Análisis de bases de datos de expresiones faciales para la identificación automática de emociones centradas en el aprendizaje
Este trabajo presenta el análisis del estado del arte de bases de datos de expresiones faciales para la identificación automática de emociones centradas en el aprendizaje. La obtención de datos para los procesos de reconocimiento automático en un contexto específico es esencial para su éxito. Así, e...
- Autores:
-
González Meneses, Yesenia Nohemí
Guerrero García, Josefina
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2021
- Institución:
- Universidad Autónoma de Bucaramanga - UNAB
- Repositorio:
- Repositorio UNAB
- Idioma:
- spa
- OAI Identifier:
- oai:repository.unab.edu.co:20.500.12749/26488
- Palabra clave:
- Bases de datos
Identificación automática de emociones
Expresiones faciales
Databases
Automatic identification of emotions
Facial expressions
- Rights
- License
- http://purl.org/coar/access_right/c_abf2
id |
UNAB2_ba5819f93564687dc23333a32eabd2b0 |
---|---|
oai_identifier_str |
oai:repository.unab.edu.co:20.500.12749/26488 |
network_acronym_str |
UNAB2 |
network_name_str |
Repositorio UNAB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Análisis de bases de datos de expresiones faciales para la identificación automática de emociones centradas en el aprendizaje |
dc.title.translated.eng.fl_str_mv |
Analysis of databases of facial expressions for the automatic identification of learning-centered emotions |
title |
Análisis de bases de datos de expresiones faciales para la identificación automática de emociones centradas en el aprendizaje |
spellingShingle |
Análisis de bases de datos de expresiones faciales para la identificación automática de emociones centradas en el aprendizaje Bases de datos Identificación automática de emociones Expresiones faciales Databases Automatic identification of emotions Facial expressions |
title_short |
Análisis de bases de datos de expresiones faciales para la identificación automática de emociones centradas en el aprendizaje |
title_full |
Análisis de bases de datos de expresiones faciales para la identificación automática de emociones centradas en el aprendizaje |
title_fullStr |
Análisis de bases de datos de expresiones faciales para la identificación automática de emociones centradas en el aprendizaje |
title_full_unstemmed |
Análisis de bases de datos de expresiones faciales para la identificación automática de emociones centradas en el aprendizaje |
title_sort |
Análisis de bases de datos de expresiones faciales para la identificación automática de emociones centradas en el aprendizaje |
dc.creator.fl_str_mv |
González Meneses, Yesenia Nohemí Guerrero García, Josefina |
dc.contributor.author.none.fl_str_mv |
González Meneses, Yesenia Nohemí Guerrero García, Josefina |
dc.contributor.orcid.spa.fl_str_mv |
González Meneses, Yesenia Nohemí [0000-0003-1034-0204] Guerrero García, Josefina [0000-0002-3393-610X] |
dc.subject.spa.fl_str_mv |
Bases de datos Identificación automática de emociones Expresiones faciales |
topic |
Bases de datos Identificación automática de emociones Expresiones faciales Databases Automatic identification of emotions Facial expressions |
dc.subject.keywords.eng.fl_str_mv |
Databases Automatic identification of emotions Facial expressions |
description |
Este trabajo presenta el análisis del estado del arte de bases de datos de expresiones faciales para la identificación automática de emociones centradas en el aprendizaje. La obtención de datos para los procesos de reconocimiento automático en un contexto específico es esencial para su éxito. Así, este tipo de proyectos inician haciendo una revisión de la información disponible para llevar a cabo las etapas de entrenamiento y clasificación de las emociones con las técnicas computacionales que se propongan. Se describen las actividades de búsqueda de las bases de datos de expresiones faciales que capturan emociones centradas en el aprendizaje. Estas actividades formaron parte de las etapas de la metodología del trabajo para reconocer las emociones de estudiantes mientras realizaban actividades de aprendizaje en línea. Esto permitió justificar la creación de la base de datos desde la formalización de un protocolo para su captura hasta su digitalización. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021-09-17 |
dc.date.accessioned.none.fl_str_mv |
2024-09-12T20:28:16Z |
dc.date.available.none.fl_str_mv |
2024-09-12T20:28:16Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.local.spa.fl_str_mv |
Artículo |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.identifier.issn.spa.fl_str_mv |
ISSN: 1657-2831 e-ISSN: 2539-2115 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12749/26488 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Autónoma de Bucaramanga UNAB |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.unab.edu.co |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.29375/25392115.4300 |
identifier_str_mv |
ISSN: 1657-2831 e-ISSN: 2539-2115 instname:Universidad Autónoma de Bucaramanga UNAB repourl:https://repository.unab.edu.co |
url |
http://hdl.handle.net/20.500.12749/26488 https://doi.org/10.29375/25392115.4300 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
https://revistas.unab.edu.co/index.php/rcc/article/view/4300/3508 |
dc.relation.uri.spa.fl_str_mv |
https://revistas.unab.edu.co/index.php/rcc/issue/view/276 |
dc.relation.references.none.fl_str_mv |
Aifanti, N., Papachristou, C., & Delopoulos, A. (2010). The MUG facial expression database. 1th International Workshop on Image Analysis for Multimedia Interactive Services WIAMIS 10, 1–4. Almohammadi, K., Hagras, H., Yao, B., Alzahrani, A., Alghazzawi, D., & Aldabbagh, G. (2017). A type-2 fuzzy logic recommendation system for adaptive teaching. Soft Computing, 21(4). https://doi.org/10.1007/s00500-015- 1826-y Aneja, D., Colburn, A., Faigin, G., Shapiro, L., & Mones, B. (2017). Modeling Stylized Character Expressions via Deep Learning. In Computer Vision – ACCV 2016. ACCV 2016. Lecture Notes in Computer Science (Vol. 10112). Springer, Cham. https://doi.org/10.1007/978-3-319-54184-6_9 Arana-Llanes, J. Y., González-Serna, G., Pineda-Tapia, R., Olivares-Peregrino, V., Ricarte-Trives, J. J., & Latorre- Postigo, J. M. (2018). EEG lecture on recommended activities for the induction of attention and concentration mental states on e-learning students. Journal of Intelligent & Fuzzy Systems, 34(5). https://doi.org/10.3233/JIFS- 169517 Arroyo, I., Cooper, D. G., Burleson, W., Woolf, B. P., Muldner, K., & Christopherson, R. (2009). Emotion sensors go to school. Artificial Intelligence in Education, 17–24. Barrón-Estrada, M. L., Zatarain-Cabada, R., Aispuro-Medina, B. G., Valencia-Rodríguez, E. M., & Lara-Barrera, A. C. (2016). Building a Corpus of Facial Expressions for Learning-Centered Emotions. Research in Computing Science, 129, 45–52. Bixler, R., & D’Mello, S. (2013). Towards Automated Detection and Regulation of Affective States During Academic Writing. In Artificial Intelligence in Education. AIED 2013. Lecture Notes in Computer Science (Vol. 7926). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39112-5_142 Bosch, N., & D’Mello, S. (2017). The Affective Experience of Novice Computer Programmers. International Journal of Artificial Intelligence in Education, 27(1). https://doi.org/10.1007/s40593-015-0069-5 Bosch, N., D’Mello, S. K., Baker, R. S., Ocumpaugh, J., Shute, V., Ventura, M., Wang, L., & Zhao, W. (2016a). Detecting student emotions in computer-enabled classrooms. IJCAI International Joint Conference on Artificial Intelligence, 4125–4129. Bosch, N., D’Mello, S. K., Ocumpaugh, J., Baker, R. S., & Shute, V. (2016b). Using Video to Automatically Detect Learner Affect in Computer-Enabled Classrooms. ACM Transactions on Interactive Intelligent Systems, 6(2). https://doi.org/10.1145/2946837 Botelho, A. F., Baker, R. S., & Heffernan, N. T. (2017). Improving Sensor-Free Affect Detection Using Deep Learning. In Artificial Intelligence in Education. AIED 2017. Lecture Notes in Computer Science (Vol. 10331). https://doi.org/10.1007/978-3-319-61425-0_4 Cabada, R., Barrón, M., & Olivares, J. M. (2014). Reconocimiento automático y aspectos éticos de emociones para aplicaciones educativas. Inteligencia Artificial: Una Reflexión Obligada. Cornelius, R. R. (1996). The science of emotion: Research and tradition in the psychology of emotions. Prentice-Hall, Inc. Cowie, R., Douglas-Cowie, E., Tsapatsoulis, N., Votsis, G., Kollias, S., Fellenz, W., & Taylor, J. G. (2001). Emotion recognition in human-computer interaction. IEEE Signal Processing Magazine, 18(1). https://doi.org/10.1109/79.911197 Ekman, P. (2004). Emotions Revealed. Recognizing Faces and Feelings to Improve Communication and Emotional Life. Henrry Holt and Company. Ekman, P., Friesen, W., & Hager, J. (2002). Facial action coding system: Research nexus network research information. el Kaliouby, R., & Picard, R. W. (2019). Affectiva Database. MIT Media Laboratory. https://www.affectiva.com/ Freitas-Magalhães, A. (2021). Facial Action Coding System 4.0-Manual of Scientific Codification of the Human Face. Leya. Fuentes, C., Herskovic, V., Rodríguez, I., Gerea, C., Marques, M., & Rossel, P. O. (2017). A systematic literature review about technologies for self-reporting emotional information. Journal of Ambient Intelligence and Humanized Computing, 8(4). https://doi.org/10.1007/s12652-016-0430-z González Meneses, Y. N., Guerrero García, J., Reyes García, C. A., Olmos Pineda, I., & González Calleros, J. M. (2019). Methodology for Automatic Identification of Emotions in Learning Environments. Research in Computing Science, 148(5), 89–96. https://doi.org/10.1088/0031-9112/29/6/013 González-Hernández, F., Zatarain-Cabada, R., Barrón-Estrada, M. L., & Rodríguez-Rangel, H. (2018). Recognition of learning-centered emotions using a convolutional neural network. Journal of Intelligent & Fuzzy Systems, 34(5). https://doi.org/10.3233/JIFS-169514 Graesser, A. C., & D’Mello, S. (2012). Emotions During the Learning of Difficult Material. Psychology of Learning and Motivation, 57. https://doi.org/10.1016/B978-0-12-394293-7.00005-4 Gupta, A., D’Cunha, A., Awasthi, K., & Balasubramanian, V. (2016). DAiSEE: Towards User Engagement Recognition in the Wild. ArXiv Preprint. Happy, S. L., Patnaik, P., Routray, A., & Guha, R. (2017). The Indian Spontaneous Expression Database for Emotion Recognition. IEEE Transactions on Affective Computing, 8(1). https://doi.org/10.1109/TAFFC.2015.2498174 Harley, J. M., Bouchet, F., & Azevedo, R. (2013). Aligning and Comparing Data on Emotions Experienced during Learning with MetaTutor. In Artificial Intelligence in Education. AIED 2013. Lecture Notes in Computer Science (Vol. 7926). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39112-5_7 Hill, D. (2010). Emotionomics: Leveraging emotions for business success. Hjortsj, C. H., Ekman, P., Friesen, W. v., Hager, J. C., Facs, F., & Facs, F. M. (2019). Sistema de Codificación Facial. Koelstra, S., Muhl, C., Soleymani, M., Jong-Seok Lee, Yazdani, A., Ebrahimi, T., Pun, T., Nijholt, A., & Patras, I. (2012). DEAP: A Database for Emotion Analysis; Using Physiological Signals. IEEE Transactions on Affective Computing, 3(1). https://doi.org/10.1109/T-AFFC.2011.15 Langner, O., Dotsch, R., Bijlstra, G., Wigboldus, D. H. J., Hawk, S. T., & van Knippenberg, A. (2010). Presentation and validation of the Radboud Faces Database. Cognition & Emotion, 24(8). https://doi.org/10.1080/02699930903485076 Livingstone, S. R., & Russo, F. A. (2018). The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS): A dynamic, multimodal set of facial and vocal expressions in North American English. PLOS ONE, 13(5). https://doi.org/10.1371/journal.pone.0196391 Lucey, P., Cohn, J. F., Kanade, T., Saragih, J., & Ambadar, Z. (2010). The extended Cohn-Kanade dataset (CK+): a complete facial expression dataset for action unit and emotion-specified expression Conference on. Computer Vision and Pattern Recognition Workshops (CVPRW), 2010 IEEE Computer Society Conference On, July, 94– 101. Lyons, M. J., Kamachi, M., & Gyoba, J. (2014). Japanese Female Facial Expressions (JAFFE), Database of digital images. http://www.kasrl.org/jaffe_info.html Mavadati, S. M., Mahoor, M. H., Bartlett, K., Trinh, P., & Cohn, J. F. (2013). DISFA: A Spontaneous Facial Action Intensity Database. IEEE Transactions on Affective Computing, 4(2). https://doi.org/10.1109/T-AFFC.2013.4 Mehmood, R., & Lee, H. (2017). Towards Building a Computer Aided Education System for Special Students Using Wearable Sensor Technologies. Sensors, 17(317), 1–22. https://doi.org/10.3390/s17020317 Mena-Chalco, J. P., Cesar-Jr, R., & Velho, L. (2008). Banco de dados de faces 3D: IMPA-FACE3D. IMPA-RJ, Tech. Rep. Mohamad Nezami, O., Dras, M., Hamey, L., Richards, D., Wan, S., & Paris, C. (2020). Automatic Recognition of Student Engagement Using Deep Learning and Facial Expression. In Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2019. Lecture Notes in Computer Science. https://doi.org/10.1007/978- 3-030-46133-1_17 Mollahosseini, A., Hasani, B., & Mahoor, M. H. (2019). AffectNet: A Database for Facial Expression, Valence, and Arousal Computing in the Wild. IEEE Transactions on Affective Computing, 10(1). https://doi.org/10.1109/TAFFC.2017.2740923 Monkaresi, H., Bosch, N., Calvo, R. A., & D’Mello, S. K. (2017). Automated Detection of Engagement Using Video- Based Estimation of Facial Expressions and Heart Rate. IEEE Transactions on Affective Computing, 8(1). https://doi.org/10.1109/TAFFC.2016.2515084 Nye, B., Karumbaiah, S., Tokel, S. T., Core, M. G., Stratou, G., Auerbach, D., & Georgila, K. (2017). Analyzing Learner Affect in a Scenario-Based Intelligent Tutoring System. In Artificial Intelligence in Education. AIED 2017. Lecture Notes in Computer Science (Vol. 10331). Springer, Cham. https://doi.org/10.1007/978-3-319- 61425-0_60 Picard, R. W. (2000). Affective Computing. MIT Press. Picard, R. W. (2003). Affective computing: challenges. International Journal of Human-Computer Studies, 59(1–2). https://doi.org/10.1016/S1071-5819(03)00052-1 Scherer, K. R. (2005). What are emotions? And how can they be measured? Social Science Information, 44(4). https://doi.org/10.1177/0539018405058216 Sneddon, I., McRorie, M., McKeown, G., & Hanratty, J. (2012). The Belfast Induced Natural Emotion Database. IEEE Transactions on Affective Computing, 3(1). https://doi.org/10.1109/T-AFFC.2011.26 Steidl, S. (2009). Automatic classification of emotion related user states in spontaneous children’s speech. Logos- Verlag. Thomaz, C. E. (2012). FEI Face Database. https://fei.edu.br/~cet/facedatabase.html Valstar, M., & Pantic, M. (2010). Induced disgust, happiness and surprise: an addition to the MMI facial expression database. Proc. 3rd Intern. Workshop on EMOTION (Satellite of LREC): Corpora for Research on Emotion and Affect. Xiao, X., Pham, P., & Wang, J. (2017). Dynamics of Affective States During MOOC Learning. In Artificial Intelligence in Education. AIED 2017. Lecture Notes in Computer Science (Vol. 10331). Springer, Cham. https://doi.org/10.1007/978-3-319-61425-0_70 Zafeiriou, S., Kollias, D., Nicolaou, M. A., Papaioannou, A., Zhao, G., & Kotsia, I. (2017). Aff-wild: valence and arousal’In-the-Wild’challenge. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 34–41. Zatarain-Cabada, R., Barrón-Estrada, M. L., González-Hernández, F., Oramas-Bustillos, R., Alor-Hernández, G., & Reyes-García, C. A. (2017b). Building a Corpus and a Local Binary Pattern Recognizer for Learning-Centered Emotions. In Advances in Soft Computing. MICAI 2016. Lecture Notes in Computer Science (Vol. 10062). https://doi.org/10.1007/978-3-319-62428-0_43 Zatarain-Cabada, R., Barron-Estrada, M. L., Gonzalez-Hernandez, F., & Rodriguez-Rangel, H. (2017a). Building a Face Expression Recognizer and a Face Expression Database for an Intelligent Tutoring System. 2017 IEEE 17th International Conference on Advanced Learning Technologies (ICALT). https://doi.org/10.1109/ICALT.2017.141 Zhao, G., Huang, X., Taini, M., Li, S. Z., & Pietikäinen, M. (2011). Facial expression recognition from near-infrared videos. Image and Vision Computing, 29(9). https://doi.org/10.1016/j.imavis.2011.07.002 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Autónoma de Bucaramanga UNAB |
dc.source.spa.fl_str_mv |
Vol. 22 Núm. 2 (2021): Revista Colombiana de Computación (Julio-Diciembre); 58-71 |
institution |
Universidad Autónoma de Bucaramanga - UNAB |
bitstream.url.fl_str_mv |
https://repository.unab.edu.co/bitstream/20.500.12749/26488/1/Art%c3%adculo.pdf https://repository.unab.edu.co/bitstream/20.500.12749/26488/2/license.txt https://repository.unab.edu.co/bitstream/20.500.12749/26488/3/Art%c3%adculo.pdf.jpg |
bitstream.checksum.fl_str_mv |
e3108499b5896785c7866e735ab90f7d 855f7d18ea80f5df821f7004dff2f316 9e9c5d28bb87b03cc57054286c171b6d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB |
repository.mail.fl_str_mv |
repositorio@unab.edu.co |
_version_ |
1814277937207181312 |
spelling |
González Meneses, Yesenia Nohemí41463930-5e4c-4af3-8f4a-5bdf4cb067f6Guerrero García, Josefinaec2d31ce-8a99-4a54-a6e1-ba5fe08ff3b7González Meneses, Yesenia Nohemí [0000-0003-1034-0204]Guerrero García, Josefina [0000-0002-3393-610X]2024-09-12T20:28:16Z2024-09-12T20:28:16Z2021-09-17ISSN: 1657-2831e-ISSN: 2539-2115http://hdl.handle.net/20.500.12749/26488instname:Universidad Autónoma de Bucaramanga UNABrepourl:https://repository.unab.edu.cohttps://doi.org/10.29375/25392115.4300Este trabajo presenta el análisis del estado del arte de bases de datos de expresiones faciales para la identificación automática de emociones centradas en el aprendizaje. La obtención de datos para los procesos de reconocimiento automático en un contexto específico es esencial para su éxito. Así, este tipo de proyectos inician haciendo una revisión de la información disponible para llevar a cabo las etapas de entrenamiento y clasificación de las emociones con las técnicas computacionales que se propongan. Se describen las actividades de búsqueda de las bases de datos de expresiones faciales que capturan emociones centradas en el aprendizaje. Estas actividades formaron parte de las etapas de la metodología del trabajo para reconocer las emociones de estudiantes mientras realizaban actividades de aprendizaje en línea. Esto permitió justificar la creación de la base de datos desde la formalización de un protocolo para su captura hasta su digitalización.This work presents the analysis of the state of the art of facial expressions databases for the automatic identification of learning-centered emotions. Obtaining data for automatic recognition processes in a specific context is essential for their success. Thus, this project begins by reviewing the information available to carry out the training and classification stages of emotions with the proposed computational techniques. The search activities of the databases of facial expressions that capture learning-centered emotions are described. These activities were part of the stages of the work methodology to recognize students' emotions while they carried out online learning activities. This allowed justifying the creation of the database, formalizing a protocol from its capture to its digitization.application/pdfspaUniversidad Autónoma de Bucaramanga UNABhttps://revistas.unab.edu.co/index.php/rcc/article/view/4300/3508https://revistas.unab.edu.co/index.php/rcc/issue/view/276Aifanti, N., Papachristou, C., & Delopoulos, A. (2010). The MUG facial expression database. 1th International Workshop on Image Analysis for Multimedia Interactive Services WIAMIS 10, 1–4.Almohammadi, K., Hagras, H., Yao, B., Alzahrani, A., Alghazzawi, D., & Aldabbagh, G. (2017). A type-2 fuzzy logic recommendation system for adaptive teaching. Soft Computing, 21(4). https://doi.org/10.1007/s00500-015- 1826-yAneja, D., Colburn, A., Faigin, G., Shapiro, L., & Mones, B. (2017). Modeling Stylized Character Expressions via Deep Learning. In Computer Vision – ACCV 2016. ACCV 2016. Lecture Notes in Computer Science (Vol. 10112). Springer, Cham. https://doi.org/10.1007/978-3-319-54184-6_9Arana-Llanes, J. Y., González-Serna, G., Pineda-Tapia, R., Olivares-Peregrino, V., Ricarte-Trives, J. J., & Latorre- Postigo, J. M. (2018). EEG lecture on recommended activities for the induction of attention and concentration mental states on e-learning students. Journal of Intelligent & Fuzzy Systems, 34(5). https://doi.org/10.3233/JIFS- 169517Arroyo, I., Cooper, D. G., Burleson, W., Woolf, B. P., Muldner, K., & Christopherson, R. (2009). Emotion sensors go to school. Artificial Intelligence in Education, 17–24.Barrón-Estrada, M. L., Zatarain-Cabada, R., Aispuro-Medina, B. G., Valencia-Rodríguez, E. M., & Lara-Barrera, A. C. (2016). Building a Corpus of Facial Expressions for Learning-Centered Emotions. Research in Computing Science, 129, 45–52.Bixler, R., & D’Mello, S. (2013). Towards Automated Detection and Regulation of Affective States During Academic Writing. In Artificial Intelligence in Education. AIED 2013. Lecture Notes in Computer Science (Vol. 7926). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39112-5_142Bosch, N., & D’Mello, S. (2017). The Affective Experience of Novice Computer Programmers. International Journal of Artificial Intelligence in Education, 27(1). https://doi.org/10.1007/s40593-015-0069-5Bosch, N., D’Mello, S. K., Baker, R. S., Ocumpaugh, J., Shute, V., Ventura, M., Wang, L., & Zhao, W. (2016a). Detecting student emotions in computer-enabled classrooms. IJCAI International Joint Conference on Artificial Intelligence, 4125–4129.Bosch, N., D’Mello, S. K., Ocumpaugh, J., Baker, R. S., & Shute, V. (2016b). Using Video to Automatically Detect Learner Affect in Computer-Enabled Classrooms. ACM Transactions on Interactive Intelligent Systems, 6(2). https://doi.org/10.1145/2946837Botelho, A. F., Baker, R. S., & Heffernan, N. T. (2017). Improving Sensor-Free Affect Detection Using Deep Learning. In Artificial Intelligence in Education. AIED 2017. Lecture Notes in Computer Science (Vol. 10331). https://doi.org/10.1007/978-3-319-61425-0_4Cabada, R., Barrón, M., & Olivares, J. M. (2014). Reconocimiento automático y aspectos éticos de emociones para aplicaciones educativas. Inteligencia Artificial: Una Reflexión Obligada.Cornelius, R. R. (1996). The science of emotion: Research and tradition in the psychology of emotions. Prentice-Hall, Inc.Cowie, R., Douglas-Cowie, E., Tsapatsoulis, N., Votsis, G., Kollias, S., Fellenz, W., & Taylor, J. G. (2001). Emotion recognition in human-computer interaction. IEEE Signal Processing Magazine, 18(1). https://doi.org/10.1109/79.911197Ekman, P. (2004). Emotions Revealed. Recognizing Faces and Feelings to Improve Communication and Emotional Life. Henrry Holt and Company.Ekman, P., Friesen, W., & Hager, J. (2002). Facial action coding system: Research nexus network research information.el Kaliouby, R., & Picard, R. W. (2019). Affectiva Database. MIT Media Laboratory. https://www.affectiva.com/Freitas-Magalhães, A. (2021). Facial Action Coding System 4.0-Manual of Scientific Codification of the Human Face. Leya.Fuentes, C., Herskovic, V., Rodríguez, I., Gerea, C., Marques, M., & Rossel, P. O. (2017). A systematic literature review about technologies for self-reporting emotional information. Journal of Ambient Intelligence and Humanized Computing, 8(4). https://doi.org/10.1007/s12652-016-0430-zGonzález Meneses, Y. N., Guerrero García, J., Reyes García, C. A., Olmos Pineda, I., & González Calleros, J. M. (2019). Methodology for Automatic Identification of Emotions in Learning Environments. Research in Computing Science, 148(5), 89–96. https://doi.org/10.1088/0031-9112/29/6/013González-Hernández, F., Zatarain-Cabada, R., Barrón-Estrada, M. L., & Rodríguez-Rangel, H. (2018). Recognition of learning-centered emotions using a convolutional neural network. Journal of Intelligent & Fuzzy Systems, 34(5). https://doi.org/10.3233/JIFS-169514Graesser, A. C., & D’Mello, S. (2012). Emotions During the Learning of Difficult Material. Psychology of Learning and Motivation, 57. https://doi.org/10.1016/B978-0-12-394293-7.00005-4Gupta, A., D’Cunha, A., Awasthi, K., & Balasubramanian, V. (2016). DAiSEE: Towards User Engagement Recognition in the Wild. ArXiv Preprint.Happy, S. L., Patnaik, P., Routray, A., & Guha, R. (2017). The Indian Spontaneous Expression Database for Emotion Recognition. IEEE Transactions on Affective Computing, 8(1). https://doi.org/10.1109/TAFFC.2015.2498174Harley, J. M., Bouchet, F., & Azevedo, R. (2013). Aligning and Comparing Data on Emotions Experienced during Learning with MetaTutor. In Artificial Intelligence in Education. AIED 2013. Lecture Notes in Computer Science (Vol. 7926). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-39112-5_7Hill, D. (2010). Emotionomics: Leveraging emotions for business success.Hjortsj, C. H., Ekman, P., Friesen, W. v., Hager, J. C., Facs, F., & Facs, F. M. (2019). Sistema de Codificación Facial.Koelstra, S., Muhl, C., Soleymani, M., Jong-Seok Lee, Yazdani, A., Ebrahimi, T., Pun, T., Nijholt, A., & Patras, I. (2012). DEAP: A Database for Emotion Analysis; Using Physiological Signals. IEEE Transactions on Affective Computing, 3(1). https://doi.org/10.1109/T-AFFC.2011.15Langner, O., Dotsch, R., Bijlstra, G., Wigboldus, D. H. J., Hawk, S. T., & van Knippenberg, A. (2010). Presentation and validation of the Radboud Faces Database. Cognition & Emotion, 24(8). https://doi.org/10.1080/02699930903485076Livingstone, S. R., & Russo, F. A. (2018). The Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS): A dynamic, multimodal set of facial and vocal expressions in North American English. PLOS ONE, 13(5). https://doi.org/10.1371/journal.pone.0196391Lucey, P., Cohn, J. F., Kanade, T., Saragih, J., & Ambadar, Z. (2010). The extended Cohn-Kanade dataset (CK+): a complete facial expression dataset for action unit and emotion-specified expression Conference on. Computer Vision and Pattern Recognition Workshops (CVPRW), 2010 IEEE Computer Society Conference On, July, 94– 101.Lyons, M. J., Kamachi, M., & Gyoba, J. (2014). Japanese Female Facial Expressions (JAFFE), Database of digital images. http://www.kasrl.org/jaffe_info.htmlMavadati, S. M., Mahoor, M. H., Bartlett, K., Trinh, P., & Cohn, J. F. (2013). DISFA: A Spontaneous Facial Action Intensity Database. IEEE Transactions on Affective Computing, 4(2). https://doi.org/10.1109/T-AFFC.2013.4Mehmood, R., & Lee, H. (2017). Towards Building a Computer Aided Education System for Special Students Using Wearable Sensor Technologies. Sensors, 17(317), 1–22. https://doi.org/10.3390/s17020317Mena-Chalco, J. P., Cesar-Jr, R., & Velho, L. (2008). Banco de dados de faces 3D: IMPA-FACE3D. IMPA-RJ, Tech. Rep.Mohamad Nezami, O., Dras, M., Hamey, L., Richards, D., Wan, S., & Paris, C. (2020). Automatic Recognition of Student Engagement Using Deep Learning and Facial Expression. In Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2019. Lecture Notes in Computer Science. https://doi.org/10.1007/978- 3-030-46133-1_17Mollahosseini, A., Hasani, B., & Mahoor, M. H. (2019). AffectNet: A Database for Facial Expression, Valence, and Arousal Computing in the Wild. IEEE Transactions on Affective Computing, 10(1). https://doi.org/10.1109/TAFFC.2017.2740923Monkaresi, H., Bosch, N., Calvo, R. A., & D’Mello, S. K. (2017). Automated Detection of Engagement Using Video- Based Estimation of Facial Expressions and Heart Rate. IEEE Transactions on Affective Computing, 8(1). https://doi.org/10.1109/TAFFC.2016.2515084Nye, B., Karumbaiah, S., Tokel, S. T., Core, M. G., Stratou, G., Auerbach, D., & Georgila, K. (2017). Analyzing Learner Affect in a Scenario-Based Intelligent Tutoring System. In Artificial Intelligence in Education. AIED 2017. Lecture Notes in Computer Science (Vol. 10331). Springer, Cham. https://doi.org/10.1007/978-3-319- 61425-0_60Picard, R. W. (2000). Affective Computing. MIT Press.Picard, R. W. (2003). Affective computing: challenges. International Journal of Human-Computer Studies, 59(1–2). https://doi.org/10.1016/S1071-5819(03)00052-1Scherer, K. R. (2005). What are emotions? And how can they be measured? Social Science Information, 44(4). https://doi.org/10.1177/0539018405058216Sneddon, I., McRorie, M., McKeown, G., & Hanratty, J. (2012). The Belfast Induced Natural Emotion Database. IEEE Transactions on Affective Computing, 3(1). https://doi.org/10.1109/T-AFFC.2011.26Steidl, S. (2009). Automatic classification of emotion related user states in spontaneous children’s speech. Logos- Verlag.Thomaz, C. E. (2012). FEI Face Database. https://fei.edu.br/~cet/facedatabase.htmlValstar, M., & Pantic, M. (2010). Induced disgust, happiness and surprise: an addition to the MMI facial expression database. Proc. 3rd Intern. Workshop on EMOTION (Satellite of LREC): Corpora for Research on Emotion and Affect.Xiao, X., Pham, P., & Wang, J. (2017). Dynamics of Affective States During MOOC Learning. In Artificial Intelligence in Education. AIED 2017. Lecture Notes in Computer Science (Vol. 10331). Springer, Cham. https://doi.org/10.1007/978-3-319-61425-0_70Zafeiriou, S., Kollias, D., Nicolaou, M. A., Papaioannou, A., Zhao, G., & Kotsia, I. (2017). Aff-wild: valence and arousal’In-the-Wild’challenge. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 34–41.Zatarain-Cabada, R., Barrón-Estrada, M. L., González-Hernández, F., Oramas-Bustillos, R., Alor-Hernández, G., & Reyes-García, C. A. (2017b). Building a Corpus and a Local Binary Pattern Recognizer for Learning-Centered Emotions. In Advances in Soft Computing. MICAI 2016. Lecture Notes in Computer Science (Vol. 10062). https://doi.org/10.1007/978-3-319-62428-0_43Zatarain-Cabada, R., Barron-Estrada, M. L., Gonzalez-Hernandez, F., & Rodriguez-Rangel, H. (2017a). Building a Face Expression Recognizer and a Face Expression Database for an Intelligent Tutoring System. 2017 IEEE 17th International Conference on Advanced Learning Technologies (ICALT). https://doi.org/10.1109/ICALT.2017.141Zhao, G., Huang, X., Taini, M., Li, S. Z., & Pietikäinen, M. (2011). Facial expression recognition from near-infrared videos. Image and Vision Computing, 29(9). https://doi.org/10.1016/j.imavis.2011.07.002Vol. 22 Núm. 2 (2021): Revista Colombiana de Computación (Julio-Diciembre); 58-71Bases de datosIdentificación automática de emocionesExpresiones facialesDatabasesAutomatic identification of emotionsFacial expressionsAnálisis de bases de datos de expresiones faciales para la identificación automática de emociones centradas en el aprendizajeAnalysis of databases of facial expressions for the automatic identification of learning-centered emotionsinfo:eu-repo/semantics/articleArtículohttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/access_right/c_abf2ORIGINALArtículo.pdfArtículo.pdfArtículoapplication/pdf486312https://repository.unab.edu.co/bitstream/20.500.12749/26488/1/Art%c3%adculo.pdfe3108499b5896785c7866e735ab90f7dMD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8347https://repository.unab.edu.co/bitstream/20.500.12749/26488/2/license.txt855f7d18ea80f5df821f7004dff2f316MD52open accessTHUMBNAILArtículo.pdf.jpgArtículo.pdf.jpgIM Thumbnailimage/jpeg10056https://repository.unab.edu.co/bitstream/20.500.12749/26488/3/Art%c3%adculo.pdf.jpg9e9c5d28bb87b03cc57054286c171b6dMD53open access20.500.12749/26488oai:repository.unab.edu.co:20.500.12749/264882024-09-12 22:02:05.422open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.coTGEgUmV2aXN0YSBDb2xvbWJpYW5hIGRlIENvbXB1dGFjacOzbiBlcyBmaW5hbmNpYWRhIHBvciBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgQnVjYXJhbWFuZ2EuIEVzdGEgUmV2aXN0YSBubyBjb2JyYSB0YXNhIGRlIHN1bWlzacOzbiB5IHB1YmxpY2FjacOzbiBkZSBhcnTDrWN1bG9zLiBQcm92ZWUgYWNjZXNvIGxpYnJlIGlubWVkaWF0byBhIHN1IGNvbnRlbmlkbyBiYWpvIGVsIHByaW5jaXBpbyBkZSBxdWUgaGFjZXIgZGlzcG9uaWJsZSBncmF0dWl0YW1lbnRlIGludmVzdGlnYWNpw7NuIGFsIHDDumJsaWNvIGFwb3lhIGEgdW4gbWF5b3IgaW50ZXJjYW1iaW8gZGUgY29ub2NpbWllbnRvIGdsb2JhbC4= |