Propuesta de Framework conceptual para la transferencia tecnológica IOT enfocado en el diseño de soluciones de riego para pequeños productores agricultores de Santander: Un aporte desde el diseño centrado en los usuarios
Este proyecto propone el desarrollo de un framework para el diseño de soluciones de riego que emplee Internet de las cosas, mediante canales, procesos y actores de la transferencia tecnológica, utilizando elementos de sistemas centrados en las personas con el fin de potenciar la transformación digit...
- Autores:
-
Espinosa Carreño, María Alexandra
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2022
- Institución:
- Universidad Autónoma de Bucaramanga - UNAB
- Repositorio:
- Repositorio UNAB
- Idioma:
- spa
- OAI Identifier:
- oai:repository.unab.edu.co:20.500.12749/19092
- Acceso en línea:
- http://hdl.handle.net/20.500.12749/19092
- Palabra clave:
- Engineering
Agriculture Technology transfer (ATT)
Smallholder farmer
Internet of things (IoT)
Information systems
Electronic data processing
Computational linguistics
Agricultural technology
Agricultural development
Ingeniería
Sistemas de información
Procesamiento electrónico de datos
Linguística computacional
Tecnología agrícola
Desarrollo agrícola
Internet de las cosas (IoT)
Transferencia de tecnología agrícola (TTA)
Pequeños productores agricultores
Diseño centrado en el hombre (DCH)
- Rights
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id |
UNAB2_b54755da7cfef33e4a62aee08446fefa |
---|---|
oai_identifier_str |
oai:repository.unab.edu.co:20.500.12749/19092 |
network_acronym_str |
UNAB2 |
network_name_str |
Repositorio UNAB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Propuesta de Framework conceptual para la transferencia tecnológica IOT enfocado en el diseño de soluciones de riego para pequeños productores agricultores de Santander: Un aporte desde el diseño centrado en los usuarios |
dc.title.translated.spa.fl_str_mv |
Proposal for a conceptual Framework for IOT technology transfer focused on the design of irrigation solutions for small-scale farmers in Santander: A contribution from user-centered desig |
title |
Propuesta de Framework conceptual para la transferencia tecnológica IOT enfocado en el diseño de soluciones de riego para pequeños productores agricultores de Santander: Un aporte desde el diseño centrado en los usuarios |
spellingShingle |
Propuesta de Framework conceptual para la transferencia tecnológica IOT enfocado en el diseño de soluciones de riego para pequeños productores agricultores de Santander: Un aporte desde el diseño centrado en los usuarios Engineering Agriculture Technology transfer (ATT) Smallholder farmer Internet of things (IoT) Information systems Electronic data processing Computational linguistics Agricultural technology Agricultural development Ingeniería Sistemas de información Procesamiento electrónico de datos Linguística computacional Tecnología agrícola Desarrollo agrícola Internet de las cosas (IoT) Transferencia de tecnología agrícola (TTA) Pequeños productores agricultores Diseño centrado en el hombre (DCH) |
title_short |
Propuesta de Framework conceptual para la transferencia tecnológica IOT enfocado en el diseño de soluciones de riego para pequeños productores agricultores de Santander: Un aporte desde el diseño centrado en los usuarios |
title_full |
Propuesta de Framework conceptual para la transferencia tecnológica IOT enfocado en el diseño de soluciones de riego para pequeños productores agricultores de Santander: Un aporte desde el diseño centrado en los usuarios |
title_fullStr |
Propuesta de Framework conceptual para la transferencia tecnológica IOT enfocado en el diseño de soluciones de riego para pequeños productores agricultores de Santander: Un aporte desde el diseño centrado en los usuarios |
title_full_unstemmed |
Propuesta de Framework conceptual para la transferencia tecnológica IOT enfocado en el diseño de soluciones de riego para pequeños productores agricultores de Santander: Un aporte desde el diseño centrado en los usuarios |
title_sort |
Propuesta de Framework conceptual para la transferencia tecnológica IOT enfocado en el diseño de soluciones de riego para pequeños productores agricultores de Santander: Un aporte desde el diseño centrado en los usuarios |
dc.creator.fl_str_mv |
Espinosa Carreño, María Alexandra |
dc.contributor.advisor.none.fl_str_mv |
Sarmiento Porras, Román Eduardo |
dc.contributor.author.none.fl_str_mv |
Espinosa Carreño, María Alexandra |
dc.contributor.cvlac.spa.fl_str_mv |
Espinosa Carreño, María Alexandra [Espinosa Carreño, María Alexandra [0001495409]] Sarmiento Porras, Román Eduardo [0000161411] |
dc.contributor.googlescholar.spa.fl_str_mv |
Espinosa Carreño, María Alexandra [Ve6S8ocAAAAJ&hl] |
dc.contributor.orcid.spa.fl_str_mv |
Espinosa Carreño, María Alexandra [0000-0003-1411-0828] Sarmiento Porras, Román Eduardo [0000-0002-8647-8659] |
dc.contributor.scopus.spa.fl_str_mv |
Espinosa Carreño, María Alexandra[57209824483] |
dc.contributor.researchgate.spa.fl_str_mv |
Espinosa Carreño, María Alexandra [Maria-Espinosa-C] Sarmiento Porras, Román Eduardo [Roman-Sarmiento] |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación Preservación e Intercambio Digital de Información y Conocimiento - Prisma Grupo de Investigaciones Clínicas |
dc.contributor.apolounab.spa.fl_str_mv |
Espinosa Carreño, María Alexandra [maria-alexandra-espinosa-carreño] Sarmiento Porras, Román Eduardo [román-eduardo-sarmiento-porras] |
dc.subject.keywords.spa.fl_str_mv |
Engineering Agriculture Technology transfer (ATT) Smallholder farmer Internet of things (IoT) Information systems Electronic data processing Computational linguistics Agricultural technology Agricultural development |
topic |
Engineering Agriculture Technology transfer (ATT) Smallholder farmer Internet of things (IoT) Information systems Electronic data processing Computational linguistics Agricultural technology Agricultural development Ingeniería Sistemas de información Procesamiento electrónico de datos Linguística computacional Tecnología agrícola Desarrollo agrícola Internet de las cosas (IoT) Transferencia de tecnología agrícola (TTA) Pequeños productores agricultores Diseño centrado en el hombre (DCH) |
dc.subject.lemb.spa.fl_str_mv |
Ingeniería Sistemas de información Procesamiento electrónico de datos Linguística computacional Tecnología agrícola Desarrollo agrícola |
dc.subject.proposal.spa.fl_str_mv |
Internet de las cosas (IoT) Transferencia de tecnología agrícola (TTA) Pequeños productores agricultores Diseño centrado en el hombre (DCH) |
description |
Este proyecto propone el desarrollo de un framework para el diseño de soluciones de riego que emplee Internet de las cosas, mediante canales, procesos y actores de la transferencia tecnológica, utilizando elementos de sistemas centrados en las personas con el fin de potenciar la transformación digital en comunidades de pequeños agricultores de Santander. Este proyecto se desarrolla bajo el paradigma de investigación mixta, utilizando la metodología de triangulación que incluye la revisión sistemática de la literatura, la revisión de expertos y las técnicas de procesamiento del lenguaje natural (PLN) para identificar buenas prácticas que puedan ser incorporadas al marco. |
publishDate |
2022 |
dc.date.issued.none.fl_str_mv |
2022-12-07 |
dc.date.accessioned.none.fl_str_mv |
2023-02-22T21:54:00Z |
dc.date.available.none.fl_str_mv |
2023-02-22T21:54:00Z |
dc.type.eng.fl_str_mv |
Thesis |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.local.spa.fl_str_mv |
Tesis |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12749/19092 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Autónoma de Bucaramanga - UNAB |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional UNAB |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.unab.edu.co |
url |
http://hdl.handle.net/20.500.12749/19092 |
identifier_str_mv |
instname:Universidad Autónoma de Bucaramanga - UNAB reponame:Repositorio Institucional UNAB repourl:https://repository.unab.edu.co |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
[1] FAO, “Buenas prácticas en la FAO: Sistematización de experiencias para el aprendizaje continuo,” vol. 13, p. 12, 2013, [Online]. Available: www.fao.org/docrep/meeting/021/ma061s.pdf. [2] D. A’Zami, “Citizen-peasants : modernity , international relations and the problem of difference in,” University of Sussex. [3] J. James, ICT4D: Information and Communication Technology for Development, vol. 61, no. 1. 2010. [4] FAO, “Small family farms data portrait: Basic information document,” p. 15, 2017, [Online]. Available: http://www.fao.org/fileadmin/user_upload/smallholders_dataportrait/docs/Data_portrait_variables_description_new2.pdf. [5] B. E. Graeub et al., “The State of Family Farms in the World,” World Dev., vol. 87, no. JUNE, pp. 1–15, 2016, doi: 10.1016/j.worlddev.2015.05.012. [6] J. A. Berdegué and R. Fuentealba, “The state of smallholders in agriculture in Latin America,” in New Directions for Smallholder Agriculture, no. March, IFAD, Ed. Roma: Oxford University Press, 2014, pp. 115–152. [7] L. Joyanes Aguilar, Internet de las Cosas. Un futuro conectado. Alfaomega Grupo Editor, 2021. [8] K. Xing, D. H. Cropley, M. L. Oppert, and C. Singh, Readiness for Digital Innovation and Industry 4.0 Transformation: Studies on Manufacturing Industries in the City of Salisbury. 2021. [9] F. Lombo and C. Prada, “Censo Nacional Agropecuario Caracterización de los productores residentes en el área.” [10] M. Springmann et al., “Options for keeping the food system within environmental limits,” Nature, vol. 562, no. 7728, pp. 519–525, 2018, doi: 10.1038/s41586-018-0594-0. [11] G. Rapsomanikis, G. Sylvester, O. de las N. U. para la A. y la A. FAO, I. F. P. R. I. IFPRI, and O. para la C. y el D. E. OCDE, Information and Communication Technology (ICT) in Agriculture A Report to the G20 Agricultural Deputies. 2017. [12] F. Freire Carrera, O. Chadrina, J. Moreano Velasco, B. Torres Blacio, and Y. D. V. Garcia Orellana, “Prototipo de un sistema de riego automatizado en árboles de cacao (Theobroma cacao) controlado vía internet con dispositivos móviles,” Av. Investig. en Ing., vol. 16, no. 2, pp. 93–106, 2019, doi: 10.18041/1794-4953/avances.2.5257. [13] J. P. Tovar Soto, J. D. los S. Solórzano Suárez, A. Badillo Rodríguez, and G. O. Rodríguez Cainaba, “Internet de las cosas aplicado a la agricultura: estado actual,” Lámpsakos, no. 22. p. 86, 2019, doi: 10.21501/21454086.3253. [14] T. R. Wheeler and J. Braun, “Climate Change Impacts on Global Food Security,” Nat. Syst. Chang. Clim., vol. 341, no. August, pp. 508–513, 2013, doi: DOI: 10.1126/science.1239402 ARTICLE. [15] C. Lau, A. Javis, and J. Ramírez, “Agricultura colombiana: adaptación al cambio climático | Portal Sobre Conservación y Equidad Social CES,” CIAT Políticas en Síntesis No. 1, 2011. https://www.portalces.org/biblioteca/cambio-climatico/agricultura-colombiana-adaptacion-al-cambio-climatico (accessed May 27, 2019). [16] A. D. Boursianis et al., “Advancing Rational Exploitation of Water Irrigation Using 5G-IoT Capabilities: The AREThOU5A Project,” 2019 IEEE 29th Int. Symp. Power Timing Model. Optim. Simulation, PATMOS 2019, pp. 127–132, 2019, doi: 10.1109/PATMOS.2019.8862146. [17] Organización para la Cooperación y el Desarrollo Económicos (OCDE), “A Framework for Rural Development. Rural 3.0,” People-Centred Rural Policy, p. 28, 2019, [Online]. Available: https://www.oecd.org/rural/rural-development-conference/documents/Rural-3.0-Policy-Highlights.pdf. [18] M. O. Thomas, B. A. Onyimbo, and R. Logeswaran, “Usability Evaluation Criteria for Internet of Things,” Int. J. Inf. Technol. Comput. Sci., vol. 8, no. 12, pp. 10–18, 2016, doi: 10.5815/ijitcs.2016.12.02. [19] J. Š. Novák, J. Masner, J. Vaněk, P. Šimek, and K. Hennyeyová, “User experience and usability in agriculture-selected aspects for design systems,” Agris On-line Pap. Econ. Informatics, vol. 11, no. 4, pp. 75–83, 2019, doi: 10.7160/aol.2019.110407. [20] D. Fajardo, M. Mejía, L. Gómez, M. Matheu, and OXFAM en Colombia, “Radiografía de la desigualdad. LO QUE NOS DICE EL ÚLTIMO CENSO AGROPECUARIO SOBRE LA DISTRIBUCIÓN DE LA TIERRA EN COLOMBIA,” 2017. Accessed: Jun. 05, 2019. [Online]. Available: https://www-cdn.oxfam.org/s3fs-public/file_attachments/radiografia_de_la_desigualdad.pdf. [21] S. Ziegler, BID (Banco Interamericano de desarrollo), Agricultura), IICA (Instituto Interamericano de Cooperación para la, and Microsoft, “Habilidades digitales en la ruralidad: un imperativo para reducir brechas en américa latina y el caribe,” 2021. [Online]. Available: http://repositorio.iica.int/handle/11324/14462?locale-attribute=es. [22] J. M. Perez, Luchas campesinas y reforma agraria Luchas campesinas y reforma agraria, Primera Ed. Colombia, 2010. [23] DNP (Departamento Nacional de Planeación), MINSALUD (Ministerio de Salud y Protección Social), and Departamento Administrativo de la Presidencia de la República, Documento CONPES 3999. 2020, pp. 1–163. [24] Consejería Presidencial para los derechos humanos y asuntos Internacionales, “INFORME Y RECOMENDACIONES II Durante la pandemia del COVID-19 a la luz de los derechos humanos,” 2020. [25] DANE (Departamento Administrativo Nacional de Estadística), “Mayoristas Boletín Semanal,” Feb. 16, 2021. https://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/sistema-de-informacion-de-precios-sipsa/mayoristas-boletin-semanal-1 (accessed Mar. 04, 2021). [26] J. F. C. Díaz del Castillo, “La intermediación como un impedimento al desarrollo del pequeño productor de Medellín,” Corpoica Cienc. y Tecnol. Agropecu., vol. 14, no. 1, p. 27, 2013, doi: 10.21930/rcta.vol14_num1_art:264. [27] H. H. Mann, Social Framework of Agriculture, 2nd ed. India, Middle East, England: Routledge, 2020. [28] G. Rapsomanikis, “The economic lives of smallholder farmers,” Fao, vol. 4, no. 4, pp. 1–4, 2015, doi: 10.5296/rae.v6i4.6320. [29] Ó. A. Orozco and G. Llano Ramírez, “Sistemas de Información enfocados en tecnologías de agricultura de precisión y aplicables a la caña de azúcar, una revisión,” Rev. Ing. Univ. Medellín, vol. 15, no. 28, pp. 103–124, 2016, doi: 10.22395/rium.v15n28a6. [30] F. Ahmad et al., “A smart agricultural model by integrating IoT, mobile and cloud-based big data analytics,” Proc. 2017 Int. Conf. Intell. Comput. Control. I2C2 2017, vol. 2018-Janua, no. 1, pp. 1–5, Mar. 2018, doi: 10.1109/I2C2.2017.8321902. [31] J. Parra Delgadillo, “MIGRACIONES EN COLOMBIA (CIUDAD-CAMPO): ANÁLISIS AL NEORURALISMO Y LAS NUEVAS RURALIDADES EN LAS AFUERAS DE BOGOTÁ (CUNDINAMARCA).,” Universidad Externado de Colombia, 2018. [32] R. Pardo, “Diagnóstico de la Juventud Rural en Colombia. Grupos de Diálogo Rural, una estrategia de incidencia,” Santiago de Chile, 2017. [Online]. Available: www.rimisp.org. [33] M. T. De Ossa, J. E. Londoño, and A. Valencia-Arias, “Model of technology transfer from biomedical engineering: A case study [Modelo de Transferencia Tecnológica desde la Ingeniería Biomédica: un estudio de caso],” Inf. Tecnol., vol. 29, no. 1, pp. 83–90, 2018, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042253656&doi=10.4067%2FS0718-07642018000100010&partnerID=40&md5=13e130c77728abaf07cbe0831c57f992. [34] T. Kyung Sung and D. V Gibson, “Knowledge and Technology Transfer: Levels and Key Factors.” Accessed: May 27, 2019. [Online]. Available: http://www.ic2.utexas.edu/ictpi/mirror/curitiba2000/papers/S04P04.PDF. [35] ENTERPRISE IRELAND, “A REVIEW OF THE PERFORMANCE OF THE IRISH TECHNOLOGY TRANSFER SYSTEM 2007-2012,” 2012. Accessed: May 27, 2019. [Online]. Available: https://www.knowledgetransferireland.com/Reports-Publications/A-review-of-the-performance-of-the-Irish-technology-transfer-system-2007-2012.pdf. [36] M. Susuki, “Finding the social, economic and technological barriers and opportunities in the developing countries for designing the technology transfer and innovation regime in climate change,” 2010. [37] M. Ayaz, M. Ammad-Uddin, Z. Sharif, A. Mansour, and E. H. M. Aggoune, “Internet-of-Things (IoT)-based smart agriculture: Toward making the fields talk,” IEEE Access, vol. 7, pp. 129551–129583, 2019, doi: 10.1109/ACCESS.2019.2932609. [38] S. Shibusawa, “Precision Farming Approaches for Small Scale Farms,” IFAC Proc. Vol., vol. 34, no. 11, pp. 22–27, 2001, doi: 10.1016/s1474-6670(17)34099-5. [39] Grupo de alto nivel de expertos (HLPE), “Inversión en la agricultura a pequeña escala en favor de la seguridad alimentaria,” 2013. [40] DANE (Departamento Administrativo Nacional de Estadística), “Encuesta Nacional de Calidad de Vida ECV 2019,” 2020. [Online]. Available: https://www.dane.gov.co/index.php/estadisticas-por-tema/salud/calidad-de-vida-ecv/encuesta-nacional-de-calidad-de-vida-ecv-2019. [41] ICANH (Instituto Colombiano de Antropología e Historia) and D. (Departamento A. N. de Estadística), “Elementos para la conceptualización de lo ‘campesino’ en Colombia,” 2017. [42] S. Agrawal and D. Vieira, “A survey on Internet of Things - DOI 10.5752/P.2316-9451.2013v1n2p78,” Abakós, vol. 1, no. 2, pp. 291–319, 2013, doi: 10.5752/P.2316-9451.2013v1n2p78. [43] M. Hadžiali, A. Čolaković, and M. Hadžialić, “A Review of Enabling Technologies, Challenges, and Open Research Issues Internet of Things (IoT): A Review of Enabling Technologies, Challenges, and Open Research Issues,” Comput. Networks, vol. 144, pp. 17–39, 2018, doi: 10.1016/j.comnet.2018.07.017. [44] D. A. Norman and S. W. D. Draper, User Centered System Design. New perspectives on Human-Computer Interaction. CRC Press, 1986. [45] E. Almirón, “EL AGUA COMO ELEMENTO VITAL EN EL DESARROLLO DEL HOMBRE,” Observatorio de políticas de derechos humanos de Mercosur. https://www.observatoriomercosur.org.uy/libro/el_agua_como_elemento_vital_en_el_desarrollo_del_hombre_17.php. [46] FAO (Organización de las Naciones Unidas para la Alimentación y la Agricultura), “Sistemas de riego son vitales para la agricultura dominicana,” Agronoticias: Actualidad agropecuaria de América Latina y el Caribe, 2017. https://www.fao.org/in-action/agronoticias/detail/es/c/1027860/. [47] IDEAM (Instituto de Hidrología Meteorología y Estudios Ambientales), “Estudio Nacional del Agua,” Bogotá, Colombia, 2010. [48] J. Carrazón, “Manual práctico para el diseño de sistemas de minirriego,” Programa Espec. para la Segur. Aliment., vol. 9, no. 5, pp. 5876–5891, 2018. [49] UNESCO-WWAP, “Agua para todos, agua para la vida,” United Nations, p. 36, 2003, [Online]. Available: http://www.un.org/esa/sustdev/sdissues/water/WWDR-spanish-129556s.pdf. [50] UNESCO (Organización de las Naciones Unidas para la Educación la Ciencia y la Cultura), “GROUNDWATER Making the invisible visible,” Paris, 2022. [Online]. Available: https://www.unesco.org/reports/wwdr/2022/es/download. [51] FAO, “Evapotranspiración del cultivo en condiciones estándar Introducción a la Evapotranspiración del Cultivo (ET c),” 2018, [Online]. Available: http://www.fao.org/3/x0490s/x0490s00.htm. [52] IDEAM, J. Cadena, and M. Gómez, Validación de las fórmulas de Evapotranspiración de Referencia (ETo) para Colombia. Instituto de Hidrología Meteorología y Estudios Ambientales. 2017. [53] SEPOR, Uso de la bandeja de vaporación Clase A para la propagación del riego. 2010. [54] A. Ríos Hernández, Máquinas agrícolas, tracción animal y labores manuales. Cuba: Instituto de Mecanización Agrícola (INFOIIMA), 2012. [55] M. Liotta, “Los Sistemas De Riego Por Goteo Y Microaspersion,” Inst. Nac. Tecnol. Agropecu. Argentina, pp. 1–26, 2004. [56] M. A. Rapela, Fostering Innovation for Agriculture 4.0. Cham: Springer International Publishing, 2019. [57] J. Demenois et al., “Barriers and Strategies to Boost Soil Carbon Sequestration in Agriculture,” Front. Sustain. Food Syst., vol. 4, 2020, doi: 10.3389/fsufs.2020.00037. [58] Y. Liu, X. Ma, L. Shu, G. P. Hancke, and A. M. Abu-Mahfouz, “From Industry 4.0 to Agriculture 4.0: Current Status, Enabling Technologies, and Research Challenges,” IEEE Trans. Ind. Informatics, vol. 17, no. 6, pp. 4322–4334, Jun. 2021, doi: 10.1109/TII.2020.3003910. [59] A. Cravero, D. Lagos, and R. Espinosa, “Big Data / IoT Use in Wine Production: A Systematic Mapping Study,” IEEE Lat. Am. Trans., vol. 16, no. 5, pp. 1476–1484, May 2018, doi: 10.1109/TLA.2018.8408444. [60] I. Froiz-Míguez et al., “Design, Implementation, and Empirical Validation of an IoT Smart Irrigation System for Fog Computing Applications Based on LoRa and LoRaWAN Sensor Nodes,” Sensors, vol. 20, no. 23, p. 6865, Nov. 2020, doi: 10.3390/s20236865. [61] W. Liping, “Study on Agricultural Products Logistics Mode in Henan Province of China,” in Software Engineering and Knowledge Engineering: Theory and Practice, 2012, pp. 635–640. [62] S. Ramya, A. M. Swetha, and M. Doraipandian, “IoT Framework for Smart Irrigation using Machine Learning Technique,” J. Comput. Sci., vol. 16, no. 3, pp. 355–363, Mar. 2020, doi: 10.3844/jcssp.2020.355.363. [63] M. Raj et al., “A survey on the role of Internet of Things for adopting and promoting Agriculture 4.0,” J. Netw. Comput. Appl., vol. 187, no. May, p. 103107, 2021, doi: 10.1016/j.jnca.2021.103107. [64] D. M. Rodríguez, E. Bayona, and A. A. Rosado, “Summary of the internet of things and its application in agro-industrial production,” J. Phys. Conf. Ser., vol. 1409, p. 012018, Nov. 2019, doi: 10.1088/1742-6596/1409/1/012018. [65] S. Safdar, M. Mohsin, L. A. Khan, and W. Iqbal, “Leveraging the internet of things for smart waters: Motivation, enabling technologies and deployment strategies for Pakistan,” Proc. - 2018 IEEE SmartWorld, Ubiquitous Intell. Comput. Adv. Trust. Comput. Scalable Comput. Commun. Cloud Big Data Comput. Internet People Smart City Innov. SmartWorld/UIC/ATC/ScalCom/CBDCo, pp. 2117–2124, 2018, doi: 10.1109/SmartWorld.2018.00354. [66] S. I. Hassan, M. M. Alam, U. Illahi, M. A. Al Ghamdi, S. H. Almotiri, and M. M. Su’ud, “A Systematic Review on Monitoring and Advanced Control Strategies in Smart Agriculture,” IEEE Access, vol. 9, pp. 32517–32548, 2021, doi: 10.1109/ACCESS.2021.3057865. [67] A. Madruga Peláez, A. A. Estevez Pérez, R. S. López, I. Santana Ching, and C. M. García Algora, “Red de Sensores Inalámbricos para la Adquisición de Datos en Casas de Cultivo,” Ingeniería, vol. 24, no. 3, pp. 224–234, Sep. 2019, doi: 10.14483/23448393.14437. [68] Z. Irani et al., “Managing food security through food waste and loss: Small data to big data,” Comput. Oper. Res., vol. 98, pp. 367–383, Oct. 2018, doi: 10.1016/j.cor.2017.10.007. [69] R. Kondaveti, A. Reddy, and S. Palabtla, “Smart Irrigation System Using Machine Learning and IOT,” Proc. - Int. Conf. Vis. Towar. Emerg. Trends Commun. Networking, ViTECoN 2019, 2019, doi: 10.1109/ViTECoN.2019.8899433. [70] E. Nigussie, T. Olwal, G. Musumba, T. Tegegne, A. Lemma, and F. Mekuria, “IoT-based irrigation management for smallholder farmers in rural Sub-Saharan Africa,” Procedia Comput. Sci., vol. 177, pp. 86–93, 2020, doi: 10.1016/j.procs.2020.10.015. [71] X. Jiang et al., “Hybrid Low-Power Wide-Area Mesh Network for IoT Applications,” IEEE Internet Things J., vol. 8, no. 2, pp. 901–915, 2021, doi: 10.1109/JIOT.2020.3009228. [72] INTA and PROCISUR, “Sistemas y Metodologías pra asesoramiento a Regantes,” Manfredi, Córdoba (Argentina), 2010. [Online]. Available: https://inta.gob.ar/documentos/riego-sistemas-y-metodologias-para-asesoramiento-a-regantes. [73] H. Jafarieh, “Technology Transfer to Developing Countries: A Quantative Approach,” 2001. [74] M. Dubickis and E. Gaile-Sarkane, “Perspectives on Innovation and Technology Transfer,” Procedia - Soc. Behav. Sci., vol. 213, pp. 965–970, Dec. 2015, doi: 10.1016/j.sbspro.2015.11.512. [75] D. J. Sánchez Preciado, Developing Technology Transfer Processes in rural contexts : The case of Cauca in Colombia, vol. 4, no. 41. 2018. [76] J. O. A. Palacio Niño, “Análisis de transferencia tecnológica para una adecuada implementación de contenidos educativos en el sistema de TDT interactiva en Colombia.” p. 234, 2011. [77] T. Huang, “The technology transfer of the ICT curriculum in Taiwan.” pp. 407–422, 2013. [78] J. . Behrman and W. A. Fisher, Overseas R&D Activity of Transnational Companies. Oelgeschlager, Gunn and Hain, Cambridge, 1980. [79] M. Blomström, TRANSNATIONAL CORPORATIONS AND MANUFACTURING EXPORTS FROM DEVELOPING COUNTRIES. New York, New York, USA: United Nations Publications, 1990. [80] J. Bhagwati, The New International Economic Order. Massachusetts: MIT Press, 1978. [81] A. HASSAN and Y. Jamaluddin, “Exploring the Factors Affecting the ICT Technology Transfer Process: An Empirical Study in Libya,” Mod. Appl. Sci., vol. 10, no. 7, p. 156, 2016, doi: 10.5539/mas.v10n7p156. [82] A. K. Saini and V. KumarKhurana, “ICT Based Communication Systems as Enabler for Technology Transfer,” IEEE, pp. 90–99, 2016. [83] J. Londoño, S. Restrepo, M. Rodríguez, F. Cuartas, and N. Viana, “Identificación De Tipos, Modelos Y Mecanismos De Transferencia Tecnológica Que Apalancan La Innovación,” Revista CINTEX, vol. 23, no. 2. pp. 13–23, 2018. [84] J. A. Pineda Insuasti and A. S. Duarte Trujillo, “Modelo de transferencia de tecnología ecuatoriano: una revisión.” pp. 1–24, 2016. [85] R. Barquin, “Some Introductory Notes on Transfer of Technology,” in Industrial Development and Technology Transfer, 1981. [86] H. S. Lee, J. W. Lee, H. Y. Kim, H. J. Jo, and B. G. Lee, “Promising ICT Transfer Fields for Promotion of Micro-Startups Hye.” pp. 779–788, 2016. [87] J. González Sabater, Manual transferencia de tecnología y conocimiento, 2nd ed. THE TRANSFER INSTITUTE, 2011. [88] A. Corsi, R. N. Pagani, J. L. Kovaleski, and V. Luiz, “Technology transfer for sustainable development: Social impacts depicted and some other answers to a few questions,” J. Clean. Prod., p. 118522, 2019, doi: 10.1016/j.jclepro.2019.118522. [89] P. J. Buckley, “Some Aspects of Foreign Private Investment in the Manufacturing Sector of the Economy of the Irish Republic,” Econ. Soc. Rev, no. 5, pp. 301–321, 1974. [90] A. GÜNSEL, “Research on Effectiveness of Technology Transfer from a Knowledge Based perspective,” in Procedia - Social and Behavioral Sciences, 2015, vol. 207, pp. 777–785, doi: 10.1016/j.sbspro.2015.10.165. [91] M. Ismail, S. R. Hamzah, and R. Bebenroth, “Differentiating knowledge transfer and technology transfer: What should an organizational manager need to know?,” Eur. J. Train. Dev., vol. 42, no. 9, pp. 611–628, 2018, doi: 10.1108/EJTD-04-2018-0042. [92] S. S. Da Silva, P. R. Feldmann, R. G. Spers, and M. D. Bambini, “Analysis of the process of technology transfer in public research institutions,” Innov. Manag. Rev., vol. 16, no. 4, pp. 375–390, 2019, doi: 10.1108/inmr-05-2018-0024. [93] P. J. Buckley, “New Forms of International Industrial Co-operation,” in The Economic Theory of the Multinational Enterprise, Macmillan, Ed. London: Buckley & Casson, 1985, pp. 39–59. [94] D. O´Neil and C. Huff, “Ensuring universal acces to telecommunications technologies for all citizens: Equity vs Economic considerations.” STAS 98. Wiring the World: The Impact of Information Technology on Society. Proceedings of the 1998 International Symposium on Technology and Society, pp. 170–175, 1998. [95] D. V. Gibson and R. W. Smilor, “Key variables in technology transfer: A field-study based empirical analysis,” J. Eng. Technol. Manag., vol. 8, no. 3–4, pp. 287–312, Dec. 1991, doi: 10.1016/0923-4748(91)90015-J. [96] Y. Acea Valdez, “La transferencia de tecnología en Cuba.” pp. 139–149, 2016. [97] A. Corsi, F. F. De Souza, R. N. Pagani, and J. L. Kovaleski, Technology transfer oriented to sustainable development : proposal of a theoretical model based on barriers and opportunities, vol. 126, no. 6. Springer International Publishing, 2021. [98] J. Arenas and D. González, “Technology Transfer Models and Elements in the University-Industry Collaboration,” Adm. Sci., vol. 8, no. 2, p. 19, 2018, doi: 10.3390/admsci8020019. [99] A. Hassan, M. Y. Jamaluddin, and K. M. Menshawi, “International technology transfer models: A comparison study,” Journal of Theoretical and Applied Information Technology, vol. 78, no. 1. pp. 95–108, 2015. [100] E. C. Avendaño Sánchez, “El Uso De La Transferencia De Tecnología En El Sector Empresarial: De La Innovación a La Apropiación Del Saber,” Ekp, vol. 13, no. 3. pp. 1576–1580, 2017. [101] F. ÖZSUNGUR, “Adaptation Approach to Technology Transfer Strategy,” Afro Eurasian Stud., vol. 7, no. 1, pp. 134–178, 2018, doi: 10.33722/afes.471087. [102] C. L. García Wagner, “Modelo conceptual para el funcionamiento de una Oficina de Transferencia de Tecnología en la Universidad del Quindío.” 2018. [103] B. Metz, O. R. Davidson, J.-W. Martens, S. N. M. Van Rooijen, and L. Van Wie McGregory, “Methodological and Technological Issues in Technology Transfer,” 2000. Accessed: Jun. 17, 2019. [Online]. Available: www.cup.cam.ac.uk. [104] R. H. Acker and D. M. Kammen, “The quiet (energy) revolution: analysing the dissemination of photovoltaic power systems in Kenya,” Energy Policy, vol. 24, no. 1, pp. 81–111, 1996. [105] D. C. Rose et al., “Integrated farm management for sustainable agriculture: Lessons for knowledge exchange and policy,” Land use policy, vol. 81, no. April 2017, pp. 834–842, 2019, doi: 10.1016/j.landusepol.2018.11.001. [106] K. T. Moreno Suarez and E. L. Oviedo Bahamón, “Tipificación de la agricultura realizada por los integrantes de la Asociación de Productores Indígenas y Campesinos - ASPROINCA ubicada en el departamento de Caldas,” Corporación Universitaria Minuto de Dios - UNIMINUTO, 2017. [107] E. L. Hyman, A. T. International, M. O. Donnell, G. Patterson, and J. Skibiak, “An Economic Analysis of Small-Scale Technologies for Palm Oil Extraction in Central and West Africa,” World Dev., vol. 18, no. 3, pp. 455–476, 1990. [108] N. Clark and E. Clay, “The Dryland Research Project at lndore ( 1974-80 ) - an Institutional Innovation in Rural Technology Transfer,” J. Rural Stud., vol. 3, no. 2, pp. 159–173, 1987. [109] K. M. Baker and R. L. Edmonds, “Transfer of Taiwanese ideas and technology to The Gambia, West Africa: a viable approach to rural development?,” Geogr. J., vol. 170, no. 3, pp. 189–211, 2004, [Online]. Available: https://www.jstor.org/stable/3451252. [110] Unión Europea and IICA (Instituto Interamericano de Cooperación para la Agricultura), Sistemas de innovación agrícola en Centroamérica y Panamá: estrategias para el uso de buenas prácticas de transferencia tecnológica, Primera. San José, Costa Rica: IICA, 2016. [111] G. A. Van Norman and R. Eisenkot, “Technology Transfer: From the Research Bench to Commercialization: Part 2: The Commercialization Process,” JACC Basic to Transl. Sci., vol. 2, no. 2, pp. 197–208, 2017, doi: 10.1016/j.jacbts.2017.03.004. [112] W. Keller, “International technology diffusion,” J. Econ. Lit., vol. 3, no. 42, pp. 752–783, 2004. [113] M. Nabin, X. Nguyen, and P. Sgro, “On the Relationship Between Technology Transfer and Economic Growth in Asian,” World Econ., 2013, doi: 10.1111/twec.12049. [114] R. Thornton, “Los 90 y el nuevo siglo en los sistemas de extensión rural y transferencia de tecnología públicos en el Mercosur,” La Pampa, Argentina, 2011. [Online]. Available: https://inta.gob.ar/documentos/los-90-y-el-nuevo-siglo-en-los-sistemas-de-extension-rural-y-transferencia-de-tecnologia-publicos-en-el-mercosur. [115] W. G. Delgado Munevar, “Caracterización del proceso de transferencia y adopción tecnológica de pequeños y medianos productores de cebolla (allium cepa l.) en el municipio de Pasca (Cundinamarca),” 2009, Accessed: May 27, 2019. [Online]. Available: https://repository.javeriana.edu.co/handle/10554/134. [116] J. Ardila, Extensión rural para el desarrollo de la agricultura y la seguridad alimentaria, no. Aspectos conceptuales, situación y una visión de futuro. 2015. [117] D. S. MacCarthy, J. Kihara, P. Masikati, and S. G. K. Adiku, “Decision support tools for site-specific fertilizer recommendations and agricultural planning in selected countries in sub-Sahara Africa,” Nutr. Cycl. Agroecosystems, vol. 110, no. 3, pp. 343–359, Apr. 2018, doi: 10.1007/s10705-017-9877-3. [118] C. Gamboa, G. Van den Broeck, and M. Maertens, “Smallholders’ Preferences for Improved Quinoa Varieties in the Peruvian Andes,” Sustainability, vol. 10, no. 10, p. 3735, Oct. 2018, doi: 10.3390/su10103735. [119] O. Oyinbo et al., “Farmers’ preferences for high-input agriculture supported by site-specific extension services: Evidence from a choice experiment in Nigeria,” Agric. Syst., vol. 173, no. June 2018, pp. 12–26, 2019, doi: 10.1016/j.agsy.2019.02.003. [120] M. Banković et al., “Teaching graduate students how to review research articles and respond to reviewer comments,” 2020, pp. 1–63. [121] L. J. Catania, “The science and technologies of artificial intelligence (AI),” in Foundations of Artificial Intelligence in Healthcare and Bioscience, Elsevier, 2021, pp. 29–72. [122] S. Vajjala, B. Majumder, A. Gupta, and H. Surana, Practical Natural Language Processing. A comprehensive Guide to Building Real-World NLP System. 2020. [123] M. B. Hernández and J. M. Gómez, “Aplicaciones de Procesamiento de Lenguaje Natural,” Rev. Politécnica, vol. 32, no. 1, pp. 87–96, 2013, [Online]. Available: http://www.revistapolitecnica.epn.edu.ec/ojs2/index.php/revista_politecnica2/article/view/32. [124] J. C. Campbell, A. Hindle, and E. Stroulia, “Latent Dirichlet Allocation: Extracting Topics from Software Engineering Data,” Art Sci. Anal. Softw. Data, vol. 3, pp. 139–159, 2015, doi: 10.1016/B978-0-12-411519-4.00006-9. [125] R. Kulshrestha, “A Beginner’s Guide to Latent Dirichlet Allocation(LDA),” towardsdatascience.com, 2019. https://towardsdatascience.com/latent-dirichlet-allocation-lda-9d1cd064ffa2. [126] T. Ganegedara, “Intuitive Guide to Latent Dirichlet Allocation,” towardsdatascience.com, 2018. https://towardsdatascience.com/light-on-math-machine-learning-intuitive-guide-to-latent-dirichlet-allocation-437c81220158. [127] Z. Tong and H. Zhang, “A Text Mining Research Based on LDA Topic Modelling,” pp. 201–210, 2016, doi: 10.5121/csit.2016.60616. [128] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei, “Hierarchical Dirichlet processes,” J. Am. Stat. Assoc., vol. 101, no. 476, pp. 1566–1581, 2006, doi: 10.1198/016214506000000302. [129] E. Coronado Sroka, “Don’t be Afraid of Nonparametric Topic Models,” towardsdatascience.com, 2020. https://towardsdatascience.com/dont-be-afraid-of-nonparametric-topic-models-d259c237a840. [130] J. Xu, “Topic Modeling with LSA, PLSA, LDA y Ida2Vec,” medium.com, 2018. https://medium.com/nanonets/topic-modeling-with-lsa-psla-lda-and-lda2vec-555ff65b0b05. [131] S. Baldassarri Santalucía, “Computación Afectiva: tecnología y emociones para mejorar la experiencia de usuario,” Rev. Inst. la Fac. Inform., vol. no. 3, pp. 14–15, 2016. [132] M. Soegaard and R. Friss Dam, Encyclopedia of Human -Computer Interaction, 3rd ed. THE INTERACTION DESIGN FOUNDATION. [133] N. Eyar and R. Hoover, How to Build Habit-Forming Products. Penguin Randowm house LLC, 2014. [134] N. Norman, The design of everyday things. New York, New York, USA: Basic Books, 2013. [135] M. G. Domingo and E. M. Pera, “Diseño centrado en el usuario,” Diseño centrado en el usuario, vol. 2, no. 4, 2017. [136] INTERACTION DESIGN FOUNDATION, “What is User Centered Design? | Interaction Design Foundation.” https://www.interaction-design.org/literature/topics/user-centered-design (accessed May 28, 2019). [137] Design Council, “Design Methods Step 1: Discover,” Design Council, 2015. https://www.designcouncil.org.uk/our-work/news-opinion/design-methods-step-1-discover/. [138] Design Council, “Design Methods Step 2: Define,” Design Council, 2018. https://www.designcouncil.org.uk/our-work/news-opinion/design-methods-step-2-define/. [139] Design Council, “Design Methods Step 3: Develop,” Design Council, 2018. https://www.designcouncil.org.uk/our-work/news-opinion/design-methods-step-3-develop/. [140] Design Council, “Design Methods Step 4: Deliver,” 2018. https://www.designcouncil.org.uk/our-work/news-opinion/design-methods-step-4-deliver/. [141] K. Rodden, H. Hutchinson, and X. Fu, “Measuring the user experience on a large scale,” in Proceedings of the 28th international conference on Human factors in computing systems - CHI ’10, 2010, p. 2395, doi: 10.1145/1753326.1753687. [142] S. Sastoque, C. Narváez, and G. Garnica, “Metodología para la construcción de Interfaces Gráficas Centradas en el Usuario,” 2016. [143] INTERACTION DESIGN FOUNDATION, “What is Design Thinking and Why Is It So Popular?” . [144] I. Young, Practical Empathy for collaboration and creativity in your Work. Rosenfeld, 2015. [145] C. D. Batson, “These Things Called Empathy: Eight Related but Distinct Phenomena,” in The Social Neuroscience of Empathy, The MIT Press, 2009, pp. 3–16. [146] T. Wiseman, “A concept analysis of empathy,” J. Adv. Nurs., vol. 23, no. 6, pp. 1162–1167, Jun. 1996, doi: 10.1046/j.1365-2648.1996.12213.x. [147] B. A. Aubert, A. Schroeder, and J. Grimaudo, “IT as enabler of sustainable farming: An empirical analysis of farmers’ adoption decision of precision agriculture technology,” Decis. Support Syst., vol. 54, no. 1, pp. 510–520, Dec. 2012, doi: 10.1016/j.dss.2012.07.002. [148] S. O. Somers and L. Stapleton, “A Human-Centred approach to e-Agricultural systems,” IFAC-PapersOnLine, vol. 48, no. 24, pp. 213–218, Jan. 2015, doi: 10.1016/J.IFACOL.2015.12.085. [149] S. Somers and L. Stapleton, “e-Agricultural innovation using a human-centred systems lens, proposed conceptual framework,” AI Soc., vol. 29, no. 2, pp. 193–202, May 2014, doi: 10.1007/s00146-013-0475-x. [150] N. Theodorakopoulos, D. J. Snchez Preciado, and D. Bennett, “Transferring technology from university to rural industry within a developing economy context: The case for nurturing communities of practice,” Technovation, vol. 32, no. 9–10, pp. 550–559, 2012, doi: 10.1016/j.technovation.2012.05.001. [151] P. S. Ahmed Awad Talb Altalb, Tadeusz Filipek, “The role of extension in the transfer and adoption of agricultural technology,” J. Int. Agric. Ext. Educ., vol. 03, no. 05, pp. 63–68, 2015. [152] G. Sylvester, SUCCESS STORIES ON INFORMATION AND COMMUNICATION TECHNOLOGIES FOR AGRICULTURE AND RURAL DEVELOPMENT. Bangkok: FAO, 2015. [153] C. Leeuwis and A. Van den Ban, Communication for Rural Innovation : Rethinking Agricultural Extension, 3rd ed. Hoboken, United States: John Wiley & Sons, Ltd, 2007. [154] P. Figueroa, P. Castillo, V. Vrsalovic, D. Gálvez, and S. Diez-de-medina, “Technology Transfer from Academia to Rural Communities : The Case of Caprines in vitro Fecundation and Local Livestock Market in Tamarugal Province in Chile,” vol. 8, no. 4, pp. 186–194, 2013, [Online]. Available: https://scielo.conicyt.cl/pdf/jotmi/v8n4/art17.pdf. [155] S. O. Somers and L. Stapleton, “A Human-Centred approach to e-Agricultural systems,” IFAC-PapersOnLine, vol. 48, no. 24, pp. 213–218, Jan. 2015, doi: 10.1016/j.ifacol.2015.12.085. [156] J. Mwangi, “the Role of Extension in the Transfer and Adoption of Agricultural Technologies,” J. Int. Agric. Ext. Educ., vol. 5, no. 1, 1998, doi: 10.5191/jiaee.1998.05108. [157] W. Muzari, W. Gatsi, and S. Muvhunzi, “The Impacts of Technology Adoption on Smallholder Agricultural Productivity in Sub-Saharan Africa: A Review,” J. Sustain. Dev., vol. 5, no. 8, pp. 69–77, 2012, doi: 10.5539/jsd.v5n8p69. [158] B. E. Swanson, “Global Review of Good Agricultural Extension and Advisory Practices,” Food Agric. Organ. United Nations, p. 82345, 2008, [Online]. Available: https://www.fao.org/3/i0261e/i0261e00.htm. [159] L. Kuhl, “Technology transfer and adoption for smallholder climate change adaptation: opportunities and challenges,” Clim. Dev., vol. 12, no. 4, pp. 353–368, 2020, doi: 10.1080/17565529.2019.1630349. [160] A. Hassan, M. Y. Jamaluddin, and A. Queiri, “Technology transfer model for the Libyan information and communication industry,” J. Teknol., vol. 78, no. 8, pp. 99–100, 2016, doi: 10.11113/jt.v78.5872. [161] A. Espinosa, J. Pineda, O. Ortega, A. J. Author, R. Sarmiento, and G. W. Archibold Taylor, “Trends, Challenges and Opportunities for IoT in Smallholder Agriculture Sector: An Evaluation from the Perspective of Good Practices,” in Trends and Applications in Information Systems and Technologies, SPRINGER, 2021, pp. 293–301. [162] G. Natarajan and L. Ashok Kumar, “Implementation of IoT based smart village for the rural development,” Int. J. Mech. Eng. Technol., vol. 8, no. 8, pp. 1212–1222, 2017. [163] G. Carrión, M. Huerta, and B. Barzallo, “Internet of Things (IoT) Applied to an Urban Garden,” in Proceedings - 2018 IEEE 6th International Conference on Future Internet of Things and Cloud, FiCloud 2018, 2018, pp. 155–161, doi: 10.1109/FiCloud.2018.00030. [164] D. Singh and A. Thakur, “Designing of smart drip irrigation system for remote hilly areas,” PDGC 2018 - 2018 5th Int. Conf. Parallel, Distrib. Grid Comput., vol. 8, no. 1, pp. 90–94, 2018, doi: 10.1109/PDGC.2018.8745934. [165] N. Ananthi, J. Divya, M. Divya, and V. Janani, “IoT based smart soil monitoring system for agricultural production,” Proc. - 2017 IEEE Technol. Innov. ICT Agric. Rural Dev. TIAR 2017, vol. 2018-Janua, pp. 209–214, 2018, doi: 10.1109/TIAR.2017.8273717. [166] K. P. Satamraju, K. Shaik, and N. Vellanki, “RURAL BRIDGE: A novel system for smart and co-operative farming using IoT architecture,” IMPACT 2017 - Int. Conf. Multimedia, Signal Process. Commun. Technol., no. 1, pp. 22–26, 2018, doi: 10.1109/MSPCT.2017.8363966. [167] K. A. Shah, M. Patel, M. Khasakiya, S. Kazi, and P. Khalasi, “CESIS: Cost-effective and self-regulating irrigation system,” in Lecture Notes on Data Engineering and Communications Technologies, vol. 27, Springer, Cham, 2019, pp. 167–181. [168] T. S. Sondhi, A. R. Sambhaji, and K. Sharmila Banu, “InFEvoS: Integrated farming evolution system,” Int. J. Recent Technol. Eng., vol. 7, no. 6, pp. 932–936, 2019. [169] U. J. L. dos Santos, G. Pessin, C. A. da Costa, and R. da Rosa Righi, “AgriPrediction: A proactive internet of things model to anticipate problems and improve production in agricultural crops,” Comput. Electron. Agric., vol. 161, no. July, pp. 202–213, 2019, doi: 10.1016/j.compag.2018.10.010. [170] M. Mancini et al., “An open source and low-cost internet of things-enabled service for irrigation management,” Conf. Proc. - IEEE Int. Conf. Syst. Man Cybern., vol. 2019-Octob, pp. 1714–1719, 2019, doi: 10.1109/SMC.2019.8914230. [171] C. C. Baseca, S. Sendra, J. Lloret, and J. Tomas, “A smart decision system for digital farming,” Agronomy, vol. 9, no. 5, 2019, doi: 10.3390/agronomy9050216. [172] P. Visconti, R. de Fazio, P. Primiceri, D. Cafagna, S. Strazzella, and N. I. Giannoccaro, “A solar-powered fertigation system based on low-cost wireless sensor network remotely controlled by farmer for irrigation cycles and crops growth optimization,” Int. J. Electron. Telecommun., vol. 66, no. 1, pp. 59–68, 2020, doi: 10.24425/ijet.2019.130266. [173] D. P. Holzworth et al., “Agricultural production systems modelling and software: Current status and future prospects,” Environ. Model. Softw., vol. 72, no. 1, pp. 276–286, Oct. 2015, doi: 10.1016/j.envsoft.2014.12.013. 10.1016/j.envsoft.2014.12.013. [174] A. Oliveira et al., “Iot sensing platform as a driver for digital farming in rural africa,” Sensors (Switzerland), vol. 20, no. 12, pp. 1–25, 2020, doi: 10.3390/s20123511. [175] A. Tendolkar and S. Ramya, “CareBro (Personal Farm Assistant):An IoT based Smart Agriculture with Edge Computing,” MPCIT 2020 - Proc. IEEE 3rd Int. Conf. "Multimedia Process. Commun. Inf. Technol., pp. 97–102, 2020, doi: 10.1109/MPCIT51588.2020.9350481. [176] P. L. Ramirez Izolan et al., “Low-Cost Fog Computing Platform for Soil Moisture Management,” Int. Conf. Inf. Netw., vol. 2020-Janua, pp. 499–504, 2020, doi: 10.1109/ICOIN48656.2020.9016572. [177] J. D. Borrero and A. Zabalo, “An autonomous wireless device for real-time monitoring of water needs,” Sensors (Switzerland), vol. 20, no. 7, pp. 1–16, 2020, doi: 10.3390/s20072078. [178] N. A. A. Abdellah and N. Thangadurai, “Real Time Application of IoT for the Agriculture in the Field along with Machine Learning Algorithm,” Proc. 2020 Int. Conf. Comput. Control. Electr. Electron. Eng. ICCCEEE 2020, 2021, doi: 10.1109/ICCCEEE49695.2021.9429606. [179] S. Casadei, F. Peppoloni, F. Ventura, R. Teodorescu, D. Dunea, and N. Petrescu, “Application of smart irrigation systems for water conservation in Italian farms,” Environ. Sci. Pollut. Res., vol. 28, no. 21, pp. 26488–26499, 2021, doi: 10.1007/s11356-021-12524-6. [180] F. J. Ruiz Ortega, K. Esquivel Murillo, D. O. Rodríguez Martinez, M. E. Rodríguez Torres, and R. Duarte Ramírez, “INTERNET DE LAS COSAS (IoT), UNA ALTERNATIVA PARA EL CUIDADO DEL AGUA,” Pist. Educ., vol. 40, no. 130, pp. 2318–2330, 2018. [181] A. F. Jimenez, E. F. Herrera, B. V. Ortiz, A. Ruiz, and P. F. Cardenas, “Inference System for Irrigation Scheduling with an Intelligent Agent,” in Advances in Information and Communication Technologies for Adapting Agriculture to Climate Change II, J. C. Corrales, P. Angelov, and J. A. Iglesias, Eds. Cham: Springer International Publishing, 2019, pp. 1–20. [182] J. D. Franco-Ramirez, T. A. Ramirez-Delreal, A. Garate-Garcia, M. A. Ruiz, and D. Villanueva-Vasquez, “MOSyG: Monitoring system for germination chamber using fuzzy control based on cloudino-IoT and FIWARE,” 2019 IEEE Int. Autumn Meet. Power, Electron. Comput. ROPEC 2019, no. Ropec, 2019, doi: 10.1109/ROPEC48299.2019.9057127. [183] J. A. Laverde Mena and C. G. Laverde Mena, “Internet de las cosas aplicado en la agricultura ecuatoriana: Una propuesta para sistemas de riego,” Rev. Dilemas Contemp., vol. 148, pp. 148–162, 2021. [184] E. Gutierrez Leon, J. E. Montiel Arguijo, C. Carreto Arellano, and F. R. Menchaca García, “Propuesta de sistema de gestión inteligente basado en IoT para hidroponia,” Res. Comput. Sci., vol. 148, no. 10, pp. 219–233, 2019, doi: 10.13053/rcs-148-10-19. [185] F. A. Capraro Fuentes, S. R. Tosetti, and P. L. Campillo, “Sensor Network for Monitoring and Fault Detection in Drip Irrigation Systems Based on Embedded Systems,” IEEE Lat. Am. Trans., vol. 18, no. 2, pp. 383–391, 2020, doi: 10.1109/TLA.2020.9085294. [186] A. Oliveira-Jr et al., “IoT Sensing Platform as a Driver for Digital Farming in Rural Africa,” Sensors, vol. 20, no. 12, p. 3511, Jun. 2020, doi: 10.3390/s20123511. [187] J. Rodríguez-Robles, Á. Martin, S. Martin, J. A. Ruipérez-Valiente, and M. Castro, “Autonomous sensor network for rural agriculture environments, low cost, and energy self-charge,” Sustain., vol. 12, no. 15, 2020, doi: 10.3390/SU12155913. [188] A. Cabarcas, C. Arrieta, D. Cermeno, H. Leal, R. Mendoza, and C. Rosales, “Irrigation system for precision agriculture supported in the measurement of environmental variables,” Proc. - 2019 7th Int. Eng. Sci. Technol. Conf. IESTEC 2019, no. March 2020, pp. 671–676, 2019, doi: 10.1109/IESTEC46403.2019.00125. [189] M. J. Ibarra, E. Alcarraz, O. Tapia, Y. P. Atencio, Y. Mamani-Coaquira, and H. A. Huillcen Baca, “NFT-I technique using IoT to improve hydroponic cultivation of lettuce,” Proc. - Int. Conf. Chil. Comput. Sci. Soc. SCCC, vol. 2020-Novem, 2020, doi: 10.1109/SCCC51225.2020.9281277. [190] Superintendencia de Industria y Comercio (SIC), “¿Qué se puede patentar?,” Superintenedencia de Industria y Comercio (SIC), 2021. https://www.sic.gov.co/node/44#:~:text=Se protegen los inventos que consistan en productos%2C,un procedimiento para la obtención de un producto. [191] H. Ben Salem and T. Smith, “Feeding strategies to increase small ruminant production in dry environments,” Small Rumin. Res., vol. 77, no. 2–3, pp. 174–194, 2008, doi: 10.1016/j.smallrumres.2008.03.008. [192] D. Singh and A. Thakur, “Advancing Rational Exploitation of Water Irrigation Using 5G-IoT Capabilities: The AREThOU5A project,” PDGC 2018 - 2018 5th Int. Conf. Parallel, Distrib. Grid Comput., vol. 8, no. 1, pp. 90–94, 2018, doi: 10.1109/PDGC.2018.8745934. [193] R. Torres-Sanchez, H. Navarro-Hellin, A. Guillamon-Frutos, R. San-Segundo, M. C. Ruiz-Abellón, and R. Domingo-Miguel, “A decision support system for irrigation management: Analysis and implementation of different learning techniques,” Water (Switzerland), vol. 12, no. 2, 2020, doi: 10.3390/w12020548. [194] S. Athani, C. Tejeshwar, M. M. Patil, P. Patil, and R. Kulkarni, “Soil moisture monitoring using IoT enabled arduino sensors with neural networks for improving soil management for farmers and predict seasonal rainfall for planning future harvest in North Karnataka - India,” Int. Conf. I-SMAC (IoT Soc. Mobile, Anal. Cloud), pp. 43–48, 2017. [195] J. J. Dethier and A. Effenberger, “Agriculture and development: A brief review of the literature,” Econ. Syst., vol. 36, no. 2, pp. 175–205, 2012, doi: 10.1016/j.ecosys.2011.09.003. [196] M. Bures, “Internet of Things: Current Challenges in the Quality Assurance and Testing Methods.” Accessed: Nov. 22, 2018. [Online]. Available: https://arxiv.org/ftp/arxiv/papers/1805/1805.01241.pdf. [197] K. Pernapati, “IoT Based Low Cost Smart Irrigation System,” in Proceedings of the International Conference on Inventive Communication and Computational Technologies, ICICCT 2018, 2018, pp. 1312–1315, doi: 10.1109/ICICCT.2018.8473292. [198] T. W. Zougmore, S. Malo, F. Kagembega, and A. Togueyini, “Low cost IoT solutions for agricultures fish farmers in Afirca: A case study from Burkina Faso,” ICSCC 2018 - 1st Int. Conf. Smart Cities Communities, 2018, doi: 10.1109/SCCIC.2018.8584549. [199] E. Beza, L. Kooistra, P. Reidsma, P. Poortvliet, M. Belay, and B. Bijen, “Exploring farmers’ intentions to adopt mobile Short Message Service (SMS) for citizen science in agriculture,” j, vol. 151, 2018, doi: 10.1016/j.compag.2018.06.015. [200] K. Lova Raju and V. Vijayaraghavan, “IoT and Cloud hinged Smart Irrigation System for Urban and Rural Farmers employing MQTT Protocol,” ICDCS 2020 - 2020 5th Int. Conf. Devices, Circuits Syst., pp. 71–75, 2020, doi: 10.1109/ICDCS48716.2020.243551. [201] W. A. K. L. Sanjula, K. T. W. Kavinda, M. A. K. Malintha, W. M. D. L. Wijesuriya, S. Lokuliyana, and R. De Silva, “Automated water-gate controlling system for paddy fields,” ICAC 2020 - 2nd Int. Conf. Adv. Comput. Proc., pp. 61–66, 2020, doi: 10.1109/ICAC51239.2020.9357312. [202] S. Hernando Mejía, “MODELO DE DECISIÓN PARA LA SELECCIÓN DE SOLUCIONES IoT APOYANDO LA TRANSFERENCIA TECNOLÓGICA EN ZONAS RURALES DE SANTANDER,” 2020. [203] M. D. Caro Meza, “Diseño de directrices para la evaluación de interfaces en soluciones IOT implementadas en zonas rurales santandereanas: apoyando la transferencia tecnológica desde la perspectiva de usabilidad,” Universidad Autónoma de Bucaramanga, 2020. [204] A. C. Martínez Pinzón and K. J. Villamizar Calderón, “FRAMEWORK CONCEPTUAL PARA DESARROLLO DE INTERFACES MÓVILES EN SOLUCIONES IOT QUE PERMITAN APROPIACIÓN TECNOLÓGICA EN ZONAS RURALES ALEDAÑAS AL MUNICIPIO DE BUCARAMANGA DESDE LA PERSPECTIVA DE UX,” Universidad Autónoma de Bucaramanga, 2020. [205] D. F. Aceros Orduz, “PROTOTIPO DE UNA RUTA TECNOLOGICA PARA EL IOT, ENFOCADA EN LAS TECNOLOGÍAS DE RIEGO, PARA LOS AGRICULTORES DE PEQUEÑA ESCALA EN COLOMBIA,” Universidad Autónoma de Bucaramanga, 2020. [206] C. A. Meneses Montana and karen S. Prada Jaimes, “Empleando elementos reconocibles como potencializador del uso de internet en zonas rurales: una investigación desde la experiencia de usuario en pequeños productores agrícolas de Santander,” Universiad Autónoma de Bucaramanga, 2020. [207] A. F. Rincón Benavides and E. A. Martinez Zavala, “Climagro: diseño de un mapa de ruta de tecnologías IOT empleadas en entornos rurales para el monitoreo del clima, dirigido para los pequeños productores campesinos de Santander, mediante técnicas de text mining e inteligencia artificial,” Universidad Autónoma de Bucaramanga, 2020. [208] J. E. Duarte Pineda and O. M. Ortega Pineda, “Farmia: Diseño de arquitectura IOT orientado a desarrolladores para la inclusión de tecnologías de internet de las cosas aplicadas a la Agro rotación de cultivos de acuerdo con el plan estratégico presentado por GPS Santander: Caso de estudio Villanueva, ,” Universidad Autónoma de Bucaramanga, 2020. [209] O. Y. Patiño Hernández, “KAKAW: Modelo de inteligencia artificial para la identificación de actores y su relación en el sector cacaotero de Santander,” Universidad Autónoma de Bucaramanga, 2020. [210] A. F. Herrera Duarte, “Propuesta metodológica para la evaluación de modelos de transferencia tecnológica TIC en la agricultura de los pequeños productores campesinos de la región de Santander,” Universidad Autónoma de Bucaramanga, 2020. [211] F. J. Vargas Pérez and A. P. Verdugo Beltrán, “Desarrollo de un prototipo funcional de red sensórica IoT para el monitoreo de variables en suelos agrícolas de la finca el Oasis de la Vereda Llanadas, municipio de Los Santos (Santander),” Universidad Autónoma de Bucaramanga, 2021. [212] N. E. Castillo Suta, “Desarrollo de un modelo de transferencia y apropiación de tecnologías del internet de las cosas para los agricultores colombianos de pequeña escala – AGRIOT,” Universidad Autónoma de Bucaramanga, 2021. [213] C. Kamienski et al., “Smart water management platform: IoT-based precision irrigation for agriculture,” Sensors (Switzerland), vol. 19, no. 2, 2019, doi: 10.3390/s19020276. [214] B. Edwards et al., “mAgri Design Toolkit: User-centered design for mobile agriculture,” p. 186, 2014, [Online]. Available: https://www.comminit.com/ict-4-development/content/magri-design-toolkit-user-centered-design-mobile-agriculture. [215] E. J. M. Arruda Filho and R. Roy Dholakia, “Hedonismo como um fator de decisão e uso tecnológico,” Rev. Bras. Gest. Negocios, vol. 15, no. 48, pp. 343–361, 2013, doi: 10.7819/rbgn.v15i48.1407. [216] C. N. Jiménez-Hernández, O. F. Castellanos-Domínguez, and E. M. Villa-Enciso, “La gestión de tecnologías emergentes en el ámbito universitario,” TecnoLógicas, no. 26, p. 145, 2011, doi: 10.22430/22565337.57. [217] DANE (Departamento Administrativo Nacional de Estadística) and MADR (Ministerio de Agricultura y Desarrollo Rural), “Censo Nacional Agropecuario 2014,” 2015. [218] M. A. Espinosa, E. Romero R., L. Y. Flórez G., and C. D. Guerrero, “DANDELION: Propuesta metodológica para recopilación y análisis de información de artículos científicos. Un enfoque desde la bibliometría y la revisión sistemática de la literatura,” RISTI - Rev. Iber. Sist. e Tecnol. Inf., vol. 28, pp. 110–122, 2020, [Online]. Available: https://search.proquest.com/openview/e3b85a7260c758fd943bc4d5a0447f13/1?pq-origsite=gscholar&cbl=1006393. [219] J. R. Fraenkel, N. E. Wallen, and H. H. Hyun, How to design and evaluate research in education, vol. 1, no. 1. McGraw: Hill Education, 2012. [220] Unidad Administrativa Especial de Catastro Distrital -Gerencia IDECA, “Metodología para la Analítica de datos,” pp. 1–34, 2019, [Online]. Available: www.ideca.gov.co. [221] P. Chapman et al., CRISP-DM 1.0. SPSS, 2000. [222] E. Romero-riaño, C. D. Guerrero-santander, and H. E. Martínez-ardila, “Agronomy research co-authorship networks in agricultural innovation systems Redes de coautoría en investigación sobre agronomía en sistemas de innovación agrícola,” Rev. UIS Ing., vol. 20, no. 1, pp. 161–175, 2021, doi: 10.18273/revuin.v20n1-2021015. [223] G. Ko, J. K. Routray, and M. M. Ahmad, “ICT infrastructure for rural community sustainability,” Community Dev., vol. 50, no. 1, pp. 51–72, Jan. 2019, doi: 10.1080/15575330.2018.1557720. [224] V. A. Eras Moreira, “EVALUACIÓN DE IMPACTO DE TRANSFERENCIA DE TECNOLOGÍA AGROPECUARIA EN LA PROVINCIA DE IMBABURA: CANTONES COTACACHI, PIMAMPIRO E IBARRA,” 2014. [225] S.-R. Cipriano Juárez, “La agricultura y el problema del agua en la provincia de alicante,” a Vueltas Con La Agric. Una Act. Económica Necesaria Y Marginada, 2010. [226] J. A. Ocampo, “Misión para la transformación del campo,” Misión para la Transform. del campo, p. 46, 2014, doi: 10.1007/s13398-014-0173-7.2. [227] P. S. Birthal and P. K. Joshi, “Smallholder Farmers’ Access to Markets for High-Value Agricultural Commodities in India,” Case Stud. Food Policy Dev. Ctries., pp. 51–60, 2019, doi: 10.7591/9780801466373-007. [228] D. J. Quiroga-Parra, J. Torrent-Sellens, and C. P. Murcia Zorrilla, “Usos de las TIC en América Latina: Una caracterización,” Ingeniare, vol. 25, no. 2, pp. 289–305, 2017, doi: 10.4067/S0718-33052017000200289. [229] M. Taylor and S. Bhasme, “Model farmers, extension networks and the politics of agricultural knowledge transfer,” J. Rural Stud., vol. 64, no. September, pp. 1–10, 2018, doi: 10.1016/j.jrurstud.2018.09.015. [230] ITU (International Telecommunication Union), El ecosistema digital y la masificación de las tecnologías de la información y las comunicaciones en Paraguay. [231] MTC, “Misión para la transformación del campo - Diagnóstico económico del campo colombiano,” Inf. la Misión para la Transform. del Campo, p. 63, 2015. [232] A. Sharma, A. Bailey, and I. Fraser, “Technology Adoption and Pest Control Strategies Among UK Cereal Farmers: Evidence from Parametric and Nonparametric Count Data Models,” J. Agric. Econ., vol. 62, no. 1, pp. 73–92, Feb. 2011, doi: 10.1111/j.1477-9552.2010.00272.x. [233] J. Sollleiro R., R. Castañón I., J. González C., J. Aguilar-Ávila, and N. Aguilar G., “Identificación de buenas prácticas de extensionismo, transferencia de tecnología e innovación para el sector agroalimentario de méxico.,” no. April, p. 57, 2017. [234] Y. Valencia Villegas and Y. Sepúlveda Casadiego, “Implementación de sensores en los sistemas de riego automatizado,” Dec. 2019. doi: 10.22490/ECAPMA.3417. [235] R. Oad and P. King, “Irrigation system design for management in mountainous areas,” Irrig. Drain. Syst., vol. 5, no. 3, pp. 213–228, Aug. 1991, doi: 10.1007/BF01112500. [236] Á. Penagos, C. Ospina, C. Quesada, and F. Castellanos, “Una mirada al mercado laboral rural colombiano y un acercamiento a los posibles efectos de la pandemia,” RIMISP Cent. Latinoam. para el Desarro. Rural, 2020, [Online]. Available: https://www.rimisp.org/documentos/informes/una-mirada-al-mercado-laboral-rural-colombiano-y-un-acercamiento-a-los-posibles-efectos-de-la-pandemia/. [237] J. Wadsworth and B. Carlisle, “TECHNOLOGY AND ITS CONTRIBUTION TO PRO-POOR AGRICULTURAL DEVELOPMENT,” UK, 2005. Accessed: May 20, 2019. [Online]. Available: http://www.fao.org/3/a-at358e.pdf. [238] P. Martinez Corral, “Orígenes de la exclusión digital en el campo colombiano: abordaje sobre la política de telecomunicaciones sociales,” Poliantea, vol. 11, no. 21, p. 195, 2016, doi: 10.15765/plnt.v11i21.709. [239] F. Castillo Blanco, Historia de la Cultura Campesina Santandereana y su arraigo en el departamento de Santander, Primera. Bucaramanga, Colombia: Gobernación de Santander, 2012. [240] P. Šimek, J. Vaněk, and J. Pavlík, “Usability of UX Methods in Agrarian Sector - Verification,” Agris On-line Pap. Econ. Informatics, vol. 7, no. 3, pp. 49–56, 2015, doi: 10.7160/aol.2015.070305. [241] E. Gerónimo Bautista and R. Calderón García, “La formación de talento e innovación a través de la vinculación y los modelos de hélice basados en la sociedad del conocimiento,” RIDE Rev. Iberoam. para la Investig. y el Desarro. Educ., vol. 10, no. 20, Apr. 2020, doi: 10.23913/ride.v10i20.641. [241] E. Gerónimo Bautista and R. Calderón García, “La formación de talento e innovación a través de la vinculación y los modelos de hélice basados en la sociedad del conocimiento,” RIDE Rev. Iberoam. para la Investig. y el Desarro. Educ., vol. 10, no. 20, Apr. 2020, doi: 10.23913/ride.v10i20.641. [242] D. Rotolo, D. Hicks, and B. R. Martin, “What is an emerging technology?,” Res. Policy, vol. 44, no. 10, pp. 1827–1843, Dec. 2015, doi: 10.1016/J.RESPOL.2015.06.006. [243] G. Fortino, C. Savaglio, G. Spezzano, and M. Zhou, “Internet of Things as System of Systems: A Review of Methodologies, Frameworks, Platforms, and Tools,” IEEE Trans. Syst. Man, Cybern. Syst., vol. 51, no. 1, pp. 223–236, 2021, doi: 10.1109/TSMC.2020.3042898. [244] D. Kayisire and J. Wei, “ICT Adoption and Usage in Africa: Towards an Efficiency Assessment,” Inf. Technol. Dev., vol. 22, no. 4, pp. 630–653, 2016, doi: 10.1080/02681102.2015.1081862. [245] M. Dayahna Caro M., E. Romero-Riaño, M. Alexandra Espinosa C, and C. D. Guerrero, “Evaluando contribuciones de usabilidad en soluciones TIC-IOT para la agricultura: Una perspectiva desde la bibliometría,” RISTI - Rev. Iber. Sist. e Tecnol. Inf., vol. 2020, no. E28, pp. 681–692, 2020, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081040306&partnerID=40&md5=f59611d7803425f519635fe4470fdaca. [246] S. K. Gawali and M. K. Deshmukh, “Energy autonomy in IoT technologies,” Energy Procedia, vol. 156, no. September 2018, pp. 222–226, 2019, doi: 10.1016/j.egypro.2018.11.132. [247] M. Tahir, Q. Mamoon Ashraf, and M. Dabbagh, “Towards Enabling Autonomic Computing in IoT Ecosystem,” in 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Aug. 2019, pp. 646–651, doi: 10.1109/DASC/PiCom/CBDCom/CyberSciTech.2019.00122. [248] J. Lukkien, “A systems of systems perspective on the internet of things,” ACM SIGBED Rev., vol. 13, no. 3, pp. 56–62, 2016, doi: 10.1145/2983185.2983195. [249] G. Fortino, A. Guerrieri, G. M. P. O’Hare, and A. Ruzzelli, “A flexible building management framework based on wireless sensor and actuator networks,” J. Netw. Comput. Appl., vol. 35, no. 6, pp. 1934–1952, Nov. 2012, doi: 10.1016/j.jnca.2012.07.016. [250] P. Desai, A. Sheth, and P. Anantharam, “Semantic Gateway as a Service Architecture for IoT Interoperability,” in 2015 IEEE International Conference on Mobile Services, Jun. 2015, pp. 313–319, doi: 10.1109/MobServ.2015.51. [251] A. Katasonov, O. Kaykova, O. Khriyenko, S. Nikitin, and V. Terziyan, “Smart semantic middleware for the internet of things,” ICINCO 2008 - Proc. 5th Int. Conf. Informatics Control. Autom. Robot., vol. ICSO, no. May 2014, pp. 169–178, 2008. [252] G. Codeluppi, A. Cilfone, L. Davoli, and G. Ferrari, “VegIoT Garden: A modular IoT Management Platform for Urban Vegetable Gardens,” 2019 IEEE Int. Work. Metrol. Agric. For. MetroAgriFor 2019 - Proc., pp. 121–126, 2019, doi: 10.1109/MetroAgriFor.2019.8909228. [253] G. Codeluppi, A. Cilfone, L. Davoli, and G. Ferrari, “LoRaFarM: A LoRaWAN-Based Smart Farming Modular IoT Architecture,” Sensors, vol. 20, no. 7, p. 2028, Apr. 2020, doi: 10.3390/s20072028. [254] K. Yelamarthi, M. S. Aman, and A. Abdelgawad, “An application-driven modular IoT architecture,” Wirel. Commun. Mob. Comput., vol. 2017, 2017, doi: 10.1155/2017/1350929. [255] M. Benammar, A. Abdaoui, S. Ahmad, F. Touati, and A. Kadri, “A Modular IoT Platform for Real-Time Indoor Air Quality Monitoring,” Sensors, vol. 18, no. 2, p. 581, Feb. 2018, doi: 10.3390/s18020581. [256] K. Douzis, S. Sotiriadis, E. G. M. Petrakis, and C. Amza, “Modular and generic IoT management on the cloud,” Futur. Gener. Comput. Syst., vol. 78, pp. 369–378, Jan. 2018, doi: 10.1016/j.future.2016.05.041. [257] INTERACTION DESIGN FOUNDATION, “Useful, Usable, and Used: Why They Matter to Designers,” 2021. https://www.interaction-design.org/literature/article/useful-usable-and-used-why-they-matter-to-designers. [258] J. M. Antonini, “Health Effects Associated with Welding,” in Comprehensive Materials Processing, Elsevier, 2014, pp. 49–70. [259] D. McQuillen, “‘Taking Usability Offline,’” Darwin Magazine, 2003. [260] M. Blusi, K. Asplund, and M. Jong, “Older family carers in rural areas: experiences from using caregiver support services based on Information and Communication Technology (ICT),” Eur. J. Ageing, vol. 10, no. 3, pp. 191–199, Sep. 2013, doi: 10.1007/s10433-013-0260-1. [261] B. Momir, I. Petroman, E. C. Constantin, A. Mirea, and D. Marin, “The Importance of Cross-Cultural Knowledge,” Procedia - Soc. Behav. Sci., vol. 197, pp. 722–729, Jul. 2015, doi: 10.1016/j.sbspro.2015.07.077. [262] A. N., “Where to Start and What to Consider?,” in Usability and Internationalization of Information Technology, N. Aykin, Ed. CRC Press, 2005. [263] S. Vanka and D. Klein, “Colortool: An Information Tool for Cross Cultural Design,” Proc. Hum. Factors Ergon. Soc. Annu. Meet., vol. 39, no. 5, pp. 341–345, Oct. 1995, doi: 10.1177/154193129503900510. [264] M. W. Azeem, A. Tariq, F. J. Sheikh, M. A. Butt, I. Tariq, and H. M. Shahid, “Cultural effects on metaphor design,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9186, no. August, pp. 113–121, 2015, doi: 10.1007/978-3-319-20886-2_11. [265] G. S. Choi, R. Oehlmann, H. Dalke, and D. Cottington, “Discovering Color Semantics as a Chance for Developing Cross-Cultural Design Frameworks,” in Social Intelligence Design 2007 CTIT, 2007, pp. 926–933. [266] S. Vanka and D. Klein, “Colortool: An Information Tool for Cross Cultural Design,” Proc. Hum. Factors Ergon. Soc. Annu. Meet., vol. 39, no. 5, pp. 341–345, Oct. 1995, doi: 10.1177/154193129503900510. [267] J. Thornborrow and S. Wareing, Patterns in language. An introduction to language and literary style. Routledge, 2019. [268] P. Tiwari and K. Sorathia, “Visualising and systematizing a per-poor ICT intervention for Rural and Semi-urban Mothers in India,” in Proceedings of the 7th International Symposium on Visual Information Communication and Interaction - VINCI ’14, 2014, pp. 129–138, doi: 10.1145/2636240.2636856. [269] Yann, “UX Design for Agriculture in Africa: Case Study from Zambia,” YUX, 2019. https://yux.design/ux-design-agriculture-africa-case-study-zambia. [270] V. K. Kool and R. Agrawal, “Technology and Hedonism,” in Psychology of Technology, Cham: Springer International Publishing, 2016, pp. 253–304. [271] J. S. Martínez García, “El habitus. Una revisión analítica,” Rev. Int. Sociol., vol. 75, no. 3, p. 067, Sep. 2017, doi: 10.3989/ris.2017.75.3.15.115. [272] B. R. Belland, “Using the theory of habitus to move beyond the study of barriers to technology integration,” Comput. Educ., vol. 52, no. 2, pp. 353–364, 2009, doi: 10.1016/j.compedu.2008.09.004. [273] L.-A. Sutherland and I. Darnhofer, “Of organic farmers and ‘good farmers’: Changing habitus in rural England,” J. Rural Stud., vol. 28, no. 3, pp. 232–240, Jul. 2012, doi: 10.1016/j.jrurstud.2012.03.003. [274] O. Prokopenko, O. Kudrina, and V. Omelyanenko, “Analysis of ICT Application in Technology Transfer Management within Industry 4.0 Conditions (Education Based Approach),” CEUR Workshop Proc., vol. 2105, pp. 258–273, 2018. [275] S. Heo, S. Song, J. Kim, and H. Kim, “RT-IFTTT: Real-Time IoT Framework with Trigger Condition-Aware Flexible Polling Intervals,” Proc. - Real-Time Syst. Symp., vol. 2018-Janua, pp. 266–276, 2018, doi: 10.1109/RTSS.2017.00032. [276] C. Dodd, M. Adam, and C. Dodd, “Designing User Interfaces for the Elderly : A Systematic Literature Review,” pp. 1–12, 2017, [Online]. Available: https://aisel.aisnet.org/acis2017/61. [277] T. Walsh and P. Nurkka, “Approaches to cross-cultural design: Two case studies with UX web-surveys,” Proc. 24th Aust. Comput. Interact. Conf. OzCHI 2012, pp. 633–642, 2012, doi: 10.1145/2414536.2414632. [278] K. Finn and J. Johnson, “Designing for an aging population: Toward universal design,” Conf. Hum. Factors Comput. Syst. - Proc., vol. 07-12-May-, no. May, pp. 1011–1012, 2016, doi: 10.1145/2851581.2856669. [279] INTERACTION DESIGN FOUNDATION, “Accessibility.” https://www.interaction-design.org/literature/topics/accessibility. [280] P. Štrukelj, “Technology, Wealth and Modern Management of Technology,” Manag. Glob. Transitions, vol. 10, no. 1, pp. 29–49, 2012. [281] IEA, ITU, UNESCO (Organización de las Naciones Unidas para la Educación la Ciencia y la Cultura), UNOOSA, and WIPO, “Science , technology and innovation and intellectual property rights : The vision for development Thematic Think Piece,” 2012. [282] D. M. Dueñas Quintero and L. A. Páez Guevara, “CONSTRUCCIÓN DE LA AGENDA INVESTIGACIÓN PARA EL SECTOR AGROINDUSTRIAL EN EL DEPARTAMENTO DE BOYACÁ: IDENTIFICACIÓN DE LÍNEAS DE INVESTIGACIÓN,” Rev. Tumbaga, vol. 1, no. 11, 2016. [283] World Summit on the Information Society, “WSIS/SDGs Matrix WSIS Forum 2018: Outcomes Linking WSIS Action lines with the Sustainable Development Goals,” 2018. [Online]. Available: https://www.itu.int/net4/wsis/forum/2018/Files/documents/outcomes/WSISForum2018_WSIS-SDGSMatrix.pdf. [284] D. A. Delgado, C. M. Cocha, J. E. García, and G. K. Gonzales, “Metodologías de diseño centrado en las personas: Experiencia vereda La Yunga y Río Hondo, Popayán, Colombia,” Rev. Espac., vol. 41, no. 36, pp. 0–2, 2020. [285] S. Bhattacharya, J. Glazer, and D. E. . Sappington, “Licensing and the sharing of knowledge in research joint ventures,” J. Econ. Theory, vol. 56, no. 1, pp. 43–69, Feb. 1992, doi: 10.1016/0022-0531(92)90068-S. [286] J. P. Lane, “Understanding Technology Transfer,” Assist. Technol., vol. 11, no. 1, pp. 5–19, 1999, doi: 10.1080/10400435.1999.10131981 [287] E. G. García, “Análisis de buenas prácticas en transferencia de tecnología en el sector TIC,” 2013. [288] ITU (International Telecommunication Union), ANSI, and DIAL, Construir aldeas inteligentes: un plan de trabajo Proyecto piloto en el Níger. ITUPublicaciones, 2020. [289] Ministerio de Ciencia Tecnología e Innovación Productiva (Argentina), “Guía de buenas prácticas en gestión de la transferencia de tecnología y de la propiedad intelectual en instituciones y organismos del sistema nacional de ciencia, tenología e innovación,” pp. 3–63, 2012. [290] S. Salazar and P. Henr, Guía para la gestión de la propiedad en consorcios intelectual regionales de investigación agrícola. San José, Costa Rica: https://www.fontagro.org/es/publicaciones/publicaciones-fontagro/gui-para-la-gestion-de-la-propiedad-intelectual-en-consorcios-regionales-de-investigac/, 2013. [291] A. Jaime, M. L. Lizarazo, and H. E. Martinez, “Buenas Prácticas en Transferencia de Tecnología en el Mundo,” 2016, [Online]. Available: https://www.researchgate.net/publication/309728561_Buenas_Practicas_en_Transferencia_de_Tecnologia_en_el_Mundo. [292] NASA, “Plan for Accelerating Technology Transfer at NASA,” 2012. [293] D. A. Comstock and D. Lockney, “NASA’s legacy of technology transfer and prospects for future benefits,” A Collect. Tech. Pap. - AIAA Sp. 2007 Conf., vol. 3, no. September, pp. 2969–2978, 2007, doi: 10.2514/6.2007-6283. [294] D. A. Maluf, T. Okimura, and M. Gurram, “NASA technology transfer system,” Proc. - 4th IEEE Int. Conf. Sp. Mission Challenges Inf. Technol. SMC-IT 2011, pp. 111–117, 2011, doi: 10.1109/SMC-IT.2011.27. [295] T. Gorschek, P. Garre, S. Larsson, and C. Wohlin, “A model for technology transfer in practice,” IEEE Softw., vol. 23, no. 6, pp. 88–95, 2006, doi: 10.1109/MS.2006.147. [296] V. R. Basili, M. K. Daskalantonakis, and R. H. Yacobellis, “Technology transfer at Motorola,” IEEE Softw., vol. 11, no. 2, pp. 70–76, Mar. 1994, doi: 10.1109/52.268959. [297] H. L. Pieterse and M. W. Pretorius, “A MODEL FOR TELECOMMUNICATION TECHNOLOGY TRANSFER AND DIFFUSION INTO THE RURAL AREAS OF SOUTH AFRICA,” South African J. Ind. Eng., vol. 13, no. 1, pp. 119–129, Jan. 2012, doi: 10.7166/13-1-322. [298] A. Shiri, “Introduction to Modern Information Retrieval (2nd edition),” Libr. Rev., vol. 53, no. 9, pp. 462–463, 2004, doi: 10.1108/00242530410565256. [299] J. A. Sheikh, H. S. Dar, and F. J. Sheikh, “Usability guidelines for designing knowledge base in rural areas towards women empowerment,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8519 LNCS, no. PART 3, pp. 462–469, 2014, doi: 10.1007/978-3-319-07635-5_45. [300] A. Lodhi, “Usability heuristics as an assessment parameter: For performing usability testing,” in ICSTE, 2010, pp. 256–259. [301] W. A. R. W. M. Isa et al., “Engineering rural informatics using agile user centered design,” in 2014 2nd International Conference on Information and Communication Technology (ICoICT), May 2014, pp. 367–372, doi: 10.1109/ICoICT.2014.6914093. [302] S. Adhy, B. Noranita, R. Kusumaningrum, P. W. Wirawan, D. D. Prasetya, and F. Zaki, “Usability testing of weather monitoring on a web application,” in 2017 1st International Conference on Informatics and Computational Sciences (ICICoS), Nov. 2017, pp. 131–136, doi: 10.1109/ICICOS.2017.8276350. [303] S. Wyche, T. R. Dillahunt, N. Simiyu, and S. Alaka, “‘if god gives me the chance i will design my own phone’: Exploring mobile phone repair and postcolonial approaches to design in rural Kenya,” UbiComp 2015 - Proc. 2015 ACM Int. Jt. Conf. Pervasive Ubiquitous Comput., no. September, pp. 463–473, 2015, doi: 10.1145/2750858.2804249. [304] A. A. Adesina and J. Baidu-Forson, “Farmer’s perpections and adoption of new agricultural technology: evidence from analysis in Burkina Faso and Guiena, West Africa,” Agric. Econ., no. 13, pp. 1–9, 1995, doi: 10.14358/PERS.81.6.451. [305] F. Ssozi-Mugarura, E. Blake, and U. Rivett, “Codesigning with communities to support rural water management in Uganda,” CoDesign, vol. 13, no. 2, pp. 110–126, Apr. 2017, doi: 10.1080/15710882.2017.1310904. 10.1080/15710882.2017.1310904. [306] K. Mottaleb, “Perception and adoption of a new agricultural technology: Evidence from a developing country,” j, vol. 55, 2018, doi: 10.1016/j.techsoc.2018.07.007. [307] B. Dhehibi, U. Rudiger, H. P. Moyo, and M. Z. Dhraief, “Agricultural technology transfer preferences of smallholder farmers in Tunisia’s arid regions,” Sustain., vol. 12, no. 1, 2020, doi: 10.3390/SU12010421. [308] D. Teka, Y. Dittrich, and M. Kifle, “Usability challenges in an Ethiopian software development organization,” in Proceedings of the 9th International Workshop on Cooperative and Human Aspects of Software Engineering, May 2016, pp. 114–120, doi: 10.1145/2897586.2897604. [309] P. S. Dey et al., “Assessment of Sustainable Agriculture Practices in Uttarakhand, India,” IEEE Reg. 10 Humanit. Technol. Conf. R10-HTC, vol. 2020-Decem, 2020, doi: 10.1109/R10-HTC49770.2020.9357012. [310] R. Augusto Sales Dantas, M. Vasconcelos da Gama Neto, I. Dimitry Zyrianoff, and C. Alberto Kamienski, “The SWAMP Farmer App for IoT-based Smart Water Status Monitoring and Irrigation Control,” in 2020 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Nov. 2020, pp. 109–113, doi: 10.1109/MetroAgriFor50201.2020.9277588. [311] Corporacion PBA, Manual del facilitador rural Métodos y herramientas para ayudar a campesinos a conseguir sus metas. 2011. [312] DANE (Departamento Administrativo Nacional de Estadística), “Censo Nacional Agropecuario Bogotá,” 2014. [313] DANE (Departamento Administrativo Nacional de Estadística), Censo Nacional Agropecuario, Tomo 3 - Mapas. 2015. [314] A. González-Cárdenas and L. A. Paipilla-Pardo, “Misión para la Transformación del Campo : Síntesis y algunas reflexiones,” Revista Palmas, Bogotá, Colombia, pp. 57–78, 2015. [315] P. A. Aremu, I. N. Kolo, A. K. Gana, and F. A. Adelere, “The Crucial Role of Extension Workers In Agricultural Technologies Transfer and Adoption,” Glob. Adv. Res. J. Food Sci. Technol., vol. 4, no. 2, pp. 14–18, 2015. [316] K. Kuutti, T. Jokela, M. Nieminen, and P. Jokela, “Assessing Human-Centred Design Processes in Product Development by Using the INUSE Maturity Model,” IFAC Proc. Vol., vol. 31, no. 26, pp. 89–94, Sep. 1998, doi: 10.1016/S1474-6670(17)40074-7. [317] S. B. Azumah, S. A. Donkoh, and J. A. Awuni, “The perceived effectiveness of agricultural technology transfer methods: Evidence from rice farmers in Northern Ghana,” Cogent Food Agric., vol. 4, no. 1, pp. 1–11, 2018, doi: 10.1080/23311932.2018.1503798. [318] K. A. Mottaleb, “Perception and adoption of a new agricultural technology: Evidence from a developing country,” Technol. Soc., vol. 55, no. April, pp. 126–135, 2018, doi: 10.1016/j.techsoc.2018.07.007. [319] D. J. Mayhew, The Usability Engineering Lifecycle: A Practitioner’s Handbook for User Interface Design (Interactive Technologies), Primera. London, United Kingdom: Morgan Kaufmann Publishers, 1999. [320] S. Merzouk, A. Cherkaoui, A. Marzak, and S. Nawal, “IoT methodologies: Comparative study,” Procedia Comput. Sci., vol. 175, pp. 585–590, 2020, doi: 10.1016/j.procs.2020.07.084. [321] V. Sachdeva and L. Chung, “Handling non-functional requirements for big data and IOT projects in Scrum,” in 2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence, Jan. 2017, pp. 216–221, doi: 10.1109/CONFLUENCE.2017.7943152. [322] B. Vogel, B. Peterson, and B. Emruli, “Prototyping for Internet of Things with Web Technologies: A Case on Project-Based Learning using Scrum,” in 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC), Jul. 2019, pp. 300–305, doi: 10.1109/COMPSAC.2019.10223. [323] K. Rose, S. Eldridge, and L. Chapin, “La internet de las Cosas — Una breve reseña,” 2015. https://www.internetsociety.org/es/resources/doc/2015/iot-overview. [324] O. Elijah, S. Member, T. Abdul Rahman, I. Orikumhi, C. Yen Leow, and M. Nour Hindia, “An Overview of Internet of Things (IoT) and Data Analytics in Agriculture: Benefits and Challenges,” IEEE INTERNET THINGS J., vol. 5, no. 5, 2018, doi: 10.1109/JIOT.2018.2844296. [325] ITU (International Telecommunication Union), “Overview of the Internet of Things,” 2015. http://www.itu.int/ITU-T/recommendations/rec.aspx?rec=Y.2060. [326] E. Oriwoh and M. Conrad, “Towards a Definition of the Internet of Things (IoT),” Int. J. Internet Things, vol. 4, no. 1, pp. 1–5, 2015. [327] U. S. Department of Labors, “National Census of Fatal Occupational Injuries Summary,” 2021. [328] Minciencias, “Documento de Política Nacional de Ciencia, Tecnología e Innovación N° 1602: Actores del Sistema Nacional de Ciencia, Tecnología e Innovación.,” pp. 6–9, 2018. [329] J. N. Rodriguez and S. J. Camacho, “¿Quiénes son los campensinos colombianos hoy? Universidad, Ciencia y desarrollo. Universidad del Rosario,” Universidad, Ciencia y desarrollo. Universidad del Rosario. p. 1,2, 2013, [Online]. Available: http://www.urosario.edu.co/campesinos-colombianos/. [330] A. C. Machado Silvia Botello M, “Serie de documentos de trabajo - La Agricultura Familiar en Colombia,” 2013, [Online]. Available: www.rimisp.org. [331] M. Chiriboga, “Desafios de la pequeña agricultura familiar frente a la globalización,” Perspect. Rural., pp. 9–24, 1997. [332] R. Chapman, T. Slaymaker, W. Paper, R. Chapman, and T. Slaymaker, “ICTs and Rural Development: Review of the Literature, Current Interventions and Opportunities for Action,” 2002. [333] T. Havemann and V. Muccione, “Mechanisms for agricultural climate change mitigation incentives for smallholders. CCAFS Report no. 6.,” 2011. [Online]. Available: www.ccafs.cgiar. org. [334] M. E. Londoño Escobar, A. M. Lozano Hurtado, O. Gómez Martínez, carlos A. Ramirez López, and J. Solano Castrillón, Prácticas sociales campesinas. El caso Monterrey Buga, Valle del Cauca - Colombia, Primera Ed. Bogotá, Colombia: Corporación Universitaria Minuto de Dios - UNIMINUTO, 2019. [335] Centro de Innovación pública digital, “Tecnologías emergentes,” 2021. https://centrodeinnovacion.mintic.gov.co/es/blogs/tecnologias-emergentes. [336] Vicepresidencia de Innovación y Transformación Digital and Grupo Bancolombia, “Internet de las Cosas: ¿cómo lo ha adoptado Colombia?,” 2018. https://www.grupobancolombia.com/wps/portal/empresas/capital-inteligente/tendencias/innovacion/iot-como-lo-ha-adoptado-colombia. [337] M. Danquah, “Technology transfer, adoption of technology and the efficiency of nations: Empirical evidence from sub Saharan Africa,” Technol. Forecast. Soc. Change, vol. 131, no. December 2016, pp. 175–182, 2018, doi: 10.1016/j.techfore.2017.12.007. [338] D. J. Sánchez Preciado, B. Claes, and N. Theodorakopoulos, “Transferring intermediate technologies to rural enterprises in developing economies : A conceptual framework,” in Prometheus, Informa UK Limited. [339] B. Biagini, L. Kuhl, K. S. Gallagher, and C. Ortiz, “Technology transfer for adaptation,” Nat. Clim. Chang., vol. 4, no. 9, pp. 828–834, 2014, doi: 10.1038/nclimate2305. [340] S. O. N. Somers and L. Stapleton, “A Human-Centred approach to e-Agricultural systems,” IFAC-PapersOnLine, vol. 48, no. 24, pp. 213–218, 2015, doi: 10.1016/j.ifacol.2015.12.085. [341] J. A. Sheikh, H. S. Dar, and F. J. Sheikh, “Usability Guidelines for Designing Knowledge Base in Rural Areas,” 2014, pp. 462–469. [342] A. . Valdés Cuervo, Familia y Desarrollo. Intervenciones en terapia familiar. México: Manual Moderno, 2007. [343] K. Prins, Proceso y producto. Un balance. Lima, Perú: Escuela para el desarrollo, 1996. [344] FAO (Organización de las Naciones Unidas para la Alimentación y la Agricultura), Training of Farmers Programme South Asia. FAO Regional Office for Asia and the Pacific, 2011. [345] M. E. Nogueira and M. Urcola, “La agricultura familiar en el marco de los programas de desarrollo rural del FIDA en el norte argentino (1991-2014),” Ager, vol. 2015, no. 19, pp. 7–44, 2015, doi: 10.4422/ager.2015.01. [346] C. J. Romera, F. E. Forero Suárez, and J. A. Ruiz Hernández, “Technology and design for rural development: A methodological proposal and a pilot experience in two Colombian municipalities,” Ager, vol. 2017, no. 23, pp. 27–57, 2017, doi: 10.4422/ager.2017.03. [347] RIMISP (Centro Latinoamericano para el Desarrollo Rural), “Misión para la transformación del campo. Estrategia de Implementación del Programa de Desarrollo Rural Integral con Enfoque Territorial,” Bogotá, Colombia, 2014. [Online]. Available: https://www.dnp.gov.co/programas/agricultura/Paginas/mision-para-la-transformacion-del-campo-colombiano.aspx. [348] M. Docampo Rama, H. De Ridder, and H. Bouma, “Technology generation and age in using layered user interfaces,” Gerontechnology, vol. 1, no. 1, 2001, doi: 10.4017/gt.2001.01.01.003.00. [349] R. Sackmann and O. Winkler, “Technology generations revisited: The internet generation,” Gerontechnology, vol. 11, no. 4, pp. 493–503, 2013, doi: 10.4017/gt.2013.11.4.002.00. [350] M. Chesher and W. Skok, “Roadmap for successful information technology transfer for small businesses,” Proc. ACM SIGCPR Conf., pp. 16–22, 2000, doi: 10.1145/333334.333338. [351] P. R. Childs, Mechanical Design Engineering Handbook, Second Edi., vol. 1999, no. December. Oxford, United Kingdom: Elsevier Ltd., 2019. [352] Y. Bai and Q. Bai, “Subsea Pipelines,” in Subsea Engineering Handbook, 2019, pp. 919–940. [353] M. F. Maradei García and F. M. Espinel Correal, Ergonomía para el Diseño, Primera. Bucaramanga, Colombia: Universidad Industrial de Santander - Escuela de Diseño Industrial, 2009. [354] R. Gacula Pineda, Technology in Culture: A Theoretical Discourse on Convergence in Human-Technology Interaction, no. May. 2014. [355] K. Dorst and N. Cross, “Creativity in the design process: Co-evolution of problem-solution,” Des. Stud., vol. 22, no. 5, pp. 425–437, 2001, doi: 10.1016/S0142-694X(01)00009-6. [356] OMPI, “¿Qué es la Propiedad Intelectual ?,” p. 23, 2005, [Online]. Available: https://cerlalc.org/wp-content/uploads/documentos-de-interes/odai/ODAI_DOCUMENTOS_DE_INTERES_Que_es_la_propiedad_intelectual_V1.pdf. [357] Universidad EAFIT, “Mecanismos de protección de la propiedad intelectual,” Propiedad Intelectual. https://www.eafit.edu.co/institucional/propiedad-intelectual/Paginas/mecanismos-de-proteccion.aspx. [358] G. Oh, D. Kim, S. Kim, and S. Rhew, “A Quality Evaluation Technique of RFID Middleware in Ubiquitous Computing,” in 2006 International Conference on Hybrid Information Technology, Nov. 2006, pp. 730–735, doi: 10.1109/ICHIT.2006.253690. [359] V. Nassar, “Common criteria for usability review,” Work, vol. 41, pp. 1053–1057, 2012, doi: 10.3233/WOR-2012-0282-1053. [360] N. Maalel, E. Natalizio, A. Bouabdallah, P. Roux, and M. Kellil, “Reliability for Emergency Applications in Internet of Things,” in 2013 IEEE International Conference on Distributed Computing in Sensor Systems, May 2013, pp. 361–366, doi: 10.1109/DCOSS.2013.40. [361] C. Prehofer, “From the Internet of Things to Trusted Apps for Things,” in 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, Aug. 2013, pp. 2037–2042, doi: 10.1109/GreenCom-iThings-CPSCom.2013.381. [362] N. Nikmehr and M. Doroodchi, “New paradigm in evaluating usability of E-learning system,” in 2008 International Conference on Innovations in Information Technology, Dec. 2008, pp. 347–351, doi: 10.1109/INNOVATIONS.2008.4781683. [363] S. Jimenez-Fernandez, P. de Toledo, and F. del Pozo, “Usability and Interoperability in Wireless Sensor Networks for Patient Telemonitoring in Chronic Disease Management,” IEEE Trans. Biomed. Eng., vol. 60, no. 12, pp. 3331–3339, Dec. 2013, doi: 10.1109/TBME.2013.2280967. [364] N. Bevan, “Measuring usability as quality of use,” Softw. Qual. J., vol. 4, no. 2, pp. 115–130, Jun. 1995, doi: 10.1007/BF00402715. [365] FAO, Guía para la implementación de Centros Demostrativos de Capacitación CDC con enfoque agroecológico. 2016. [366] M. M. Zinnah, J. L. Compton, and A. A. Adesina, “Research-Extension-Farmer Linkages within the Context of the Generation, Transfer and Adoption of Improved Mangrove Swamp Rice Technology in West Africa.,” Q. J. Int. Agric., vol. 32, no. 2, pp. 201–214, 1993. [367] J. W. Creswell and V. L. Plano Clark, Designing and Conducting Mixed methods Research, Tercera. USA: Sage Publishing, 2017. [368] C. Narrod, D. Roy, and I. Food, “The Role of Public-Private Partnerships and Collective Action in Ensuring Smallholder Participation in High Value Fruit and Vegetable Supply Chains,” Role Public-Private Partnerships Collect. Action Ensuring Smallhold. Particip. High Value Fruit Veg. Supply Chain., no. 70, 2007, doi: 10.2499/capriwp70. [369] L. Ermakova, F. Bordignon, N. Turenne, and M. Noel, “Is the Abstract a Mere Teaser? Evaluating Generosity of Article Abstracts in the Environmental Sciences,” Front. Res. Metrics Anal., vol. 3, May 2018, doi: 10.3389/frma.2018.00016. [370] CEPAL (Comisión Económica para América Latina y el Caribe), Organización de las Naciones Unidas para la Alimentación y la Agricultura - FAO, and IICA (Instituto Interamericano de Cooperación para la Agricultura), Perspectivas de la agricultura y del desarrollo rural en las Américas: una mirada hacia América Latina y el Caribe 2017-2018. San José, Costa Rica, 2017. [371] H. Zhang, Y. Cai, and Z. Li, “Towards a typology of university technology transfer organizations in China: evidences from Tsinghua University,” Triple Helix, vol. 5, no. 1, 2018, doi: 10.1186/s40604-018-0061-9. [372] A. Li, “Technology transfer in China–Africa relation: myth or reality.” Transnational corporations review, pp. 183–195, 2016. [373] C. N. A. Iris, “TIERRAS, AGROPRODUCCIÓN Y CULTIVOS ILÍCITOS EN COLOMBIA,” p. 35, 2019. [374] A. J. Paz Cardona, “Un millón de hogares campesinos en Colombia tienen menos tierra que una vaca,” Apr. 18, 2018. [375] Ministerio de Agricultura de Chile, “Nuevo Modelo para un Sistema de Extensión y Transferencia Tecnológica en el Sector Silvoagropecuario Chileno,” 2014. [376] CGIAR, “Transforming agriculture and food innovation systems to win the race to zero - 1391948,” Nov. 17, 2017. https://globalmeet.webcasts.com/starthere.jsp?ei=1391948&tp_key=b17757b8fa (accessed Mar. 07, 2021). [377] IICA (Instituto Interamericano de Cooperación para la Agricultura), “Elementos para una hoja de ruta conjunta. Evento 4... | Facebook,” Evento 4 del Ciclo de foros virtuales: Reducción de #BrechaDigital en las Zonas Rurales de América Latina y El Caribe: Hacia una revolución agrícola digital, Feb. 22, 2020. https://m.facebook.com/story.php?story_fbid=262820852158961&id=436831050034 (accessed Mar. 07, 2021). [378] M. B. Hernández and J. M. Gómez, “Aplicaciones de Procesamiento de Lenguaje Natural,” Rev. Politécnica, vol. 32, no. 1, pp. 87–96, 2013. [379] D. H. Flórez Martínez, A. Morales Castañeda, and C. P. Uribe Galvis, Megatendencias en investigación, desarrollo e innovación para el sector agropecuario colombiano: perspectivas, estrategias y visiones de futuro, vol. I. Mosquera, Colombia: Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), 2018. [380] FAO (Organización de las Naciones Unidas para la Alimentación y la Agricultura) and OCDE (Organización para la Cooperación y el Desarrollo Económicos), OCDE/FAO Perspectivas Agrícolas 2019-2028 - Enfoque Especial: America Latina. Roma: OECD Publishing, 2019. [381] L. Boer and J. Donovan, “Provotypes for participatory innovation,” in Proceedings of the Designing Interactive Systems Conference on - DIS ’12, 2012, p. 388, doi: 10.1145/2317956.2318014. |
dc.relation.uriapolo.spa.fl_str_mv |
https://apolo.unab.edu.co/es/persons/rom%C3%A1n-eduardo-sarmiento-porras |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_16ec |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.creativecommons.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Abierto (Texto Completo) Atribución-NoComercial-SinDerivadas 2.5 Colombia http://purl.org/coar/access_right/c_16ec |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.spatial.spa.fl_str_mv |
Bucaramanga (Santander, Colombia) |
dc.coverage.temporal.spa.fl_str_mv |
2018-2022 |
dc.coverage.campus.spa.fl_str_mv |
UNAB Campus Bucaramanga |
dc.publisher.grantor.spa.fl_str_mv |
Universidad Autónoma de Bucaramanga UNAB |
dc.publisher.faculty.spa.fl_str_mv |
Facultad Ingeniería |
dc.publisher.program.spa.fl_str_mv |
Doctorado en Ingeniería |
institution |
Universidad Autónoma de Bucaramanga - UNAB |
bitstream.url.fl_str_mv |
https://repository.unab.edu.co/bitstream/20.500.12749/19092/5/2023_Tesis_Maria_Alexandra_Espinosa.pdf https://repository.unab.edu.co/bitstream/20.500.12749/19092/1/2023_Anexo8_Caracterizacion_Simacota.pdf https://repository.unab.edu.co/bitstream/20.500.12749/19092/2/2024_Anexo_Esquema_evaluacion_AGRIOT.pdf https://repository.unab.edu.co/bitstream/20.500.12749/19092/3/Esquema%20de%20evaluaci%c3%b3n%20AgCDV_v3_Evaluaci%c3%b3n%20THINKLINK.pdf https://repository.unab.edu.co/bitstream/20.500.12749/19092/4/2023_Anexo4_Analisis_IoT_TXT_FINAL.html https://repository.unab.edu.co/bitstream/20.500.12749/19092/10/2023_Licencia_Maria_Espinosa.pdf https://repository.unab.edu.co/bitstream/20.500.12749/19092/9/license.txt https://repository.unab.edu.co/bitstream/20.500.12749/19092/11/2023_Tesis_Maria_Alexandra_Espinosa.pdf.jpg https://repository.unab.edu.co/bitstream/20.500.12749/19092/12/2023_Anexo8_Caracterizacion_Simacota.pdf.jpg https://repository.unab.edu.co/bitstream/20.500.12749/19092/13/2024_Anexo_Esquema_evaluacion_AGRIOT.pdf.jpg https://repository.unab.edu.co/bitstream/20.500.12749/19092/14/Esquema%20de%20evaluaci%c3%b3n%20AgCDV_v3_Evaluaci%c3%b3n%20THINKLINK.pdf.jpg https://repository.unab.edu.co/bitstream/20.500.12749/19092/15/2023_Licencia_Maria_Espinosa.pdf.jpg |
bitstream.checksum.fl_str_mv |
425227aa2fb7dbdaa11cc1519419ebbd 32c5a25bf3ec87b89ffdc03a44548de4 dcc504839d9d541635e7e1a3b03d0ef9 609e8d1f77d0cf643de0bc58f4886a0c 78e9f4fa085b9ed3aaf6f8b001717723 3d8b1ebef7c54963fa24fdbf19dc9e19 3755c0cfdb77e29f2b9125d7a45dd316 376d4e0f922e0efbb98a81df6c079656 3bfe8b39959aee189e0025cfd467057c c9e2ae68deafbec1a1e9dc0970c98850 9fa2713dfa6cef73342e3f89a55b5d84 978d0c3e8e3b023b3d3cf0318ff97f3f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB |
repository.mail.fl_str_mv |
repositorio@unab.edu.co |
_version_ |
1814277325439631360 |
spelling |
Sarmiento Porras, Román Eduardo29f40910-b825-4940-9bed-634daeea7901Espinosa Carreño, María Alexandra23b6de06-2ec2-4d3b-bc59-6a2e11bb4230Espinosa Carreño, María Alexandra [Espinosa Carreño, María Alexandra [0001495409]]Sarmiento Porras, Román Eduardo [0000161411]Espinosa Carreño, María Alexandra [Ve6S8ocAAAAJ&hl]Espinosa Carreño, María Alexandra [0000-0003-1411-0828]Sarmiento Porras, Román Eduardo [0000-0002-8647-8659]Espinosa Carreño, María Alexandra[57209824483]Espinosa Carreño, María Alexandra [Maria-Espinosa-C]Sarmiento Porras, Román Eduardo [Roman-Sarmiento]Grupo de Investigación Preservación e Intercambio Digital de Información y Conocimiento - PrismaGrupo de Investigaciones ClínicasEspinosa Carreño, María Alexandra [maria-alexandra-espinosa-carreño]Sarmiento Porras, Román Eduardo [román-eduardo-sarmiento-porras]Bucaramanga (Santander, Colombia)2018-2022UNAB Campus Bucaramanga2023-02-22T21:54:00Z2023-02-22T21:54:00Z2022-12-07http://hdl.handle.net/20.500.12749/19092instname:Universidad Autónoma de Bucaramanga - UNABreponame:Repositorio Institucional UNABrepourl:https://repository.unab.edu.coEste proyecto propone el desarrollo de un framework para el diseño de soluciones de riego que emplee Internet de las cosas, mediante canales, procesos y actores de la transferencia tecnológica, utilizando elementos de sistemas centrados en las personas con el fin de potenciar la transformación digital en comunidades de pequeños agricultores de Santander. Este proyecto se desarrolla bajo el paradigma de investigación mixta, utilizando la metodología de triangulación que incluye la revisión sistemática de la literatura, la revisión de expertos y las técnicas de procesamiento del lenguaje natural (PLN) para identificar buenas prácticas que puedan ser incorporadas al marco.Colombia. Ministerio de Ciencia y Tecnología MincienciasINTRODUCCIÓN .................................................................................................................................................... 1 1. PROBLEMA(S), PREGUNTA(S), SUPUESTO DE INVESTIGACIÓN Y JUSTIFICACIÓN DE LA INVESTIGACIÓN ................................................................................................................................................................................. 3 1.1 PROBLEMA DE INVESTIGACIÓN ....................................................................................................................3 1.2 PREGUNTAS DE INVESTIGACIÓN .................................................................................................................. 5 1.3 SUPUESTO DE INVESTIGACIÓN .................................................................................................................................. 6 1.4 JUSTIFICACIÓN DE LA INVESTIGACIÓN ..................................................................................................................... 6 2 OBJETIVOS DE LA TESIS ............................................................................................................... 8 2.1 OBJETIVO GENERAL .................................................................................................................................................... 8 2.2 OBJETIVOS ESPECÍFICOS ........................................................................................................................................... 8 3 MARCO REFERENCIAL ................................................................................................................... 9 3.1 MARCO CONCEPTUAL ...............................................................................................................................................10 3.1.1 TIC para la agricultura – ICT4Ag / TIC para el desarrollo – ICT4D ...................................................................... 10 3.1.2 Internet de las cosas – IoT ................................................................................................................................... 11 3.1.3 Diseño centrado en los usuarios ......................................................................................................................... 12 3.2 MARCO TEÓRICO .......................................................................................................................................................12 3.2.1 Sistemas de riego agrícola ................................................................................................................................... 12 3.2.2 Agricultura 4.0 y las tecnologías emergentes ...................................................................................................... 28 3.2.2.1 TIC para la agricultura (ICTAg) ............................................................................................................................ 29 3.2.3 IoT para soluciones de riego ............................................................................................................................... 30 3.2.4 Definiendo la transferencia tecnológica ............................................................................................................... 31 3.2.5 Procesamiento de lenguaje natural (PNL) ............................................................................................................ 35 3.2.6 Diseño de soluciones centradas en el usuario ..................................................................................................... 45 3.3 ESTADO DEL ARTE .....................................................................................................................................................57 3.3.1 Caracterización de soluciones de riego en el mundo .......................................................................................... 59 3.3.2 Vigilancia tecnológica .......................................................................................................................................... 62 3.3.3 Categorización de artículos de acuerdo con buenas prácticas IoT en agricultura ................................................ 63 3.4 MARCO NORMATIVO .................................................................................................................................................69 3.5 MARCO CONTEXTUAL ...............................................................................................................................................70 3.6 ANTECEDENTES .........................................................................................................................................................74 3.7 BENCHMARKING DE EMPRESAS Y TECNOLOGÍAS ...................................................................................................78 4 ASPECTOS METODOLÓGICOS DE LA TESIS ............................................................................... 84 4.1 ENFOQUE Y TIPO DE INVESTIGACIÓN .......................................................................................................................84 4.1.1 Subfase 1: revisión por pares .............................................................................................................................. 86 4.1.2 Subfase 2: búsqueda de información................................................................................................................... 86 4.1.3 Subfase 3: identificación de buenas prácticas ..................................................................................................... 87 4.1.4 Subfase 4: desarrollo del modelo. ....................................................................................................................... 87 4.2 ASPECTOS ÉTICOS ....................................................................................................................................................88 5. RESULTADOS ............................................................................................................................... 90 5.1 RESULTADOS ASOCIADOS AL OBJETIVO ESPECÍFICO 1 ...............................................................................................94 5.1.1 Caracterización del proceso de transferencia de las tecnologías IoT de riego en el sector agrícola .................... 95 5.1.2 Estudio de elementos que afectan la transferencia de tecnologías IoT de riego en el sector agrícola de pequeña escala 101 5.1.3 Definición de instrumentos de evaluación para selección de características ..................................................... 115 5.1.4 Promoción y divulgación ................................................................................................................................... 124 5.2 RESULTADOS ASOCIADOS AL OBJETIVO ESPECÍFICO 2 ........................................................................................ 125 5.2.1 Selección de los procesos que pertenecerán al framework ............................................................................... 126 5.2.2 Identificación de buenas prácticas para el desarrollo de soluciones IoT ........................................................... 133 5.2.3 Caracterización de modelos de experiencia/centrado en el usuario .................................................................. 143 5.2.4 Caracterización del pequeño productor agricultor ............................................................................................. 150 5.2.5 Articulación de los elementos en el framework.................................................................................................. 161 5.3 RESULTADOS ASOCIADOS AL OBJETIVO ESPECÍFICO 3 ........................................................................................ 194 5.3.1 Construcción, ejecución y seguimiento de prueba piloto .................................................................................. 194 5.3.1 Análisis y Evaluación de los resultados ............................................................................................................. 206 5.3.2 Promoción y divulgación ................................................................................................................................... 236 6 CONCLUSIONES Y OBSERVACIONES ........................................................................................ 237 6.3 Con respecto al objetivo específico 1 ..................................................................................................................... 237 6.4 Con respecto al objetivo específico 2 ..................................................................................................................... 238 6.5 Con respecto al objetivo específico 3 ..................................................................................................................... 241 7 RECOMENDACIONES ................................................................................................................. 243 REFERENCIAS ..................................................................................................................................... 247 ANEXOS .............................................................................................................................................. 279DoctoradoThis project proposes the development of a framework for the design of IoT irrigation solutions using channels, processes and stakeholders of technology transfer, using elements of people-centered systems in order to enhance the digital transformation in communities of small farmers in Santander. This project is developed under the mixed thesis paradigm, using triangulation methodology that includes systematic literature review, expert review and natural language processing (NLP) techniques to identify good practices that can be incorporated into the framework.Modalidad Presencialapplication/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)Atribución-NoComercial-SinDerivadas 2.5 Colombiahttp://purl.org/coar/access_right/c_16ecPropuesta de Framework conceptual para la transferencia tecnológica IOT enfocado en el diseño de soluciones de riego para pequeños productores agricultores de Santander: Un aporte desde el diseño centrado en los usuariosProposal for a conceptual Framework for IOT technology transfer focused on the design of irrigation solutions for small-scale farmers in Santander: A contribution from user-centered desigThesisinfo:eu-repo/semantics/doctoralThesisTesishttp://purl.org/coar/resource_type/c_db06info:eu-repo/semantics/acceptedVersionhttp://purl.org/redcol/resource_type/TDDoctorado en IngenieríaUniversidad Autónoma de Bucaramanga UNABFacultad IngenieríaDoctorado en IngenieríaEngineeringAgriculture Technology transfer (ATT)Smallholder farmerInternet of things (IoT)Information systemsElectronic data processingComputational linguisticsAgricultural technologyAgricultural developmentIngenieríaSistemas de informaciónProcesamiento electrónico de datosLinguística computacionalTecnología agrícolaDesarrollo agrícolaInternet de las cosas (IoT)Transferencia de tecnología agrícola (TTA)Pequeños productores agricultoresDiseño centrado en el hombre (DCH)[1] FAO, “Buenas prácticas en la FAO: Sistematización de experiencias para el aprendizaje continuo,” vol. 13, p. 12, 2013, [Online]. Available: www.fao.org/docrep/meeting/021/ma061s.pdf.[2] D. A’Zami, “Citizen-peasants : modernity , international relations and the problem of difference in,” University of Sussex.[3] J. James, ICT4D: Information and Communication Technology for Development, vol. 61, no. 1. 2010.[4] FAO, “Small family farms data portrait: Basic information document,” p. 15, 2017, [Online]. Available: http://www.fao.org/fileadmin/user_upload/smallholders_dataportrait/docs/Data_portrait_variables_description_new2.pdf.[5] B. E. Graeub et al., “The State of Family Farms in the World,” World Dev., vol. 87, no. JUNE, pp. 1–15, 2016, doi: 10.1016/j.worlddev.2015.05.012.[6] J. A. Berdegué and R. Fuentealba, “The state of smallholders in agriculture in Latin America,” in New Directions for Smallholder Agriculture, no. March, IFAD, Ed. Roma: Oxford University Press, 2014, pp. 115–152.[7] L. Joyanes Aguilar, Internet de las Cosas. Un futuro conectado. Alfaomega Grupo Editor, 2021.[8] K. Xing, D. H. Cropley, M. L. Oppert, and C. Singh, Readiness for Digital Innovation and Industry 4.0 Transformation: Studies on Manufacturing Industries in the City of Salisbury. 2021.[9] F. Lombo and C. Prada, “Censo Nacional Agropecuario Caracterización de los productores residentes en el área.”[10] M. Springmann et al., “Options for keeping the food system within environmental limits,” Nature, vol. 562, no. 7728, pp. 519–525, 2018, doi: 10.1038/s41586-018-0594-0.[11] G. Rapsomanikis, G. Sylvester, O. de las N. U. para la A. y la A. FAO, I. F. P. R. I. IFPRI, and O. para la C. y el D. E. OCDE, Information and Communication Technology (ICT) in Agriculture A Report to the G20 Agricultural Deputies. 2017.[12] F. Freire Carrera, O. Chadrina, J. Moreano Velasco, B. Torres Blacio, and Y. D. V. Garcia Orellana, “Prototipo de un sistema de riego automatizado en árboles de cacao (Theobroma cacao) controlado vía internet con dispositivos móviles,” Av. Investig. en Ing., vol. 16, no. 2, pp. 93–106, 2019, doi: 10.18041/1794-4953/avances.2.5257.[13] J. P. Tovar Soto, J. D. los S. Solórzano Suárez, A. Badillo Rodríguez, and G. O. Rodríguez Cainaba, “Internet de las cosas aplicado a la agricultura: estado actual,” Lámpsakos, no. 22. p. 86, 2019, doi: 10.21501/21454086.3253.[14] T. R. Wheeler and J. Braun, “Climate Change Impacts on Global Food Security,” Nat. Syst. Chang. Clim., vol. 341, no. August, pp. 508–513, 2013, doi: DOI: 10.1126/science.1239402 ARTICLE.[15] C. Lau, A. Javis, and J. Ramírez, “Agricultura colombiana: adaptación al cambio climático | Portal Sobre Conservación y Equidad Social CES,” CIAT Políticas en Síntesis No. 1, 2011. https://www.portalces.org/biblioteca/cambio-climatico/agricultura-colombiana-adaptacion-al-cambio-climatico (accessed May 27, 2019).[16] A. D. Boursianis et al., “Advancing Rational Exploitation of Water Irrigation Using 5G-IoT Capabilities: The AREThOU5A Project,” 2019 IEEE 29th Int. Symp. Power Timing Model. Optim. Simulation, PATMOS 2019, pp. 127–132, 2019, doi: 10.1109/PATMOS.2019.8862146.[17] Organización para la Cooperación y el Desarrollo Económicos (OCDE), “A Framework for Rural Development. Rural 3.0,” People-Centred Rural Policy, p. 28, 2019, [Online]. Available: https://www.oecd.org/rural/rural-development-conference/documents/Rural-3.0-Policy-Highlights.pdf.[18] M. O. Thomas, B. A. Onyimbo, and R. Logeswaran, “Usability Evaluation Criteria for Internet of Things,” Int. J. Inf. Technol. Comput. Sci., vol. 8, no. 12, pp. 10–18, 2016, doi: 10.5815/ijitcs.2016.12.02.[19] J. Š. Novák, J. Masner, J. Vaněk, P. Šimek, and K. Hennyeyová, “User experience and usability in agriculture-selected aspects for design systems,” Agris On-line Pap. Econ. Informatics, vol. 11, no. 4, pp. 75–83, 2019, doi: 10.7160/aol.2019.110407.[20] D. Fajardo, M. Mejía, L. Gómez, M. Matheu, and OXFAM en Colombia, “Radiografía de la desigualdad. LO QUE NOS DICE EL ÚLTIMO CENSO AGROPECUARIO SOBRE LA DISTRIBUCIÓN DE LA TIERRA EN COLOMBIA,” 2017. Accessed: Jun. 05, 2019. [Online]. Available: https://www-cdn.oxfam.org/s3fs-public/file_attachments/radiografia_de_la_desigualdad.pdf.[21] S. Ziegler, BID (Banco Interamericano de desarrollo), Agricultura), IICA (Instituto Interamericano de Cooperación para la, and Microsoft, “Habilidades digitales en la ruralidad: un imperativo para reducir brechas en américa latina y el caribe,” 2021. [Online]. Available: http://repositorio.iica.int/handle/11324/14462?locale-attribute=es.[22] J. M. Perez, Luchas campesinas y reforma agraria Luchas campesinas y reforma agraria, Primera Ed. Colombia, 2010.[23] DNP (Departamento Nacional de Planeación), MINSALUD (Ministerio de Salud y Protección Social), and Departamento Administrativo de la Presidencia de la República, Documento CONPES 3999. 2020, pp. 1–163.[24] Consejería Presidencial para los derechos humanos y asuntos Internacionales, “INFORME Y RECOMENDACIONES II Durante la pandemia del COVID-19 a la luz de los derechos humanos,” 2020.[25] DANE (Departamento Administrativo Nacional de Estadística), “Mayoristas Boletín Semanal,” Feb. 16, 2021. https://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/sistema-de-informacion-de-precios-sipsa/mayoristas-boletin-semanal-1 (accessed Mar. 04, 2021).[26] J. F. C. Díaz del Castillo, “La intermediación como un impedimento al desarrollo del pequeño productor de Medellín,” Corpoica Cienc. y Tecnol. Agropecu., vol. 14, no. 1, p. 27, 2013, doi: 10.21930/rcta.vol14_num1_art:264.[27] H. H. Mann, Social Framework of Agriculture, 2nd ed. India, Middle East, England: Routledge, 2020.[28] G. Rapsomanikis, “The economic lives of smallholder farmers,” Fao, vol. 4, no. 4, pp. 1–4, 2015, doi: 10.5296/rae.v6i4.6320.[29] Ó. A. Orozco and G. Llano Ramírez, “Sistemas de Información enfocados en tecnologías de agricultura de precisión y aplicables a la caña de azúcar, una revisión,” Rev. Ing. Univ. Medellín, vol. 15, no. 28, pp. 103–124, 2016, doi: 10.22395/rium.v15n28a6.[30] F. Ahmad et al., “A smart agricultural model by integrating IoT, mobile and cloud-based big data analytics,” Proc. 2017 Int. Conf. Intell. Comput. Control. I2C2 2017, vol. 2018-Janua, no. 1, pp. 1–5, Mar. 2018, doi: 10.1109/I2C2.2017.8321902.[31] J. Parra Delgadillo, “MIGRACIONES EN COLOMBIA (CIUDAD-CAMPO): ANÁLISIS AL NEORURALISMO Y LAS NUEVAS RURALIDADES EN LAS AFUERAS DE BOGOTÁ (CUNDINAMARCA).,” Universidad Externado de Colombia, 2018.[32] R. Pardo, “Diagnóstico de la Juventud Rural en Colombia. Grupos de Diálogo Rural, una estrategia de incidencia,” Santiago de Chile, 2017. [Online]. Available: www.rimisp.org.[33] M. T. De Ossa, J. E. Londoño, and A. Valencia-Arias, “Model of technology transfer from biomedical engineering: A case study [Modelo de Transferencia Tecnológica desde la Ingeniería Biomédica: un estudio de caso],” Inf. Tecnol., vol. 29, no. 1, pp. 83–90, 2018, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85042253656&doi=10.4067%2FS0718-07642018000100010&partnerID=40&md5=13e130c77728abaf07cbe0831c57f992.[34] T. Kyung Sung and D. V Gibson, “Knowledge and Technology Transfer: Levels and Key Factors.” Accessed: May 27, 2019. [Online]. Available: http://www.ic2.utexas.edu/ictpi/mirror/curitiba2000/papers/S04P04.PDF.[35] ENTERPRISE IRELAND, “A REVIEW OF THE PERFORMANCE OF THE IRISH TECHNOLOGY TRANSFER SYSTEM 2007-2012,” 2012. Accessed: May 27, 2019. [Online]. Available: https://www.knowledgetransferireland.com/Reports-Publications/A-review-of-the-performance-of-the-Irish-technology-transfer-system-2007-2012.pdf.[36] M. Susuki, “Finding the social, economic and technological barriers and opportunities in the developing countries for designing the technology transfer and innovation regime in climate change,” 2010.[37] M. Ayaz, M. Ammad-Uddin, Z. Sharif, A. Mansour, and E. H. M. Aggoune, “Internet-of-Things (IoT)-based smart agriculture: Toward making the fields talk,” IEEE Access, vol. 7, pp. 129551–129583, 2019, doi: 10.1109/ACCESS.2019.2932609.[38] S. Shibusawa, “Precision Farming Approaches for Small Scale Farms,” IFAC Proc. Vol., vol. 34, no. 11, pp. 22–27, 2001, doi: 10.1016/s1474-6670(17)34099-5.[39] Grupo de alto nivel de expertos (HLPE), “Inversión en la agricultura a pequeña escala en favor de la seguridad alimentaria,” 2013.[40] DANE (Departamento Administrativo Nacional de Estadística), “Encuesta Nacional de Calidad de Vida ECV 2019,” 2020. [Online]. Available: https://www.dane.gov.co/index.php/estadisticas-por-tema/salud/calidad-de-vida-ecv/encuesta-nacional-de-calidad-de-vida-ecv-2019.[41] ICANH (Instituto Colombiano de Antropología e Historia) and D. (Departamento A. N. de Estadística), “Elementos para la conceptualización de lo ‘campesino’ en Colombia,” 2017.[42] S. Agrawal and D. Vieira, “A survey on Internet of Things - DOI 10.5752/P.2316-9451.2013v1n2p78,” Abakós, vol. 1, no. 2, pp. 291–319, 2013, doi: 10.5752/P.2316-9451.2013v1n2p78.[43] M. Hadžiali, A. Čolaković, and M. Hadžialić, “A Review of Enabling Technologies, Challenges, and Open Research Issues Internet of Things (IoT): A Review of Enabling Technologies, Challenges, and Open Research Issues,” Comput. Networks, vol. 144, pp. 17–39, 2018, doi: 10.1016/j.comnet.2018.07.017.[44] D. A. Norman and S. W. D. Draper, User Centered System Design. New perspectives on Human-Computer Interaction. CRC Press, 1986.[45] E. Almirón, “EL AGUA COMO ELEMENTO VITAL EN EL DESARROLLO DEL HOMBRE,” Observatorio de políticas de derechos humanos de Mercosur. https://www.observatoriomercosur.org.uy/libro/el_agua_como_elemento_vital_en_el_desarrollo_del_hombre_17.php.[46] FAO (Organización de las Naciones Unidas para la Alimentación y la Agricultura), “Sistemas de riego son vitales para la agricultura dominicana,” Agronoticias: Actualidad agropecuaria de América Latina y el Caribe, 2017. https://www.fao.org/in-action/agronoticias/detail/es/c/1027860/.[47] IDEAM (Instituto de Hidrología Meteorología y Estudios Ambientales), “Estudio Nacional del Agua,” Bogotá, Colombia, 2010.[48] J. Carrazón, “Manual práctico para el diseño de sistemas de minirriego,” Programa Espec. para la Segur. Aliment., vol. 9, no. 5, pp. 5876–5891, 2018.[49] UNESCO-WWAP, “Agua para todos, agua para la vida,” United Nations, p. 36, 2003, [Online]. Available: http://www.un.org/esa/sustdev/sdissues/water/WWDR-spanish-129556s.pdf.[50] UNESCO (Organización de las Naciones Unidas para la Educación la Ciencia y la Cultura), “GROUNDWATER Making the invisible visible,” Paris, 2022. [Online]. Available: https://www.unesco.org/reports/wwdr/2022/es/download.[51] FAO, “Evapotranspiración del cultivo en condiciones estándar Introducción a la Evapotranspiración del Cultivo (ET c),” 2018, [Online]. Available: http://www.fao.org/3/x0490s/x0490s00.htm.[52] IDEAM, J. Cadena, and M. Gómez, Validación de las fórmulas de Evapotranspiración de Referencia (ETo) para Colombia. Instituto de Hidrología Meteorología y Estudios Ambientales. 2017.[53] SEPOR, Uso de la bandeja de vaporación Clase A para la propagación del riego. 2010.[54] A. Ríos Hernández, Máquinas agrícolas, tracción animal y labores manuales. Cuba: Instituto de Mecanización Agrícola (INFOIIMA), 2012.[55] M. Liotta, “Los Sistemas De Riego Por Goteo Y Microaspersion,” Inst. Nac. Tecnol. Agropecu. Argentina, pp. 1–26, 2004.[56] M. A. Rapela, Fostering Innovation for Agriculture 4.0. Cham: Springer International Publishing, 2019.[57] J. Demenois et al., “Barriers and Strategies to Boost Soil Carbon Sequestration in Agriculture,” Front. Sustain. Food Syst., vol. 4, 2020, doi: 10.3389/fsufs.2020.00037.[58] Y. Liu, X. Ma, L. Shu, G. P. Hancke, and A. M. Abu-Mahfouz, “From Industry 4.0 to Agriculture 4.0: Current Status, Enabling Technologies, and Research Challenges,” IEEE Trans. Ind. Informatics, vol. 17, no. 6, pp. 4322–4334, Jun. 2021, doi: 10.1109/TII.2020.3003910.[59] A. Cravero, D. Lagos, and R. Espinosa, “Big Data / IoT Use in Wine Production: A Systematic Mapping Study,” IEEE Lat. Am. Trans., vol. 16, no. 5, pp. 1476–1484, May 2018, doi: 10.1109/TLA.2018.8408444.[60] I. Froiz-Míguez et al., “Design, Implementation, and Empirical Validation of an IoT Smart Irrigation System for Fog Computing Applications Based on LoRa and LoRaWAN Sensor Nodes,” Sensors, vol. 20, no. 23, p. 6865, Nov. 2020, doi: 10.3390/s20236865.[61] W. Liping, “Study on Agricultural Products Logistics Mode in Henan Province of China,” in Software Engineering and Knowledge Engineering: Theory and Practice, 2012, pp. 635–640.[62] S. Ramya, A. M. Swetha, and M. Doraipandian, “IoT Framework for Smart Irrigation using Machine Learning Technique,” J. Comput. Sci., vol. 16, no. 3, pp. 355–363, Mar. 2020, doi: 10.3844/jcssp.2020.355.363.[63] M. Raj et al., “A survey on the role of Internet of Things for adopting and promoting Agriculture 4.0,” J. Netw. Comput. Appl., vol. 187, no. May, p. 103107, 2021, doi: 10.1016/j.jnca.2021.103107.[64] D. M. Rodríguez, E. Bayona, and A. A. Rosado, “Summary of the internet of things and its application in agro-industrial production,” J. Phys. Conf. Ser., vol. 1409, p. 012018, Nov. 2019, doi: 10.1088/1742-6596/1409/1/012018.[65] S. Safdar, M. Mohsin, L. A. Khan, and W. Iqbal, “Leveraging the internet of things for smart waters: Motivation, enabling technologies and deployment strategies for Pakistan,” Proc. - 2018 IEEE SmartWorld, Ubiquitous Intell. Comput. Adv. Trust. Comput. Scalable Comput. Commun. Cloud Big Data Comput. Internet People Smart City Innov. SmartWorld/UIC/ATC/ScalCom/CBDCo, pp. 2117–2124, 2018, doi: 10.1109/SmartWorld.2018.00354.[66] S. I. Hassan, M. M. Alam, U. Illahi, M. A. Al Ghamdi, S. H. Almotiri, and M. M. Su’ud, “A Systematic Review on Monitoring and Advanced Control Strategies in Smart Agriculture,” IEEE Access, vol. 9, pp. 32517–32548, 2021, doi: 10.1109/ACCESS.2021.3057865.[67] A. Madruga Peláez, A. A. Estevez Pérez, R. S. López, I. Santana Ching, and C. M. García Algora, “Red de Sensores Inalámbricos para la Adquisición de Datos en Casas de Cultivo,” Ingeniería, vol. 24, no. 3, pp. 224–234, Sep. 2019, doi: 10.14483/23448393.14437.[68] Z. Irani et al., “Managing food security through food waste and loss: Small data to big data,” Comput. Oper. Res., vol. 98, pp. 367–383, Oct. 2018, doi: 10.1016/j.cor.2017.10.007.[69] R. Kondaveti, A. Reddy, and S. Palabtla, “Smart Irrigation System Using Machine Learning and IOT,” Proc. - Int. Conf. Vis. Towar. Emerg. Trends Commun. Networking, ViTECoN 2019, 2019, doi: 10.1109/ViTECoN.2019.8899433.[70] E. Nigussie, T. Olwal, G. Musumba, T. Tegegne, A. Lemma, and F. Mekuria, “IoT-based irrigation management for smallholder farmers in rural Sub-Saharan Africa,” Procedia Comput. Sci., vol. 177, pp. 86–93, 2020, doi: 10.1016/j.procs.2020.10.015.[71] X. Jiang et al., “Hybrid Low-Power Wide-Area Mesh Network for IoT Applications,” IEEE Internet Things J., vol. 8, no. 2, pp. 901–915, 2021, doi: 10.1109/JIOT.2020.3009228.[72] INTA and PROCISUR, “Sistemas y Metodologías pra asesoramiento a Regantes,” Manfredi, Córdoba (Argentina), 2010. [Online]. Available: https://inta.gob.ar/documentos/riego-sistemas-y-metodologias-para-asesoramiento-a-regantes.[73] H. Jafarieh, “Technology Transfer to Developing Countries: A Quantative Approach,” 2001.[74] M. Dubickis and E. Gaile-Sarkane, “Perspectives on Innovation and Technology Transfer,” Procedia - Soc. Behav. Sci., vol. 213, pp. 965–970, Dec. 2015, doi: 10.1016/j.sbspro.2015.11.512.[75] D. J. Sánchez Preciado, Developing Technology Transfer Processes in rural contexts : The case of Cauca in Colombia, vol. 4, no. 41. 2018.[76] J. O. A. Palacio Niño, “Análisis de transferencia tecnológica para una adecuada implementación de contenidos educativos en el sistema de TDT interactiva en Colombia.” p. 234, 2011.[77] T. Huang, “The technology transfer of the ICT curriculum in Taiwan.” pp. 407–422, 2013.[78] J. . Behrman and W. A. Fisher, Overseas R&D Activity of Transnational Companies. Oelgeschlager, Gunn and Hain, Cambridge, 1980.[79] M. Blomström, TRANSNATIONAL CORPORATIONS AND MANUFACTURING EXPORTS FROM DEVELOPING COUNTRIES. New York, New York, USA: United Nations Publications, 1990.[80] J. Bhagwati, The New International Economic Order. Massachusetts: MIT Press, 1978.[81] A. HASSAN and Y. Jamaluddin, “Exploring the Factors Affecting the ICT Technology Transfer Process: An Empirical Study in Libya,” Mod. Appl. Sci., vol. 10, no. 7, p. 156, 2016, doi: 10.5539/mas.v10n7p156.[82] A. K. Saini and V. KumarKhurana, “ICT Based Communication Systems as Enabler for Technology Transfer,” IEEE, pp. 90–99, 2016.[83] J. Londoño, S. Restrepo, M. Rodríguez, F. Cuartas, and N. Viana, “Identificación De Tipos, Modelos Y Mecanismos De Transferencia Tecnológica Que Apalancan La Innovación,” Revista CINTEX, vol. 23, no. 2. pp. 13–23, 2018.[84] J. A. Pineda Insuasti and A. S. Duarte Trujillo, “Modelo de transferencia de tecnología ecuatoriano: una revisión.” pp. 1–24, 2016.[85] R. Barquin, “Some Introductory Notes on Transfer of Technology,” in Industrial Development and Technology Transfer, 1981.[86] H. S. Lee, J. W. Lee, H. Y. Kim, H. J. Jo, and B. G. Lee, “Promising ICT Transfer Fields for Promotion of Micro-Startups Hye.” pp. 779–788, 2016.[87] J. González Sabater, Manual transferencia de tecnología y conocimiento, 2nd ed. THE TRANSFER INSTITUTE, 2011.[88] A. Corsi, R. N. Pagani, J. L. Kovaleski, and V. Luiz, “Technology transfer for sustainable development: Social impacts depicted and some other answers to a few questions,” J. Clean. Prod., p. 118522, 2019, doi: 10.1016/j.jclepro.2019.118522.[89] P. J. Buckley, “Some Aspects of Foreign Private Investment in the Manufacturing Sector of the Economy of the Irish Republic,” Econ. Soc. Rev, no. 5, pp. 301–321, 1974.[90] A. GÜNSEL, “Research on Effectiveness of Technology Transfer from a Knowledge Based perspective,” in Procedia - Social and Behavioral Sciences, 2015, vol. 207, pp. 777–785, doi: 10.1016/j.sbspro.2015.10.165.[91] M. Ismail, S. R. Hamzah, and R. Bebenroth, “Differentiating knowledge transfer and technology transfer: What should an organizational manager need to know?,” Eur. J. Train. Dev., vol. 42, no. 9, pp. 611–628, 2018, doi: 10.1108/EJTD-04-2018-0042.[92] S. S. Da Silva, P. R. Feldmann, R. G. Spers, and M. D. Bambini, “Analysis of the process of technology transfer in public research institutions,” Innov. Manag. Rev., vol. 16, no. 4, pp. 375–390, 2019, doi: 10.1108/inmr-05-2018-0024.[93] P. J. Buckley, “New Forms of International Industrial Co-operation,” in The Economic Theory of the Multinational Enterprise, Macmillan, Ed. London: Buckley & Casson, 1985, pp. 39–59.[94] D. O´Neil and C. Huff, “Ensuring universal acces to telecommunications technologies for all citizens: Equity vs Economic considerations.” STAS 98. Wiring the World: The Impact of Information Technology on Society. Proceedings of the 1998 International Symposium on Technology and Society, pp. 170–175, 1998.[95] D. V. Gibson and R. W. Smilor, “Key variables in technology transfer: A field-study based empirical analysis,” J. Eng. Technol. Manag., vol. 8, no. 3–4, pp. 287–312, Dec. 1991, doi: 10.1016/0923-4748(91)90015-J.[96] Y. Acea Valdez, “La transferencia de tecnología en Cuba.” pp. 139–149, 2016.[97] A. Corsi, F. F. De Souza, R. N. Pagani, and J. L. Kovaleski, Technology transfer oriented to sustainable development : proposal of a theoretical model based on barriers and opportunities, vol. 126, no. 6. Springer International Publishing, 2021.[98] J. Arenas and D. González, “Technology Transfer Models and Elements in the University-Industry Collaboration,” Adm. Sci., vol. 8, no. 2, p. 19, 2018, doi: 10.3390/admsci8020019.[99] A. Hassan, M. Y. Jamaluddin, and K. M. Menshawi, “International technology transfer models: A comparison study,” Journal of Theoretical and Applied Information Technology, vol. 78, no. 1. pp. 95–108, 2015.[100] E. C. Avendaño Sánchez, “El Uso De La Transferencia De Tecnología En El Sector Empresarial: De La Innovación a La Apropiación Del Saber,” Ekp, vol. 13, no. 3. pp. 1576–1580, 2017.[101] F. ÖZSUNGUR, “Adaptation Approach to Technology Transfer Strategy,” Afro Eurasian Stud., vol. 7, no. 1, pp. 134–178, 2018, doi: 10.33722/afes.471087.[102] C. L. García Wagner, “Modelo conceptual para el funcionamiento de una Oficina de Transferencia de Tecnología en la Universidad del Quindío.” 2018.[103] B. Metz, O. R. Davidson, J.-W. Martens, S. N. M. Van Rooijen, and L. Van Wie McGregory, “Methodological and Technological Issues in Technology Transfer,” 2000. Accessed: Jun. 17, 2019. [Online]. Available: www.cup.cam.ac.uk.[104] R. H. Acker and D. M. Kammen, “The quiet (energy) revolution: analysing the dissemination of photovoltaic power systems in Kenya,” Energy Policy, vol. 24, no. 1, pp. 81–111, 1996.[105] D. C. Rose et al., “Integrated farm management for sustainable agriculture: Lessons for knowledge exchange and policy,” Land use policy, vol. 81, no. April 2017, pp. 834–842, 2019, doi: 10.1016/j.landusepol.2018.11.001.[106] K. T. Moreno Suarez and E. L. Oviedo Bahamón, “Tipificación de la agricultura realizada por los integrantes de la Asociación de Productores Indígenas y Campesinos - ASPROINCA ubicada en el departamento de Caldas,” Corporación Universitaria Minuto de Dios - UNIMINUTO, 2017.[107] E. L. Hyman, A. T. International, M. O. Donnell, G. Patterson, and J. Skibiak, “An Economic Analysis of Small-Scale Technologies for Palm Oil Extraction in Central and West Africa,” World Dev., vol. 18, no. 3, pp. 455–476, 1990.[108] N. Clark and E. Clay, “The Dryland Research Project at lndore ( 1974-80 ) - an Institutional Innovation in Rural Technology Transfer,” J. Rural Stud., vol. 3, no. 2, pp. 159–173, 1987.[109] K. M. Baker and R. L. Edmonds, “Transfer of Taiwanese ideas and technology to The Gambia, West Africa: a viable approach to rural development?,” Geogr. J., vol. 170, no. 3, pp. 189–211, 2004, [Online]. Available: https://www.jstor.org/stable/3451252.[110] Unión Europea and IICA (Instituto Interamericano de Cooperación para la Agricultura), Sistemas de innovación agrícola en Centroamérica y Panamá: estrategias para el uso de buenas prácticas de transferencia tecnológica, Primera. San José, Costa Rica: IICA, 2016.[111] G. A. Van Norman and R. Eisenkot, “Technology Transfer: From the Research Bench to Commercialization: Part 2: The Commercialization Process,” JACC Basic to Transl. Sci., vol. 2, no. 2, pp. 197–208, 2017, doi: 10.1016/j.jacbts.2017.03.004.[112] W. Keller, “International technology diffusion,” J. Econ. Lit., vol. 3, no. 42, pp. 752–783, 2004.[113] M. Nabin, X. Nguyen, and P. Sgro, “On the Relationship Between Technology Transfer and Economic Growth in Asian,” World Econ., 2013, doi: 10.1111/twec.12049.[114] R. Thornton, “Los 90 y el nuevo siglo en los sistemas de extensión rural y transferencia de tecnología públicos en el Mercosur,” La Pampa, Argentina, 2011. [Online]. Available: https://inta.gob.ar/documentos/los-90-y-el-nuevo-siglo-en-los-sistemas-de-extension-rural-y-transferencia-de-tecnologia-publicos-en-el-mercosur.[115] W. G. Delgado Munevar, “Caracterización del proceso de transferencia y adopción tecnológica de pequeños y medianos productores de cebolla (allium cepa l.) en el municipio de Pasca (Cundinamarca),” 2009, Accessed: May 27, 2019. [Online]. Available: https://repository.javeriana.edu.co/handle/10554/134.[116] J. Ardila, Extensión rural para el desarrollo de la agricultura y la seguridad alimentaria, no. Aspectos conceptuales, situación y una visión de futuro. 2015.[117] D. S. MacCarthy, J. Kihara, P. Masikati, and S. G. K. Adiku, “Decision support tools for site-specific fertilizer recommendations and agricultural planning in selected countries in sub-Sahara Africa,” Nutr. Cycl. Agroecosystems, vol. 110, no. 3, pp. 343–359, Apr. 2018, doi: 10.1007/s10705-017-9877-3.[118] C. Gamboa, G. Van den Broeck, and M. Maertens, “Smallholders’ Preferences for Improved Quinoa Varieties in the Peruvian Andes,” Sustainability, vol. 10, no. 10, p. 3735, Oct. 2018, doi: 10.3390/su10103735.[119] O. Oyinbo et al., “Farmers’ preferences for high-input agriculture supported by site-specific extension services: Evidence from a choice experiment in Nigeria,” Agric. Syst., vol. 173, no. June 2018, pp. 12–26, 2019, doi: 10.1016/j.agsy.2019.02.003.[120] M. Banković et al., “Teaching graduate students how to review research articles and respond to reviewer comments,” 2020, pp. 1–63.[121] L. J. Catania, “The science and technologies of artificial intelligence (AI),” in Foundations of Artificial Intelligence in Healthcare and Bioscience, Elsevier, 2021, pp. 29–72.[122] S. Vajjala, B. Majumder, A. Gupta, and H. Surana, Practical Natural Language Processing. A comprehensive Guide to Building Real-World NLP System. 2020.[123] M. B. Hernández and J. M. Gómez, “Aplicaciones de Procesamiento de Lenguaje Natural,” Rev. Politécnica, vol. 32, no. 1, pp. 87–96, 2013, [Online]. Available: http://www.revistapolitecnica.epn.edu.ec/ojs2/index.php/revista_politecnica2/article/view/32.[124] J. C. Campbell, A. Hindle, and E. Stroulia, “Latent Dirichlet Allocation: Extracting Topics from Software Engineering Data,” Art Sci. Anal. Softw. Data, vol. 3, pp. 139–159, 2015, doi: 10.1016/B978-0-12-411519-4.00006-9.[125] R. Kulshrestha, “A Beginner’s Guide to Latent Dirichlet Allocation(LDA),” towardsdatascience.com, 2019. https://towardsdatascience.com/latent-dirichlet-allocation-lda-9d1cd064ffa2.[126] T. Ganegedara, “Intuitive Guide to Latent Dirichlet Allocation,” towardsdatascience.com, 2018. https://towardsdatascience.com/light-on-math-machine-learning-intuitive-guide-to-latent-dirichlet-allocation-437c81220158.[127] Z. Tong and H. Zhang, “A Text Mining Research Based on LDA Topic Modelling,” pp. 201–210, 2016, doi: 10.5121/csit.2016.60616.[128] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei, “Hierarchical Dirichlet processes,” J. Am. Stat. Assoc., vol. 101, no. 476, pp. 1566–1581, 2006, doi: 10.1198/016214506000000302.[129] E. Coronado Sroka, “Don’t be Afraid of Nonparametric Topic Models,” towardsdatascience.com, 2020. https://towardsdatascience.com/dont-be-afraid-of-nonparametric-topic-models-d259c237a840.[130] J. Xu, “Topic Modeling with LSA, PLSA, LDA y Ida2Vec,” medium.com, 2018. https://medium.com/nanonets/topic-modeling-with-lsa-psla-lda-and-lda2vec-555ff65b0b05.[131] S. Baldassarri Santalucía, “Computación Afectiva: tecnología y emociones para mejorar la experiencia de usuario,” Rev. Inst. la Fac. Inform., vol. no. 3, pp. 14–15, 2016.[132] M. Soegaard and R. Friss Dam, Encyclopedia of Human -Computer Interaction, 3rd ed. THE INTERACTION DESIGN FOUNDATION.[133] N. Eyar and R. Hoover, How to Build Habit-Forming Products. Penguin Randowm house LLC, 2014.[134] N. Norman, The design of everyday things. New York, New York, USA: Basic Books, 2013.[135] M. G. Domingo and E. M. Pera, “Diseño centrado en el usuario,” Diseño centrado en el usuario, vol. 2, no. 4, 2017.[136] INTERACTION DESIGN FOUNDATION, “What is User Centered Design? | Interaction Design Foundation.” https://www.interaction-design.org/literature/topics/user-centered-design (accessed May 28, 2019).[137] Design Council, “Design Methods Step 1: Discover,” Design Council, 2015. https://www.designcouncil.org.uk/our-work/news-opinion/design-methods-step-1-discover/.[138] Design Council, “Design Methods Step 2: Define,” Design Council, 2018. https://www.designcouncil.org.uk/our-work/news-opinion/design-methods-step-2-define/.[139] Design Council, “Design Methods Step 3: Develop,” Design Council, 2018. https://www.designcouncil.org.uk/our-work/news-opinion/design-methods-step-3-develop/.[140] Design Council, “Design Methods Step 4: Deliver,” 2018. https://www.designcouncil.org.uk/our-work/news-opinion/design-methods-step-4-deliver/.[141] K. Rodden, H. Hutchinson, and X. Fu, “Measuring the user experience on a large scale,” in Proceedings of the 28th international conference on Human factors in computing systems - CHI ’10, 2010, p. 2395, doi: 10.1145/1753326.1753687.[142] S. Sastoque, C. Narváez, and G. Garnica, “Metodología para la construcción de Interfaces Gráficas Centradas en el Usuario,” 2016.[143] INTERACTION DESIGN FOUNDATION, “What is Design Thinking and Why Is It So Popular?” .[144] I. Young, Practical Empathy for collaboration and creativity in your Work. Rosenfeld, 2015.[145] C. D. Batson, “These Things Called Empathy: Eight Related but Distinct Phenomena,” in The Social Neuroscience of Empathy, The MIT Press, 2009, pp. 3–16.[146] T. Wiseman, “A concept analysis of empathy,” J. Adv. Nurs., vol. 23, no. 6, pp. 1162–1167, Jun. 1996, doi: 10.1046/j.1365-2648.1996.12213.x.[147] B. A. Aubert, A. Schroeder, and J. Grimaudo, “IT as enabler of sustainable farming: An empirical analysis of farmers’ adoption decision of precision agriculture technology,” Decis. Support Syst., vol. 54, no. 1, pp. 510–520, Dec. 2012, doi: 10.1016/j.dss.2012.07.002.[148] S. O. Somers and L. Stapleton, “A Human-Centred approach to e-Agricultural systems,” IFAC-PapersOnLine, vol. 48, no. 24, pp. 213–218, Jan. 2015, doi: 10.1016/J.IFACOL.2015.12.085.[149] S. Somers and L. Stapleton, “e-Agricultural innovation using a human-centred systems lens, proposed conceptual framework,” AI Soc., vol. 29, no. 2, pp. 193–202, May 2014, doi: 10.1007/s00146-013-0475-x.[150] N. Theodorakopoulos, D. J. Snchez Preciado, and D. Bennett, “Transferring technology from university to rural industry within a developing economy context: The case for nurturing communities of practice,” Technovation, vol. 32, no. 9–10, pp. 550–559, 2012, doi: 10.1016/j.technovation.2012.05.001.[151] P. S. Ahmed Awad Talb Altalb, Tadeusz Filipek, “The role of extension in the transfer and adoption of agricultural technology,” J. Int. Agric. Ext. Educ., vol. 03, no. 05, pp. 63–68, 2015.[152] G. Sylvester, SUCCESS STORIES ON INFORMATION AND COMMUNICATION TECHNOLOGIES FOR AGRICULTURE AND RURAL DEVELOPMENT. Bangkok: FAO, 2015.[153] C. Leeuwis and A. Van den Ban, Communication for Rural Innovation : Rethinking Agricultural Extension, 3rd ed. Hoboken, United States: John Wiley & Sons, Ltd, 2007.[154] P. Figueroa, P. Castillo, V. Vrsalovic, D. Gálvez, and S. Diez-de-medina, “Technology Transfer from Academia to Rural Communities : The Case of Caprines in vitro Fecundation and Local Livestock Market in Tamarugal Province in Chile,” vol. 8, no. 4, pp. 186–194, 2013, [Online]. Available: https://scielo.conicyt.cl/pdf/jotmi/v8n4/art17.pdf.[155] S. O. Somers and L. Stapleton, “A Human-Centred approach to e-Agricultural systems,” IFAC-PapersOnLine, vol. 48, no. 24, pp. 213–218, Jan. 2015, doi: 10.1016/j.ifacol.2015.12.085.[156] J. Mwangi, “the Role of Extension in the Transfer and Adoption of Agricultural Technologies,” J. Int. Agric. Ext. Educ., vol. 5, no. 1, 1998, doi: 10.5191/jiaee.1998.05108.[157] W. Muzari, W. Gatsi, and S. Muvhunzi, “The Impacts of Technology Adoption on Smallholder Agricultural Productivity in Sub-Saharan Africa: A Review,” J. Sustain. Dev., vol. 5, no. 8, pp. 69–77, 2012, doi: 10.5539/jsd.v5n8p69.[158] B. E. Swanson, “Global Review of Good Agricultural Extension and Advisory Practices,” Food Agric. Organ. United Nations, p. 82345, 2008, [Online]. Available: https://www.fao.org/3/i0261e/i0261e00.htm.[159] L. Kuhl, “Technology transfer and adoption for smallholder climate change adaptation: opportunities and challenges,” Clim. Dev., vol. 12, no. 4, pp. 353–368, 2020, doi: 10.1080/17565529.2019.1630349.[160] A. Hassan, M. Y. Jamaluddin, and A. Queiri, “Technology transfer model for the Libyan information and communication industry,” J. Teknol., vol. 78, no. 8, pp. 99–100, 2016, doi: 10.11113/jt.v78.5872.[161] A. Espinosa, J. Pineda, O. Ortega, A. J. Author, R. Sarmiento, and G. W. Archibold Taylor, “Trends, Challenges and Opportunities for IoT in Smallholder Agriculture Sector: An Evaluation from the Perspective of Good Practices,” in Trends and Applications in Information Systems and Technologies, SPRINGER, 2021, pp. 293–301.[162] G. Natarajan and L. Ashok Kumar, “Implementation of IoT based smart village for the rural development,” Int. J. Mech. Eng. Technol., vol. 8, no. 8, pp. 1212–1222, 2017.[163] G. Carrión, M. Huerta, and B. Barzallo, “Internet of Things (IoT) Applied to an Urban Garden,” in Proceedings - 2018 IEEE 6th International Conference on Future Internet of Things and Cloud, FiCloud 2018, 2018, pp. 155–161, doi: 10.1109/FiCloud.2018.00030.[164] D. Singh and A. Thakur, “Designing of smart drip irrigation system for remote hilly areas,” PDGC 2018 - 2018 5th Int. Conf. Parallel, Distrib. Grid Comput., vol. 8, no. 1, pp. 90–94, 2018, doi: 10.1109/PDGC.2018.8745934.[165] N. Ananthi, J. Divya, M. Divya, and V. Janani, “IoT based smart soil monitoring system for agricultural production,” Proc. - 2017 IEEE Technol. Innov. ICT Agric. Rural Dev. TIAR 2017, vol. 2018-Janua, pp. 209–214, 2018, doi: 10.1109/TIAR.2017.8273717.[166] K. P. Satamraju, K. Shaik, and N. Vellanki, “RURAL BRIDGE: A novel system for smart and co-operative farming using IoT architecture,” IMPACT 2017 - Int. Conf. Multimedia, Signal Process. Commun. Technol., no. 1, pp. 22–26, 2018, doi: 10.1109/MSPCT.2017.8363966.[167] K. A. Shah, M. Patel, M. Khasakiya, S. Kazi, and P. Khalasi, “CESIS: Cost-effective and self-regulating irrigation system,” in Lecture Notes on Data Engineering and Communications Technologies, vol. 27, Springer, Cham, 2019, pp. 167–181.[168] T. S. Sondhi, A. R. Sambhaji, and K. Sharmila Banu, “InFEvoS: Integrated farming evolution system,” Int. J. Recent Technol. Eng., vol. 7, no. 6, pp. 932–936, 2019.[169] U. J. L. dos Santos, G. Pessin, C. A. da Costa, and R. da Rosa Righi, “AgriPrediction: A proactive internet of things model to anticipate problems and improve production in agricultural crops,” Comput. Electron. Agric., vol. 161, no. July, pp. 202–213, 2019, doi: 10.1016/j.compag.2018.10.010.[170] M. Mancini et al., “An open source and low-cost internet of things-enabled service for irrigation management,” Conf. Proc. - IEEE Int. Conf. Syst. Man Cybern., vol. 2019-Octob, pp. 1714–1719, 2019, doi: 10.1109/SMC.2019.8914230.[171] C. C. Baseca, S. Sendra, J. Lloret, and J. Tomas, “A smart decision system for digital farming,” Agronomy, vol. 9, no. 5, 2019, doi: 10.3390/agronomy9050216.[172] P. Visconti, R. de Fazio, P. Primiceri, D. Cafagna, S. Strazzella, and N. I. Giannoccaro, “A solar-powered fertigation system based on low-cost wireless sensor network remotely controlled by farmer for irrigation cycles and crops growth optimization,” Int. J. Electron. Telecommun., vol. 66, no. 1, pp. 59–68, 2020, doi: 10.24425/ijet.2019.130266.[173] D. P. Holzworth et al., “Agricultural production systems modelling and software: Current status and future prospects,” Environ. Model. Softw., vol. 72, no. 1, pp. 276–286, Oct. 2015, doi: 10.1016/j.envsoft.2014.12.013.10.1016/j.envsoft.2014.12.013. [174] A. Oliveira et al., “Iot sensing platform as a driver for digital farming in rural africa,” Sensors (Switzerland), vol. 20, no. 12, pp. 1–25, 2020, doi: 10.3390/s20123511.[175] A. Tendolkar and S. Ramya, “CareBro (Personal Farm Assistant):An IoT based Smart Agriculture with Edge Computing,” MPCIT 2020 - Proc. IEEE 3rd Int. Conf. "Multimedia Process. Commun. Inf. Technol., pp. 97–102, 2020, doi: 10.1109/MPCIT51588.2020.9350481.[176] P. L. Ramirez Izolan et al., “Low-Cost Fog Computing Platform for Soil Moisture Management,” Int. Conf. Inf. Netw., vol. 2020-Janua, pp. 499–504, 2020, doi: 10.1109/ICOIN48656.2020.9016572.[177] J. D. Borrero and A. Zabalo, “An autonomous wireless device for real-time monitoring of water needs,” Sensors (Switzerland), vol. 20, no. 7, pp. 1–16, 2020, doi: 10.3390/s20072078.[178] N. A. A. Abdellah and N. Thangadurai, “Real Time Application of IoT for the Agriculture in the Field along with Machine Learning Algorithm,” Proc. 2020 Int. Conf. Comput. Control. Electr. Electron. Eng. ICCCEEE 2020, 2021, doi: 10.1109/ICCCEEE49695.2021.9429606.[179] S. Casadei, F. Peppoloni, F. Ventura, R. Teodorescu, D. Dunea, and N. Petrescu, “Application of smart irrigation systems for water conservation in Italian farms,” Environ. Sci. Pollut. Res., vol. 28, no. 21, pp. 26488–26499, 2021, doi: 10.1007/s11356-021-12524-6.[180] F. J. Ruiz Ortega, K. Esquivel Murillo, D. O. Rodríguez Martinez, M. E. Rodríguez Torres, and R. Duarte Ramírez, “INTERNET DE LAS COSAS (IoT), UNA ALTERNATIVA PARA EL CUIDADO DEL AGUA,” Pist. Educ., vol. 40, no. 130, pp. 2318–2330, 2018.[181] A. F. Jimenez, E. F. Herrera, B. V. Ortiz, A. Ruiz, and P. F. Cardenas, “Inference System for Irrigation Scheduling with an Intelligent Agent,” in Advances in Information and Communication Technologies for Adapting Agriculture to Climate Change II, J. C. Corrales, P. Angelov, and J. A. Iglesias, Eds. Cham: Springer International Publishing, 2019, pp. 1–20.[182] J. D. Franco-Ramirez, T. A. Ramirez-Delreal, A. Garate-Garcia, M. A. Ruiz, and D. Villanueva-Vasquez, “MOSyG: Monitoring system for germination chamber using fuzzy control based on cloudino-IoT and FIWARE,” 2019 IEEE Int. Autumn Meet. Power, Electron. Comput. ROPEC 2019, no. Ropec, 2019, doi: 10.1109/ROPEC48299.2019.9057127.[183] J. A. Laverde Mena and C. G. Laverde Mena, “Internet de las cosas aplicado en la agricultura ecuatoriana: Una propuesta para sistemas de riego,” Rev. Dilemas Contemp., vol. 148, pp. 148–162, 2021.[184] E. Gutierrez Leon, J. E. Montiel Arguijo, C. Carreto Arellano, and F. R. Menchaca García, “Propuesta de sistema de gestión inteligente basado en IoT para hidroponia,” Res. Comput. Sci., vol. 148, no. 10, pp. 219–233, 2019, doi: 10.13053/rcs-148-10-19.[185] F. A. Capraro Fuentes, S. R. Tosetti, and P. L. Campillo, “Sensor Network for Monitoring and Fault Detection in Drip Irrigation Systems Based on Embedded Systems,” IEEE Lat. Am. Trans., vol. 18, no. 2, pp. 383–391, 2020, doi: 10.1109/TLA.2020.9085294.[186] A. Oliveira-Jr et al., “IoT Sensing Platform as a Driver for Digital Farming in Rural Africa,” Sensors, vol. 20, no. 12, p. 3511, Jun. 2020, doi: 10.3390/s20123511.[187] J. Rodríguez-Robles, Á. Martin, S. Martin, J. A. Ruipérez-Valiente, and M. Castro, “Autonomous sensor network for rural agriculture environments, low cost, and energy self-charge,” Sustain., vol. 12, no. 15, 2020, doi: 10.3390/SU12155913.[188] A. Cabarcas, C. Arrieta, D. Cermeno, H. Leal, R. Mendoza, and C. Rosales, “Irrigation system for precision agriculture supported in the measurement of environmental variables,” Proc. - 2019 7th Int. Eng. Sci. Technol. Conf. IESTEC 2019, no. March 2020, pp. 671–676, 2019, doi: 10.1109/IESTEC46403.2019.00125.[189] M. J. Ibarra, E. Alcarraz, O. Tapia, Y. P. Atencio, Y. Mamani-Coaquira, and H. A. Huillcen Baca, “NFT-I technique using IoT to improve hydroponic cultivation of lettuce,” Proc. - Int. Conf. Chil. Comput. Sci. Soc. SCCC, vol. 2020-Novem, 2020, doi: 10.1109/SCCC51225.2020.9281277.[190] Superintendencia de Industria y Comercio (SIC), “¿Qué se puede patentar?,” Superintenedencia de Industria y Comercio (SIC), 2021. https://www.sic.gov.co/node/44#:~:text=Se protegen los inventos que consistan en productos%2C,un procedimiento para la obtención de un producto.[191] H. Ben Salem and T. Smith, “Feeding strategies to increase small ruminant production in dry environments,” Small Rumin. Res., vol. 77, no. 2–3, pp. 174–194, 2008, doi: 10.1016/j.smallrumres.2008.03.008.[192] D. Singh and A. Thakur, “Advancing Rational Exploitation of Water Irrigation Using 5G-IoT Capabilities: The AREThOU5A project,” PDGC 2018 - 2018 5th Int. Conf. Parallel, Distrib. Grid Comput., vol. 8, no. 1, pp. 90–94, 2018, doi: 10.1109/PDGC.2018.8745934.[193] R. Torres-Sanchez, H. Navarro-Hellin, A. Guillamon-Frutos, R. San-Segundo, M. C. Ruiz-Abellón, and R. Domingo-Miguel, “A decision support system for irrigation management: Analysis and implementation of different learning techniques,” Water (Switzerland), vol. 12, no. 2, 2020, doi: 10.3390/w12020548.[194] S. Athani, C. Tejeshwar, M. M. Patil, P. Patil, and R. Kulkarni, “Soil moisture monitoring using IoT enabled arduino sensors with neural networks for improving soil management for farmers and predict seasonal rainfall for planning future harvest in North Karnataka - India,” Int. Conf. I-SMAC (IoT Soc. Mobile, Anal. Cloud), pp. 43–48, 2017.[195] J. J. Dethier and A. Effenberger, “Agriculture and development: A brief review of the literature,” Econ. Syst., vol. 36, no. 2, pp. 175–205, 2012, doi: 10.1016/j.ecosys.2011.09.003.[196] M. Bures, “Internet of Things: Current Challenges in the Quality Assurance and Testing Methods.” Accessed: Nov. 22, 2018. [Online]. Available: https://arxiv.org/ftp/arxiv/papers/1805/1805.01241.pdf.[197] K. Pernapati, “IoT Based Low Cost Smart Irrigation System,” in Proceedings of the International Conference on Inventive Communication and Computational Technologies, ICICCT 2018, 2018, pp. 1312–1315, doi: 10.1109/ICICCT.2018.8473292.[198] T. W. Zougmore, S. Malo, F. Kagembega, and A. Togueyini, “Low cost IoT solutions for agricultures fish farmers in Afirca: A case study from Burkina Faso,” ICSCC 2018 - 1st Int. Conf. Smart Cities Communities, 2018, doi: 10.1109/SCCIC.2018.8584549.[199] E. Beza, L. Kooistra, P. Reidsma, P. Poortvliet, M. Belay, and B. Bijen, “Exploring farmers’ intentions to adopt mobile Short Message Service (SMS) for citizen science in agriculture,” j, vol. 151, 2018, doi: 10.1016/j.compag.2018.06.015.[200] K. Lova Raju and V. Vijayaraghavan, “IoT and Cloud hinged Smart Irrigation System for Urban and Rural Farmers employing MQTT Protocol,” ICDCS 2020 - 2020 5th Int. Conf. Devices, Circuits Syst., pp. 71–75, 2020, doi: 10.1109/ICDCS48716.2020.243551.[201] W. A. K. L. Sanjula, K. T. W. Kavinda, M. A. K. Malintha, W. M. D. L. Wijesuriya, S. Lokuliyana, and R. De Silva, “Automated water-gate controlling system for paddy fields,” ICAC 2020 - 2nd Int. Conf. Adv. Comput. Proc., pp. 61–66, 2020, doi: 10.1109/ICAC51239.2020.9357312.[202] S. Hernando Mejía, “MODELO DE DECISIÓN PARA LA SELECCIÓN DE SOLUCIONES IoT APOYANDO LA TRANSFERENCIA TECNOLÓGICA EN ZONAS RURALES DE SANTANDER,” 2020.[203] M. D. Caro Meza, “Diseño de directrices para la evaluación de interfaces en soluciones IOT implementadas en zonas rurales santandereanas: apoyando la transferencia tecnológica desde la perspectiva de usabilidad,” Universidad Autónoma de Bucaramanga, 2020.[204] A. C. Martínez Pinzón and K. J. Villamizar Calderón, “FRAMEWORK CONCEPTUAL PARA DESARROLLO DE INTERFACES MÓVILES EN SOLUCIONES IOT QUE PERMITAN APROPIACIÓN TECNOLÓGICA EN ZONAS RURALES ALEDAÑAS AL MUNICIPIO DE BUCARAMANGA DESDE LA PERSPECTIVA DE UX,” Universidad Autónoma de Bucaramanga, 2020.[205] D. F. Aceros Orduz, “PROTOTIPO DE UNA RUTA TECNOLOGICA PARA EL IOT, ENFOCADA EN LAS TECNOLOGÍAS DE RIEGO, PARA LOS AGRICULTORES DE PEQUEÑA ESCALA EN COLOMBIA,” Universidad Autónoma de Bucaramanga, 2020.[206] C. A. Meneses Montana and karen S. Prada Jaimes, “Empleando elementos reconocibles como potencializador del uso de internet en zonas rurales: una investigación desde la experiencia de usuario en pequeños productores agrícolas de Santander,” Universiad Autónoma de Bucaramanga, 2020.[207] A. F. Rincón Benavides and E. A. Martinez Zavala, “Climagro: diseño de un mapa de ruta de tecnologías IOT empleadas en entornos rurales para el monitoreo del clima, dirigido para los pequeños productores campesinos de Santander, mediante técnicas de text mining e inteligencia artificial,” Universidad Autónoma de Bucaramanga, 2020.[208] J. E. Duarte Pineda and O. M. Ortega Pineda, “Farmia: Diseño de arquitectura IOT orientado a desarrolladores para la inclusión de tecnologías de internet de las cosas aplicadas a la Agro rotación de cultivos de acuerdo con el plan estratégico presentado por GPS Santander: Caso de estudio Villanueva, ,” Universidad Autónoma de Bucaramanga, 2020.[209] O. Y. Patiño Hernández, “KAKAW: Modelo de inteligencia artificial para la identificación de actores y su relación en el sector cacaotero de Santander,” Universidad Autónoma de Bucaramanga, 2020.[210] A. F. Herrera Duarte, “Propuesta metodológica para la evaluación de modelos de transferencia tecnológica TIC en la agricultura de los pequeños productores campesinos de la región de Santander,” Universidad Autónoma de Bucaramanga, 2020.[211] F. J. Vargas Pérez and A. P. Verdugo Beltrán, “Desarrollo de un prototipo funcional de red sensórica IoT para el monitoreo de variables en suelos agrícolas de la finca el Oasis de la Vereda Llanadas, municipio de Los Santos (Santander),” Universidad Autónoma de Bucaramanga, 2021.[212] N. E. Castillo Suta, “Desarrollo de un modelo de transferencia y apropiación de tecnologías del internet de las cosas para los agricultores colombianos de pequeña escala – AGRIOT,” Universidad Autónoma de Bucaramanga, 2021.[213] C. Kamienski et al., “Smart water management platform: IoT-based precision irrigation for agriculture,” Sensors (Switzerland), vol. 19, no. 2, 2019, doi: 10.3390/s19020276.[214] B. Edwards et al., “mAgri Design Toolkit: User-centered design for mobile agriculture,” p. 186, 2014, [Online]. Available: https://www.comminit.com/ict-4-development/content/magri-design-toolkit-user-centered-design-mobile-agriculture.[215] E. J. M. Arruda Filho and R. Roy Dholakia, “Hedonismo como um fator de decisão e uso tecnológico,” Rev. Bras. Gest. Negocios, vol. 15, no. 48, pp. 343–361, 2013, doi: 10.7819/rbgn.v15i48.1407.[216] C. N. Jiménez-Hernández, O. F. Castellanos-Domínguez, and E. M. Villa-Enciso, “La gestión de tecnologías emergentes en el ámbito universitario,” TecnoLógicas, no. 26, p. 145, 2011, doi: 10.22430/22565337.57.[217] DANE (Departamento Administrativo Nacional de Estadística) and MADR (Ministerio de Agricultura y Desarrollo Rural), “Censo Nacional Agropecuario 2014,” 2015.[218] M. A. Espinosa, E. Romero R., L. Y. Flórez G., and C. D. Guerrero, “DANDELION: Propuesta metodológica para recopilación y análisis de información de artículos científicos. Un enfoque desde la bibliometría y la revisión sistemática de la literatura,” RISTI - Rev. Iber. Sist. e Tecnol. Inf., vol. 28, pp. 110–122, 2020, [Online]. Available: https://search.proquest.com/openview/e3b85a7260c758fd943bc4d5a0447f13/1?pq-origsite=gscholar&cbl=1006393.[219] J. R. Fraenkel, N. E. Wallen, and H. H. Hyun, How to design and evaluate research in education, vol. 1, no. 1. McGraw: Hill Education, 2012.[220] Unidad Administrativa Especial de Catastro Distrital -Gerencia IDECA, “Metodología para la Analítica de datos,” pp. 1–34, 2019, [Online]. Available: www.ideca.gov.co.[221] P. Chapman et al., CRISP-DM 1.0. SPSS, 2000.[222] E. Romero-riaño, C. D. Guerrero-santander, and H. E. Martínez-ardila, “Agronomy research co-authorship networks in agricultural innovation systems Redes de coautoría en investigación sobre agronomía en sistemas de innovación agrícola,” Rev. UIS Ing., vol. 20, no. 1, pp. 161–175, 2021, doi: 10.18273/revuin.v20n1-2021015.[223] G. Ko, J. K. Routray, and M. M. Ahmad, “ICT infrastructure for rural community sustainability,” Community Dev., vol. 50, no. 1, pp. 51–72, Jan. 2019, doi: 10.1080/15575330.2018.1557720.[224] V. A. Eras Moreira, “EVALUACIÓN DE IMPACTO DE TRANSFERENCIA DE TECNOLOGÍA AGROPECUARIA EN LA PROVINCIA DE IMBABURA: CANTONES COTACACHI, PIMAMPIRO E IBARRA,” 2014.[225] S.-R. Cipriano Juárez, “La agricultura y el problema del agua en la provincia de alicante,” a Vueltas Con La Agric. Una Act. Económica Necesaria Y Marginada, 2010.[226] J. A. Ocampo, “Misión para la transformación del campo,” Misión para la Transform. del campo, p. 46, 2014, doi: 10.1007/s13398-014-0173-7.2.[227] P. S. Birthal and P. K. Joshi, “Smallholder Farmers’ Access to Markets for High-Value Agricultural Commodities in India,” Case Stud. Food Policy Dev. Ctries., pp. 51–60, 2019, doi: 10.7591/9780801466373-007.[228] D. J. Quiroga-Parra, J. Torrent-Sellens, and C. P. Murcia Zorrilla, “Usos de las TIC en América Latina: Una caracterización,” Ingeniare, vol. 25, no. 2, pp. 289–305, 2017, doi: 10.4067/S0718-33052017000200289.[229] M. Taylor and S. Bhasme, “Model farmers, extension networks and the politics of agricultural knowledge transfer,” J. Rural Stud., vol. 64, no. September, pp. 1–10, 2018, doi: 10.1016/j.jrurstud.2018.09.015.[230] ITU (International Telecommunication Union), El ecosistema digital y la masificación de las tecnologías de la información y las comunicaciones en Paraguay.[231] MTC, “Misión para la transformación del campo - Diagnóstico económico del campo colombiano,” Inf. la Misión para la Transform. del Campo, p. 63, 2015.[232] A. Sharma, A. Bailey, and I. Fraser, “Technology Adoption and Pest Control Strategies Among UK Cereal Farmers: Evidence from Parametric and Nonparametric Count Data Models,” J. Agric. Econ., vol. 62, no. 1, pp. 73–92, Feb. 2011, doi: 10.1111/j.1477-9552.2010.00272.x.[233] J. Sollleiro R., R. Castañón I., J. González C., J. Aguilar-Ávila, and N. Aguilar G., “Identificación de buenas prácticas de extensionismo, transferencia de tecnología e innovación para el sector agroalimentario de méxico.,” no. April, p. 57, 2017.[234] Y. Valencia Villegas and Y. Sepúlveda Casadiego, “Implementación de sensores en los sistemas de riego automatizado,” Dec. 2019. doi: 10.22490/ECAPMA.3417.[235] R. Oad and P. King, “Irrigation system design for management in mountainous areas,” Irrig. Drain. Syst., vol. 5, no. 3, pp. 213–228, Aug. 1991, doi: 10.1007/BF01112500.[236] Á. Penagos, C. Ospina, C. Quesada, and F. Castellanos, “Una mirada al mercado laboral rural colombiano y un acercamiento a los posibles efectos de la pandemia,” RIMISP Cent. Latinoam. para el Desarro. Rural, 2020, [Online]. Available: https://www.rimisp.org/documentos/informes/una-mirada-al-mercado-laboral-rural-colombiano-y-un-acercamiento-a-los-posibles-efectos-de-la-pandemia/.[237] J. Wadsworth and B. Carlisle, “TECHNOLOGY AND ITS CONTRIBUTION TO PRO-POOR AGRICULTURAL DEVELOPMENT,” UK, 2005. Accessed: May 20, 2019. [Online]. Available: http://www.fao.org/3/a-at358e.pdf.[238] P. Martinez Corral, “Orígenes de la exclusión digital en el campo colombiano: abordaje sobre la política de telecomunicaciones sociales,” Poliantea, vol. 11, no. 21, p. 195, 2016, doi: 10.15765/plnt.v11i21.709.[239] F. Castillo Blanco, Historia de la Cultura Campesina Santandereana y su arraigo en el departamento de Santander, Primera. Bucaramanga, Colombia: Gobernación de Santander, 2012.[240] P. Šimek, J. Vaněk, and J. Pavlík, “Usability of UX Methods in Agrarian Sector - Verification,” Agris On-line Pap. Econ. Informatics, vol. 7, no. 3, pp. 49–56, 2015, doi: 10.7160/aol.2015.070305. [241] E. Gerónimo Bautista and R. Calderón García, “La formación de talento e innovación a través de la vinculación y los modelos de hélice basados en la sociedad del conocimiento,” RIDE Rev. Iberoam. para la Investig. y el Desarro. Educ., vol. 10, no. 20, Apr. 2020, doi: 10.23913/ride.v10i20.641.[241] E. Gerónimo Bautista and R. Calderón García, “La formación de talento e innovación a través de la vinculación y los modelos de hélice basados en la sociedad del conocimiento,” RIDE Rev. Iberoam. para la Investig. y el Desarro. Educ., vol. 10, no. 20, Apr. 2020, doi: 10.23913/ride.v10i20.641.[242] D. Rotolo, D. Hicks, and B. R. Martin, “What is an emerging technology?,” Res. Policy, vol. 44, no. 10, pp. 1827–1843, Dec. 2015, doi: 10.1016/J.RESPOL.2015.06.006.[243] G. Fortino, C. Savaglio, G. Spezzano, and M. Zhou, “Internet of Things as System of Systems: A Review of Methodologies, Frameworks, Platforms, and Tools,” IEEE Trans. Syst. Man, Cybern. Syst., vol. 51, no. 1, pp. 223–236, 2021, doi: 10.1109/TSMC.2020.3042898.[244] D. Kayisire and J. Wei, “ICT Adoption and Usage in Africa: Towards an Efficiency Assessment,” Inf. Technol. Dev., vol. 22, no. 4, pp. 630–653, 2016, doi: 10.1080/02681102.2015.1081862.[245] M. Dayahna Caro M., E. Romero-Riaño, M. Alexandra Espinosa C, and C. D. Guerrero, “Evaluando contribuciones de usabilidad en soluciones TIC-IOT para la agricultura: Una perspectiva desde la bibliometría,” RISTI - Rev. Iber. Sist. e Tecnol. Inf., vol. 2020, no. E28, pp. 681–692, 2020, [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85081040306&partnerID=40&md5=f59611d7803425f519635fe4470fdaca.[246] S. K. Gawali and M. K. Deshmukh, “Energy autonomy in IoT technologies,” Energy Procedia, vol. 156, no. September 2018, pp. 222–226, 2019, doi: 10.1016/j.egypro.2018.11.132.[247] M. Tahir, Q. Mamoon Ashraf, and M. Dabbagh, “Towards Enabling Autonomic Computing in IoT Ecosystem,” in 2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech), Aug. 2019, pp. 646–651, doi: 10.1109/DASC/PiCom/CBDCom/CyberSciTech.2019.00122.[248] J. Lukkien, “A systems of systems perspective on the internet of things,” ACM SIGBED Rev., vol. 13, no. 3, pp. 56–62, 2016, doi: 10.1145/2983185.2983195.[249] G. Fortino, A. Guerrieri, G. M. P. O’Hare, and A. Ruzzelli, “A flexible building management framework based on wireless sensor and actuator networks,” J. Netw. Comput. Appl., vol. 35, no. 6, pp. 1934–1952, Nov. 2012, doi: 10.1016/j.jnca.2012.07.016.[250] P. Desai, A. Sheth, and P. Anantharam, “Semantic Gateway as a Service Architecture for IoT Interoperability,” in 2015 IEEE International Conference on Mobile Services, Jun. 2015, pp. 313–319, doi: 10.1109/MobServ.2015.51.[251] A. Katasonov, O. Kaykova, O. Khriyenko, S. Nikitin, and V. Terziyan, “Smart semantic middleware for the internet of things,” ICINCO 2008 - Proc. 5th Int. Conf. Informatics Control. Autom. Robot., vol. ICSO, no. May 2014, pp. 169–178, 2008.[252] G. Codeluppi, A. Cilfone, L. Davoli, and G. Ferrari, “VegIoT Garden: A modular IoT Management Platform for Urban Vegetable Gardens,” 2019 IEEE Int. Work. Metrol. Agric. For. MetroAgriFor 2019 - Proc., pp. 121–126, 2019, doi: 10.1109/MetroAgriFor.2019.8909228.[253] G. Codeluppi, A. Cilfone, L. Davoli, and G. Ferrari, “LoRaFarM: A LoRaWAN-Based Smart Farming Modular IoT Architecture,” Sensors, vol. 20, no. 7, p. 2028, Apr. 2020, doi: 10.3390/s20072028.[254] K. Yelamarthi, M. S. Aman, and A. Abdelgawad, “An application-driven modular IoT architecture,” Wirel. Commun. Mob. Comput., vol. 2017, 2017, doi: 10.1155/2017/1350929.[255] M. Benammar, A. Abdaoui, S. Ahmad, F. Touati, and A. Kadri, “A Modular IoT Platform for Real-Time Indoor Air Quality Monitoring,” Sensors, vol. 18, no. 2, p. 581, Feb. 2018, doi: 10.3390/s18020581.[256] K. Douzis, S. Sotiriadis, E. G. M. Petrakis, and C. Amza, “Modular and generic IoT management on the cloud,” Futur. Gener. Comput. Syst., vol. 78, pp. 369–378, Jan. 2018, doi: 10.1016/j.future.2016.05.041.[257] INTERACTION DESIGN FOUNDATION, “Useful, Usable, and Used: Why They Matter to Designers,” 2021. https://www.interaction-design.org/literature/article/useful-usable-and-used-why-they-matter-to-designers.[258] J. M. Antonini, “Health Effects Associated with Welding,” in Comprehensive Materials Processing, Elsevier, 2014, pp. 49–70.[259] D. McQuillen, “‘Taking Usability Offline,’” Darwin Magazine, 2003.[260] M. Blusi, K. Asplund, and M. Jong, “Older family carers in rural areas: experiences from using caregiver support services based on Information and Communication Technology (ICT),” Eur. J. Ageing, vol. 10, no. 3, pp. 191–199, Sep. 2013, doi: 10.1007/s10433-013-0260-1.[261] B. Momir, I. Petroman, E. C. Constantin, A. Mirea, and D. Marin, “The Importance of Cross-Cultural Knowledge,” Procedia - Soc. Behav. Sci., vol. 197, pp. 722–729, Jul. 2015, doi: 10.1016/j.sbspro.2015.07.077.[262] A. N., “Where to Start and What to Consider?,” in Usability and Internationalization of Information Technology, N. Aykin, Ed. CRC Press, 2005.[263] S. Vanka and D. Klein, “Colortool: An Information Tool for Cross Cultural Design,” Proc. Hum. Factors Ergon. Soc. Annu. Meet., vol. 39, no. 5, pp. 341–345, Oct. 1995, doi: 10.1177/154193129503900510.[264] M. W. Azeem, A. Tariq, F. J. Sheikh, M. A. Butt, I. Tariq, and H. M. Shahid, “Cultural effects on metaphor design,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9186, no. August, pp. 113–121, 2015, doi: 10.1007/978-3-319-20886-2_11.[265] G. S. Choi, R. Oehlmann, H. Dalke, and D. Cottington, “Discovering Color Semantics as a Chance for Developing Cross-Cultural Design Frameworks,” in Social Intelligence Design 2007 CTIT, 2007, pp. 926–933.[266] S. Vanka and D. Klein, “Colortool: An Information Tool for Cross Cultural Design,” Proc. Hum. Factors Ergon. Soc. Annu. Meet., vol. 39, no. 5, pp. 341–345, Oct. 1995, doi: 10.1177/154193129503900510.[267] J. Thornborrow and S. Wareing, Patterns in language. An introduction to language and literary style. Routledge, 2019.[268] P. Tiwari and K. Sorathia, “Visualising and systematizing a per-poor ICT intervention for Rural and Semi-urban Mothers in India,” in Proceedings of the 7th International Symposium on Visual Information Communication and Interaction - VINCI ’14, 2014, pp. 129–138, doi: 10.1145/2636240.2636856.[269] Yann, “UX Design for Agriculture in Africa: Case Study from Zambia,” YUX, 2019. https://yux.design/ux-design-agriculture-africa-case-study-zambia.[270] V. K. Kool and R. Agrawal, “Technology and Hedonism,” in Psychology of Technology, Cham: Springer International Publishing, 2016, pp. 253–304.[271] J. S. Martínez García, “El habitus. Una revisión analítica,” Rev. Int. Sociol., vol. 75, no. 3, p. 067, Sep. 2017, doi: 10.3989/ris.2017.75.3.15.115.[272] B. R. Belland, “Using the theory of habitus to move beyond the study of barriers to technology integration,” Comput. Educ., vol. 52, no. 2, pp. 353–364, 2009, doi: 10.1016/j.compedu.2008.09.004.[273] L.-A. Sutherland and I. Darnhofer, “Of organic farmers and ‘good farmers’: Changing habitus in rural England,” J. Rural Stud., vol. 28, no. 3, pp. 232–240, Jul. 2012, doi: 10.1016/j.jrurstud.2012.03.003.[274] O. Prokopenko, O. Kudrina, and V. Omelyanenko, “Analysis of ICT Application in Technology Transfer Management within Industry 4.0 Conditions (Education Based Approach),” CEUR Workshop Proc., vol. 2105, pp. 258–273, 2018.[275] S. Heo, S. Song, J. Kim, and H. Kim, “RT-IFTTT: Real-Time IoT Framework with Trigger Condition-Aware Flexible Polling Intervals,” Proc. - Real-Time Syst. Symp., vol. 2018-Janua, pp. 266–276, 2018, doi: 10.1109/RTSS.2017.00032.[276] C. Dodd, M. Adam, and C. Dodd, “Designing User Interfaces for the Elderly : A Systematic Literature Review,” pp. 1–12, 2017, [Online]. Available: https://aisel.aisnet.org/acis2017/61.[277] T. Walsh and P. Nurkka, “Approaches to cross-cultural design: Two case studies with UX web-surveys,” Proc. 24th Aust. Comput. Interact. Conf. OzCHI 2012, pp. 633–642, 2012, doi: 10.1145/2414536.2414632.[278] K. Finn and J. Johnson, “Designing for an aging population: Toward universal design,” Conf. Hum. Factors Comput. Syst. - Proc., vol. 07-12-May-, no. May, pp. 1011–1012, 2016, doi: 10.1145/2851581.2856669.[279] INTERACTION DESIGN FOUNDATION, “Accessibility.” https://www.interaction-design.org/literature/topics/accessibility.[280] P. Štrukelj, “Technology, Wealth and Modern Management of Technology,” Manag. Glob. Transitions, vol. 10, no. 1, pp. 29–49, 2012.[281] IEA, ITU, UNESCO (Organización de las Naciones Unidas para la Educación la Ciencia y la Cultura), UNOOSA, and WIPO, “Science , technology and innovation and intellectual property rights : The vision for development Thematic Think Piece,” 2012.[282] D. M. Dueñas Quintero and L. A. Páez Guevara, “CONSTRUCCIÓN DE LA AGENDA INVESTIGACIÓN PARA EL SECTOR AGROINDUSTRIAL EN EL DEPARTAMENTO DE BOYACÁ: IDENTIFICACIÓN DE LÍNEAS DE INVESTIGACIÓN,” Rev. Tumbaga, vol. 1, no. 11, 2016.[283] World Summit on the Information Society, “WSIS/SDGs Matrix WSIS Forum 2018: Outcomes Linking WSIS Action lines with the Sustainable Development Goals,” 2018. [Online]. Available: https://www.itu.int/net4/wsis/forum/2018/Files/documents/outcomes/WSISForum2018_WSIS-SDGSMatrix.pdf.[284] D. A. Delgado, C. M. Cocha, J. E. García, and G. K. Gonzales, “Metodologías de diseño centrado en las personas: Experiencia vereda La Yunga y Río Hondo, Popayán, Colombia,” Rev. Espac., vol. 41, no. 36, pp. 0–2, 2020.[285] S. Bhattacharya, J. Glazer, and D. E. . Sappington, “Licensing and the sharing of knowledge in research joint ventures,” J. Econ. Theory, vol. 56, no. 1, pp. 43–69, Feb. 1992, doi: 10.1016/0022-0531(92)90068-S.[286] J. P. Lane, “Understanding Technology Transfer,” Assist. Technol., vol. 11, no. 1, pp. 5–19, 1999, doi: 10.1080/10400435.1999.10131981[287] E. G. García, “Análisis de buenas prácticas en transferencia de tecnología en el sector TIC,” 2013.[288] ITU (International Telecommunication Union), ANSI, and DIAL, Construir aldeas inteligentes: un plan de trabajo Proyecto piloto en el Níger. ITUPublicaciones, 2020.[289] Ministerio de Ciencia Tecnología e Innovación Productiva (Argentina), “Guía de buenas prácticas en gestión de la transferencia de tecnología y de la propiedad intelectual en instituciones y organismos del sistema nacional de ciencia, tenología e innovación,” pp. 3–63, 2012.[290] S. Salazar and P. Henr, Guía para la gestión de la propiedad en consorcios intelectual regionales de investigación agrícola. San José, Costa Rica: https://www.fontagro.org/es/publicaciones/publicaciones-fontagro/gui-para-la-gestion-de-la-propiedad-intelectual-en-consorcios-regionales-de-investigac/, 2013.[291] A. Jaime, M. L. Lizarazo, and H. E. Martinez, “Buenas Prácticas en Transferencia de Tecnología en el Mundo,” 2016, [Online]. Available: https://www.researchgate.net/publication/309728561_Buenas_Practicas_en_Transferencia_de_Tecnologia_en_el_Mundo.[292] NASA, “Plan for Accelerating Technology Transfer at NASA,” 2012.[293] D. A. Comstock and D. Lockney, “NASA’s legacy of technology transfer and prospects for future benefits,” A Collect. Tech. Pap. - AIAA Sp. 2007 Conf., vol. 3, no. September, pp. 2969–2978, 2007, doi: 10.2514/6.2007-6283.[294] D. A. Maluf, T. Okimura, and M. Gurram, “NASA technology transfer system,” Proc. - 4th IEEE Int. Conf. Sp. Mission Challenges Inf. Technol. SMC-IT 2011, pp. 111–117, 2011, doi: 10.1109/SMC-IT.2011.27.[295] T. Gorschek, P. Garre, S. Larsson, and C. Wohlin, “A model for technology transfer in practice,” IEEE Softw., vol. 23, no. 6, pp. 88–95, 2006, doi: 10.1109/MS.2006.147.[296] V. R. Basili, M. K. Daskalantonakis, and R. H. Yacobellis, “Technology transfer at Motorola,” IEEE Softw., vol. 11, no. 2, pp. 70–76, Mar. 1994, doi: 10.1109/52.268959.[297] H. L. Pieterse and M. W. Pretorius, “A MODEL FOR TELECOMMUNICATION TECHNOLOGY TRANSFER AND DIFFUSION INTO THE RURAL AREAS OF SOUTH AFRICA,” South African J. Ind. Eng., vol. 13, no. 1, pp. 119–129, Jan. 2012, doi: 10.7166/13-1-322.[298] A. Shiri, “Introduction to Modern Information Retrieval (2nd edition),” Libr. Rev., vol. 53, no. 9, pp. 462–463, 2004, doi: 10.1108/00242530410565256.[299] J. A. Sheikh, H. S. Dar, and F. J. Sheikh, “Usability guidelines for designing knowledge base in rural areas towards women empowerment,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8519 LNCS, no. PART 3, pp. 462–469, 2014, doi: 10.1007/978-3-319-07635-5_45.[300] A. Lodhi, “Usability heuristics as an assessment parameter: For performing usability testing,” in ICSTE, 2010, pp. 256–259.[301] W. A. R. W. M. Isa et al., “Engineering rural informatics using agile user centered design,” in 2014 2nd International Conference on Information and Communication Technology (ICoICT), May 2014, pp. 367–372, doi: 10.1109/ICoICT.2014.6914093.[302] S. Adhy, B. Noranita, R. Kusumaningrum, P. W. Wirawan, D. D. Prasetya, and F. Zaki, “Usability testing of weather monitoring on a web application,” in 2017 1st International Conference on Informatics and Computational Sciences (ICICoS), Nov. 2017, pp. 131–136, doi: 10.1109/ICICOS.2017.8276350.[303] S. Wyche, T. R. Dillahunt, N. Simiyu, and S. Alaka, “‘if god gives me the chance i will design my own phone’: Exploring mobile phone repair and postcolonial approaches to design in rural Kenya,” UbiComp 2015 - Proc. 2015 ACM Int. Jt. Conf. Pervasive Ubiquitous Comput., no. September, pp. 463–473, 2015, doi: 10.1145/2750858.2804249.[304] A. A. Adesina and J. Baidu-Forson, “Farmer’s perpections and adoption of new agricultural technology: evidence from analysis in Burkina Faso and Guiena, West Africa,” Agric. Econ., no. 13, pp. 1–9, 1995, doi: 10.14358/PERS.81.6.451.[305] F. Ssozi-Mugarura, E. Blake, and U. Rivett, “Codesigning with communities to support rural water management in Uganda,” CoDesign, vol. 13, no. 2, pp. 110–126, Apr. 2017, doi: 10.1080/15710882.2017.1310904.10.1080/15710882.2017.1310904. [306] K. Mottaleb, “Perception and adoption of a new agricultural technology: Evidence from a developing country,” j, vol. 55, 2018, doi: 10.1016/j.techsoc.2018.07.007.[307] B. Dhehibi, U. Rudiger, H. P. Moyo, and M. Z. Dhraief, “Agricultural technology transfer preferences of smallholder farmers in Tunisia’s arid regions,” Sustain., vol. 12, no. 1, 2020, doi: 10.3390/SU12010421.[308] D. Teka, Y. Dittrich, and M. Kifle, “Usability challenges in an Ethiopian software development organization,” in Proceedings of the 9th International Workshop on Cooperative and Human Aspects of Software Engineering, May 2016, pp. 114–120, doi: 10.1145/2897586.2897604.[309] P. S. Dey et al., “Assessment of Sustainable Agriculture Practices in Uttarakhand, India,” IEEE Reg. 10 Humanit. Technol. Conf. R10-HTC, vol. 2020-Decem, 2020, doi: 10.1109/R10-HTC49770.2020.9357012.[310] R. Augusto Sales Dantas, M. Vasconcelos da Gama Neto, I. Dimitry Zyrianoff, and C. Alberto Kamienski, “The SWAMP Farmer App for IoT-based Smart Water Status Monitoring and Irrigation Control,” in 2020 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor), Nov. 2020, pp. 109–113, doi: 10.1109/MetroAgriFor50201.2020.9277588.[311] Corporacion PBA, Manual del facilitador rural Métodos y herramientas para ayudar a campesinos a conseguir sus metas. 2011.[312] DANE (Departamento Administrativo Nacional de Estadística), “Censo Nacional Agropecuario Bogotá,” 2014.[313] DANE (Departamento Administrativo Nacional de Estadística), Censo Nacional Agropecuario, Tomo 3 - Mapas. 2015.[314] A. González-Cárdenas and L. A. Paipilla-Pardo, “Misión para la Transformación del Campo : Síntesis y algunas reflexiones,” Revista Palmas, Bogotá, Colombia, pp. 57–78, 2015.[315] P. A. Aremu, I. N. Kolo, A. K. Gana, and F. A. Adelere, “The Crucial Role of Extension Workers In Agricultural Technologies Transfer and Adoption,” Glob. Adv. Res. J. Food Sci. Technol., vol. 4, no. 2, pp. 14–18, 2015.[316] K. Kuutti, T. Jokela, M. Nieminen, and P. Jokela, “Assessing Human-Centred Design Processes in Product Development by Using the INUSE Maturity Model,” IFAC Proc. Vol., vol. 31, no. 26, pp. 89–94, Sep. 1998, doi: 10.1016/S1474-6670(17)40074-7.[317] S. B. Azumah, S. A. Donkoh, and J. A. Awuni, “The perceived effectiveness of agricultural technology transfer methods: Evidence from rice farmers in Northern Ghana,” Cogent Food Agric., vol. 4, no. 1, pp. 1–11, 2018, doi: 10.1080/23311932.2018.1503798.[318] K. A. Mottaleb, “Perception and adoption of a new agricultural technology: Evidence from a developing country,” Technol. Soc., vol. 55, no. April, pp. 126–135, 2018, doi: 10.1016/j.techsoc.2018.07.007.[319] D. J. Mayhew, The Usability Engineering Lifecycle: A Practitioner’s Handbook for User Interface Design (Interactive Technologies), Primera. London, United Kingdom: Morgan Kaufmann Publishers, 1999.[320] S. Merzouk, A. Cherkaoui, A. Marzak, and S. Nawal, “IoT methodologies: Comparative study,” Procedia Comput. Sci., vol. 175, pp. 585–590, 2020, doi: 10.1016/j.procs.2020.07.084.[321] V. Sachdeva and L. Chung, “Handling non-functional requirements for big data and IOT projects in Scrum,” in 2017 7th International Conference on Cloud Computing, Data Science & Engineering - Confluence, Jan. 2017, pp. 216–221, doi: 10.1109/CONFLUENCE.2017.7943152.[322] B. Vogel, B. Peterson, and B. Emruli, “Prototyping for Internet of Things with Web Technologies: A Case on Project-Based Learning using Scrum,” in 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC), Jul. 2019, pp. 300–305, doi: 10.1109/COMPSAC.2019.10223.[323] K. Rose, S. Eldridge, and L. Chapin, “La internet de las Cosas — Una breve reseña,” 2015. https://www.internetsociety.org/es/resources/doc/2015/iot-overview.[324] O. Elijah, S. Member, T. Abdul Rahman, I. Orikumhi, C. Yen Leow, and M. Nour Hindia, “An Overview of Internet of Things (IoT) and Data Analytics in Agriculture: Benefits and Challenges,” IEEE INTERNET THINGS J., vol. 5, no. 5, 2018, doi: 10.1109/JIOT.2018.2844296.[325] ITU (International Telecommunication Union), “Overview of the Internet of Things,” 2015. http://www.itu.int/ITU-T/recommendations/rec.aspx?rec=Y.2060.[326] E. Oriwoh and M. Conrad, “Towards a Definition of the Internet of Things (IoT),” Int. J. Internet Things, vol. 4, no. 1, pp. 1–5, 2015.[327] U. S. Department of Labors, “National Census of Fatal Occupational Injuries Summary,” 2021.[328] Minciencias, “Documento de Política Nacional de Ciencia, Tecnología e Innovación N° 1602: Actores del Sistema Nacional de Ciencia, Tecnología e Innovación.,” pp. 6–9, 2018.[329] J. N. Rodriguez and S. J. Camacho, “¿Quiénes son los campensinos colombianos hoy? Universidad, Ciencia y desarrollo. Universidad del Rosario,” Universidad, Ciencia y desarrollo. Universidad del Rosario. p. 1,2, 2013, [Online]. Available: http://www.urosario.edu.co/campesinos-colombianos/.[330] A. C. Machado Silvia Botello M, “Serie de documentos de trabajo - La Agricultura Familiar en Colombia,” 2013, [Online]. Available: www.rimisp.org.[331] M. Chiriboga, “Desafios de la pequeña agricultura familiar frente a la globalización,” Perspect. Rural., pp. 9–24, 1997.[332] R. Chapman, T. Slaymaker, W. Paper, R. Chapman, and T. Slaymaker, “ICTs and Rural Development: Review of the Literature, Current Interventions and Opportunities for Action,” 2002.[333] T. Havemann and V. Muccione, “Mechanisms for agricultural climate change mitigation incentives for smallholders. CCAFS Report no. 6.,” 2011. [Online]. Available: www.ccafs.cgiar. org.[334] M. E. Londoño Escobar, A. M. Lozano Hurtado, O. Gómez Martínez, carlos A. Ramirez López, and J. Solano Castrillón, Prácticas sociales campesinas. El caso Monterrey Buga, Valle del Cauca - Colombia, Primera Ed. Bogotá, Colombia: Corporación Universitaria Minuto de Dios - UNIMINUTO, 2019.[335] Centro de Innovación pública digital, “Tecnologías emergentes,” 2021. https://centrodeinnovacion.mintic.gov.co/es/blogs/tecnologias-emergentes.[336] Vicepresidencia de Innovación y Transformación Digital and Grupo Bancolombia, “Internet de las Cosas: ¿cómo lo ha adoptado Colombia?,” 2018. https://www.grupobancolombia.com/wps/portal/empresas/capital-inteligente/tendencias/innovacion/iot-como-lo-ha-adoptado-colombia.[337] M. Danquah, “Technology transfer, adoption of technology and the efficiency of nations: Empirical evidence from sub Saharan Africa,” Technol. Forecast. Soc. Change, vol. 131, no. December 2016, pp. 175–182, 2018, doi: 10.1016/j.techfore.2017.12.007.[338] D. J. Sánchez Preciado, B. Claes, and N. Theodorakopoulos, “Transferring intermediate technologies to rural enterprises in developing economies : A conceptual framework,” in Prometheus, Informa UK Limited.[339] B. Biagini, L. Kuhl, K. S. Gallagher, and C. Ortiz, “Technology transfer for adaptation,” Nat. Clim. Chang., vol. 4, no. 9, pp. 828–834, 2014, doi: 10.1038/nclimate2305.[340] S. O. N. Somers and L. Stapleton, “A Human-Centred approach to e-Agricultural systems,” IFAC-PapersOnLine, vol. 48, no. 24, pp. 213–218, 2015, doi: 10.1016/j.ifacol.2015.12.085.[341] J. A. Sheikh, H. S. Dar, and F. J. Sheikh, “Usability Guidelines for Designing Knowledge Base in Rural Areas,” 2014, pp. 462–469.[342] A. . Valdés Cuervo, Familia y Desarrollo. Intervenciones en terapia familiar. México: Manual Moderno, 2007.[343] K. Prins, Proceso y producto. Un balance. Lima, Perú: Escuela para el desarrollo, 1996.[344] FAO (Organización de las Naciones Unidas para la Alimentación y la Agricultura), Training of Farmers Programme South Asia. FAO Regional Office for Asia and the Pacific, 2011.[345] M. E. Nogueira and M. Urcola, “La agricultura familiar en el marco de los programas de desarrollo rural del FIDA en el norte argentino (1991-2014),” Ager, vol. 2015, no. 19, pp. 7–44, 2015, doi: 10.4422/ager.2015.01.[346] C. J. Romera, F. E. Forero Suárez, and J. A. Ruiz Hernández, “Technology and design for rural development: A methodological proposal and a pilot experience in two Colombian municipalities,” Ager, vol. 2017, no. 23, pp. 27–57, 2017, doi: 10.4422/ager.2017.03.[347] RIMISP (Centro Latinoamericano para el Desarrollo Rural), “Misión para la transformación del campo. Estrategia de Implementación del Programa de Desarrollo Rural Integral con Enfoque Territorial,” Bogotá, Colombia, 2014. [Online]. Available: https://www.dnp.gov.co/programas/agricultura/Paginas/mision-para-la-transformacion-del-campo-colombiano.aspx.[348] M. Docampo Rama, H. De Ridder, and H. Bouma, “Technology generation and age in using layered user interfaces,” Gerontechnology, vol. 1, no. 1, 2001, doi: 10.4017/gt.2001.01.01.003.00.[349] R. Sackmann and O. Winkler, “Technology generations revisited: The internet generation,” Gerontechnology, vol. 11, no. 4, pp. 493–503, 2013, doi: 10.4017/gt.2013.11.4.002.00.[350] M. Chesher and W. Skok, “Roadmap for successful information technology transfer for small businesses,” Proc. ACM SIGCPR Conf., pp. 16–22, 2000, doi: 10.1145/333334.333338.[351] P. R. Childs, Mechanical Design Engineering Handbook, Second Edi., vol. 1999, no. December. Oxford, United Kingdom: Elsevier Ltd., 2019.[352] Y. Bai and Q. Bai, “Subsea Pipelines,” in Subsea Engineering Handbook, 2019, pp. 919–940.[353] M. F. Maradei García and F. M. Espinel Correal, Ergonomía para el Diseño, Primera. Bucaramanga, Colombia: Universidad Industrial de Santander - Escuela de Diseño Industrial, 2009.[354] R. Gacula Pineda, Technology in Culture: A Theoretical Discourse on Convergence in Human-Technology Interaction, no. May. 2014.[355] K. Dorst and N. Cross, “Creativity in the design process: Co-evolution of problem-solution,” Des. Stud., vol. 22, no. 5, pp. 425–437, 2001, doi: 10.1016/S0142-694X(01)00009-6.[356] OMPI, “¿Qué es la Propiedad Intelectual ?,” p. 23, 2005, [Online]. Available: https://cerlalc.org/wp-content/uploads/documentos-de-interes/odai/ODAI_DOCUMENTOS_DE_INTERES_Que_es_la_propiedad_intelectual_V1.pdf.[357] Universidad EAFIT, “Mecanismos de protección de la propiedad intelectual,” Propiedad Intelectual. https://www.eafit.edu.co/institucional/propiedad-intelectual/Paginas/mecanismos-de-proteccion.aspx.[358] G. Oh, D. Kim, S. Kim, and S. Rhew, “A Quality Evaluation Technique of RFID Middleware in Ubiquitous Computing,” in 2006 International Conference on Hybrid Information Technology, Nov. 2006, pp. 730–735, doi: 10.1109/ICHIT.2006.253690.[359] V. Nassar, “Common criteria for usability review,” Work, vol. 41, pp. 1053–1057, 2012, doi: 10.3233/WOR-2012-0282-1053.[360] N. Maalel, E. Natalizio, A. Bouabdallah, P. Roux, and M. Kellil, “Reliability for Emergency Applications in Internet of Things,” in 2013 IEEE International Conference on Distributed Computing in Sensor Systems, May 2013, pp. 361–366, doi: 10.1109/DCOSS.2013.40.[361] C. Prehofer, “From the Internet of Things to Trusted Apps for Things,” in 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing, Aug. 2013, pp. 2037–2042, doi: 10.1109/GreenCom-iThings-CPSCom.2013.381.[362] N. Nikmehr and M. Doroodchi, “New paradigm in evaluating usability of E-learning system,” in 2008 International Conference on Innovations in Information Technology, Dec. 2008, pp. 347–351, doi: 10.1109/INNOVATIONS.2008.4781683.[363] S. Jimenez-Fernandez, P. de Toledo, and F. del Pozo, “Usability and Interoperability in Wireless Sensor Networks for Patient Telemonitoring in Chronic Disease Management,” IEEE Trans. Biomed. Eng., vol. 60, no. 12, pp. 3331–3339, Dec. 2013, doi: 10.1109/TBME.2013.2280967.[364] N. Bevan, “Measuring usability as quality of use,” Softw. Qual. J., vol. 4, no. 2, pp. 115–130, Jun. 1995, doi: 10.1007/BF00402715.[365] FAO, Guía para la implementación de Centros Demostrativos de Capacitación CDC con enfoque agroecológico. 2016.[366] M. M. Zinnah, J. L. Compton, and A. A. Adesina, “Research-Extension-Farmer Linkages within the Context of the Generation, Transfer and Adoption of Improved Mangrove Swamp Rice Technology in West Africa.,” Q. J. Int. Agric., vol. 32, no. 2, pp. 201–214, 1993.[367] J. W. Creswell and V. L. Plano Clark, Designing and Conducting Mixed methods Research, Tercera. USA: Sage Publishing, 2017.[368] C. Narrod, D. Roy, and I. Food, “The Role of Public-Private Partnerships and Collective Action in Ensuring Smallholder Participation in High Value Fruit and Vegetable Supply Chains,” Role Public-Private Partnerships Collect. Action Ensuring Smallhold. Particip. High Value Fruit Veg. Supply Chain., no. 70, 2007, doi: 10.2499/capriwp70.[369] L. Ermakova, F. Bordignon, N. Turenne, and M. Noel, “Is the Abstract a Mere Teaser? Evaluating Generosity of Article Abstracts in the Environmental Sciences,” Front. Res. Metrics Anal., vol. 3, May 2018, doi: 10.3389/frma.2018.00016.[370] CEPAL (Comisión Económica para América Latina y el Caribe), Organización de las Naciones Unidas para la Alimentación y la Agricultura - FAO, and IICA (Instituto Interamericano de Cooperación para la Agricultura), Perspectivas de la agricultura y del desarrollo rural en las Américas: una mirada hacia América Latina y el Caribe 2017-2018. San José, Costa Rica, 2017.[371] H. Zhang, Y. Cai, and Z. Li, “Towards a typology of university technology transfer organizations in China: evidences from Tsinghua University,” Triple Helix, vol. 5, no. 1, 2018, doi: 10.1186/s40604-018-0061-9.[372] A. Li, “Technology transfer in China–Africa relation: myth or reality.” Transnational corporations review, pp. 183–195, 2016.[373] C. N. A. Iris, “TIERRAS, AGROPRODUCCIÓN Y CULTIVOS ILÍCITOS EN COLOMBIA,” p. 35, 2019.[374] A. J. Paz Cardona, “Un millón de hogares campesinos en Colombia tienen menos tierra que una vaca,” Apr. 18, 2018.[375] Ministerio de Agricultura de Chile, “Nuevo Modelo para un Sistema de Extensión y Transferencia Tecnológica en el Sector Silvoagropecuario Chileno,” 2014.[376] CGIAR, “Transforming agriculture and food innovation systems to win the race to zero - 1391948,” Nov. 17, 2017. https://globalmeet.webcasts.com/starthere.jsp?ei=1391948&tp_key=b17757b8fa (accessed Mar. 07, 2021).[377] IICA (Instituto Interamericano de Cooperación para la Agricultura), “Elementos para una hoja de ruta conjunta. Evento 4... | Facebook,” Evento 4 del Ciclo de foros virtuales: Reducción de #BrechaDigital en las Zonas Rurales de América Latina y El Caribe: Hacia una revolución agrícola digital, Feb. 22, 2020. https://m.facebook.com/story.php?story_fbid=262820852158961&id=436831050034 (accessed Mar. 07, 2021).[378] M. B. Hernández and J. M. Gómez, “Aplicaciones de Procesamiento de Lenguaje Natural,” Rev. Politécnica, vol. 32, no. 1, pp. 87–96, 2013.[379] D. H. Flórez Martínez, A. Morales Castañeda, and C. P. Uribe Galvis, Megatendencias en investigación, desarrollo e innovación para el sector agropecuario colombiano: perspectivas, estrategias y visiones de futuro, vol. I. Mosquera, Colombia: Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), 2018.[380] FAO (Organización de las Naciones Unidas para la Alimentación y la Agricultura) and OCDE (Organización para la Cooperación y el Desarrollo Económicos), OCDE/FAO Perspectivas Agrícolas 2019-2028 - Enfoque Especial: America Latina. Roma: OECD Publishing, 2019.[381] L. Boer and J. Donovan, “Provotypes for participatory innovation,” in Proceedings of the Designing Interactive Systems Conference on - DIS ’12, 2012, p. 388, doi: 10.1145/2317956.2318014.https://apolo.unab.edu.co/es/persons/rom%C3%A1n-eduardo-sarmiento-porrasORIGINAL2023_Tesis_Maria_Alexandra_Espinosa.pdf2023_Tesis_Maria_Alexandra_Espinosa.pdfTesisapplication/pdf16557447https://repository.unab.edu.co/bitstream/20.500.12749/19092/5/2023_Tesis_Maria_Alexandra_Espinosa.pdf425227aa2fb7dbdaa11cc1519419ebbdMD55open access2023_Anexo8_Caracterizacion_Simacota.pdf2023_Anexo8_Caracterizacion_Simacota.pdfAnexo 8.Caracterización SIMACOTAapplication/pdf4537651https://repository.unab.edu.co/bitstream/20.500.12749/19092/1/2023_Anexo8_Caracterizacion_Simacota.pdf32c5a25bf3ec87b89ffdc03a44548de4MD51open access2024_Anexo_Esquema_evaluacion_AGRIOT.pdf2024_Anexo_Esquema_evaluacion_AGRIOT.pdfAnexo 10. Resultados Evaluación AGRIOTapplication/pdf506087https://repository.unab.edu.co/bitstream/20.500.12749/19092/2/2024_Anexo_Esquema_evaluacion_AGRIOT.pdfdcc504839d9d541635e7e1a3b03d0ef9MD52open accessEsquema de evaluación AgCDV_v3_Evaluación THINKLINK.pdfEsquema de evaluación AgCDV_v3_Evaluación THINKLINK.pdfANEXO 10. Resultados Evaluación ThinkLinkapplication/pdf555585https://repository.unab.edu.co/bitstream/20.500.12749/19092/3/Esquema%20de%20evaluaci%c3%b3n%20AgCDV_v3_Evaluaci%c3%b3n%20THINKLINK.pdf609e8d1f77d0cf643de0bc58f4886a0cMD53open access2023_Anexo4_Analisis_IoT_TXT_FINAL.html2023_Anexo4_Analisis_IoT_TXT_FINAL.htmlAnexo 4text/html8969310https://repository.unab.edu.co/bitstream/20.500.12749/19092/4/2023_Anexo4_Analisis_IoT_TXT_FINAL.html78e9f4fa085b9ed3aaf6f8b001717723MD54open access2023_Licencia_Maria_Espinosa.pdf2023_Licencia_Maria_Espinosa.pdfLicenciaapplication/pdf668169https://repository.unab.edu.co/bitstream/20.500.12749/19092/10/2023_Licencia_Maria_Espinosa.pdf3d8b1ebef7c54963fa24fdbf19dc9e19MD510metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8829https://repository.unab.edu.co/bitstream/20.500.12749/19092/9/license.txt3755c0cfdb77e29f2b9125d7a45dd316MD59open accessTHUMBNAIL2023_Tesis_Maria_Alexandra_Espinosa.pdf.jpg2023_Tesis_Maria_Alexandra_Espinosa.pdf.jpgIM Thumbnailimage/jpeg7022https://repository.unab.edu.co/bitstream/20.500.12749/19092/11/2023_Tesis_Maria_Alexandra_Espinosa.pdf.jpg376d4e0f922e0efbb98a81df6c079656MD511open access2023_Anexo8_Caracterizacion_Simacota.pdf.jpg2023_Anexo8_Caracterizacion_Simacota.pdf.jpgIM Thumbnailimage/jpeg9782https://repository.unab.edu.co/bitstream/20.500.12749/19092/12/2023_Anexo8_Caracterizacion_Simacota.pdf.jpg3bfe8b39959aee189e0025cfd467057cMD512open access2024_Anexo_Esquema_evaluacion_AGRIOT.pdf.jpg2024_Anexo_Esquema_evaluacion_AGRIOT.pdf.jpgIM Thumbnailimage/jpeg8889https://repository.unab.edu.co/bitstream/20.500.12749/19092/13/2024_Anexo_Esquema_evaluacion_AGRIOT.pdf.jpgc9e2ae68deafbec1a1e9dc0970c98850MD513open accessEsquema de evaluación AgCDV_v3_Evaluación THINKLINK.pdf.jpgEsquema de evaluación AgCDV_v3_Evaluación THINKLINK.pdf.jpgIM Thumbnailimage/jpeg8758https://repository.unab.edu.co/bitstream/20.500.12749/19092/14/Esquema%20de%20evaluaci%c3%b3n%20AgCDV_v3_Evaluaci%c3%b3n%20THINKLINK.pdf.jpg9fa2713dfa6cef73342e3f89a55b5d84MD514open access2023_Licencia_Maria_Espinosa.pdf.jpg2023_Licencia_Maria_Espinosa.pdf.jpgIM Thumbnailimage/jpeg9680https://repository.unab.edu.co/bitstream/20.500.12749/19092/15/2023_Licencia_Maria_Espinosa.pdf.jpg978d0c3e8e3b023b3d3cf0318ff97f3fMD515metadata only access20.500.12749/19092oai:repository.unab.edu.co:20.500.12749/190922024-01-18 14:41:04.477open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbi4gRWwgQVVUT1IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVTkFCIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuCgpFbCBBVVRPUiBhdXRvcml6YSBhIGxhIFVuaXZlcnNpZGFkIEF1dMOzbm9tYSBkZSBCdWNhcmFtYW5nYSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24uCg== |