Desarrollo de un sistema de análisis biomecánico como herramienta de apoyo en el diagnóstico de movilidad en caninos
Las enfermedades que afectan el sistema músculoesquelético de los caninos, cada vez se presentan con mayor frecuencia, deteriorando poco a poco la calidad de vida de nuestros animales de compañía, especialmente cuando no son detectadas a tiempo. Actualmente las técnicas usadas por los médicos veteri...
- Autores:
-
Cristancho Castillo, Francy Yulieth
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2021
- Institución:
- Universidad Autónoma de Bucaramanga - UNAB
- Repositorio:
- Repositorio UNAB
- Idioma:
- spa
- OAI Identifier:
- oai:repository.unab.edu.co:20.500.12749/14225
- Acceso en línea:
- http://hdl.handle.net/20.500.12749/14225
- Palabra clave:
- Biomedical engineering
Engineering
Medical electronics
Biological physics
Bioengineering
Medical instruments and apparatus
Medicine
Musculoskeletal system
Canines
Domestic animals
Software
Clinical engineering
Ingeniería biomédica
Ingeniería
Biofísica
Bioingeniería
Medicina
Animales domésticos
Ingeniería clínica
Electrónica médica
Instrumentos y aparatos médicos
Sistema musculoesquelético
Caninos
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id |
UNAB2_b16492b28f116af9c0703cf8f020bbea |
---|---|
oai_identifier_str |
oai:repository.unab.edu.co:20.500.12749/14225 |
network_acronym_str |
UNAB2 |
network_name_str |
Repositorio UNAB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Desarrollo de un sistema de análisis biomecánico como herramienta de apoyo en el diagnóstico de movilidad en caninos |
dc.title.translated.spa.fl_str_mv |
Development of a biomechanical analysis system as a support tool in the diagnosis of mobility in canines |
title |
Desarrollo de un sistema de análisis biomecánico como herramienta de apoyo en el diagnóstico de movilidad en caninos |
spellingShingle |
Desarrollo de un sistema de análisis biomecánico como herramienta de apoyo en el diagnóstico de movilidad en caninos Biomedical engineering Engineering Medical electronics Biological physics Bioengineering Medical instruments and apparatus Medicine Musculoskeletal system Canines Domestic animals Software Clinical engineering Ingeniería biomédica Ingeniería Biofísica Bioingeniería Medicina Animales domésticos Ingeniería clínica Electrónica médica Instrumentos y aparatos médicos Sistema musculoesquelético Caninos |
title_short |
Desarrollo de un sistema de análisis biomecánico como herramienta de apoyo en el diagnóstico de movilidad en caninos |
title_full |
Desarrollo de un sistema de análisis biomecánico como herramienta de apoyo en el diagnóstico de movilidad en caninos |
title_fullStr |
Desarrollo de un sistema de análisis biomecánico como herramienta de apoyo en el diagnóstico de movilidad en caninos |
title_full_unstemmed |
Desarrollo de un sistema de análisis biomecánico como herramienta de apoyo en el diagnóstico de movilidad en caninos |
title_sort |
Desarrollo de un sistema de análisis biomecánico como herramienta de apoyo en el diagnóstico de movilidad en caninos |
dc.creator.fl_str_mv |
Cristancho Castillo, Francy Yulieth |
dc.contributor.advisor.none.fl_str_mv |
Amado Forero, Lusvin Javier Garrido Silva, Gianina Morales Cordero, Mario Fernando |
dc.contributor.author.none.fl_str_mv |
Cristancho Castillo, Francy Yulieth |
dc.contributor.cvlac.spa.fl_str_mv |
Garrido Silva, Gianina [0001538476] Morales Cordero, Mario Fernando [0001460371] |
dc.contributor.orcid.spa.fl_str_mv |
Amado Forero, Lusvin Javier [0000-0001-5104-9080] Garrido Silva, Gianina [0000-0002-6607-9626] Morales Cordero, Mario Fernando [0000-0001-7536-3162] |
dc.contributor.researchgate.spa.fl_str_mv |
Amado Forero, Lusvin Javier [0001376723] Garrido Silva, Gianina [Gianina-Garrido-Silva-2192044751] |
dc.subject.keywords.spa.fl_str_mv |
Biomedical engineering Engineering Medical electronics Biological physics Bioengineering Medical instruments and apparatus Medicine Musculoskeletal system Canines Domestic animals Software Clinical engineering |
topic |
Biomedical engineering Engineering Medical electronics Biological physics Bioengineering Medical instruments and apparatus Medicine Musculoskeletal system Canines Domestic animals Software Clinical engineering Ingeniería biomédica Ingeniería Biofísica Bioingeniería Medicina Animales domésticos Ingeniería clínica Electrónica médica Instrumentos y aparatos médicos Sistema musculoesquelético Caninos |
dc.subject.lemb.spa.fl_str_mv |
Ingeniería biomédica Ingeniería Biofísica Bioingeniería Medicina Animales domésticos |
dc.subject.proposal.spa.fl_str_mv |
Ingeniería clínica Electrónica médica Instrumentos y aparatos médicos Sistema musculoesquelético Caninos |
description |
Las enfermedades que afectan el sistema músculoesquelético de los caninos, cada vez se presentan con mayor frecuencia, deteriorando poco a poco la calidad de vida de nuestros animales de compañía, especialmente cuando no son detectadas a tiempo. Actualmente las técnicas usadas por los médicos veterinarios para el diagnóstico de estas patologías son de carácter subjetivo, en donde dicha valoración depende de lo que interprete el médico veterinario a través de exámenes físicos e imágenes radiográficas. Teniendo en cuenta lo anterior, el objetivo de este proyecto fue desarrollar un sistema que ayude a soportar el diagnóstico otorgado por el médico veterinario de manera objetiva por medio de datos cuantitativos, obtenidos a través de una unidad de medición inercial. Inicialmente se estableció un protocolo que permitiera el análisis y la extracción de las variables biomecánicas de interés en la marcha del canino, luego se realizó el diseño y programación de un software en donde se pudiera calcular dichas variables. Posteriormente dicho software fue probado con 8 registros de marcha canina, obteniendo valores significativos en variables como la simetría en la marcha y la rotación de la cadera del animal. Como conclusión principal, se recalcó la necesidad de realizar pruebas comparativas entre los pacientes sanos y con la patología, con el fin de poder establecer valores de normalidad para cada una de las variables calculadas por el software. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-09-10T14:54:41Z |
dc.date.available.none.fl_str_mv |
2021-09-10T14:54:41Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.local.spa.fl_str_mv |
Trabajo de Grado |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12749/14225 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Autónoma de Bucaramanga - UNAB |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional UNAB |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.unab.edu.co |
url |
http://hdl.handle.net/20.500.12749/14225 |
identifier_str_mv |
instname:Universidad Autónoma de Bucaramanga - UNAB reponame:Repositorio Institucional UNAB repourl:https://repository.unab.edu.co |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
American College of Vetererinary Surgeons. (2021). Cranial Cruciate Ligament Disease. Retrieved 15 October 2020 https://www.acvs.org/small-animal-es/cranial-cruciate ligament- disease American College of Veterinary Surgeons - ACVS. (2020). Canine Hip Dysplasia. Retrieved 15 October 2020, from https://www.acvs.org/small-animal-es/canine hip- dysplasia#:~:text=La%20displasia%20de%20cadera%20se,y%20el%20dolor%20de %20c adera American College of Veterinary Surgeons - ACVS. (2020). Osteoarthritis in Dogs. Retrieved 15 October 2020, from https://www.acvs.org/small-animal/osteoarthritis-in-dogs Anderst, W. J., & Tashman, S. (2003). A method to estimate in vivo dynamic articular surface interaction. Journal of Biomechanics, 36(9), 1291–1299. https://doi.org/10.1016/S0021- 9290(03)00157-X Arredondo, Jorge, López-Albors, Octavio, Recillas, Sergio, Victoria, Mauro, Castelán, Octavio, González-Ronquillo, Manuel, Becerril, Sigrid, & Latorre, Rafael. (2016). Modelo Virtual Tridimensional de la Articulación Cubital del Perro a Partir de Cortes Plastinados Ultradelgados. International Journal of Morphology, 34(4), 1253-1258. https://dx.doi.org/10.4067/S0717-95022016000400013 Barthélémy, I., Barrey, E., Thibaud, J. L., Uriarte, A., Voit, T., Blot, S., & Hogrel, J. Y. (2009). Gait analysis using accelerometry in dystrophin-deficient dogs. Neuromuscular Disorders, 19(11), 788–796. https://doi.org/10.1016/j.nmd.2009.07.014 BK, S., RM, M., SH, E., CR, B., & EB, S. (2004). Role of the tendons of the biceps brachii and infraspinatous muscles and the medial glenohumeral ligament in the maintenance of passive shoulder joint stability in dogs. American Journal of Veterinary Research, 65(9), 1216–1222. Bockstahler, B. A., Skalicky, M., Peham, C., Müller, M., & Lorinson, D. (2007). Reliability of ground reaction forces measured on a treadmill system in healthy dogs. Veterinary Journal, 173(2), 373–378. https://doi.org/10.1016/j.tvjl.2005.10.004 Brown DC, Boston RC, Farrar JT. (2010). Use of an activity monitor to detect response to treatment in dogs with osteoarthritis. J Am Vet Med Assoc., 237(1):66-70. doi: 10.2460/javma.237.1.66. PMID: 20590496; PMCID: PMC2905214 Cabej, N. (2019). Control Systems and Determination of Phenotypic Traits in Metazoans. Epigenetic Principles Of Evolution, 3-39. https://doi.org/10.1016/b978-0-12-814067- 3.00001-6 Cachon, T., Frykman, O., Innes, J., Lascelles, B., Okumura, M. y Sousa, P. et al. (2018). Validez aparente de una herramienta propuesta para la estadificación de la osteoartritis canina: Canine OsteoArthritis Staging Tool (COAST). The Veterinary Journal , 235 , 1-8. https://doi.org/10.1016/j.tvjl.2018.02.017 Case, L., Daristotle, L., Hayek, M. y Raasch, M. (2011). Nutrición y Movilidad. Nutrición canina y felina , 491-509. https://doi.org/10.1016/b978-0-323-06619-8.10037-4 Clark, K., Caraguel, C., Leahey, L., & Béraud, R. (2014). Evaluation of a novel accelerometer for kinetic gait analysis in dogs. Canadian Journal of Veterinary Research, 78(3), 226–232 Colborne GR, Innes JF, Comerford EJ, Owen MR, Fuller CJ. (2005). Distribution of power across the hind limb joints in Labrador Retrievers and Greyhounds. Am J Vet Res.,66(9):1563- 71. doi: 10.2460/ajvr.2005.66.1563. PMID: 16261830 DeCamp, C. (1997). Kinetic and Kinematic Gait Analysis and the Assessment of Lameness in the Dog. Veterinary Clinics Of North America: Small Animal Practice, 27(4), 825 840. https://doi.org/10.1016/s0195-5616(97)50082-9 Dewey, T., & Bhagat, S. (2002). Canis lupus familiaris (dog). Animal Diversity Web. Retrieved 3 November 2020, from https://animaldiversity.org/site/accounts/information/Canis_lupus_familiaris.html Duerr FM, Pauls A, Kawcak C, Haussler K, Bertocci G, Moorman V, King M. (2016). Evaluation of inertial measurement units as a novel method for kinematic gait evaluation in dogs. Vet Comp Orthop Traumatol, 29(6):475-483. doi: 10.3415/VCOT 16-01-0012. Epub 2016 Oct 20. PMID: 27761576 Fernando, A. T. D. (2017). MEDICIÓN DE ACTIVIDAD DIARIA DE UN ANIMAL POR MEDIO DE DISPOSITIVO ELECTRÓNICO. [Pontificia Universidad Javeriana]. http://hdl.handle.net/10554/38749 Fit Fur Life. Gait4Dog - Sistema de análisis marcha. Medicalexpo. Retrieved 15 October 2020, from https://www.medicalexpo.es/prod/fit-fur-life/product-78746-809471.html Gillette RL, Zebas CJ. (1999). A two-dimensional analysis of limb symmetry in the trot of Labrador retrievers. J Am Anim Hosp Assoc., 35(6):515-20. doi: 10.5326/15473317 35-6- 515. PMID: 10580913 Gillette, R. L., & Angle, T. C. (2008). Recent developments in canine locomotor analysis: A review. Veterinary Journal, 178(2), 165–176. https://doi.org/10.1016/j.tvjl.2008.01.009 Gillette, R. L., & Zebas, C. J. (1999). A Two-Dimensional Analysis of Limb Symmetry in the Trot of Labrador Retrievers. Journal of the American Animal Hospital Association, 35(6), 515– 520. https://doi.org/10.5326/15473317-35-6-515 Gillette, R., & Angle, T. (2008). Recent developments in canine locomotor analysis: A review The Veterinary Journal, 178(2), 165-176. https://doi.org/10.1016/j.tvjl.2008.01.009 Hamill, J., & Knutzen, K. (2003). Biomechanical basis of human movement (4th ed., pp. 129-280). Philadelphia: Lippincott Williams & Wilkins Hayati, H., Mahdavi, F., & Eager, D. (2019). Analysis of agile canine gait characteristics using accelerometry. Sensors (Switzerland), 19(20). https://doi.org/10.3390/s19204379 Hill's (2018). Cuidado Articular del perro. Hillspet Retrieved 15 October 2020, from https://www.hillspet.es/health-conditions/dog/dog-joint Jenkins, G. J., Hakim, C. H., Nora Yang, N., Yao, G., & Duan, D. (2018). Automatic characterization of stride parameters in canines with a single wearable inertial sensor. PLoS ONE, 13(6), 1–15. https://doi.org/10.1371/journal.pone.0198893 Keegan, K., Kramer, J., Yonezawa, Y., Maki, H., Pai, P., & Dent, E. et al. (2011). Assessment of repeatability of a wireless, inertial sensor–based lameness evaluation system for horses. American Journal Of Veterinary Research, 72(9), 1156-1163. https://doi.org/10.2460/ajvr.72.9.1156 Kumpulainen P., Valldeoriola C. A, Somppi S., Törnqvist H., Väätäjä H., Majaranta P., Gizatdinova Y., Hoog A. C., Surakka V., Miiamaaria V. Kujala, Vainio O., Vehkaoja A. (2021). Dog behaviour classification with movement sensors placed on the harness and the collar, Applied Animal Behaviour Science,Vol. 241, 105393, ISSN 0168-1591, https://doi.org/10.1016/j.applanim.2021.105393. King, M. (2017). Etiopathogenesis of Canine Hip Dysplasia, Prevalence, and Genetics. 65 Veterinary Clinics Of North America: Small Animal Practice, 47(4), 753-767. https://doi.org/10.1016/j.cvsm.2017.03.001 Ladha, C., O’Sullivan, J., Belshaw, Z., & Asher, L. (2017). Gaitkeeper: A system for measuring canine gait. Sensors (Switzerland), 17(2), 1–17. https://doi.org/10.3390/s17020309 López Plana, C., Rutllant Labeaga, J., & López Béjar, M. (2015). Atlas Músculos Perro I. Universitat Autònoma de Barcelona. Retrieved 31 october 2020, from https://veterinariavirtual.uab.cat/anatomia/musculosperroI/Atlas_virtual/primera.html López Vale, H. (2009). Displasia de cadera en caninos. Facultad de Ciencia Veterinarias Universidad de Buenos Aires. Retrieved 6 November 2020, from http://www.fvet.uba.ar/fcvanterior/publicaciones/infovet/Infovet%20107.pdf Mathews, K., Kronen, P., Lascelles, D., Nolan, A., Robertson, S., & Steagall, P. et al. (2014). Guidelines for Recognition, Assessment and Treatment of Pain. Journal Of Small Animal Practice, 55(6), E10-E68. https://doi.org/10.1111/jsap.12200 Micheau, A., Hoa, D., & Borofka, S. (2020). Osteología canina. Vet-Anatomy. https://doi.org/10.37019/vet-anatomy/588175.es Musté Rodríguez, M. (2013). Análisis comparativo de la rigidez al desplazamiento antero- posterior de la rodilla canina completa, rodilla con rotura del ligamento cruzado anterior y rodilla reparada con la técnica de avance de la tuberosidad tibial. TDX (Tesis Doctorals En Xarxa). https://upcommons.upc.edu/handle/2117/95237 Pillard, P., Gibert, S., & Viguier, E. (2012). 3D accelerometric assessment of the gait of dogs with cranial cruciate ligament rupture. Computer Methods in Biomechanics and Biomedical Engineering, 15 Suppl 1, 129–131. https://doi.org/10.1080/10255842.2012.713654 Ren Ren, L., Qian, Z., & Ren, L. (2014). Biomechanics of musculoskeletal system and its biomimetic implications: A review. Journal of Bionic Engineering, 11(2), 159–175. https://doi.org/10.1016/S1672-6529(14)60033-0 Rhodin, M., Bergh, A., Gustås, P., & Gómez Álvarez, C. B. (2017). Inertial sensor-based system for lameness detection in trotting dogs with induced lameness. Veterinary Journal, 222, 54– 59. https://doi.org/10.1016/j.tvjl.2017.02.004 Riegger-Krugh, C., L. Millis, D. y P. Weigel, J. (2004). Canine Rehabilitation & Physical Theraphy 38-99. https://doi.org/10.1016/b978-0-7216-9555-6.50009-7 Sebastián, A., & Escobar, A. (2015). Análisis cinético de la locomoción en perros como metodología diagnóstica de enfermedades ortopédicas. https://ciencia.lasalle.edu.co/medicina_veterinaria Sidaway, B., McLaughlin, R., Elder, S., Boyle, C., & Silverman, E. (2004). Role of the tendons of the biceps brachii and infraspinatus muscles and the medial glenohumeral ligament in the maintenance of passive shoulder joint stability in dogs. American Journal Of Veterinary Research, 65(9), 1216-1222. https://doi.org/10.2460/ajvr.2004.65.1315 Starke, S., Raistrick, K., May, S., & Pfau, T. (2013). The effect of trotting speed on the evaluation of subtle lameness in horses. The Veterinary Journal, 197(2), 245-252. https://doi.org/10.1016/j.tvjl.2013.03.006 Ureña Almagro, C. (2011). Lenguajes de programación. Universidad de Granada. Consultado el 3 de noviembre de 2020, en https://lsi.ugr.es/curena/doce/lp/tr-11-12/lp-c01 impr.pdf. Vinall, M., & Payne, J. (2014). Osteoarthritis in Dogs. American College of Veterinary Surgeons. https://doi.org/10.1177/155989771425011 Walton, M. B., Cowderoy, E., Lascelles, D., & Innes, J. F. (2013). Evaluation of Construct and Criterion Validity for the “Liverpool Osteoarthritis in Dogs” (LOAD) Clinical Metrology Instrument and Comparison to Two Other Instruments. PLoS ONE, 8(3). https://doi.org/10.1371/journal.pone.0058125 Yamaguchi, T. (2018). Introduction. Integrated Nano-Biomechanics, 1-8. https://doi.org/10.1016/b978-0-323-38944-0.00001-2 Zebris Medical. CanidGait – Sistema de análisis de marcha, Medicalexpo. Retrieved 15 October 2020, from https://www.medicalexpo.es/prod/zebris-medical/product-70604 930335.html |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
dc.rights.creativecommons.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 Atribución-NoComercial-SinDerivadas 2.5 Colombia |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.spatial.spa.fl_str_mv |
Colombia |
dc.publisher.grantor.spa.fl_str_mv |
Universidad Autónoma de Bucaramanga UNAB |
dc.publisher.faculty.spa.fl_str_mv |
Facultad Ingeniería |
dc.publisher.program.spa.fl_str_mv |
Pregrado Ingeniería Biomédica |
institution |
Universidad Autónoma de Bucaramanga - UNAB |
bitstream.url.fl_str_mv |
https://repository.unab.edu.co/bitstream/20.500.12749/14225/1/2021_Tesis_Francy_Cristancho_Castillo.pdf https://repository.unab.edu.co/bitstream/20.500.12749/14225/2/2021_Licencia_Francy_Cristancho_Castillo.pdf https://repository.unab.edu.co/bitstream/20.500.12749/14225/3/license.txt https://repository.unab.edu.co/bitstream/20.500.12749/14225/4/2021_Tesis_Francy_Cristancho_Castillo.pdf.jpg https://repository.unab.edu.co/bitstream/20.500.12749/14225/5/2021_Licencia_Francy_Cristancho_Castillo.pdf.jpg |
bitstream.checksum.fl_str_mv |
4a0e2c138c579324ab12fa2a3a113063 eaec74bbe5f83da64fc8abf757649272 8a4605be74aa9ea9d79846c1fba20a33 205e785f348651aa4497d5edf3861dbc b236ad61682e9c97adb33f67d71d5a89 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB |
repository.mail.fl_str_mv |
repositorio@unab.edu.co |
_version_ |
1814277529797656576 |
spelling |
Amado Forero, Lusvin JavierGarrido Silva, GianinaMorales Cordero, Mario FernandoCristancho Castillo, Francy YuliethGarrido Silva, Gianina [0001538476]Morales Cordero, Mario Fernando [0001460371]Amado Forero, Lusvin Javier [0000-0001-5104-9080]Garrido Silva, Gianina [0000-0002-6607-9626]Morales Cordero, Mario Fernando [0000-0001-7536-3162]Amado Forero, Lusvin Javier [0001376723]Garrido Silva, Gianina [Gianina-Garrido-Silva-2192044751]Colombia2021-09-10T14:54:41Z2021-09-10T14:54:41Z2021http://hdl.handle.net/20.500.12749/14225instname:Universidad Autónoma de Bucaramanga - UNABreponame:Repositorio Institucional UNABrepourl:https://repository.unab.edu.coLas enfermedades que afectan el sistema músculoesquelético de los caninos, cada vez se presentan con mayor frecuencia, deteriorando poco a poco la calidad de vida de nuestros animales de compañía, especialmente cuando no son detectadas a tiempo. Actualmente las técnicas usadas por los médicos veterinarios para el diagnóstico de estas patologías son de carácter subjetivo, en donde dicha valoración depende de lo que interprete el médico veterinario a través de exámenes físicos e imágenes radiográficas. Teniendo en cuenta lo anterior, el objetivo de este proyecto fue desarrollar un sistema que ayude a soportar el diagnóstico otorgado por el médico veterinario de manera objetiva por medio de datos cuantitativos, obtenidos a través de una unidad de medición inercial. Inicialmente se estableció un protocolo que permitiera el análisis y la extracción de las variables biomecánicas de interés en la marcha del canino, luego se realizó el diseño y programación de un software en donde se pudiera calcular dichas variables. Posteriormente dicho software fue probado con 8 registros de marcha canina, obteniendo valores significativos en variables como la simetría en la marcha y la rotación de la cadera del animal. Como conclusión principal, se recalcó la necesidad de realizar pruebas comparativas entre los pacientes sanos y con la patología, con el fin de poder establecer valores de normalidad para cada una de las variables calculadas por el software.Capítulo 1 ................................................................................................................................... 11 Problema U Oportunidad ........................................................................................................... 11 Introducción ....................................................................................................................... 11 Planteamiento del problema............................................................................................... 11 Justificación ....................................................................................................................... 13 Pregunta de Investigación .................................................................................................. 14 Objetivo General ................................................................................................................ 14 Objetivos Específicos ........................................................................................................ 15 Limitaciones y delimitaciones ........................................................................................... 15 Capítulo 2 ................................................................................................................................... 17 Marco Teórico y Estado del Arte ............................................................................................... 17 Marco Conceptual .............................................................................................................. 17 Estado del arte .................................................................................................................... 24 Contexto Internacional ................................................................................................... 24 Contexto Nacional ......................................................................................................... 34 Contexto Local ............................................................................................................... 36 Capítulo 3 Metodología .............................................................. Etapa 1: Definición del protocolo ...................................................................................... 37 Etapa 2: Diseño del software ............................................................................................. 37 Etapa 3: Ejecución de pruebas de desempeño ................................................................... 41 Capítulo 4 ................................................................................................................................... 42 Resultados y análisis de resultados ............................................................................................ 42 Resultados Etapa 1: ............................................................................................................ 42 Resultados Etapa 2: .................................................................................................................... 44 Resultados Etapa 3: ............................................................................................................ 47 Análisis de Resultados ............................................................................................................... 56 Capítulo 5 ................................................................................................................................... 59 Conclusiones y recomendaciones............................................................................................... 59 Conclusiones ...................................................................................................................... 59 Recomendaciones ....................................................................................................................... 60 Bibliografía................................................................................................................................. 61 Anexos ........................................................................................................................................ 68PregradoDiseases that affect the musculoskeletal system of canines are increasingly occurring, gradually deteriorating the quality of life of our companion animals, especially when they are not detected in time. Currently the techniques used by veterinary doctors for the diagnosis of these pathologies are of subjective character, where said assessment depends on what the veterinarian interprets through physical examinations and radiographic images. Taking into account the above, the objective of this project was to develop a system that helps to support the diagnosis given by the veterinarian in an objective way through quantitative data, obtained through an inertial measurement unit. Initially, a protocol was established that allowed the analysis and extraction of the biomechanical variables of interest in the canine's gait, then the design and programming of a software was carried out where said variables could be calculated. Subsequently, said software was tested with 8 canine gait records, obtaining significant values in variables such as symmetry in gait and rotation of the animal's hip. As a main conclusion, the need for comparative tests was emphasized between healthy patients and those with pathology, in order to be able to establish normality values for each of the variables calculated by the software.application/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial-SinDerivadas 2.5 ColombiaDesarrollo de un sistema de análisis biomecánico como herramienta de apoyo en el diagnóstico de movilidad en caninosDevelopment of a biomechanical analysis system as a support tool in the diagnosis of mobility in caninesIngeniero BiomédicoUniversidad Autónoma de Bucaramanga UNABFacultad IngenieríaPregrado Ingeniería Biomédicainfo:eu-repo/semantics/bachelorThesisTrabajo de Gradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/redcol/resource_type/TPBiomedical engineeringEngineeringMedical electronicsBiological physicsBioengineeringMedical instruments and apparatusMedicineMusculoskeletal systemCaninesDomestic animalsSoftwareClinical engineeringIngeniería biomédicaIngenieríaBiofísicaBioingenieríaMedicinaAnimales domésticosIngeniería clínicaElectrónica médicaInstrumentos y aparatos médicosSistema musculoesqueléticoCaninosAmerican College of Vetererinary Surgeons. (2021). Cranial Cruciate Ligament Disease. Retrieved 15 October 2020 https://www.acvs.org/small-animal-es/cranial-cruciate ligament- diseaseAmerican College of Veterinary Surgeons - ACVS. (2020). Canine Hip Dysplasia. Retrieved 15 October 2020, from https://www.acvs.org/small-animal-es/canine hip- dysplasia#:~:text=La%20displasia%20de%20cadera%20se,y%20el%20dolor%20de %20c aderaAmerican College of Veterinary Surgeons - ACVS. (2020). Osteoarthritis in Dogs. Retrieved 15 October 2020, from https://www.acvs.org/small-animal/osteoarthritis-in-dogsAnderst, W. J., & Tashman, S. (2003). A method to estimate in vivo dynamic articular surface interaction. Journal of Biomechanics, 36(9), 1291–1299. https://doi.org/10.1016/S0021- 9290(03)00157-XArredondo, Jorge, López-Albors, Octavio, Recillas, Sergio, Victoria, Mauro, Castelán, Octavio, González-Ronquillo, Manuel, Becerril, Sigrid, & Latorre, Rafael. (2016). Modelo Virtual Tridimensional de la Articulación Cubital del Perro a Partir de Cortes Plastinados Ultradelgados. International Journal of Morphology, 34(4), 1253-1258. https://dx.doi.org/10.4067/S0717-95022016000400013Barthélémy, I., Barrey, E., Thibaud, J. L., Uriarte, A., Voit, T., Blot, S., & Hogrel, J. Y. (2009). Gait analysis using accelerometry in dystrophin-deficient dogs. Neuromuscular Disorders, 19(11), 788–796. https://doi.org/10.1016/j.nmd.2009.07.014BK, S., RM, M., SH, E., CR, B., & EB, S. (2004). Role of the tendons of the biceps brachii and infraspinatous muscles and the medial glenohumeral ligament in the maintenance of passive shoulder joint stability in dogs. American Journal of Veterinary Research, 65(9), 1216–1222. Bockstahler, B. A., Skalicky, M., Peham, C., Müller, M., & Lorinson, D. (2007). Reliability of ground reaction forces measured on a treadmill system in healthy dogs. Veterinary Journal, 173(2), 373–378. https://doi.org/10.1016/j.tvjl.2005.10.004Brown DC, Boston RC, Farrar JT. (2010). Use of an activity monitor to detect response to treatment in dogs with osteoarthritis. J Am Vet Med Assoc., 237(1):66-70. doi: 10.2460/javma.237.1.66. PMID: 20590496; PMCID: PMC2905214Cabej, N. (2019). Control Systems and Determination of Phenotypic Traits in Metazoans. Epigenetic Principles Of Evolution, 3-39. https://doi.org/10.1016/b978-0-12-814067- 3.00001-6Cachon, T., Frykman, O., Innes, J., Lascelles, B., Okumura, M. y Sousa, P. et al. (2018). Validez aparente de una herramienta propuesta para la estadificación de la osteoartritis canina: Canine OsteoArthritis Staging Tool (COAST). The Veterinary Journal , 235 , 1-8. https://doi.org/10.1016/j.tvjl.2018.02.017Case, L., Daristotle, L., Hayek, M. y Raasch, M. (2011). Nutrición y Movilidad. Nutrición canina y felina , 491-509. https://doi.org/10.1016/b978-0-323-06619-8.10037-4Clark, K., Caraguel, C., Leahey, L., & Béraud, R. (2014). Evaluation of a novel accelerometer for kinetic gait analysis in dogs. Canadian Journal of Veterinary Research, 78(3), 226–232Colborne GR, Innes JF, Comerford EJ, Owen MR, Fuller CJ. (2005). Distribution of power across the hind limb joints in Labrador Retrievers and Greyhounds. Am J Vet Res.,66(9):1563- 71. doi: 10.2460/ajvr.2005.66.1563. PMID: 16261830DeCamp, C. (1997). Kinetic and Kinematic Gait Analysis and the Assessment of Lameness in the Dog. Veterinary Clinics Of North America: Small Animal Practice, 27(4), 825 840. https://doi.org/10.1016/s0195-5616(97)50082-9Dewey, T., & Bhagat, S. (2002). Canis lupus familiaris (dog). Animal Diversity Web. Retrieved 3 November 2020, from https://animaldiversity.org/site/accounts/information/Canis_lupus_familiaris.htmlDuerr FM, Pauls A, Kawcak C, Haussler K, Bertocci G, Moorman V, King M. (2016). Evaluation of inertial measurement units as a novel method for kinematic gait evaluation in dogs. Vet Comp Orthop Traumatol, 29(6):475-483. doi: 10.3415/VCOT 16-01-0012. Epub 2016 Oct 20. PMID: 27761576Fernando, A. T. D. (2017). MEDICIÓN DE ACTIVIDAD DIARIA DE UN ANIMAL POR MEDIO DE DISPOSITIVO ELECTRÓNICO. [Pontificia Universidad Javeriana]. http://hdl.handle.net/10554/38749Fit Fur Life. Gait4Dog - Sistema de análisis marcha. Medicalexpo. Retrieved 15 October 2020, from https://www.medicalexpo.es/prod/fit-fur-life/product-78746-809471.htmlGillette RL, Zebas CJ. (1999). A two-dimensional analysis of limb symmetry in the trot of Labrador retrievers. J Am Anim Hosp Assoc., 35(6):515-20. doi: 10.5326/15473317 35-6- 515. PMID: 10580913Gillette, R. L., & Angle, T. C. (2008). Recent developments in canine locomotor analysis: A review. Veterinary Journal, 178(2), 165–176. https://doi.org/10.1016/j.tvjl.2008.01.009Gillette, R. L., & Zebas, C. J. (1999). A Two-Dimensional Analysis of Limb Symmetry in the Trot of Labrador Retrievers. Journal of the American Animal Hospital Association, 35(6), 515– 520. https://doi.org/10.5326/15473317-35-6-515Gillette, R., & Angle, T. (2008). Recent developments in canine locomotor analysis: A reviewThe Veterinary Journal, 178(2), 165-176. https://doi.org/10.1016/j.tvjl.2008.01.009 Hamill, J., & Knutzen, K. (2003). Biomechanical basis of human movement (4th ed., pp. 129-280). Philadelphia: Lippincott Williams & WilkinsHayati, H., Mahdavi, F., & Eager, D. (2019). Analysis of agile canine gait characteristics using accelerometry. Sensors (Switzerland), 19(20). https://doi.org/10.3390/s19204379Hill's (2018). Cuidado Articular del perro. Hillspet Retrieved 15 October 2020, from https://www.hillspet.es/health-conditions/dog/dog-jointJenkins, G. J., Hakim, C. H., Nora Yang, N., Yao, G., & Duan, D. (2018). Automatic characterization of stride parameters in canines with a single wearable inertial sensor. PLoS ONE, 13(6), 1–15. https://doi.org/10.1371/journal.pone.0198893Keegan, K., Kramer, J., Yonezawa, Y., Maki, H., Pai, P., & Dent, E. et al. (2011). Assessment of repeatability of a wireless, inertial sensor–based lameness evaluation system for horses. American Journal Of Veterinary Research, 72(9), 1156-1163. https://doi.org/10.2460/ajvr.72.9.1156Kumpulainen P., Valldeoriola C. A, Somppi S., Törnqvist H., Väätäjä H., Majaranta P., Gizatdinova Y., Hoog A. C., Surakka V., Miiamaaria V. Kujala, Vainio O., Vehkaoja A. (2021). Dog behaviour classification with movement sensors placed on the harness and the collar, Applied Animal Behaviour Science,Vol. 241, 105393, ISSN 0168-1591, https://doi.org/10.1016/j.applanim.2021.105393.King, M. (2017). Etiopathogenesis of Canine Hip Dysplasia, Prevalence, and Genetics. 65 Veterinary Clinics Of North America: Small Animal Practice, 47(4), 753-767. https://doi.org/10.1016/j.cvsm.2017.03.001Ladha, C., O’Sullivan, J., Belshaw, Z., & Asher, L. (2017). Gaitkeeper: A system for measuring canine gait. Sensors (Switzerland), 17(2), 1–17. https://doi.org/10.3390/s17020309López Plana, C., Rutllant Labeaga, J., & López Béjar, M. (2015). Atlas Músculos Perro I. Universitat Autònoma de Barcelona. Retrieved 31 october 2020, from https://veterinariavirtual.uab.cat/anatomia/musculosperroI/Atlas_virtual/primera.htmlLópez Vale, H. (2009). Displasia de cadera en caninos. Facultad de Ciencia Veterinarias Universidad de Buenos Aires. Retrieved 6 November 2020, from http://www.fvet.uba.ar/fcvanterior/publicaciones/infovet/Infovet%20107.pdfMathews, K., Kronen, P., Lascelles, D., Nolan, A., Robertson, S., & Steagall, P. et al. (2014). Guidelines for Recognition, Assessment and Treatment of Pain. Journal Of Small Animal Practice, 55(6), E10-E68. https://doi.org/10.1111/jsap.12200Micheau, A., Hoa, D., & Borofka, S. (2020). Osteología canina. Vet-Anatomy. https://doi.org/10.37019/vet-anatomy/588175.esMusté Rodríguez, M. (2013). Análisis comparativo de la rigidez al desplazamiento antero- posterior de la rodilla canina completa, rodilla con rotura del ligamento cruzado anterior y rodilla reparada con la técnica de avance de la tuberosidad tibial. TDX (Tesis Doctorals En Xarxa). https://upcommons.upc.edu/handle/2117/95237Pillard, P., Gibert, S., & Viguier, E. (2012). 3D accelerometric assessment of the gait of dogs with cranial cruciate ligament rupture. Computer Methods in Biomechanics and Biomedical Engineering, 15 Suppl 1, 129–131. https://doi.org/10.1080/10255842.2012.713654 RenRen, L., Qian, Z., & Ren, L. (2014). Biomechanics of musculoskeletal system and its biomimetic implications: A review. Journal of Bionic Engineering, 11(2), 159–175. https://doi.org/10.1016/S1672-6529(14)60033-0Rhodin, M., Bergh, A., Gustås, P., & Gómez Álvarez, C. B. (2017). Inertial sensor-based system for lameness detection in trotting dogs with induced lameness. Veterinary Journal, 222, 54– 59. https://doi.org/10.1016/j.tvjl.2017.02.004Riegger-Krugh, C., L. Millis, D. y P. Weigel, J. (2004). Canine Rehabilitation & Physical Theraphy 38-99. https://doi.org/10.1016/b978-0-7216-9555-6.50009-7Sebastián, A., & Escobar, A. (2015). Análisis cinético de la locomoción en perros como metodología diagnóstica de enfermedades ortopédicas. https://ciencia.lasalle.edu.co/medicina_veterinariaSidaway, B., McLaughlin, R., Elder, S., Boyle, C., & Silverman, E. (2004). Role of the tendons of the biceps brachii and infraspinatus muscles and the medial glenohumeral ligament in the maintenance of passive shoulder joint stability in dogs. American Journal Of Veterinary Research, 65(9), 1216-1222. https://doi.org/10.2460/ajvr.2004.65.1315Starke, S., Raistrick, K., May, S., & Pfau, T. (2013). The effect of trotting speed on the evaluation of subtle lameness in horses. The Veterinary Journal, 197(2), 245-252. https://doi.org/10.1016/j.tvjl.2013.03.006Ureña Almagro, C. (2011). Lenguajes de programación. Universidad de Granada. Consultado el 3 de noviembre de 2020, en https://lsi.ugr.es/curena/doce/lp/tr-11-12/lp-c01 impr.pdf.Vinall, M., & Payne, J. (2014). Osteoarthritis in Dogs. American College of Veterinary Surgeons. https://doi.org/10.1177/155989771425011Walton, M. B., Cowderoy, E., Lascelles, D., & Innes, J. F. (2013). Evaluation of Construct and Criterion Validity for the “Liverpool Osteoarthritis in Dogs” (LOAD) Clinical Metrology Instrument and Comparison to Two Other Instruments. PLoS ONE, 8(3). https://doi.org/10.1371/journal.pone.0058125Yamaguchi, T. (2018). Introduction. Integrated Nano-Biomechanics, 1-8. https://doi.org/10.1016/b978-0-323-38944-0.00001-2Zebris Medical. CanidGait – Sistema de análisis de marcha, Medicalexpo. Retrieved 15 October 2020, from https://www.medicalexpo.es/prod/zebris-medical/product-70604 930335.htmlORIGINAL2021_Tesis_Francy_Cristancho_Castillo.pdf2021_Tesis_Francy_Cristancho_Castillo.pdfTesisapplication/pdf2961737https://repository.unab.edu.co/bitstream/20.500.12749/14225/1/2021_Tesis_Francy_Cristancho_Castillo.pdf4a0e2c138c579324ab12fa2a3a113063MD51open access2021_Licencia_Francy_Cristancho_Castillo.pdf2021_Licencia_Francy_Cristancho_Castillo.pdfLicenciaapplication/pdf121672https://repository.unab.edu.co/bitstream/20.500.12749/14225/2/2021_Licencia_Francy_Cristancho_Castillo.pdfeaec74bbe5f83da64fc8abf757649272MD52metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.unab.edu.co/bitstream/20.500.12749/14225/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53open accessTHUMBNAIL2021_Tesis_Francy_Cristancho_Castillo.pdf.jpg2021_Tesis_Francy_Cristancho_Castillo.pdf.jpgIM Thumbnailimage/jpeg5082https://repository.unab.edu.co/bitstream/20.500.12749/14225/4/2021_Tesis_Francy_Cristancho_Castillo.pdf.jpg205e785f348651aa4497d5edf3861dbcMD54open access2021_Licencia_Francy_Cristancho_Castillo.pdf.jpg2021_Licencia_Francy_Cristancho_Castillo.pdf.jpgIM Thumbnailimage/jpeg9902https://repository.unab.edu.co/bitstream/20.500.12749/14225/5/2021_Licencia_Francy_Cristancho_Castillo.pdf.jpgb236ad61682e9c97adb33f67d71d5a89MD55metadata only access20.500.12749/14225oai:repository.unab.edu.co:20.500.12749/142252021-09-10 18:01:26.229open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |