driving cycles corresponding to traffic situation and driving style on the basis of Markov models and cluster analyses,» de 6th Hybrid and Electric Vehicles Conference (HEVC 2016) , 2016.K. Li, L. Jin, Y. Jiang, H. Xian y L. Gao, «Effects of driver behavior style differences and individual differences on driver sleepiness detection,» Advances in Mechanical Engineering, vol. 7, nº 4, 2015.T. Felstead, M. McDonald y M. Fowkes, «Driving style extremes and potential vehicle emission effects,» In Proceedings of the Institution of Civil Engineers-Transport, vol. 162, nº 3, pp. 141-148, 2009.V. Nikulin, «Driving style identification with unsupervised learning,» de In International Conference on Machine Learning and Data Mining in Pattern Recognition, Springer, Cham, 2016.M. Karaduman y H. Eren, «Deep learning based traffic direction sign detection and determining driving style,» 2017 International Conference on Computer Science and Engineering, pp. 1046-1050, 2017.K. M. Sentoff, L. Aultman-Hall y B. A. Holmén, «Implications of driving style and road grade for accurate vehicle activity data and emissions estimates,» Transportation Research Part D: Transport and Environment, vol. 35, pp. 175-188, 2015.W. Wang, J. Xi, A. Chong y L. Li, «Driving Style Classification Using a Semisupervised Support Vector Machine,» IEEE Transactions on Human-Machine Systems, vol. 47, nº 5, pp. 650-660, 2017.O. Derbel y R. Landry, «Driving style assessment based on the GPS data and fuzzy inference systems,» de 12th International Multi-Conference on Systems, Signals & Devices, doi:10.1109/ssd.2015.7348214 , 2015.D. Johnson y M. Trivedi, «Driving style recognition using a smartphone as a sensor platform,» 14th International IEEE Conference on Intelligent Transportation Systems, pp. 1609-1615, 2011.F. Jiménez, J. C. Amarillo, J. E. Naranjo, F. Serradilla y A. Díaz, «Energy consumption estimation in electric vehicles considering driving style,» de IEEE 18th International Conference on Intelligent Transportation Systems, 2015.J. C. Ferreira, J. de Almeida y R. A. da Silva, «The Impact of Driving Styles on Fuel Consumption: A Data-Warehouse-and-Data-Mining-Based Discovery Process,» IEEE Transactions on Intelligent Transportation Systems, vol. 16, nº 5, pp. 2653-2662, 2015.A. Aljaafreh, N. Alshabatat y Al-Din, «Driving style recognition using fuzzy logic,» de International Conference on Vehicular Electronics and Safety, 2012.Z. Constantinescu, C. Marinoiu y M. Vladoiu, «Driving style analysis using data mining techniques,» International Journal of Computers Communications & Control, vol. 5, nº 5, pp. 654-663, 2010.Universidad Industrial de Santander, «Plan maestro de movilidad, área metropolitana de Bucaramanga 2011-2030,» Bucaramanga.Yu, L., Wang, Z., Qiao, F., & Qi, Y. (2008). Approach to Development and Evaluation of Driving Cycles for Classified Roads Based on Vehicle Emission Characteristics. Transportation Research Record, 2058(1), 58–67.Sawyer, R. F., R. A. Harley, S. H. Cadle, J. M. Norbeck, R. Slott, H. A. Bravo, K. L. Schere, G. M. Hidy, and H. B. Singh. Mobile Sources Critical Review: 1998 NARSTO Assessment. Journal of Atmospheric Environment, Vol. 34, No. 12–14, 2000, pp. 2161–2181.Jiménez-Palacios, J. L. Understanding and Quantifying Motor Vehicle Emissions with Vehicle Specific Power and TILDAS Remote Sensing. PhD dissertation. Massachusetts Institute of Technology, Cambridge, Mass., Feb. 1999. http://cires.colorado.edu/jimenez/Papers/Jimenez_ PhD_Thesis.pdf. Accessed May 16, 2007.LICENSElicense.txtlicense.txttext/plain; charset=utf-8829https://repository.unab.edu.co/bitstream/20.500.12749/23175/4/license.txt3755c0cfdb77e29f2b9125d7a45dd316MD54open accessTHUMBNAIL2024_Tesis_Diego_Alexander_Suarez_Rivera.pdf.jpg2024_Tesis_Diego_Alexander_Suarez_Rivera.pdf.jpgIM Thumbnailimage/jpeg4225https://repository.unab.edu.co/bitstream/20.500.12749/23175/6/2024_Tesis_Diego_Alexander_Suarez_Rivera.pdf.jpga924ac0cc2128f792d23d214536750e1MD56open accessLicencia.pdf.jpgLicencia.pdf.jpgIM Thumbnailimage/jpeg12428https://repository.unab.edu.co/bitstream/20.500.12749/23175/7/Licencia.pdf.jpg5649f3423d58a7c72674fa377ba8c133MD57metadata only accessORIGINAL2024_Tesis_Diego_Alexander_Suarez_Rivera.pdf2024_Tesis_Diego_Alexander_Suarez_Rivera.pdfTesisapplication/pdf3466999https://repository.unab.edu.co/bitstream/20.500.12749/23175/1/2024_Tesis_Diego_Alexander_Suarez_Rivera.pdf047fd0df7ce1db4a0346ee7efbb710e6MD51open accessLicencia.pdfLicencia.pdfLicenciaapplication/pdf302349https://repository.unab.edu.co/bitstream/20.500.12749/23175/5/Licencia.pdf0944882edd89dbe84a60dea3aa73eb3eMD55metadata only access20.500.12749/23175oai:repository.unab.edu.co:20.500.12749/231752024-01-17 22:01:05.986open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbi4gRWwgQVVUT1IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVTkFCIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuCgpFbCBBVVRPUiBhdXRvcml6YSBhIGxhIFVuaXZlcnNpZGFkIEF1dMOzbm9tYSBkZSBCdWNhcmFtYW5nYSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24uCg==