Análisis de bases de datos de expresiones faciales para la identificación automática de emociones centradas en el aprendizaje

Este trabajo presenta el análisis del estado del arte de bases de datos de expresiones faciales para la identificación automática de emociones centradas en el aprendizaje. La obtención de datos para los procesos de reconocimiento automático en un contexto específico es esencial para su éxito. Así, e...

Full description

Autores:
González Meneses, Yesenia Nohemí
Guerrero García, Josefina
Tipo de recurso:
Article of investigation
Fecha de publicación:
2021
Institución:
Universidad Autónoma de Bucaramanga - UNAB
Repositorio:
Repositorio UNAB
Idioma:
spa
OAI Identifier:
oai:repository.unab.edu.co:20.500.12749/26488
Acceso en línea:
http://hdl.handle.net/20.500.12749/26488
https://doi.org/10.29375/25392115.4300
Palabra clave:
Bases de datos
Identificación automática de emociones
Expresiones faciales
Databases
Automatic identification of emotions
Facial expressions
Rights
License
http://purl.org/coar/access_right/c_abf2
id UNAB2_ba5819f93564687dc23333a32eabd2b0
oai_identifier_str oai:repository.unab.edu.co:20.500.12749/26488
network_acronym_str UNAB2
network_name_str Repositorio UNAB
repository_id_str
dc.title.spa.fl_str_mv Análisis de bases de datos de expresiones faciales para la identificación automática de emociones centradas en el aprendizaje
dc.title.translated.eng.fl_str_mv Analysis of databases of facial expressions for the automatic identification of learning-centered emotions
title Análisis de bases de datos de expresiones faciales para la identificación automática de emociones centradas en el aprendizaje
spellingShingle Análisis de bases de datos de expresiones faciales para la identificación automática de emociones centradas en el aprendizaje
Bases de datos
Identificación automática de emociones
Expresiones faciales
Databases
Automatic identification of emotions
Facial expressions
title_short Análisis de bases de datos de expresiones faciales para la identificación automática de emociones centradas en el aprendizaje
title_full Análisis de bases de datos de expresiones faciales para la identificación automática de emociones centradas en el aprendizaje
title_fullStr Análisis de bases de datos de expresiones faciales para la identificación automática de emociones centradas en el aprendizaje
title_full_unstemmed Análisis de bases de datos de expresiones faciales para la identificación automática de emociones centradas en el aprendizaje
title_sort Análisis de bases de datos de expresiones faciales para la identificación automática de emociones centradas en el aprendizaje
dc.creator.fl_str_mv González Meneses, Yesenia Nohemí
Guerrero García, Josefina
dc.contributor.author.none.fl_str_mv González Meneses, Yesenia Nohemí
Guerrero García, Josefina
dc.contributor.orcid.spa.fl_str_mv González Meneses, Yesenia Nohemí [0000-0003-1034-0204]
Guerrero García, Josefina [0000-0002-3393-610X]
dc.subject.spa.fl_str_mv Bases de datos
Identificación automática de emociones
Expresiones faciales
topic Bases de datos
Identificación automática de emociones
Expresiones faciales
Databases
Automatic identification of emotions
Facial expressions
dc.subject.keywords.eng.fl_str_mv Databases
Automatic identification of emotions
Facial expressions
description Este trabajo presenta el análisis del estado del arte de bases de datos de expresiones faciales para la identificación automática de emociones centradas en el aprendizaje. La obtención de datos para los procesos de reconocimiento automático en un contexto específico es esencial para su éxito. Así, este tipo de proyectos inician haciendo una revisión de la información disponible para llevar a cabo las etapas de entrenamiento y clasificación de las emociones con las técnicas computacionales que se propongan. Se describen las actividades de búsqueda de las bases de datos de expresiones faciales que capturan emociones centradas en el aprendizaje. Estas actividades formaron parte de las etapas de la metodología del trabajo para reconocer las emociones de estudiantes mientras realizaban actividades de aprendizaje en línea. Esto permitió justificar la creación de la base de datos desde la formalización de un protocolo para su captura hasta su digitalización.
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-09-17
dc.date.accessioned.none.fl_str_mv 2024-09-12T20:28:16Z
dc.date.available.none.fl_str_mv 2024-09-12T20:28:16Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.local.spa.fl_str_mv Artículo
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.issn.spa.fl_str_mv ISSN: 1657-2831
e-ISSN: 2539-2115
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12749/26488
dc.identifier.instname.spa.fl_str_mv instname:Universidad Autónoma de Bucaramanga UNAB
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.unab.edu.co
dc.identifier.doi.none.fl_str_mv https://doi.org/10.29375/25392115.4300
identifier_str_mv ISSN: 1657-2831
e-ISSN: 2539-2115
instname:Universidad Autónoma de Bucaramanga UNAB
repourl:https://repository.unab.edu.co
url http://hdl.handle.net/20.500.12749/26488
https://doi.org/10.29375/25392115.4300
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv https://revistas.unab.edu.co/index.php/rcc/article/view/4300/3508
dc.relation.uri.spa.fl_str_mv https://revistas.unab.edu.co/index.php/rcc/issue/view/276
dc.relation.references.none.fl_str_mv Aifanti, N., Papachristou, C., & Delopoulos, A. (2010). The MUG facial expression database. 1th International Workshop on Image Analysis for Multimedia Interactive Services WIAMIS 10, 1–4.
Almohammadi, K., Hagras, H., Yao, B., Alzahrani, A., Alghazzawi, D., & Aldabbagh, G. (2017). A type-2 fuzzy logic recommendation system for adaptive teaching. Soft Computing, 21(4). https://doi.org/10.1007/s00500-015- 1826-y
Aneja, D., Colburn, A., Faigin, G., Shapiro, L., & Mones, B. (2017). Modeling Stylized Character Expressions via Deep Learning. In Computer Vision – ACCV 2016. ACCV 2016. Lecture Notes in Computer Science (Vol. 10112). Springer, Cham. https://doi.org/10.1007/978-3-319-54184-6_9
Arana-Llanes, J. Y., González-Serna, G., Pineda-Tapia, R., Olivares-Peregrino, V., Ricarte-Trives, J. J., & Latorre- Postigo, J. M. (2018). EEG lecture on recommended activities for the induction of attention and concentration mental states on e-learning students. Journal of Intelligent & Fuzzy Systems, 34(5). https://doi.org/10.3233/JIFS- 169517
Arroyo, I., Cooper, D. G., Burleson, W., Woolf, B. P., Muldner, K., & Christopherson, R. (2009). Emotion sensors go to school. Artificial Intelligence in Education, 17–24.
Barrón-Estrada, M. L., Zatarain-Cabada, R., Aispuro-Medina, B. G., Valencia-Rodríguez, E. M., & Lara-Barrera, A. C. (2016). Building a Corpus of Facial Expressions for Learning-Centered Emotions. Research in Computing Science, 129, 45–52.
Bixler, R., & D’Mello, S. (2013). Towards Automated Detection and Regulation of Affective States During Academic Writing. In Artificial Intelligence in Education. AIED 2013. Lecture Notes in Computer Science (Vol. 7926). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39112-5_142
Bosch, N., & D’Mello, S. (2017). The Affective Experience of Novice Computer Programmers. International Journal of Artificial Intelligence in Education, 27(1). https://doi.org/10.1007/s40593-015-0069-5
Bosch, N., D’Mello, S. K., Baker, R. S., Ocumpaugh, J., Shute, V., Ventura, M., Wang, L., & Zhao, W. (2016a). Detecting student emotions in computer-enabled classrooms. IJCAI International Joint Conference on Artificial Intelligence, 4125–4129.
Bosch, N., D’Mello, S. K., Ocumpaugh, J., Baker, R. S., & Shute, V. (2016b). Using Video to Automatically Detect Learner Affect in Computer-Enabled Classrooms. ACM Transactions on Interactive Intelligent Systems, 6(2). https://doi.org/10.1145/2946837
Botelho, A. F., Baker, R. S., & Heffernan, N. T. (2017). Improving Sensor-Free Affect Detection Using Deep Learning. In Artificial Intelligence in Education. AIED 2017. Lecture Notes in Computer Science (Vol. 10331). https://doi.org/10.1007/978-3-319-61425-0_4
Cabada, R., Barrón, M., & Olivares, J. M. (2014). Reconocimiento automático y aspectos éticos de emociones para aplicaciones educativas. Inteligencia Artificial: Una Reflexión Obligada.
Cornelius, R. R. (1996). The science of emotion: Research and tradition in the psychology of emotions. Prentice-Hall, Inc.
Cowie, R., Douglas-Cowie, E., Tsapatsoulis, N., Votsis, G., Kollias, S., Fellenz, W., & Taylor, J. G. (2001). Emotion recognition in human-computer interaction. IEEE Signal Processing Magazine, 18(1). https://doi.org/10.1109/79.911197
Ekman, P. (2004). Emotions Revealed. Recognizing Faces and Feelings to Improve Communication and Emotional Life. Henrry Holt and Company.
Ekman, P., Friesen, W., & Hager, J. (2002). Facial action coding system: Research nexus network research information.
el Kaliouby, R., & Picard, R. W. (2019). Affectiva Database. MIT Media Laboratory. https://www.affectiva.com/
Freitas-Magalhães, A. (2021). Facial Action Coding System 4.0-Manual of Scientific Codification of the Human Face. Leya.
Fuentes, C., Herskovic, V., Rodríguez, I., Gerea, C., Marques, M., & Rossel, P. O. (2017). A systematic literature review about technologies for self-reporting emotional information. Journal of Ambient Intelligence and Humanized Computing, 8(4). https://doi.org/10.1007/s12652-016-0430-z
González Meneses, Y. N., Guerrero García, J., Reyes García, C. A., Olmos Pineda, I., & González Calleros, J. M. (2019). Methodology for Automatic Identification of Emotions in Learning Environments. Research in Computing Science, 148(5), 89–96. https://doi.org/10.1088/0031-9112/29/6/013
González-Hernández, F., Zatarain-Cabada, R., Barrón-Estrada, M. L., & Rodríguez-Rangel, H. (2018). Recognition of learning-centered emotions using a convolutional neural network. Journal of Intelligent & Fuzzy Systems, 34(5). https://doi.org/10.3233/JIFS-169514
Graesser, A. C., & D’Mello, S. (2012). Emotions During the Learning of Difficult Material. Psychology of Learning and Motivation, 57. https://doi.org/10.1016/B978-0-12-394293-7.00005-4
Gupta, A., D’Cunha, A., Awasthi, K., & Balasubramanian, V. (2016). DAiSEE: Towards User Engagement Recognition in the Wild. ArXiv Preprint.
Happy, S. L., Patnaik, P., Routray, A., & Guha, R. (2017). The Indian Spontaneous Expression Database for Emotion Recognition. IEEE Transactions on Affective Computing, 8(1). https://doi.org/10.1109/TAFFC.2015.2498174
Harley, J. M., Bouchet, F., & Azevedo, R. (2013). Aligning and Comparing Data on Emotions Experienced during Learning with MetaTutor. In Artificial Intelligence in Education. AIED 2013. Lecture Notes in Computer Science (Vol. 7926). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39112-5_7
Hill, D. (2010). Emotionomics: Leveraging emotions for business success.
Hjortsj, C. H., Ekman, P., Friesen, W. v., Hager, J. C., Facs, F., & Facs, F. M. (2019). Sistema de Codificación Facial.
Koelstra, S., Muhl, C., Soleymani, M., Jong-Seok Lee, Yazdani, A., Ebrahimi, T., Pun, T., Nijholt, A., & Patras, I. (2012). DEAP: A Database for Emotion Analysis; Using Physiological Signals. IEEE Transactions on Affective Computing, 3(1). https://doi.org/10.1109/T-AFFC.2011.15
Langner, O., Dotsch, R., Bijlstra, G., Wigboldus, D. H. J., Hawk, S. T., & van Knippenberg, A. (2010). Presentation and validation of the Radboud Faces Database. Cognition & Emotion, 24(8). https://doi.org/10.1080/02699930903485076
Livingstone, S. R., & Russo, F. A. (2018). The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS): A dynamic, multimodal set of facial and vocal expressions in North American English. PLOS ONE, 13(5). https://doi.org/10.1371/journal.pone.0196391
Lucey, P., Cohn, J. F., Kanade, T., Saragih, J., & Ambadar, Z. (2010). The extended Cohn-Kanade dataset (CK+): a complete facial expression dataset for action unit and emotion-specified expression Conference on. Computer Vision and Pattern Recognition Workshops (CVPRW), 2010 IEEE Computer Society Conference On, July, 94– 101.
Lyons, M. J., Kamachi, M., & Gyoba, J. (2014). Japanese Female Facial Expressions (JAFFE), Database of digital images. http://www.kasrl.org/jaffe_info.html
Mavadati, S. M., Mahoor, M. H., Bartlett, K., Trinh, P., & Cohn, J. F. (2013). DISFA: A Spontaneous Facial Action Intensity Database. IEEE Transactions on Affective Computing, 4(2). https://doi.org/10.1109/T-AFFC.2013.4
Mehmood, R., & Lee, H. (2017). Towards Building a Computer Aided Education System for Special Students Using Wearable Sensor Technologies. Sensors, 17(317), 1–22. https://doi.org/10.3390/s17020317
Mena-Chalco, J. P., Cesar-Jr, R., & Velho, L. (2008). Banco de dados de faces 3D: IMPA-FACE3D. IMPA-RJ, Tech. Rep.
Mohamad Nezami, O., Dras, M., Hamey, L., Richards, D., Wan, S., & Paris, C. (2020). Automatic Recognition of Student Engagement Using Deep Learning and Facial Expression. In Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2019. Lecture Notes in Computer Science. https://doi.org/10.1007/978- 3-030-46133-1_17
Mollahosseini, A., Hasani, B., & Mahoor, M. H. (2019). AffectNet: A Database for Facial Expression, Valence, and Arousal Computing in the Wild. IEEE Transactions on Affective Computing, 10(1). https://doi.org/10.1109/TAFFC.2017.2740923
Monkaresi, H., Bosch, N., Calvo, R. A., & D’Mello, S. K. (2017). Automated Detection of Engagement Using Video- Based Estimation of Facial Expressions and Heart Rate. IEEE Transactions on Affective Computing, 8(1). https://doi.org/10.1109/TAFFC.2016.2515084
Nye, B., Karumbaiah, S., Tokel, S. T., Core, M. G., Stratou, G., Auerbach, D., & Georgila, K. (2017). Analyzing Learner Affect in a Scenario-Based Intelligent Tutoring System. In Artificial Intelligence in Education. AIED 2017. Lecture Notes in Computer Science (Vol. 10331). Springer, Cham. https://doi.org/10.1007/978-3-319- 61425-0_60
Picard, R. W. (2000). Affective Computing. MIT Press.
Picard, R. W. (2003). Affective computing: challenges. International Journal of Human-Computer Studies, 59(1–2). https://doi.org/10.1016/S1071-5819(03)00052-1
Scherer, K. R. (2005). What are emotions? And how can they be measured? Social Science Information, 44(4). https://doi.org/10.1177/0539018405058216
Sneddon, I., McRorie, M., McKeown, G., & Hanratty, J. (2012). The Belfast Induced Natural Emotion Database. IEEE Transactions on Affective Computing, 3(1). https://doi.org/10.1109/T-AFFC.2011.26
Steidl, S. (2009). Automatic classification of emotion related user states in spontaneous children’s speech. Logos- Verlag.
Thomaz, C. E. (2012). FEI Face Database. https://fei.edu.br/~cet/facedatabase.html
Valstar, M., & Pantic, M. (2010). Induced disgust, happiness and surprise: an addition to the MMI facial expression database. Proc. 3rd Intern. Workshop on EMOTION (Satellite of LREC): Corpora for Research on Emotion and Affect.
Xiao, X., Pham, P., & Wang, J. (2017). Dynamics of Affective States During MOOC Learning. In Artificial Intelligence in Education. AIED 2017. Lecture Notes in Computer Science (Vol. 10331). Springer, Cham. https://doi.org/10.1007/978-3-319-61425-0_70
Zafeiriou, S., Kollias, D., Nicolaou, M. A., Papaioannou, A., Zhao, G., & Kotsia, I. (2017). Aff-wild: valence and arousal’In-the-Wild’challenge. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 34–41.
Zatarain-Cabada, R., Barrón-Estrada, M. L., González-Hernández, F., Oramas-Bustillos, R., Alor-Hernández, G., & Reyes-García, C. A. (2017b). Building a Corpus and a Local Binary Pattern Recognizer for Learning-Centered Emotions. In Advances in Soft Computing. MICAI 2016. Lecture Notes in Computer Science (Vol. 10062). https://doi.org/10.1007/978-3-319-62428-0_43
Zatarain-Cabada, R., Barron-Estrada, M. L., Gonzalez-Hernandez, F., & Rodriguez-Rangel, H. (2017a). Building a Face Expression Recognizer and a Face Expression Database for an Intelligent Tutoring System. 2017 IEEE 17th International Conference on Advanced Learning Technologies (ICALT). https://doi.org/10.1109/ICALT.2017.141
Zhao, G., Huang, X., Taini, M., Li, S. Z., & Pietikäinen, M. (2011). Facial expression recognition from near-infrared videos. Image and Vision Computing, 29(9). https://doi.org/10.1016/j.imavis.2011.07.002
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Autónoma de Bucaramanga UNAB
dc.source.spa.fl_str_mv Vol. 22 Núm. 2 (2021): Revista Colombiana de Computación (Julio-Diciembre); 58-71
institution Universidad Autónoma de Bucaramanga - UNAB
bitstream.url.fl_str_mv https://repository.unab.edu.co/bitstream/20.500.12749/26488/1/Art%c3%adculo.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/26488/2/license.txt
https://repository.unab.edu.co/bitstream/20.500.12749/26488/3/Art%c3%adculo.pdf.jpg
bitstream.checksum.fl_str_mv e3108499b5896785c7866e735ab90f7d
855f7d18ea80f5df821f7004dff2f316
9e9c5d28bb87b03cc57054286c171b6d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB
repository.mail.fl_str_mv repositorio@unab.edu.co
_version_ 1814277937207181312
spelling González Meneses, Yesenia Nohemí41463930-5e4c-4af3-8f4a-5bdf4cb067f6Guerrero García, Josefinaec2d31ce-8a99-4a54-a6e1-ba5fe08ff3b7González Meneses, Yesenia Nohemí [0000-0003-1034-0204]Guerrero García, Josefina [0000-0002-3393-610X]2024-09-12T20:28:16Z2024-09-12T20:28:16Z2021-09-17ISSN: 1657-2831e-ISSN: 2539-2115http://hdl.handle.net/20.500.12749/26488instname:Universidad Autónoma de Bucaramanga UNABrepourl:https://repository.unab.edu.cohttps://doi.org/10.29375/25392115.4300Este trabajo presenta el análisis del estado del arte de bases de datos de expresiones faciales para la identificación automática de emociones centradas en el aprendizaje. La obtención de datos para los procesos de reconocimiento automático en un contexto específico es esencial para su éxito. Así, este tipo de proyectos inician haciendo una revisión de la información disponible para llevar a cabo las etapas de entrenamiento y clasificación de las emociones con las técnicas computacionales que se propongan. Se describen las actividades de búsqueda de las bases de datos de expresiones faciales que capturan emociones centradas en el aprendizaje. Estas actividades formaron parte de las etapas de la metodología del trabajo para reconocer las emociones de estudiantes mientras realizaban actividades de aprendizaje en línea. Esto permitió justificar la creación de la base de datos desde la formalización de un protocolo para su captura hasta su digitalización.This work presents the analysis of the state of the art of facial expressions databases for the automatic identification of learning-centered emotions. Obtaining data for automatic recognition processes in a specific context is essential for their success. Thus, this project begins by reviewing the information available to carry out the training and classification stages of emotions with the proposed computational techniques. The search activities of the databases of facial expressions that capture learning-centered emotions are described. These activities were part of the stages of the work methodology to recognize students' emotions while they carried out online learning activities. This allowed justifying the creation of the database, formalizing a protocol from its capture to its digitization.application/pdfspaUniversidad Autónoma de Bucaramanga UNABhttps://revistas.unab.edu.co/index.php/rcc/article/view/4300/3508https://revistas.unab.edu.co/index.php/rcc/issue/view/276Aifanti, N., Papachristou, C., & Delopoulos, A. (2010). The MUG facial expression database. 1th International Workshop on Image Analysis for Multimedia Interactive Services WIAMIS 10, 1–4.Almohammadi, K., Hagras, H., Yao, B., Alzahrani, A., Alghazzawi, D., & Aldabbagh, G. (2017). A type-2 fuzzy logic recommendation system for adaptive teaching. Soft Computing, 21(4). https://doi.org/10.1007/s00500-015- 1826-yAneja, D., Colburn, A., Faigin, G., Shapiro, L., & Mones, B. (2017). Modeling Stylized Character Expressions via Deep Learning. In Computer Vision – ACCV 2016. ACCV 2016. Lecture Notes in Computer Science (Vol. 10112). Springer, Cham. https://doi.org/10.1007/978-3-319-54184-6_9Arana-Llanes, J. Y., González-Serna, G., Pineda-Tapia, R., Olivares-Peregrino, V., Ricarte-Trives, J. J., & Latorre- Postigo, J. M. (2018). EEG lecture on recommended activities for the induction of attention and concentration mental states on e-learning students. Journal of Intelligent & Fuzzy Systems, 34(5). https://doi.org/10.3233/JIFS- 169517Arroyo, I., Cooper, D. G., Burleson, W., Woolf, B. P., Muldner, K., & Christopherson, R. (2009). Emotion sensors go to school. Artificial Intelligence in Education, 17–24.Barrón-Estrada, M. L., Zatarain-Cabada, R., Aispuro-Medina, B. G., Valencia-Rodríguez, E. M., & Lara-Barrera, A. C. (2016). Building a Corpus of Facial Expressions for Learning-Centered Emotions. Research in Computing Science, 129, 45–52.Bixler, R., & D’Mello, S. (2013). Towards Automated Detection and Regulation of Affective States During Academic Writing. In Artificial Intelligence in Education. AIED 2013. Lecture Notes in Computer Science (Vol. 7926). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39112-5_142Bosch, N., & D’Mello, S. (2017). The Affective Experience of Novice Computer Programmers. International Journal of Artificial Intelligence in Education, 27(1). https://doi.org/10.1007/s40593-015-0069-5Bosch, N., D’Mello, S. K., Baker, R. S., Ocumpaugh, J., Shute, V., Ventura, M., Wang, L., & Zhao, W. (2016a). Detecting student emotions in computer-enabled classrooms. IJCAI International Joint Conference on Artificial Intelligence, 4125–4129.Bosch, N., D’Mello, S. K., Ocumpaugh, J., Baker, R. S., & Shute, V. (2016b). Using Video to Automatically Detect Learner Affect in Computer-Enabled Classrooms. ACM Transactions on Interactive Intelligent Systems, 6(2). https://doi.org/10.1145/2946837Botelho, A. F., Baker, R. S., & Heffernan, N. T. (2017). Improving Sensor-Free Affect Detection Using Deep Learning. In Artificial Intelligence in Education. AIED 2017. Lecture Notes in Computer Science (Vol. 10331). https://doi.org/10.1007/978-3-319-61425-0_4Cabada, R., Barrón, M., & Olivares, J. M. (2014). Reconocimiento automático y aspectos éticos de emociones para aplicaciones educativas. Inteligencia Artificial: Una Reflexión Obligada.Cornelius, R. R. (1996). The science of emotion: Research and tradition in the psychology of emotions. Prentice-Hall, Inc.Cowie, R., Douglas-Cowie, E., Tsapatsoulis, N., Votsis, G., Kollias, S., Fellenz, W., & Taylor, J. G. (2001). Emotion recognition in human-computer interaction. IEEE Signal Processing Magazine, 18(1). https://doi.org/10.1109/79.911197Ekman, P. (2004). Emotions Revealed. Recognizing Faces and Feelings to Improve Communication and Emotional Life. Henrry Holt and Company.Ekman, P., Friesen, W., & Hager, J. (2002). Facial action coding system: Research nexus network research information.el Kaliouby, R., & Picard, R. W. (2019). Affectiva Database. MIT Media Laboratory. https://www.affectiva.com/Freitas-Magalhães, A. (2021). Facial Action Coding System 4.0-Manual of Scientific Codification of the Human Face. Leya.Fuentes, C., Herskovic, V., Rodríguez, I., Gerea, C., Marques, M., & Rossel, P. O. (2017). A systematic literature review about technologies for self-reporting emotional information. Journal of Ambient Intelligence and Humanized Computing, 8(4). https://doi.org/10.1007/s12652-016-0430-zGonzález Meneses, Y. N., Guerrero García, J., Reyes García, C. A., Olmos Pineda, I., & González Calleros, J. M. (2019). Methodology for Automatic Identification of Emotions in Learning Environments. Research in Computing Science, 148(5), 89–96. https://doi.org/10.1088/0031-9112/29/6/013González-Hernández, F., Zatarain-Cabada, R., Barrón-Estrada, M. L., & Rodríguez-Rangel, H. (2018). Recognition of learning-centered emotions using a convolutional neural network. Journal of Intelligent & Fuzzy Systems, 34(5). https://doi.org/10.3233/JIFS-169514Graesser, A. C., & D’Mello, S. (2012). Emotions During the Learning of Difficult Material. Psychology of Learning and Motivation, 57. https://doi.org/10.1016/B978-0-12-394293-7.00005-4Gupta, A., D’Cunha, A., Awasthi, K., & Balasubramanian, V. (2016). DAiSEE: Towards User Engagement Recognition in the Wild. ArXiv Preprint.Happy, S. L., Patnaik, P., Routray, A., & Guha, R. (2017). The Indian Spontaneous Expression Database for Emotion Recognition. IEEE Transactions on Affective Computing, 8(1). https://doi.org/10.1109/TAFFC.2015.2498174Harley, J. M., Bouchet, F., & Azevedo, R. (2013). Aligning and Comparing Data on Emotions Experienced during Learning with MetaTutor. In Artificial Intelligence in Education. AIED 2013. Lecture Notes in Computer Science (Vol. 7926). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39112-5_7Hill, D. (2010). Emotionomics: Leveraging emotions for business success.Hjortsj, C. H., Ekman, P., Friesen, W. v., Hager, J. C., Facs, F., & Facs, F. M. (2019). Sistema de Codificación Facial.Koelstra, S., Muhl, C., Soleymani, M., Jong-Seok Lee, Yazdani, A., Ebrahimi, T., Pun, T., Nijholt, A., & Patras, I. (2012). DEAP: A Database for Emotion Analysis; Using Physiological Signals. IEEE Transactions on Affective Computing, 3(1). https://doi.org/10.1109/T-AFFC.2011.15Langner, O., Dotsch, R., Bijlstra, G., Wigboldus, D. H. J., Hawk, S. T., & van Knippenberg, A. (2010). Presentation and validation of the Radboud Faces Database. Cognition & Emotion, 24(8). https://doi.org/10.1080/02699930903485076Livingstone, S. R., & Russo, F. A. (2018). The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS): A dynamic, multimodal set of facial and vocal expressions in North American English. PLOS ONE, 13(5). https://doi.org/10.1371/journal.pone.0196391Lucey, P., Cohn, J. F., Kanade, T., Saragih, J., & Ambadar, Z. (2010). The extended Cohn-Kanade dataset (CK+): a complete facial expression dataset for action unit and emotion-specified expression Conference on. Computer Vision and Pattern Recognition Workshops (CVPRW), 2010 IEEE Computer Society Conference On, July, 94– 101.Lyons, M. J., Kamachi, M., & Gyoba, J. (2014). Japanese Female Facial Expressions (JAFFE), Database of digital images. http://www.kasrl.org/jaffe_info.htmlMavadati, S. M., Mahoor, M. H., Bartlett, K., Trinh, P., & Cohn, J. F. (2013). DISFA: A Spontaneous Facial Action Intensity Database. IEEE Transactions on Affective Computing, 4(2). https://doi.org/10.1109/T-AFFC.2013.4Mehmood, R., & Lee, H. (2017). Towards Building a Computer Aided Education System for Special Students Using Wearable Sensor Technologies. Sensors, 17(317), 1–22. https://doi.org/10.3390/s17020317Mena-Chalco, J. P., Cesar-Jr, R., & Velho, L. (2008). Banco de dados de faces 3D: IMPA-FACE3D. IMPA-RJ, Tech. Rep.Mohamad Nezami, O., Dras, M., Hamey, L., Richards, D., Wan, S., & Paris, C. (2020). Automatic Recognition of Student Engagement Using Deep Learning and Facial Expression. In Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2019. Lecture Notes in Computer Science. https://doi.org/10.1007/978- 3-030-46133-1_17Mollahosseini, A., Hasani, B., & Mahoor, M. H. (2019). AffectNet: A Database for Facial Expression, Valence, and Arousal Computing in the Wild. IEEE Transactions on Affective Computing, 10(1). https://doi.org/10.1109/TAFFC.2017.2740923Monkaresi, H., Bosch, N., Calvo, R. A., & D’Mello, S. K. (2017). Automated Detection of Engagement Using Video- Based Estimation of Facial Expressions and Heart Rate. IEEE Transactions on Affective Computing, 8(1). https://doi.org/10.1109/TAFFC.2016.2515084Nye, B., Karumbaiah, S., Tokel, S. T., Core, M. G., Stratou, G., Auerbach, D., & Georgila, K. (2017). Analyzing Learner Affect in a Scenario-Based Intelligent Tutoring System. In Artificial Intelligence in Education. AIED 2017. Lecture Notes in Computer Science (Vol. 10331). Springer, Cham. https://doi.org/10.1007/978-3-319- 61425-0_60Picard, R. W. (2000). Affective Computing. MIT Press.Picard, R. W. (2003). Affective computing: challenges. International Journal of Human-Computer Studies, 59(1–2). https://doi.org/10.1016/S1071-5819(03)00052-1Scherer, K. R. (2005). What are emotions? And how can they be measured? Social Science Information, 44(4). https://doi.org/10.1177/0539018405058216Sneddon, I., McRorie, M., McKeown, G., & Hanratty, J. (2012). The Belfast Induced Natural Emotion Database. IEEE Transactions on Affective Computing, 3(1). https://doi.org/10.1109/T-AFFC.2011.26Steidl, S. (2009). Automatic classification of emotion related user states in spontaneous children’s speech. Logos- Verlag.Thomaz, C. E. (2012). FEI Face Database. https://fei.edu.br/~cet/facedatabase.htmlValstar, M., & Pantic, M. (2010). Induced disgust, happiness and surprise: an addition to the MMI facial expression database. Proc. 3rd Intern. Workshop on EMOTION (Satellite of LREC): Corpora for Research on Emotion and Affect.Xiao, X., Pham, P., & Wang, J. (2017). Dynamics of Affective States During MOOC Learning. In Artificial Intelligence in Education. AIED 2017. Lecture Notes in Computer Science (Vol. 10331). Springer, Cham. https://doi.org/10.1007/978-3-319-61425-0_70Zafeiriou, S., Kollias, D., Nicolaou, M. A., Papaioannou, A., Zhao, G., & Kotsia, I. (2017). Aff-wild: valence and arousal’In-the-Wild’challenge. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 34–41.Zatarain-Cabada, R., Barrón-Estrada, M. L., González-Hernández, F., Oramas-Bustillos, R., Alor-Hernández, G., & Reyes-García, C. A. (2017b). Building a Corpus and a Local Binary Pattern Recognizer for Learning-Centered Emotions. In Advances in Soft Computing. MICAI 2016. Lecture Notes in Computer Science (Vol. 10062). https://doi.org/10.1007/978-3-319-62428-0_43Zatarain-Cabada, R., Barron-Estrada, M. L., Gonzalez-Hernandez, F., & Rodriguez-Rangel, H. (2017a). Building a Face Expression Recognizer and a Face Expression Database for an Intelligent Tutoring System. 2017 IEEE 17th International Conference on Advanced Learning Technologies (ICALT). https://doi.org/10.1109/ICALT.2017.141Zhao, G., Huang, X., Taini, M., Li, S. Z., & Pietikäinen, M. (2011). Facial expression recognition from near-infrared videos. Image and Vision Computing, 29(9). https://doi.org/10.1016/j.imavis.2011.07.002Vol. 22 Núm. 2 (2021): Revista Colombiana de Computación (Julio-Diciembre); 58-71Bases de datosIdentificación automática de emocionesExpresiones facialesDatabasesAutomatic identification of emotionsFacial expressionsAnálisis de bases de datos de expresiones faciales para la identificación automática de emociones centradas en el aprendizajeAnalysis of databases of facial expressions for the automatic identification of learning-centered emotionsinfo:eu-repo/semantics/articleArtículohttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/access_right/c_abf2ORIGINALArtículo.pdfArtículo.pdfArtículoapplication/pdf486312https://repository.unab.edu.co/bitstream/20.500.12749/26488/1/Art%c3%adculo.pdfe3108499b5896785c7866e735ab90f7dMD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8347https://repository.unab.edu.co/bitstream/20.500.12749/26488/2/license.txt855f7d18ea80f5df821f7004dff2f316MD52open accessTHUMBNAILArtículo.pdf.jpgArtículo.pdf.jpgIM Thumbnailimage/jpeg10056https://repository.unab.edu.co/bitstream/20.500.12749/26488/3/Art%c3%adculo.pdf.jpg9e9c5d28bb87b03cc57054286c171b6dMD53open access20.500.12749/26488oai:repository.unab.edu.co:20.500.12749/264882024-09-12 22:02:05.422open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.coTGEgUmV2aXN0YSBDb2xvbWJpYW5hIGRlIENvbXB1dGFjacOzbiBlcyBmaW5hbmNpYWRhIHBvciBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgQnVjYXJhbWFuZ2EuIEVzdGEgUmV2aXN0YSBubyBjb2JyYSB0YXNhIGRlIHN1bWlzacOzbiB5IHB1YmxpY2FjacOzbiBkZSBhcnTDrWN1bG9zLiBQcm92ZWUgYWNjZXNvIGxpYnJlIGlubWVkaWF0byBhIHN1IGNvbnRlbmlkbyBiYWpvIGVsIHByaW5jaXBpbyBkZSBxdWUgaGFjZXIgZGlzcG9uaWJsZSBncmF0dWl0YW1lbnRlIGludmVzdGlnYWNpw7NuIGFsIHDDumJsaWNvIGFwb3lhIGEgdW4gbWF5b3IgaW50ZXJjYW1iaW8gZGUgY29ub2NpbWllbnRvIGdsb2JhbC4=