Visión: Desarrollo de un modelo de inteligencia artificial para identificar patrones de visión en equipos esports a nivel profesional, pertenecientes a la League Of Legends European Championship (LEC) de la temporada número 10
Para inicios del 2015 la firma de estudios de mercado Newzoo estimó un ingreso por deportes electrónicos de 2.22 dólares anuales por cada entusiasta (alrededor de 0.28 billones de dólares), lo cual representa un crecimiento importante del producto interno bruto (PIB) en comparación con los deportes...
- Autores:
-
Mantilla Molano, Cristian Augusto
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2021
- Institución:
- Universidad Autónoma de Bucaramanga - UNAB
- Repositorio:
- Repositorio UNAB
- Idioma:
- spa
- OAI Identifier:
- oai:repository.unab.edu.co:20.500.12749/15733
- Acceso en línea:
- http://hdl.handle.net/20.500.12749/15733
- Palabra clave:
- Systems engineer
Technological innovations
League of legends
Developing
Research
Artificial intelligence
Vision patterns
Tournament
Online games
Simulation methods
Machine theory
Ingeniería de sistemas
Innovaciones tecnológicas
Desarrollo
Investigación
Métodos de simulación
Teoría de las máquinas
Inteligencia artificial
Patrones de visión
Torneo
Juegos online
- Rights
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id |
UNAB2_b98ab89c0138f1fca98171b945917eb6 |
---|---|
oai_identifier_str |
oai:repository.unab.edu.co:20.500.12749/15733 |
network_acronym_str |
UNAB2 |
network_name_str |
Repositorio UNAB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Visión: Desarrollo de un modelo de inteligencia artificial para identificar patrones de visión en equipos esports a nivel profesional, pertenecientes a la League Of Legends European Championship (LEC) de la temporada número 10 |
dc.title.translated.spa.fl_str_mv |
Vision: Development of an artificial intelligence model to identify vision patterns in esports teams at a professional level, belonging to the League Of Legends European Championship (LEC) of season number 10 |
title |
Visión: Desarrollo de un modelo de inteligencia artificial para identificar patrones de visión en equipos esports a nivel profesional, pertenecientes a la League Of Legends European Championship (LEC) de la temporada número 10 |
spellingShingle |
Visión: Desarrollo de un modelo de inteligencia artificial para identificar patrones de visión en equipos esports a nivel profesional, pertenecientes a la League Of Legends European Championship (LEC) de la temporada número 10 Systems engineer Technological innovations League of legends Developing Research Artificial intelligence Vision patterns Tournament Online games Simulation methods Machine theory Ingeniería de sistemas Innovaciones tecnológicas Desarrollo Investigación Métodos de simulación Teoría de las máquinas Inteligencia artificial Patrones de visión Torneo Juegos online |
title_short |
Visión: Desarrollo de un modelo de inteligencia artificial para identificar patrones de visión en equipos esports a nivel profesional, pertenecientes a la League Of Legends European Championship (LEC) de la temporada número 10 |
title_full |
Visión: Desarrollo de un modelo de inteligencia artificial para identificar patrones de visión en equipos esports a nivel profesional, pertenecientes a la League Of Legends European Championship (LEC) de la temporada número 10 |
title_fullStr |
Visión: Desarrollo de un modelo de inteligencia artificial para identificar patrones de visión en equipos esports a nivel profesional, pertenecientes a la League Of Legends European Championship (LEC) de la temporada número 10 |
title_full_unstemmed |
Visión: Desarrollo de un modelo de inteligencia artificial para identificar patrones de visión en equipos esports a nivel profesional, pertenecientes a la League Of Legends European Championship (LEC) de la temporada número 10 |
title_sort |
Visión: Desarrollo de un modelo de inteligencia artificial para identificar patrones de visión en equipos esports a nivel profesional, pertenecientes a la League Of Legends European Championship (LEC) de la temporada número 10 |
dc.creator.fl_str_mv |
Mantilla Molano, Cristian Augusto |
dc.contributor.advisor.none.fl_str_mv |
Espinosa Carreño, María Alexandra Jurado García, Miguel Eugenio |
dc.contributor.author.none.fl_str_mv |
Mantilla Molano, Cristian Augusto |
dc.contributor.cvlac.spa.fl_str_mv |
Espinosa Carreño, María Alexandra [0001495409] Jurado García, Miguel Eugenio [0001691975] |
dc.contributor.googlescholar.spa.fl_str_mv |
Jurado García, Miguel Eugenio [es&oi=ao] Espinosa Carreño, María Alexandra [Ve6S8ocAAAAJ&hl] |
dc.contributor.orcid.spa.fl_str_mv |
Espinosa Carreño, María Alexandra [0000-0003-1411-0828] Jurado García, Miguel Eugenio [0000-0002-2653-249X] |
dc.contributor.researchgate.spa.fl_str_mv |
Espinosa Carreño, María Alexandra [Maria-Espinosa-C] |
dc.contributor.apolounab.spa.fl_str_mv |
Espinosa Carreño, María Alexandra [maria-alexandra-espinosa-carreño] |
dc.subject.keywords.spa.fl_str_mv |
Systems engineer Technological innovations League of legends Developing Research Artificial intelligence Vision patterns Tournament Online games Simulation methods Machine theory |
topic |
Systems engineer Technological innovations League of legends Developing Research Artificial intelligence Vision patterns Tournament Online games Simulation methods Machine theory Ingeniería de sistemas Innovaciones tecnológicas Desarrollo Investigación Métodos de simulación Teoría de las máquinas Inteligencia artificial Patrones de visión Torneo Juegos online |
dc.subject.lemb.spa.fl_str_mv |
Ingeniería de sistemas Innovaciones tecnológicas Desarrollo Investigación Métodos de simulación Teoría de las máquinas |
dc.subject.proposal.spa.fl_str_mv |
Inteligencia artificial Patrones de visión Torneo Juegos online |
description |
Para inicios del 2015 la firma de estudios de mercado Newzoo estimó un ingreso por deportes electrónicos de 2.22 dólares anuales por cada entusiasta (alrededor de 0.28 billones de dólares), lo cual representa un crecimiento importante del producto interno bruto (PIB) en comparación con los deportes tradicionales indicando el tamaño potencial económico de esta escena competitiva. Para el 2020, a pesar de la pandemia SASR-Cov-2 el crecimiento exponencial se mantuvo llegando a una generación de 7.5 billones de dólares, demostrando una nueva oportunidad de negocio en cualquier región. En el caso puntual de League Of Legends, es un esports transmitido en 19 idiomas, cuyo evento mundial en el 2019 llegó a un pico de espectadores de 200 millones (logrando el doble de audiencia del super bowl edición 2018).Después de todos estos datos, no es raro evaluar las franquicias de organizaciones como Cloud9, Team Solo Mid y Team Liquid en 200 a 300 millones de dólares, superando a clubes de fútbol tan reconocidos como River plate(219 millones de dólares) o Boca juniors (213 millones de dólares). Pese al auge económico en esta escena competitiva, Latinoamérica ha estado imposibilitada de alcanzar un desempeño reconocible en comparación a otros continentes, considerando que parte del problema son las pocas herramientas tecnológicas que cuentan para desarrollar un esquema que le permita competir con otros equipos, en parte por la desarticulación que tiene con el mundo académico. Es por eso que el propósito de este proyecto es generar una herramienta basada en inteligencia artificial, para reconocer los patrones de visión de equipos en continentes con un mejor desempeño a nivel mundial con el fin de ayudar a los equipos latinoamericanos a la toma de decisiones más rápidas y precisas en base a esta información. |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2022-02-28T13:25:49Z |
dc.date.available.none.fl_str_mv |
2022-02-28T13:25:49Z |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.local.spa.fl_str_mv |
Trabajo de Grado |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12749/15733 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Autónoma de Bucaramanga - UNAB |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional UNAB |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.unab.edu.co |
url |
http://hdl.handle.net/20.500.12749/15733 |
identifier_str_mv |
instname:Universidad Autónoma de Bucaramanga - UNAB reponame:Repositorio Institucional UNAB repourl:https://repository.unab.edu.co |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
[1] Lolesports Staff, “2019 World Championship Hits Record Viewership,” Leagueoflegends.Com, 2020. https://nexus.leagueoflegends.com/en-us/2019/12/2019-world- championship-hits-record-viewership/. [2] A. Stedman, “Overwatch League’s Grand Finals Grows 16% in Average Viewers From Last Year,” variety.com, 2019. [3] Sergey Yakimenko, “Viewership results of The International 2019,” escharts.com, 2019. https://escharts.com/blog/results-the-international-2019. [4] M. Díaz, “E-Sports en Colombia: ¿son o no un deporte?,” ghersports.com, 2020. https://ghersports.com/e-sports-colombia-no-un-deporte/. [5] J. P. Pérez Tejada, “La profesionalización de los eSports en Latinoamérica,” http://newtechmag.net/, 2019. http://newtechmag.net/es/2019/06/30/la-profesionalizacion-de- los-esports-en-latinoamerica/. [6] M. HAWTHORNE, “Esports Are Becoming a Global Phenomenon, But Some Countries are More Receptive Than Others,” esportsinsights.com, 2020. https://esportsinsights.com/featured/esports-around-the-world/. [7] esportsbar Newzoo, “the Esports Business in the Americas,” 2019. [8] esportsbar Newzoo, “Key Numbers,” newzoo.com, 2020. https://newzoo.com/key-numbers/. [9] E. BAR, “Insights into latin america’s eSports Fans,” 2019. [10] B. Ofoghi, J. Zeleznikow, C. MacMahon, and M. Raab, “Data mining in elite sports: A review and a framework,” Meas. Phys. Educ. Exerc. Sci., vol. 17, no. 3, pp. 171–186, 2013, doi: 10.1080/1091367X.2013.805137. [11] A. Pedrassoli Chitayat et al., WARDS: Modelling the Worth of Vision in MOBA’s, vol. 1229 AISC. Springer International Publishing, 2020. [12] J. Hamari and M. Sjöblom, “What is eSports and why do people watch it?,” Internet Res., vol. 27, no. 2, pp. 211–232, 2017, doi: 10.1108/IntR-04-2016-0085. [13] M. Mora-Cantallops and M. Á. Sicilia, “MOBA games: A literature review,” Entertain. [14] esportsbar Newzoo, “Most Popular Core PC Games | Global,” newzoo.com, 2020. https://newzoo.com/insights/rankings/top-20-core-pc-games/. [15] A. R. Novak, K. J. M. Bennett, M. A. Pluss, and J. Fransen, “Performance analysis in esports: modelling performance at the 2018 League of Legends World Championship,” Int. J. Sport. Sci. Coach., vol. 15, no. 5–6, pp. 809–817, 2020, doi: 10.1177/1747954120932853. [16] Riot games, “2020 World Championship Rules,” 2020. [17] A. Macabasco, “How to Understand the Meta in League of Legends,” mobalytics.gg, 2018. https://mobalytics.gg/blog/how-to-understand-league-of-legend-meta/. [18] B. L. Takeyas, “Introducción a la inteligencia artificial,” 23, vol. 12, no. 32, p. 1, 2007. [19] J. Han, M. Kamber, and J. Pei, “Data Mining Techniques, Third Edition,” p. 847, 2011. [20] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436– 444, 2015, doi: 10.1038/nature14539. [21] D. J. Matich, “Redes Neuronales: Conceptos Básicos y Aplicaciones.,” Historia Santiago., p. 55, 2001, [Online]. Available: ftp://decsai.ugr.es/pub/usuarios/castro/Material-Redes- Neuronales/Libros/matich-redesneuronales.pdf. [22] I. N. Yulita, M. I. Fanany, and A. M. Arymuthy, “Bi-directional Long Short-Term Memory using Quantized data of Deep Belief Networks for Sleep Stage Classification,” Procedia Comput. Sci., vol. 116, pp. 530–538, 2017, doi: 10.1016/j.procs.2017.10.042. [23] K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and J. Schmidhuber, “TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1 LSTM: A Search Space Odyssey,” arXiv:1503.04069, pp. 1–11, 2015, [Online]. Available: https://arxiv.org/pdf/1503.04069.pdf. [24] L. Rokach, “Ensemble-based classifiers,” Artif. Intell. Rev., vol. 33, no. 1–2, pp. 1–39, 2010, doi: 10.1007/s10462-009-9124-7. [25] D. Whitley, “A genetic algorithm tutorial,” Stat. Comput., vol. 4, no. 2, pp. 65–85, 1994, doi: 10.1007/BF00175354. [26] M. Granik and V. Mesyura, “Fake News Detection Using Naive Bayes Classifier,” 2017, pp. 900–903. [27] T. Joachims, “Text Categorization with SVM: Learning with Many Relevant Features,” Eur. Conf. Mach. Learn., pp. 137–142, 2005. [28] C. B. Browne et al., “A Survey of Monte Carlo Tree Search Methods,” IEEE Trans. Comput. Intell. AI GAMES, vol. 4, no. 1, 2012. [29] MacQueen, James and others, “Some methods for classification and analysis of multivariate observations,” Proc. fifth Berkeley Symp. Math. Stat. Probab., vol. 1, no. 14, pp. 281–297, 1967, [Online]. Available: http://books.google.de/books?hl=de&lr=&id=IC4Ku_7dBFUC&oi=fnd&pg=PA281&dq=M acQueen+some+methods+for+classification&ots=nNTcK1IdoQ&sig=fHzdVcbvmYJ- lTNHu1HncmOFOkM#v=onepage&q=MacQueen some methods for classification&f=false. [30] R. Gandhi, “Introduction to Machine Learning Algorithms: Linear Regression,” towardsdatascience.com, 2018. https://towardsdatascience.com/introduction-to-machine- learning-algorithms-linear-regression-14c4e325882a. [31] A. Pant, “Introduction to Logistic Regression,” towardsdatascience.com, 2019. https://towardsdatascience.com/introduction-to-logistic-regression-66248243c148. [32] S. R. Eddy, “Hidden Markov models,” Curr. Opin. Struct. Biol., vol. 6, no. 3, pp. 361–365, 1996, doi: 10.1016/S0959-440X(96)80056-X. [33] J. V. Román, “CRISP-DM: La metodología para poner orden en los proyectos,” www.sngular.com, 2016. www.sngular.com/es/data-science-crisp-dm-metodologia/. [34] E. Rahm and H. H. Do, “Data Cleaning: Problems and Current Approaches,” Bull. Tech. Comm. Data Eng., vol. 24, no. 4, pp. 2–13, 2001, [Online]. Available: papers2://publication/uuid/30073F7F-1B7C-4496-ADA4-94FF4E6EE8F7. [35] B. Deepanshu, “WEIGHT OF EVIDENCE (WOE) AND INFORMATION VALUE (IV) EXPLAINED,” listendata, 2015. https://www.listendata.com/2015/03/weight-of-evidence- woe-and-information.html. [36] D. M. Hawkins, Identification of Outliers. 1980. [37] C. C. Aggarwal, “Outlier Analysis,” in Data Mining, vol. 1, no. 1, 2015, p. 746. [38] M. A. Zöller and M. F. Huber, “Benchmark and Survey of Automated Machine Learning Frameworks,” J. Artif. Intell. Res., vol. 70, pp. 409–472, 2021, doi: 10.1613/JAIR.1.11854. [39] H2O, “Performance and prediction,” docs.h2o.ai, 2019. [40] J. A. Gallardo Arancibia, “Metodología para la definición de requisitos en proyectos de data mining (ER-DM),” p. 317, 2009, [Online]. Available: http://oa.upm.es/1946/1/JOSE_ALBERTO_GALLARDO_ARANCIBIA.pdf. [41] M. A. E. C, E. R. R, L. Y. F. G, and C. D. Guerrero, “DANDELION : Propuesta metodológica para recopilación y análisis de información de artículos científicos . Un enfoque desde la bibliometría y la revisión sistemática de la literatura .,” pp. 110–123, 2020. [42] Speedtest, “Speedtest Global Index,” www.speedtest.net, 2020. https://www.speedtest.net/global-index. [43] M. Claypool, “The effect of latency on user performance in Real-Time Strategy games,” Comput. Networks, vol. 49, no. 1, pp. 52–70, 2005, doi: 10.1016/j.comnet.2005.04.008. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.creativecommons.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Abierto (Texto Completo) Atribución-NoComercial-SinDerivadas 2.5 Colombia http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.spatial.spa.fl_str_mv |
Bucaramanga (Santander, Colombia) |
dc.coverage.temporal.spa.fl_str_mv |
2021 |
dc.coverage.campus.spa.fl_str_mv |
UNAB Campus Bucaramanga |
dc.publisher.grantor.spa.fl_str_mv |
Universidad Autónoma de Bucaramanga UNAB |
dc.publisher.faculty.spa.fl_str_mv |
Facultad Ingeniería |
dc.publisher.program.spa.fl_str_mv |
Pregrado Ingeniería de Sistemas |
institution |
Universidad Autónoma de Bucaramanga - UNAB |
bitstream.url.fl_str_mv |
https://repository.unab.edu.co/bitstream/20.500.12749/15733/1/2021_Tesis_Mantilla_Molano_Cristian_Augusto.pdf https://repository.unab.edu.co/bitstream/20.500.12749/15733/2/2021_Licencia_Mantilla_Molano_Cristian_Augusto.pdf https://repository.unab.edu.co/bitstream/20.500.12749/15733/3/license.txt https://repository.unab.edu.co/bitstream/20.500.12749/15733/4/2021_Tesis_Mantilla_Molano_Cristian_Augusto.pdf.jpg https://repository.unab.edu.co/bitstream/20.500.12749/15733/5/2021_Licencia_Mantilla_Molano_Cristian_Augusto.pdf.jpg |
bitstream.checksum.fl_str_mv |
21f56891e4dc6eaec14a1c030125f9e7 0e8c190a3f8ab8a0c614a23e0dd0555a 3755c0cfdb77e29f2b9125d7a45dd316 60148ae9f90886080e49567b716d242b 913d7ef6dba1d3babaf1fc73c3c916ba |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB |
repository.mail.fl_str_mv |
repositorio@unab.edu.co |
_version_ |
1814278361559597056 |
spelling |
Espinosa Carreño, María Alexandrab1d04d86-2443-4ebe-ad46-80848e67e607Jurado García, Miguel Eugenio7f34c98e-4291-46a9-b543-59aea6502a0dMantilla Molano, Cristian Augustob0cfe185-630b-482c-8164-0c6739ca0027Espinosa Carreño, María Alexandra [0001495409]Jurado García, Miguel Eugenio [0001691975]Jurado García, Miguel Eugenio [es&oi=ao]Espinosa Carreño, María Alexandra [Ve6S8ocAAAAJ&hl]Espinosa Carreño, María Alexandra [0000-0003-1411-0828]Jurado García, Miguel Eugenio [0000-0002-2653-249X]Espinosa Carreño, María Alexandra [Maria-Espinosa-C]Espinosa Carreño, María Alexandra [maria-alexandra-espinosa-carreño]Bucaramanga (Santander, Colombia)2021UNAB Campus Bucaramanga2022-02-28T13:25:49Z2022-02-28T13:25:49Z2021http://hdl.handle.net/20.500.12749/15733instname:Universidad Autónoma de Bucaramanga - UNABreponame:Repositorio Institucional UNABrepourl:https://repository.unab.edu.coPara inicios del 2015 la firma de estudios de mercado Newzoo estimó un ingreso por deportes electrónicos de 2.22 dólares anuales por cada entusiasta (alrededor de 0.28 billones de dólares), lo cual representa un crecimiento importante del producto interno bruto (PIB) en comparación con los deportes tradicionales indicando el tamaño potencial económico de esta escena competitiva. Para el 2020, a pesar de la pandemia SASR-Cov-2 el crecimiento exponencial se mantuvo llegando a una generación de 7.5 billones de dólares, demostrando una nueva oportunidad de negocio en cualquier región. En el caso puntual de League Of Legends, es un esports transmitido en 19 idiomas, cuyo evento mundial en el 2019 llegó a un pico de espectadores de 200 millones (logrando el doble de audiencia del super bowl edición 2018).Después de todos estos datos, no es raro evaluar las franquicias de organizaciones como Cloud9, Team Solo Mid y Team Liquid en 200 a 300 millones de dólares, superando a clubes de fútbol tan reconocidos como River plate(219 millones de dólares) o Boca juniors (213 millones de dólares). Pese al auge económico en esta escena competitiva, Latinoamérica ha estado imposibilitada de alcanzar un desempeño reconocible en comparación a otros continentes, considerando que parte del problema son las pocas herramientas tecnológicas que cuentan para desarrollar un esquema que le permita competir con otros equipos, en parte por la desarticulación que tiene con el mundo académico. Es por eso que el propósito de este proyecto es generar una herramienta basada en inteligencia artificial, para reconocer los patrones de visión de equipos en continentes con un mejor desempeño a nivel mundial con el fin de ayudar a los equipos latinoamericanos a la toma de decisiones más rápidas y precisas en base a esta información.1. PLANTEAMIENTO DEL PROBLEMA Y JUSTIFICACIÓN 8 1.1. Planteamiento del problema 8 1.2. Árbol del problema 9 1.3. Justificación 13 2. OBJETIVOS 14 2.1. Objetivo general 14 2.2. Objetivo especifico 14 2.3. Resultados Esperados 15 3. MARCO CONCEPTUAL 16 3.1. E-sports 16 3.1.1. MOBA 16 3.1.2. League of legends 16 3.1.3. League of Legends World Championship 17 3.1.4. Play-in 17 3.1.5. Meta 18 3.2. Inteligencia artificial 18 3.2.1. Machine Learning 18 3.2.2. Aprendizaje supervisado 19 3.2.3. Aprendizaje no supervisado 19 3.2.4. Modelos usados en el estado del arte 19 4. Marco Teórico 23 4.1. Limpieza de datos 23 4.2. Análisis de datos 23 4.2.1. Weight of Evidence (WoE) 23 4.2.2. Information Value (IV) 24 4.2.3. Outlier 25 4.2.4. AutoML 25 4.2.4.1. H2O AI 26 4.3. Métricas de evaluación 26 4.3.1. F1Score 26 4.3.2. Área bajo la curva de precisión- recuperación (AUCPR) 27 5. ESTADO DEL ARTE Y ANTECEDENTES 28 Resumen del estado del arte y antecedentes 32 6. METODOLOGÍA 35 6.1. CRISP-DM 35 6.1.1. Business Understanding: Fase de comprensión del negocio o problema 35 6.1.1.1. RSL DANDELION 35 6.1.1.1.1. Objetivo de investigación 36 6.1.1.1.2. Diseño de protocolos 38 6.1.1.1.3. Criterios de calidad 39 6.1.1.1.4. Extracción de datos y analítica de resultados 40 6.1.2. Data Understanding: Fase de comprensión de los datos 40 6.1.2.1. Obtención de datos 40 6.1.3. Data Preparation: Fase de preparación de los datos 41 6.1.3.1. Limpieza de datos 41 6.1.3.2. Descripción de variables 42 6.1.3.3. Análisis de datos 44 6.1.3.3.1. Análisis de Variables 44 6.1.3.3.2. Análisis de Outliers 51 6.1.3.3.3. Análisis del WoE e IV 53 6.1.4. Modeling: Fase de modelado 54 6.1.4.3. Diseño de modelos 54 6.1.4.3.1. Diseño de modelos con H2O AutoML 55 6.1.4.3.2. Análisis de modelos 55 6.1.5. Evaluation: Fase de evaluación 58 6.1.5.3. Evaluación de modelos 58 6.1.5.3.1. Evaluación de métricas de entrenamiento 59 6.1.5.3.2. Evaluación de métricas con datos reales 59 6.1.6. Deployment: Fase de implementación 61 6.1.6.3.1. Interpretación de la imagen 62 7. CONCLUSIONES 64PregradoFor the beginning of 2015, the market research firm Newzoo estimated an income from esports of 2.22 dollars per year per enthusiast (around 0.28 billion dollars), which represents a significant growth in gross domestic product (GDP) compared to the traditional sports indicating the potential economic size of this competitive scene. By 2020, despite the SASR-Cov-2 pandemic, exponential growth continued, reaching a generation of 7.5 billion dollars, demonstrating a new business opportunity in any region. In the specific case of League Of Legends, it is an esports broadcast in 19 languages, whose world event in 2019 reached a peak of viewers of 200 million (achieving twice the audience of the 2018 super bowl edition). After all these data , it is not uncommon to value the franchises of organizations such as Cloud9, Team Solo Mid and Team Liquid at 200 to 300 million dollars, surpassing such well-known soccer clubs as River Plate ($219 million) or Boca Juniors ($213 million). ). Despite the economic boom in this competitive scene, Latin America has been unable to achieve a recognizable performance compared to other continents, considering that part of the problem is the few technological tools they have to develop a scheme that allows them to compete with other teams, partly because of the disarticulation it has with the academic world. That is why the purpose of this project is to generate a tool based on artificial intelligence, to recognize the vision patterns of teams in continents with a better performance worldwide in order to help Latin American teams to make better decisions. quickly and accurately based on this information.Modalidad Presencialapplication/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)Atribución-NoComercial-SinDerivadas 2.5 Colombiahttp://purl.org/coar/access_right/c_abf2Visión: Desarrollo de un modelo de inteligencia artificial para identificar patrones de visión en equipos esports a nivel profesional, pertenecientes a la League Of Legends European Championship (LEC) de la temporada número 10Vision: Development of an artificial intelligence model to identify vision patterns in esports teams at a professional level, belonging to the League Of Legends European Championship (LEC) of season number 10Ingeniero de SistemasUniversidad Autónoma de Bucaramanga UNABFacultad IngenieríaPregrado Ingeniería de Sistemasinfo:eu-repo/semantics/bachelorThesisTrabajo de Gradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/redcol/resource_type/TPSystems engineerTechnological innovationsLeague of legendsDevelopingResearchArtificial intelligenceVision patternsTournamentOnline gamesSimulation methodsMachine theoryIngeniería de sistemasInnovaciones tecnológicasDesarrolloInvestigaciónMétodos de simulaciónTeoría de las máquinasInteligencia artificialPatrones de visiónTorneoJuegos online[1] Lolesports Staff, “2019 World Championship Hits Record Viewership,” Leagueoflegends.Com, 2020. https://nexus.leagueoflegends.com/en-us/2019/12/2019-world- championship-hits-record-viewership/.[2] A. Stedman, “Overwatch League’s Grand Finals Grows 16% in Average Viewers From Last Year,” variety.com, 2019.[3] Sergey Yakimenko, “Viewership results of The International 2019,” escharts.com, 2019. https://escharts.com/blog/results-the-international-2019.[4] M. Díaz, “E-Sports en Colombia: ¿son o no un deporte?,” ghersports.com, 2020. https://ghersports.com/e-sports-colombia-no-un-deporte/.[5] J. P. Pérez Tejada, “La profesionalización de los eSports en Latinoamérica,” http://newtechmag.net/, 2019. http://newtechmag.net/es/2019/06/30/la-profesionalizacion-de- los-esports-en-latinoamerica/.[6] M. HAWTHORNE, “Esports Are Becoming a Global Phenomenon, But Some Countries are More Receptive Than Others,” esportsinsights.com, 2020. https://esportsinsights.com/featured/esports-around-the-world/.[7] esportsbar Newzoo, “the Esports Business in the Americas,” 2019.[8] esportsbar Newzoo, “Key Numbers,” newzoo.com, 2020. https://newzoo.com/key-numbers/.[9] E. BAR, “Insights into latin america’s eSports Fans,” 2019.[10] B. Ofoghi, J. Zeleznikow, C. MacMahon, and M. Raab, “Data mining in elite sports: A review and a framework,” Meas. Phys. Educ. Exerc. Sci., vol. 17, no. 3, pp. 171–186, 2013, doi: 10.1080/1091367X.2013.805137.[11] A. Pedrassoli Chitayat et al., WARDS: Modelling the Worth of Vision in MOBA’s, vol. 1229 AISC. Springer International Publishing, 2020.[12] J. Hamari and M. Sjöblom, “What is eSports and why do people watch it?,” Internet Res., vol. 27, no. 2, pp. 211–232, 2017, doi: 10.1108/IntR-04-2016-0085.[13] M. Mora-Cantallops and M. Á. Sicilia, “MOBA games: A literature review,” Entertain.[14] esportsbar Newzoo, “Most Popular Core PC Games | Global,” newzoo.com, 2020. https://newzoo.com/insights/rankings/top-20-core-pc-games/.[15] A. R. Novak, K. J. M. Bennett, M. A. Pluss, and J. Fransen, “Performance analysis in esports: modelling performance at the 2018 League of Legends World Championship,” Int. J. Sport. Sci. Coach., vol. 15, no. 5–6, pp. 809–817, 2020, doi: 10.1177/1747954120932853.[16] Riot games, “2020 World Championship Rules,” 2020.[17] A. Macabasco, “How to Understand the Meta in League of Legends,” mobalytics.gg, 2018. https://mobalytics.gg/blog/how-to-understand-league-of-legend-meta/.[18] B. L. Takeyas, “Introducción a la inteligencia artificial,” 23, vol. 12, no. 32, p. 1, 2007.[19] J. Han, M. Kamber, and J. Pei, “Data Mining Techniques, Third Edition,” p. 847, 2011.[20] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436– 444, 2015, doi: 10.1038/nature14539.[21] D. J. Matich, “Redes Neuronales: Conceptos Básicos y Aplicaciones.,” Historia Santiago., p. 55, 2001, [Online]. Available: ftp://decsai.ugr.es/pub/usuarios/castro/Material-Redes- Neuronales/Libros/matich-redesneuronales.pdf.[22] I. N. Yulita, M. I. Fanany, and A. M. Arymuthy, “Bi-directional Long Short-Term Memory using Quantized data of Deep Belief Networks for Sleep Stage Classification,” Procedia Comput. Sci., vol. 116, pp. 530–538, 2017, doi: 10.1016/j.procs.2017.10.042.[23] K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and J. Schmidhuber, “TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1 LSTM: A Search Space Odyssey,” arXiv:1503.04069, pp. 1–11, 2015, [Online]. Available: https://arxiv.org/pdf/1503.04069.pdf.[24] L. Rokach, “Ensemble-based classifiers,” Artif. Intell. Rev., vol. 33, no. 1–2, pp. 1–39, 2010, doi: 10.1007/s10462-009-9124-7.[25] D. Whitley, “A genetic algorithm tutorial,” Stat. Comput., vol. 4, no. 2, pp. 65–85, 1994, doi: 10.1007/BF00175354.[26] M. Granik and V. Mesyura, “Fake News Detection Using Naive Bayes Classifier,” 2017, pp. 900–903.[27] T. Joachims, “Text Categorization with SVM: Learning with Many Relevant Features,” Eur. Conf. Mach. Learn., pp. 137–142, 2005.[28] C. B. Browne et al., “A Survey of Monte Carlo Tree Search Methods,” IEEE Trans. Comput. Intell. AI GAMES, vol. 4, no. 1, 2012.[29] MacQueen, James and others, “Some methods for classification and analysis of multivariate observations,” Proc. fifth Berkeley Symp. Math. Stat. Probab., vol. 1, no. 14, pp. 281–297, 1967, [Online]. Available: http://books.google.de/books?hl=de&lr=&id=IC4Ku_7dBFUC&oi=fnd&pg=PA281&dq=M acQueen+some+methods+for+classification&ots=nNTcK1IdoQ&sig=fHzdVcbvmYJ- lTNHu1HncmOFOkM#v=onepage&q=MacQueen some methods for classification&f=false.[30] R. Gandhi, “Introduction to Machine Learning Algorithms: Linear Regression,” towardsdatascience.com, 2018. https://towardsdatascience.com/introduction-to-machine- learning-algorithms-linear-regression-14c4e325882a.[31] A. Pant, “Introduction to Logistic Regression,” towardsdatascience.com, 2019. https://towardsdatascience.com/introduction-to-logistic-regression-66248243c148.[32] S. R. Eddy, “Hidden Markov models,” Curr. Opin. Struct. Biol., vol. 6, no. 3, pp. 361–365, 1996, doi: 10.1016/S0959-440X(96)80056-X.[33] J. V. Román, “CRISP-DM: La metodología para poner orden en los proyectos,” www.sngular.com, 2016. www.sngular.com/es/data-science-crisp-dm-metodologia/.[34] E. Rahm and H. H. Do, “Data Cleaning: Problems and Current Approaches,” Bull. Tech. Comm. Data Eng., vol. 24, no. 4, pp. 2–13, 2001, [Online]. Available: papers2://publication/uuid/30073F7F-1B7C-4496-ADA4-94FF4E6EE8F7.[35] B. Deepanshu, “WEIGHT OF EVIDENCE (WOE) AND INFORMATION VALUE (IV) EXPLAINED,” listendata, 2015. https://www.listendata.com/2015/03/weight-of-evidence- woe-and-information.html.[36] D. M. Hawkins, Identification of Outliers. 1980.[37] C. C. Aggarwal, “Outlier Analysis,” in Data Mining, vol. 1, no. 1, 2015, p. 746.[38] M. A. Zöller and M. F. Huber, “Benchmark and Survey of Automated Machine Learning Frameworks,” J. Artif. Intell. Res., vol. 70, pp. 409–472, 2021, doi: 10.1613/JAIR.1.11854.[39] H2O, “Performance and prediction,” docs.h2o.ai, 2019.[40] J. A. Gallardo Arancibia, “Metodología para la definición de requisitos en proyectos de data mining (ER-DM),” p. 317, 2009, [Online]. Available: http://oa.upm.es/1946/1/JOSE_ALBERTO_GALLARDO_ARANCIBIA.pdf.[41] M. A. E. C, E. R. R, L. Y. F. G, and C. D. Guerrero, “DANDELION : Propuesta metodológica para recopilación y análisis de información de artículos científicos . Un enfoque desde la bibliometría y la revisión sistemática de la literatura .,” pp. 110–123, 2020.[42] Speedtest, “Speedtest Global Index,” www.speedtest.net, 2020. https://www.speedtest.net/global-index.[43] M. Claypool, “The effect of latency on user performance in Real-Time Strategy games,” Comput. Networks, vol. 49, no. 1, pp. 52–70, 2005, doi: 10.1016/j.comnet.2005.04.008.ORIGINAL2021_Tesis_Mantilla_Molano_Cristian_Augusto.pdf2021_Tesis_Mantilla_Molano_Cristian_Augusto.pdfTesisapplication/pdf2829334https://repository.unab.edu.co/bitstream/20.500.12749/15733/1/2021_Tesis_Mantilla_Molano_Cristian_Augusto.pdf21f56891e4dc6eaec14a1c030125f9e7MD51open access2021_Licencia_Mantilla_Molano_Cristian_Augusto.pdf2021_Licencia_Mantilla_Molano_Cristian_Augusto.pdfLicenciaapplication/pdf96767https://repository.unab.edu.co/bitstream/20.500.12749/15733/2/2021_Licencia_Mantilla_Molano_Cristian_Augusto.pdf0e8c190a3f8ab8a0c614a23e0dd0555aMD52metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8829https://repository.unab.edu.co/bitstream/20.500.12749/15733/3/license.txt3755c0cfdb77e29f2b9125d7a45dd316MD53open accessTHUMBNAIL2021_Tesis_Mantilla_Molano_Cristian_Augusto.pdf.jpg2021_Tesis_Mantilla_Molano_Cristian_Augusto.pdf.jpgIM Thumbnailimage/jpeg4954https://repository.unab.edu.co/bitstream/20.500.12749/15733/4/2021_Tesis_Mantilla_Molano_Cristian_Augusto.pdf.jpg60148ae9f90886080e49567b716d242bMD54open access2021_Licencia_Mantilla_Molano_Cristian_Augusto.pdf.jpg2021_Licencia_Mantilla_Molano_Cristian_Augusto.pdf.jpgIM Thumbnailimage/jpeg9796https://repository.unab.edu.co/bitstream/20.500.12749/15733/5/2021_Licencia_Mantilla_Molano_Cristian_Augusto.pdf.jpg913d7ef6dba1d3babaf1fc73c3c916baMD55metadata only access20.500.12749/15733oai:repository.unab.edu.co:20.500.12749/157332023-07-26 16:14:44.426open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbi4gRWwgQVVUT1IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVTkFCIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuCgpFbCBBVVRPUiBhdXRvcml6YSBhIGxhIFVuaXZlcnNpZGFkIEF1dMOzbm9tYSBkZSBCdWNhcmFtYW5nYSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24uCg== |