Optimización multiobjetivo de un circuito magnético para ensayos no destructivos por la técnica de fuga de flujo magnético, MFL
El magnetismo es un fenómeno físico que afecta a los materiales, ejerciendo una fuerza capaz de atraer o repeler, dependiendo de las características constitutivas de cada uno de los materiales que están en interacción. Cada material posee características únicas que pueden favorecer el fenómeno magné...
- Autores:
-
Parra Raad, Jaime Alberto
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2014
- Institución:
- Universidad Autónoma de Bucaramanga - UNAB
- Repositorio:
- Repositorio UNAB
- Idioma:
- spa
- OAI Identifier:
- oai:repository.unab.edu.co:20.500.12749/1583
- Acceso en línea:
- http://hdl.handle.net/20.500.12749/1583
- Palabra clave:
- Mechatronic Engineering
Magnetism
MFL Technique
Investigations
Analysis
Magnetic circuit
Magnetic fluid leakage
Testing
MFL technique
Ingeniería mecatrónica
Magnetismo
Técnica MFL
Investigaciones
Análisis
Circuito magnético
Fuga de fluido magnético
Ensayos
Técnica MFL
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id |
UNAB2_a209e88642adc0a6c4f8d5dd31774c56 |
---|---|
oai_identifier_str |
oai:repository.unab.edu.co:20.500.12749/1583 |
network_acronym_str |
UNAB2 |
network_name_str |
Repositorio UNAB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Optimización multiobjetivo de un circuito magnético para ensayos no destructivos por la técnica de fuga de flujo magnético, MFL |
dc.title.translated.eng.fl_str_mv |
Multi-objective optimization of a magnetic circuit for non-destructive testing by the magnetic flux leakage technique, MFL |
title |
Optimización multiobjetivo de un circuito magnético para ensayos no destructivos por la técnica de fuga de flujo magnético, MFL |
spellingShingle |
Optimización multiobjetivo de un circuito magnético para ensayos no destructivos por la técnica de fuga de flujo magnético, MFL Mechatronic Engineering Magnetism MFL Technique Investigations Analysis Magnetic circuit Magnetic fluid leakage Testing MFL technique Ingeniería mecatrónica Magnetismo Técnica MFL Investigaciones Análisis Circuito magnético Fuga de fluido magnético Ensayos Técnica MFL |
title_short |
Optimización multiobjetivo de un circuito magnético para ensayos no destructivos por la técnica de fuga de flujo magnético, MFL |
title_full |
Optimización multiobjetivo de un circuito magnético para ensayos no destructivos por la técnica de fuga de flujo magnético, MFL |
title_fullStr |
Optimización multiobjetivo de un circuito magnético para ensayos no destructivos por la técnica de fuga de flujo magnético, MFL |
title_full_unstemmed |
Optimización multiobjetivo de un circuito magnético para ensayos no destructivos por la técnica de fuga de flujo magnético, MFL |
title_sort |
Optimización multiobjetivo de un circuito magnético para ensayos no destructivos por la técnica de fuga de flujo magnético, MFL |
dc.creator.fl_str_mv |
Parra Raad, Jaime Alberto |
dc.contributor.advisor.none.fl_str_mv |
Roa, Sebastián |
dc.contributor.advisor.spa.fl_str_mv |
Forero, Carlos |
dc.contributor.author.spa.fl_str_mv |
Parra Raad, Jaime Alberto |
dc.contributor.researchgate.spa.fl_str_mv |
Grupo de Investigación Control y Mecatrónica - GICYM |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigaciones Clínicas |
dc.subject.keywords.eng.fl_str_mv |
Mechatronic Engineering Magnetism MFL Technique Investigations Analysis |
topic |
Mechatronic Engineering Magnetism MFL Technique Investigations Analysis Magnetic circuit Magnetic fluid leakage Testing MFL technique Ingeniería mecatrónica Magnetismo Técnica MFL Investigaciones Análisis Circuito magnético Fuga de fluido magnético Ensayos Técnica MFL |
dc.subject.keywords.none.fl_str_mv |
Magnetic circuit Magnetic fluid leakage Testing MFL technique |
dc.subject.lemb.spa.fl_str_mv |
Ingeniería mecatrónica Magnetismo Técnica MFL Investigaciones Análisis |
dc.subject.proposal.none.fl_str_mv |
Circuito magnético Fuga de fluido magnético Ensayos Técnica MFL |
description |
El magnetismo es un fenómeno físico que afecta a los materiales, ejerciendo una fuerza capaz de atraer o repeler, dependiendo de las características constitutivas de cada uno de los materiales que están en interacción. Cada material posee características únicas que pueden favorecer el fenómeno magnético; algunas como comportamiento ante cambios de temperatura o permeabilidad relativa hacen que diferentes materiales se comporten de manera similar; lo cual permitió realizar una clasificación magnética de los materiales. El fenómeno magnético puede ser observado en todo tipo de dispositivos, desde industriales como transformadores eléctricos o herramientas de inspección, hasta domésticos como laminas publicitarias para pegar en la nevera o juguetes para bebes. El estudio de dicho fenómeno será realizado con el fin de comprender el comportamiento magnético ante ciertas imperfecciones en la superficie de los materiales ferromagnéticos utilizados para realizar tuberías con el fin de diseñar un circuito magnético óptimo en función de su desempeño. |
publishDate |
2014 |
dc.date.issued.none.fl_str_mv |
2014 |
dc.date.accessioned.none.fl_str_mv |
2020-06-26T19:45:21Z |
dc.date.available.none.fl_str_mv |
2020-06-26T19:45:21Z |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.local.spa.fl_str_mv |
Trabajo de Grado |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12749/1583 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Autónoma de Bucaramanga - UNAB |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional UNAB |
url |
http://hdl.handle.net/20.500.12749/1583 |
identifier_str_mv |
instname:Universidad Autónoma de Bucaramanga - UNAB reponame:Repositorio Institucional UNAB |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Parra Raad, Jaime Alberto (2014). Optimización multiobjetivo de un circuito magnético para ensayos no destructivos por la técnica de fuma de flujo magnético, MFL. Bucaramanga (Colombia) : Universidad Autónoma de Bucaramanga UNAB |
dc.relation.references.none.fl_str_mv |
Carmen-Gabriela Stefanita, “Magnetism, basis and applications”, (Springer, Berlin, 2012). Z. D. Wang, Y.Gu, Y. S Wang, “A review of three magnetic NDT technologies”, (Journal of Magnetism and magnetic materials, Elsevier). E. Norouzi and H. Ravanboud, “Optimization of the flux distribution in magnetic flux leakage testing”, Materials Evaluation, PP360-364, March 2010. J. W. Wilson and G. Y. Tian, “Pulsed electromagnetic methods for defect detection and characterization”, NDT&E International, Vol 40, No 4 PP275-283, June 2007. Herbert A. Leupold and Ernest Potenzioni II, “A permanent magnet circuit design primer”, US Army Research Laboratory, July 1996. H. Ammari, A. Buffa and J-C Nedelec, “A justification of eddy currents model for the Maxwell equations”, Society for industrial and applied mathematics, 2000, Vol 60 NS, PP 1805-1823. Paolo di Barba, Antonio Savini and Shawomir F. Valentine, “Effect of debris-induced lift-off on magnetic flux leakage inspection results”, Morgantown, West Virginia, 2000. F. Valentine and J. Luedke, “The effect of debris on magnetic flux leakage inspection results”, Pipeline pigging and integrity assessment conference, Houston, TX, February, 2000. L. Yang, “Effect of lift- off on pipeline magnetic flux leakage inspection”, 17th word conference in NDT, Shanghai, China, October, 2008. G. S. Park, P. W. Jang and Y. W. Rho, “Optimum design of a non-destructive testing system to maximize magnetic flux leakage”, Journal of magnetics, 6(1), 31-35 (2001). Xueyu Wang, Xinjun Wu, Jiang Xu and Hong Ba, “Study on the lift-off effect on MFL signal with magnetic circuit model and 3D FEM”, Non-Destructive testing and condition monitoring, 505-510 (2012). G Katragadda, J Tsi and W Lord, “A comparative study of 3D and axisymmetric of pipelines”, Transactions on Magnetics, Vol 32, No 3, pp 1573-1576, 1996. F.I. Al-Naemi, J.P. Hall, A.J. Moses, “FEM modelling tecniques of magnetic flux leakage-type NDT for ferromagnetic plate inspections”, Journal of Magnetism and Magnetic Material, 304, e790-793, 2006. API 579-1/ASME FFS-1, “fitness-for-services”, june, 2007. H J M Jansen, P B J van de Camp and Geekdlnk, “Magnetization as a key parameter of magnetic flux leakage pigs for pipeline inspection” , British journal of non-destructive testing, volume 36, 672-677, 1994. A simplex methodJ.A. Nelder and R. Mead, “A simplex method for function minimization”, Computer Journal, 1965, vol 7, pp 308-313 for function minimization www.comsol.com. www.mathworks.com |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
dc.rights.creativecommons.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 Atribución-NoComercial-SinDerivadas 2.5 Colombia |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.spa.fl_str_mv |
Bucaramanga (Colombia) |
dc.coverage.campus.spa.fl_str_mv |
UNAB Campus Bucaramanga |
dc.publisher.grantor.spa.fl_str_mv |
Universidad Autónoma de Bucaramanga UNAB |
dc.publisher.faculty.spa.fl_str_mv |
Facultad Ingeniería |
dc.publisher.program.spa.fl_str_mv |
Pregrado Ingeniería Mecatrónica |
institution |
Universidad Autónoma de Bucaramanga - UNAB |
bitstream.url.fl_str_mv |
https://repository.unab.edu.co/bitstream/20.500.12749/1583/1/2014_Tesis_Jaime_Alberto_Parra_Raad.pdf https://repository.unab.edu.co/bitstream/20.500.12749/1583/2/2014_Tesis_Jaime_Alberto_Parra_Raad.pdf.jpg |
bitstream.checksum.fl_str_mv |
f0f00f26fbaa50230383aea2604eadb5 21cc021d8635446e3dd8ab98a3c5ae37 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB |
repository.mail.fl_str_mv |
repositorio@unab.edu.co |
_version_ |
1814277291505614848 |
spelling |
Roa, Sebastiána11838a5-ba59-408f-b492-1a2c27502672-1Forero, Carlosaa26450e-ad52-4a19-b041-88c51fd5e986-1Parra Raad, Jaime Alberto1219142b-530a-45b3-8abd-3ea9d3570301-1Grupo de Investigación Control y Mecatrónica - GICYMGrupo de Investigaciones Clínicas2020-06-26T19:45:21Z2020-06-26T19:45:21Z2014http://hdl.handle.net/20.500.12749/1583instname:Universidad Autónoma de Bucaramanga - UNABreponame:Repositorio Institucional UNABEl magnetismo es un fenómeno físico que afecta a los materiales, ejerciendo una fuerza capaz de atraer o repeler, dependiendo de las características constitutivas de cada uno de los materiales que están en interacción. Cada material posee características únicas que pueden favorecer el fenómeno magnético; algunas como comportamiento ante cambios de temperatura o permeabilidad relativa hacen que diferentes materiales se comporten de manera similar; lo cual permitió realizar una clasificación magnética de los materiales. El fenómeno magnético puede ser observado en todo tipo de dispositivos, desde industriales como transformadores eléctricos o herramientas de inspección, hasta domésticos como laminas publicitarias para pegar en la nevera o juguetes para bebes. El estudio de dicho fenómeno será realizado con el fin de comprender el comportamiento magnético ante ciertas imperfecciones en la superficie de los materiales ferromagnéticos utilizados para realizar tuberías con el fin de diseñar un circuito magnético óptimo en función de su desempeño.CONTENIDO 1. INTRODUCCION ................................................................................................................. 3 2. OBJETIVO GENERAL ........................................................................................................... 4 2.1 OBJETIVOS ESPECIFICOS .............................................................................................. 4 3. PLANTEAMIENTO DEL PROBLEMA Y JUSTIFICACION ............................................................. 5 4. ANTECEDENTES ................................................................................................................. 7 5. ESTADO DEL ARTE .............................................................................................................. 8 6. MARCO TEORICO ..............................................................................................................10 6.1.1 Conceptos magnéticos........................................................................................10 6.1.2 Dipolos magnéticos ............................................................................................10 6.1.3 Intensidad de flujo magnético y densidad de flujo magnético. ..............................11 6.1.4 Susceptibilidad magnética y permeabilidad magnética .........................................13 6.1.5 Curva de magnetización en materiales ferromagnéticos. ......................................15 6.2 Elementos finitos .......................................................................................................16 6.3 Optimización .............................................................................................................17 7. DISEÑO METODOLOGICO ..................................................................................................20 7.1 Paso primero: ............................................................................................................20 7.2 Paso segundo: ...........................................................................................................20 7.3 Paso tercero: .............................................................................................................21 7.4 Paso cuarto y quinto: .................................................................................................21 8. CRONOGRAMA .................................................................................................................23 9. PRESUPUESTO ..................................................................................................................24 10. Magnetic Flux Leakage ......................................................................................................25 10.1 Funcionamiento ........................................................................................................26 10.2 Análisis del campo magnético estático. .......................................................................28 10.3 Diseño por parámetros concentrados .........................................................................30 10.4 Modelo basado en elementos finitos 2D .....................................................................35 10.5 Ajuste del modelo basado en la teoría de circuitos magnéticos. ...................................39 11. Diseño óptimo. .................................................................................................................42 11.1 Optimización paramétrica en el circuito equivalente....................................................44 11.2 Optimización paramétrica en elementos finitos 2D ......................................................47 11.3 Optimización paramétrica por elementos finitos 3D ....................................................50 2 12. Validación experimental ....................................................................................................53 13. Conclusiones ....................................................................................................................55 14. BIBLIOGRAFIA ...................................................................................................................56PregradoMagnetism is a physical phenomenon that affects materials, exerting a force capable of attracting or repelling, depending on the constitutive characteristics of each of the interacting materials. Each material has unique characteristics that can favor the magnetic phenomenon; Some, such as behavior to changes in temperature or relative permeability, make different materials behave in a similar way; which allowed to carry out a magnetic classification of the materials. The magnetic phenomenon can be observed in all types of devices, from industrial such as electrical transformers or inspection tools, to domestic ones such as advertising sheets to stick on the fridge or baby toys. The study of this phenomenon will be carried out in order to understand the magnetic behavior in the face of certain imperfections on the surface of the ferromagnetic materials used to make pipes in order to design an optimal magnetic circuit based on its performance.Modalidad Presencialapplication/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial-SinDerivadas 2.5 ColombiaOptimización multiobjetivo de un circuito magnético para ensayos no destructivos por la técnica de fuga de flujo magnético, MFLMulti-objective optimization of a magnetic circuit for non-destructive testing by the magnetic flux leakage technique, MFLIngeniero MecatrónicoBucaramanga (Colombia)UNAB Campus BucaramangaUniversidad Autónoma de Bucaramanga UNABFacultad IngenieríaPregrado Ingeniería Mecatrónicainfo:eu-repo/semantics/bachelorThesisTrabajo de Gradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/redcol/resource_type/TPMechatronic EngineeringMagnetismMFL TechniqueInvestigationsAnalysisMagnetic circuitMagnetic fluid leakageTestingMFL techniqueIngeniería mecatrónicaMagnetismoTécnica MFLInvestigacionesAnálisisCircuito magnéticoFuga de fluido magnéticoEnsayosTécnica MFLParra Raad, Jaime Alberto (2014). Optimización multiobjetivo de un circuito magnético para ensayos no destructivos por la técnica de fuma de flujo magnético, MFL. Bucaramanga (Colombia) : Universidad Autónoma de Bucaramanga UNABCarmen-Gabriela Stefanita, “Magnetism, basis and applications”, (Springer, Berlin, 2012).Z. D. Wang, Y.Gu, Y. S Wang, “A review of three magnetic NDT technologies”, (Journal of Magnetism and magnetic materials, Elsevier).E. Norouzi and H. Ravanboud, “Optimization of the flux distribution in magnetic flux leakage testing”, Materials Evaluation, PP360-364, March 2010.J. W. Wilson and G. Y. Tian, “Pulsed electromagnetic methods for defect detection and characterization”, NDT&E International, Vol 40, No 4 PP275-283, June 2007.Herbert A. Leupold and Ernest Potenzioni II, “A permanent magnet circuit design primer”, US Army Research Laboratory, July 1996.H. Ammari, A. Buffa and J-C Nedelec, “A justification of eddy currents model for the Maxwell equations”, Society for industrial and applied mathematics, 2000, Vol 60 NS, PP 1805-1823.Paolo di Barba, Antonio Savini and ShawomirF. Valentine, “Effect of debris-induced lift-off on magnetic flux leakage inspection results”, Morgantown, West Virginia, 2000.F. Valentine and J. Luedke, “The effect of debris on magnetic flux leakage inspection results”, Pipeline pigging and integrity assessment conference, Houston, TX, February, 2000.L. Yang, “Effect of lift- off on pipeline magnetic flux leakage inspection”, 17th word conference in NDT, Shanghai, China, October, 2008.G. S. Park, P. W. Jang and Y. W. Rho, “Optimum design of a non-destructive testing system to maximize magnetic flux leakage”, Journal of magnetics, 6(1), 31-35 (2001).Xueyu Wang, Xinjun Wu, Jiang Xu and Hong Ba, “Study on the lift-off effect on MFL signal with magnetic circuit model and 3D FEM”, Non-Destructive testing and condition monitoring, 505-510 (2012).G Katragadda, J Tsi and W Lord, “A comparative study of 3D and axisymmetric of pipelines”, Transactions on Magnetics, Vol 32, No 3, pp 1573-1576, 1996.F.I. Al-Naemi, J.P. Hall, A.J. Moses, “FEM modelling tecniques of magnetic flux leakage-type NDT for ferromagnetic plate inspections”, Journal of Magnetism and Magnetic Material, 304, e790-793, 2006.API 579-1/ASME FFS-1, “fitness-for-services”, june, 2007.H J M Jansen, P B J van de Camp and Geekdlnk, “Magnetization as a key parameter of magnetic flux leakage pigs for pipeline inspection” , British journal of non-destructive testing, volume 36, 672-677, 1994.A simplex methodJ.A. Nelder and R. Mead, “A simplex method for function minimization”, Computer Journal, 1965, vol 7, pp 308-313 for function minimizationwww.comsol.com.www.mathworks.comORIGINAL2014_Tesis_Jaime_Alberto_Parra_Raad.pdf2014_Tesis_Jaime_Alberto_Parra_Raad.pdfTesisapplication/pdf1850932https://repository.unab.edu.co/bitstream/20.500.12749/1583/1/2014_Tesis_Jaime_Alberto_Parra_Raad.pdff0f00f26fbaa50230383aea2604eadb5MD51open accessTHUMBNAIL2014_Tesis_Jaime_Alberto_Parra_Raad.pdf.jpg2014_Tesis_Jaime_Alberto_Parra_Raad.pdf.jpgIM Thumbnailimage/jpeg5192https://repository.unab.edu.co/bitstream/20.500.12749/1583/2/2014_Tesis_Jaime_Alberto_Parra_Raad.pdf.jpg21cc021d8635446e3dd8ab98a3c5ae37MD52open access20.500.12749/1583oai:repository.unab.edu.co:20.500.12749/15832024-01-21 10:46:03.322open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.co |