Incidencia y factores asociados a bacteriemia por enterobacterias productoras de carbapenemasas en pacientes con neutropenia febril e hisopado rectal positivo

Introducción: La forma de identificar a los pacientes hematoncológicos con riesgo de bacteriemia en el contexto de lesión de barrera mucosa está asociada a lo profundo de la neutropenia. La posibilidad de identificar a través del hisopado rectal la colonización por enterobacterias productoras de car...

Full description

Autores:
González Plata, Fabio Alberto
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Autónoma de Bucaramanga - UNAB
Repositorio:
Repositorio UNAB
Idioma:
spa
OAI Identifier:
oai:repository.unab.edu.co:20.500.12749/7187
Acceso en línea:
http://hdl.handle.net/20.500.12749/7187
Palabra clave:
Internal medicine
Medicine
Medical sciences
Health sciences
Neutropenia
Fever
Chemotherapy
Bacteremia
Enterobacteria
Mucosal barrier injury
Neoplasia
Treatment
Antibiotics
Medicina interna
Medicina
Ciencias médicas
Neoplasia
Tratamiento
Antibióticos
Ciencias de la salud
Neutropenia
Fiebre
Quimioterapia
Bacteriemia
Enterobacterias
Lesión de barrera mucosa
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UNAB2_a1b973e17969887370cf6b8620150de1
oai_identifier_str oai:repository.unab.edu.co:20.500.12749/7187
network_acronym_str UNAB2
network_name_str Repositorio UNAB
repository_id_str
dc.title.spa.fl_str_mv Incidencia y factores asociados a bacteriemia por enterobacterias productoras de carbapenemasas en pacientes con neutropenia febril e hisopado rectal positivo
dc.title.translated.eng.fl_str_mv Incidence and factors associated with bacteremia due to carbapenemase-producing enterobacteriaceae in patients with febrile neutropenia and positive rectal swab
title Incidencia y factores asociados a bacteriemia por enterobacterias productoras de carbapenemasas en pacientes con neutropenia febril e hisopado rectal positivo
spellingShingle Incidencia y factores asociados a bacteriemia por enterobacterias productoras de carbapenemasas en pacientes con neutropenia febril e hisopado rectal positivo
Internal medicine
Medicine
Medical sciences
Health sciences
Neutropenia
Fever
Chemotherapy
Bacteremia
Enterobacteria
Mucosal barrier injury
Neoplasia
Treatment
Antibiotics
Medicina interna
Medicina
Ciencias médicas
Neoplasia
Tratamiento
Antibióticos
Ciencias de la salud
Neutropenia
Fiebre
Quimioterapia
Bacteriemia
Enterobacterias
Lesión de barrera mucosa
title_short Incidencia y factores asociados a bacteriemia por enterobacterias productoras de carbapenemasas en pacientes con neutropenia febril e hisopado rectal positivo
title_full Incidencia y factores asociados a bacteriemia por enterobacterias productoras de carbapenemasas en pacientes con neutropenia febril e hisopado rectal positivo
title_fullStr Incidencia y factores asociados a bacteriemia por enterobacterias productoras de carbapenemasas en pacientes con neutropenia febril e hisopado rectal positivo
title_full_unstemmed Incidencia y factores asociados a bacteriemia por enterobacterias productoras de carbapenemasas en pacientes con neutropenia febril e hisopado rectal positivo
title_sort Incidencia y factores asociados a bacteriemia por enterobacterias productoras de carbapenemasas en pacientes con neutropenia febril e hisopado rectal positivo
dc.creator.fl_str_mv González Plata, Fabio Alberto
dc.contributor.advisor.spa.fl_str_mv Bernal García, Edgar Augusto
Peña Castellanos, Angela María
Ochoa Vera, Miguel Enrique
dc.contributor.author.spa.fl_str_mv González Plata, Fabio Alberto
dc.contributor.cvlac.*.fl_str_mv https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000898465
dc.contributor.orcid.*.fl_str_mv https://orcid.org/0000-0003-1693-9429
https://orcid.org/0000-0002-4552-3388
dc.contributor.scopus.*.fl_str_mv https://www.scopus.com/authid/detail.uri?authorId=36987156500
dc.contributor.researchgate.*.fl_str_mv https://www.researchgate.net/profile/Miguel_Ochoa7
dc.subject.keywords.eng.fl_str_mv Internal medicine
Medicine
Medical sciences
Health sciences
Neutropenia
Fever
Chemotherapy
Bacteremia
Enterobacteria
Mucosal barrier injury
Neoplasia
Treatment
Antibiotics
topic Internal medicine
Medicine
Medical sciences
Health sciences
Neutropenia
Fever
Chemotherapy
Bacteremia
Enterobacteria
Mucosal barrier injury
Neoplasia
Treatment
Antibiotics
Medicina interna
Medicina
Ciencias médicas
Neoplasia
Tratamiento
Antibióticos
Ciencias de la salud
Neutropenia
Fiebre
Quimioterapia
Bacteriemia
Enterobacterias
Lesión de barrera mucosa
dc.subject.lemb.spa.fl_str_mv Medicina interna
Medicina
Ciencias médicas
Neoplasia
Tratamiento
Antibióticos
dc.subject.proposal.spa.fl_str_mv Ciencias de la salud
Neutropenia
Fiebre
Quimioterapia
Bacteriemia
Enterobacterias
Lesión de barrera mucosa
description Introducción: La forma de identificar a los pacientes hematoncológicos con riesgo de bacteriemia en el contexto de lesión de barrera mucosa está asociada a lo profundo de la neutropenia. La posibilidad de identificar a través del hisopado rectal la colonización por enterobacterias productoras de carbapenemasas ha cambiado el enfoque de la terapia antibiótica empírica dado que en este lapso de tiempo podemos impactar drásticamente en la mortalidad, bacteriemia por EPC es una verdadera emergencia médica (equiparable a Infarto de miocardio con elevación del ST y ECV isquémico en ventana) engloba la Neutropenia febril, inmunosupresión y severas comorbilidades como las Neoplasias hematolinfoides. Sin embargo se desconoce la correlación entre colonización rectal del hisopado y la predicción de la bacteriemia, esto ha motivando a conocer que otros factores de riesgo están asociados y la utilidad del hisopado rectal como predictor de bacteriemia. Evaluar la incidencia de bacteriemia por enterobacterias productoras de carbapenemasas, en pacientes que se encontraran recibiendo quimioterapia con neutropenia severa, fiebre e hisopado rectal positivo, en el servicio de Hemato-oncología. de la clínica la FOSCAL, en el periodo comprendido entre Enero 1 de 2016 y Diciembre 31 de 2018.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-08-15T05:57:00Z
dc.date.available.none.fl_str_mv 2020-08-15T05:57:00Z
dc.date.issued.none.fl_str_mv 2020
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.local.spa.fl_str_mv Tesis
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TM
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12749/7187
dc.identifier.instname.spa.fl_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UNAB
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.unab.edu.co
url http://hdl.handle.net/20.500.12749/7187
identifier_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
reponame:Repositorio Institucional UNAB
repourl:https://repository.unab.edu.co
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv 1. Atallah E, Cortes J, O’Brien S, Pierce S, Rios MB, Estey E, et al. Establishment of baseline toxicity expectations with standard frontline chemotherapy in acute myelogenous leukemia. Blood [Internet]. 2007 Nov 15 [cited 2018 Nov 23];110(10):3547–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17673605
2. Zhang MJ, Hoelzer D, Horowitz MM, Gale RP, Messerer D, Klein JP, et al. Long-term follow-up of adults with acute lymphoblastic leukemia in first remission treated with chemotherapy or bone marrow transplantation. The Acute Lymphoblastic Leukemia Working Committee. Ann Intern Med [Internet]. 1995 Sep 15 [cited 2018 Nov 23];123(6):428–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7639442
3. DeVita - Cancer : Principles and Practice of Oncology. Clin Trials. 2001;(July).
4. Enciso L, Rodríguez M, del Socorro García J, Rosales J, Enrique Duque J, Abello V, et al. Consenso Colombiano sobRe el tRatamiento De la leuCemia linfoCítiCa CRóniCa Consenso colombiano sobre el tratamiento de la leucemia linfocítica crónica Colombian consensus for the treatment of chronic lymphocytic leukemia Miembros del Consenso Colombiano de Hematología Oncológica [Internet]. [cited 2018 Nov 25]. Available from: http://www.ebmt.org/5Workingparty/CLWP/clwp6.htlm.
5. Kantarjian HM, O’Brien S, Smith TL, Cortes J, Giles FJ, Beran M, et al. Results of Treatment With Hyper-CVAD, a Dose-Intensive Regimen, in Adult Acute Lymphocytic Leukemia. J Clin Oncol [Internet]. 2000 Feb [cited 2018 Nov 25];18(3):547–547. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10653870
6. Kantarjian H, Thomas D, O’Brien S, Cortes J, Giles F, Jeha S, et al. Long-term follow-up results of hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone (Hyper-CVAD), a dose-intensive regimen, in adult acute lymphocytic leukemia. Cancer [Internet]. 2004 Dec 15 [cited 2018 Nov 25];101(12):2788–801. Available from: http://doi.wiley.com/10.1002/cncr.20668
7. Análisis de Situación del Cáncer en Colombia [Internet]. 2015 [cited 2018 Nov 25]. Available from: http://www.cancer.gov.co/Situacion_del_Cancer_en_Colombia_2015.pdf
8. Carlisle PS, Gucalp R, Wiernik PH. Nosocomial infections in neutropenic cancer patients. Infect Control Hosp Epidemiol [Internet]. 1993 Jun [cited 2018 Nov 25];14(6):320–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8360462
9. Orasch C, Weisser M, Mertz D, Conen A, Heim D, Christen S, et al. Comparison of infectious complications during induction/consolidation chemotherapy versus allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant [Internet]. 2010 Mar 10 [cited 2018 Nov 25];45(3):521–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19668238
10. Cano A, Gutiérrez-Gutiérrez B, Machuca I, Gracia-Ahufinger I, Pérez-Nadales E, Causse M, et al. Risks of Infection and Mortality Among Patients Colonized With Klebsiella pneumoniae Carbapenemase–Producing K. pneumoniae: Validation of Scores and Proposal for Management. Clin Infect Dis [Internet]. 2018 Apr 3 [cited 2018 Nov 25];66(8):1204–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29126110
11. Guía de práctica clínica [Internet]. [cited 2018 Nov 25]. Available from: www.cancer.gov.co
12. M. Giannella, E. M. Trecarichi, F. G. De Rosa et al, Risk factors for carbapenem-resistant Klebsiella pneumoniae bloodstream infection among rectal carriers: A prospective observational multicentre study.
13. Albiger B, Glasner C, Struelens MJ, Grundmann H, Monnet DL, European Survey of Carbapenemase-Producing Enterobacteriaceae (EuSCAPE) working group. Carbapenemase-producing Enterobacteriaceae in Europe: assessment by national experts from 38 countries, May 2015. Eurosurveillance [Internet]. 2015 Nov 12 [cited 2018 Nov 24];20(45):30062. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26675038
14. Surveillance atlas of infectious diseases. The European Centre for Disease Prevention and Control (ECDC) website. http://ecdc. europa.eu/en/healthtopics/antimicrobial_resistance/database/Pages/table_reports.aspx. Published 2015. Accessed October 9 2016. Atlas de vigilancia de enfermedades infecciosas [Internet]. 2016. 2016 [cited 2018 Nov 25]. p. 1. Available from: https://atlas.ecdc.europa.eu/public/index.aspx
15. Culakova E, Thota R, Poniewierski MS, Kuderer NM, Wogu AF, Dale DC, et al. Patterns of chemotherapy-associated toxicity and supportive care in US oncology practice: a nationwide prospective cohort study. Cancer Med [Internet]. 2014 Apr [cited 2018 Nov 23];3(2):434–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24706592
16. Weycker D, Li X, Edelsberg J, Barron R, Kartashov A, Xu H, et al. Risk and Consequences of Chemotherapy-Induced Febrile Neutropenia in Patients With Metastatic Solid Tumors. J Oncol Pract [Internet]. 2015 Jan [cited 2018 Nov 23];11(1):47–54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25491042
17. Chan A, Fu WH, Shih V, Coyuco JC, Tan SH, Ng R. Impact of colony-stimulating factors to reduce febrile neutropenic events in breast cancer patients receiving docetaxel plus cyclophosphamide chemotherapy. Support Care Cancer [Internet]. 2011 Apr 17 [cited 2018 Nov 23];19(4):497–504. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20232087
18. Fiegl M, Steger GG, Studnicka M, Eisterer W, Jaeger C, Willenbacher W. Pegfilgrastim prophylaxis in patients at different levels of risk for chemotherapy-associated febrile neutropenia: an observational study. Curr Med Res Opin [Internet]. 2013 May 19 [cited 2018 Nov 23];29(5):505–15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23444969
19. Aapro M, Crawford J, Kamioner D. Prophylaxis of chemotherapy-induced febrile neutropenia with granulocyte colony-stimulating factors: where are we now? Support Care Cancer [Internet]. 2010 May 27 [cited 2018 Nov 23];18(5):529–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20191292
20. Aarts MJ, Peters FP, Mandigers CM, Dercksen MW, Stouthard JM, Nortier HJ, et al. Primary Granulocyte Colony-Stimulating Factor Prophylaxis During the First Two Cycles Only or Throughout All Chemotherapy Cycles in Patients With Breast Cancer at Risk for Febrile Neutropenia. J Clin Oncol [Internet]. 2013 Dec 1 [cited 2018 Nov 23];31(34):4290–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23630211
21. Aapro MS, Bohlius J, Cameron DA, Lago LD, Donnelly JP, Kearney N, et al. 2010 update of EORTC guidelines for the use of granulocyte-colony stimulating factor to reduce the incidence of chemotherapy-induced febrile neutropenia in adult patients with lymphoproliferative disorders and solid tumours. Eur J Cancer [Internet]. 2011 Jan [cited 2018 Nov 23];47(1):8–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21095116
22. Ozer H, Armitage JO, Bennett CL, Crawford J, Demetri GD, Pizzo PA, et al. 2000 Update of Recommendations for the Use of Hematopoietic Colony-Stimulating Factors: Evidence-Based, Clinical Practice Guidelines. J Clin Oncol [Internet]. 2000 Oct 20 [cited 2018 Nov 23];18(20):3558–85. Available from: http://ascopubs.org/doi/10.1200/JCO.2000.18.20.3558
23. Lyman GH, Abella E, Pettengell R. Risk factors for febrile neutropenia among patients with cancer receiving chemotherapy: A systematic review. Crit Rev Oncol Hematol [Internet]. 2014 Jun [cited 2018 Nov 23];90(3):190–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24434034
24. Jones SE, Savin MA, Holmes FA, O’Shaughnessy JA, Blum JL, Vukelja S, et al. Phase III Trial Comparing Doxorubicin Plus Cyclophosphamide With Docetaxel Plus Cyclophosphamide As Adjuvant Therapy for Operable Breast Cancer. J Clin Oncol [Internet]. 2006 Dec 1 [cited 2018 Nov 25];24(34):5381–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17135639
25. Ramos P, , Ricardo Sánchez, Óscar Gamboa AFC. Factores pronósticos relacionados con la mortalidad en pacientes con cáncer y neutropenia febril. Rev Colomb Hematol y Oncol.
26. Muñoz Maya O G, Rodelo Vélez A M, Carvajal J J, González J M, Jaimes Barragán F A. Características clínicas y microbiológicas de los pacientes neutropénicos febriles con neoplasias hematológicas. Iatreia. 2008; 21(1): S9.
27. Josa DF, Bustos G, Cristina I, Esparza G. Evaluación de tres métodos de tamizaje para detección de. :253–61.
28. Iredell J, Brown J, Tagg K. Antibiotic resistance in Enterobacteriaceae: mechanisms and clinical implications. BMJ [Internet]. 2016 Feb 8 [cited 2018 Nov 24];352:h6420. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26858245
29. Frère J-M, Galleni M, Bush K, Dideberg O. Is it necessary to change the classification of β-lactamases? J Antimicrob Chemother [Internet]. 2005 Jun 1 [cited 2018 Nov 25];55(6):1051–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15886262
30. Nordmann P, Dortet L, Poirel L. Carbapenem resistance in Enterobacteriaceae: here is the storm! Trends Mol Med [Internet]. 2012 May [cited 2018 Nov 24];18(5):263–72. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22480775
31. Dautzenberg MJD, Wekesa AN, Gniadkowski M, Antoniadou A, Giamarellou H, Petrikkos GL, et al. The Association Between Colonization With Carbapenemase-Producing Enterobacteriaceae and Overall ICU Mortality. Crit Care Med [Internet]. 2015 Jun [cited 2018 Nov 25];43(6):1170–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25882764
32. Nordmann P, Mariotte S, Naas T, Labia R, Nicolas MH. Biochemical properties of a carbapenem-hydrolyzing beta-lactamase from Enterobacter cloacae and cloning of the gene into Escherichia coli. Antimicrob Agents Chemother [Internet]. 1993 May [cited 2018 Nov 24];37(5):939–46. Available from: http://www.ncbi.nlm.nih.gov/pubmed/8517720
33. Aubron C, Poirel L, Ash RJ, Nordmann P. Carbapenemase-producing Enterobacteriaceae, U.S. rivers. Emerg Infect Dis. 2005;11(2):260–4.
34. Queenan AM, Bush K. Carbapenemases: the Versatile -Lactamases. Clin Microbiol Rev [Internet]. 2007 Jul 1 [cited 2018 Nov 24];20(3):440–58. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17630334
35. Borer A, Saidel-Odes L, Riesenberg K, Eskira S, Peled N, Nativ R, et al. Attributable Mortality Rate for Carbapenem-Resistant Klebsiella pneumoniae Bacteremia. Infect Control Hosp Epidemiol [Internet]. 2009 Oct 2 [cited 2018 Nov 24];30(10):972–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19712030
36. Lauretti L, Riccio ML, Mazzariol A, Cornaglia G, Amicosante G, Fontana R, et al. Cloning and characterization of blaVIM, a new integron-borne metallo-beta-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother [Internet]. 1999 Jul [cited 2018 Nov 24];43(7):1584–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10390207
37. Docquier J-D, Lamotte-Brasseur J, Galleni M, Amicosante G, Frère J-M, Rossolini GM. On functional and structural heterogeneity of VIM-type metallo-beta-lactamases. J Antimicrob Chemother [Internet]. 2003 Feb [cited 2018 Nov 24];51(2):257–66. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12562689
38. Nordmann P, Poirel L, Toleman MA, Walsh TR. Does broad-spectrum -lactam resistance due to NDM-1 herald the end of the antibiotic era for treatment of infections caused by Gram-negative bacteria? J Antimicrob Chemother [Internet]. 2011 Apr 1 [cited 2018 Nov 25];66(4):689–92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21393184
39. Coque TM, Novais Â, Carattoli A, Poirel L, Pitout J, Peixe L, et al. Dissemination of Clonally Related Escherichia coli Strains Expressing Extended-Spectrum β-Lactamase CTX-M-15. Emerg Infect Dis [Internet]. 2008 Feb [cited 2018 Nov 25];14(2):195–200. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18258110
40. Walsh TR, Weeks J, Livermore DM, Toleman MA. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis [Internet]. 2011 May [cited 2018 Nov 24];11(5):355–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21478057
41. Kaase M, Nordmann P, Wichelhaus TA, Gatermann SG, Bonnin RA, Poirel L. NDM-2 carbapenemase in Acinetobacter baumannii from Egypt. J Antimicrob Chemother [Internet]. 2011 Jun 1 [cited 2018 Nov 24];66(6):1260–2. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21427107
42. Poirel L, Héritier C, Tolün V, Nordmann P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother [Internet]. 2004 Jan [cited 2018 Nov 24];48(1):15–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/14693513
43. Potron A, Kalpoe J, Poirel L, Nordmann P. European dissemination of a single OXA-48-producing Klebsiella pneumoniae clone. Clin Microbiol Infect [Internet]. 2011 Dec [cited 2018 Nov 24];17(12):E24–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21973185
44. Carmeli Y, Akova M, Cornaglia G, Daikos GL, Garau J, Harbarth S, et al. Controlling the spread of carbapenemase-producing Gram-negatives: therapeutic approach and infection control. Clin Microbiol Infect [Internet]. 2010 Feb [cited 2018 Nov 25];16(2):102–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20085604
45. Tumbarello M, Viale P, Viscoli C, Trecarichi EM, Tumietto F, Marchese A, et al. Predictors of Mortality in Bloodstream Infections Caused by Klebsiella pneumoniae Carbapenemase-Producing K. pneumoniae: Importance of Combination Therapy. Clin Infect Dis [Internet]. 2012 Oct 1 [cited 2018 Nov 25];55(7):943–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22752516
46. Qureshi ZA, Paterson DL, Potoski BA, Kilayko MC, Sandovsky G, Sordillo E, et al. Treatment Outcome of Bacteremia Due to KPC-Producing Klebsiella pneumoniae: Superiority of Combination Antimicrobial Regimens. Antimicrob Agents Chemother [Internet]. 2012 Apr [cited 2018 Nov 25];56(4):2108–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22252816
47. Zarkotou O, Pournaras S, Tselioti P, Dragoumanos V, Pitiriga V, Ranellou K, et al. Predictors of mortality in patients with bloodstream infections caused by KPC-producing Klebsiella pneumoniae and impact of appropriate antimicrobial treatment. Clin Microbiol Infect [Internet]. 2011 Dec [cited 2018 Nov 25];17(12):1798–803. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21595793
48. Pano-Pardo JR, Ruiz-Carrascoso G, Navarro-San Francisco C, Gomez-Gil R, Mora-Rillo M, Romero-Gomez MP, et al. Infections caused by OXA-48-producing Klebsiella pneumoniae in a tertiary hospital in Spain in the setting of a prolonged, hospital-wide outbreak. J Antimicrob Chemother [Internet]. 2013 Jan 1 [cited 2018 Nov 25];68(1):89–96. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23045224
49. Daikos GL, Panagiotakopoulou A, Tzelepi E, Loli A, Tzouvelekis LS, Miriagou V. Activity of imipenem against VIM-1 metallo-β-lactamase-producing Klebsiella pneumoniae in the murine thigh infection model. Clin Microbiol Infect [Internet]. 2007 Feb [cited 2018 Nov 25];13(2):202–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17328735
50. Villegas MV, Pallares CJ, Escandón-Vargas K, Hernández-Gómez C, Correa A, Álvarez C, et al. Characterization and Clinical Impact of Bloodstream Infection Caused by Carbapenemase-Producing Enterobacteriaceae in Seven Latin American Countries. Selvey LA, editor. PLoS One [Internet]. 2016 Apr 22 [cited 2018 Nov 25];11(4):e0154092. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27104910
51. Gomez-Simmonds A, Nelson B, Eiras DP, Loo A, Jenkins SG, Whittier S, et al. Combination Regimens for Treatment of Carbapenem-Resistant Klebsiella pneumoniae Bloodstream Infections. Antimicrob Agents Chemother [Internet]. 2016 Jun [cited 2018 Nov 25];60(6):3601–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27044555
52. Falagas ME, Lourida P, Poulikakos P, Rafailidis PI, Tansarli GS. Antibiotic Treatment of Infections Due to Carbapenem-Resistant Enterobacteriaceae: Systematic Evaluation of the Available Evidence. Antimicrob Agents Chemother [Internet]. 2014 Feb [cited 2018 Nov 25];58(2):654–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24080646
53. Fraenkel-Wandel Y, Raveh-Brawer D, Wiener-Well Y, Yinnon AM, Assous M V. Mortality due to bla KPC Klebsiella pneumoniae bacteraemia. J Antimicrob Chemother [Internet]. 2016 Apr [cited 2018 Nov 25];71(4):1083–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26661396
54. Tzouvelekis LS, Markogiannakis A, Psichogiou M, Tassios PT, Daikos GL. Carbapenemases in Klebsiella pneumoniae and Other Enterobacteriaceae: an Evolving Crisis of Global Dimensions. Clin Microbiol Rev [Internet]. 2012 Oct 1 [cited 2018 Nov 25];25(4):682–707. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23034326
55. Mouloudi E, Protonotariou E, Zagorianou A, Iosifidis E, Karapanagiotou A, Giasnetsova T, et al. Bloodstream Infections Caused by Metallo-β-Lactamase/Klebsiella pneumoniae Carbapenemase–Producing K. pneumoniae among Intensive Care Unit Patients in Greece: Risk Factors for Infection and Impact of Type of Resistance on Outcomes. Infect Control Hosp Epidemiol [Internet]. 2010 Dec 2 [cited 2018 Nov 25];31(12):1250–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20973725
56. Ben-David D, Kordevani R, Keller N, Tal I, Marzel A, Gal-Mor O, et al. Outcome of carbapenem resistant Klebsiella pneumoniae bloodstream infections. Clin Microbiol Infect [Internet]. 2012 Jan [cited 2018 Nov 25];18(1):54–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21722257
57. Capone A, Giannella M, Fortini D, Giordano A, Meledandri M, Ballardini M, et al. High rate of colistin resistance among patients with carbapenem-resistant Klebsiella pneumoniae infection accounts for an excess of mortality. Clin Microbiol Infect [Internet]. 2013 Jan [cited 2018 Nov 25];19(1):E23–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23137235
58. Neuner EA, Yeh J-Y, Hall GS, Sekeres J, Endimiani A, Bonomo RA, et al. Treatment and outcomes in carbapenem-resistant Klebsiella pneumoniae bloodstream infections. Diagn Microbiol Infect Dis [Internet]. 2011 Apr [cited 2018 Nov 25];69(4):357–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21396529
59. Patel G, Huprikar S, Factor SH, Jenkins SG, Calfee DP. Outcomes of Carbapenem-Resistant Klebsiella pneumoniae Infection and the Impact of Antimicrobial and Adjunctive Therapies. Infect Control Hosp Epidemiol [Internet]. 2008 Dec 2 [cited 2018 Nov 25];29(12):1099–106. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18973455
60. Nguyen M, Eschenauer GA, Bryan M, O’Neil K, Furuya EY, Della-Latta P, et al. Carbapenem-resistant Klebsiella pneumoniae bacteremia: factors correlated with clinical and microbiologic outcomes. Diagn Microbiol Infect Dis [Internet]. 2010 Jun [cited 2018 Nov 25];67(2):180–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20356699
61. Satlin MJ, Jenkins SG, Walsh TJ. The Global Challenge of Carbapenem-Resistant Enterobacteriaceae in Transplant Recipients and Patients With Hematologic Malignancies. Clin Infect Dis [Internet]. 2014 May 1 [cited 2018 Nov 25];58(9):1274–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24463280
62. Kalpoe JS, Sonnenberg E, Factor SH, del Rio Martin J, Schiano T, Patel G, et al. Mortality associated with carbapenem-resistant Klebsiella pneumoniae infections in liver transplant recipients. Liver Transplant [Internet]. 2012 Apr [cited 2018 Nov 25];18(4):468–74. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22467548
63. Johnson K, Boucher HW. Editorial Commentary: Imminent Challenges: Carbapenem-Resistant Enterobacteriaceae in Transplant Recipients and Patients With Hematologic Malignancy. Clin Infect Dis [Internet]. 2014 May 1 [cited 2018 Nov 25];58(9):1284–6. Available from: https://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciu056
64. Satlin MJ, Calfee DP, Chen L, Fauntleroy KA, Wilson SJ, Jenkins SG, et al. Emergence of carbapenem-resistant Enterobacteriaceae as causes of bloodstream infections in patients with hematologic malignancies. Leuk Lymphoma [Internet]. 2013 Apr 14 [cited 2018 Nov 25];54(4):799–806. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22916826
65. Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Intensive Care Med [Internet]. 2008 Jan [cited 2018 Nov 25];34(1):17–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18058085
66. Mouncey PR, Osborn TM, Power GS, Harrison DA, Sadique MZ, Grieve RD, et al. Trial of Early, Goal-Directed Resuscitation for Septic Shock. N Engl J Med [Internet]. 2015 Apr 2 [cited 2018 Nov 25];372(14):1301–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25776532
67. Rodríguez-Baño J, Cisneros JM, Cobos-Trigueros N, Fresco G, Navarro-San Francisco C, Gudiol C, et al. Diagnosis and antimicrobial treatment of invasive infections due to multidrug-resistant Enterobacteriaceae. Guidelines of the Spanish Society of Infectious Diseases and Clinical Microbiology. Enferm Infecc Microbiol Clin [Internet]. 2015 May [cited 2018 Nov 25];33(5):337.e1-337.e21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25600218
68. Retamar P, Portillo MM, López-Prieto MD, Rodríguez-López F, de Cueto M, García M V., et al. Impact of Inadequate Empirical Therapy on the Mortality of Patients with Bloodstream Infections: a Propensity Score-Based Analysis. Antimicrob Agents Chemother [Internet]. 2012 Jan [cited 2018 Nov 25];56(1):472–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22005999
69. Qureshi ZA, Syed A, Clarke LG, Doi Y, Shields RK. Epidemiology and Clinical Outcomes of Patients with Carbapenem-Resistant Klebsiella pneumoniae Bacteriuria. Antimicrob Agents Chemother [Internet]. 2014 Jun [cited 2018 Nov 25];58(6):3100–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24637691
70. Tumbarello M, Trecarichi EM, De Rosa FG, Giannella M, Giacobbe DR, Bassetti M, et al. Infections caused by KPC-producing Klebsiella pneumoniae: differences in therapy and mortality in a multicentre study. J Antimicrob Chemother [Internet]. 2015 Jul 1 [cited 2018 Nov 25];70(7):2133–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25900159
71. Paul M, Carmeli Y, Durante-Mangoni E, Mouton JW, Tacconelli E, Theuretzbacher U, et al. Combination therapy for carbapenem-resistant Gram-negative bacteria. J Antimicrob Chemother [Internet]. 2014 Sep 1 [cited 2018 Nov 25];69(9):2305–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24872346
72. Zusman O, Altunin S, Koppel F, Dishon Benattar Y, Gedik H, Paul M. Polymyxin monotherapy or in combination against carbapenem-resistant bacteria: systematic review and meta-analysis. J Antimicrob Chemother [Internet]. 2017 Jan [cited 2018 Nov 25];72(1):29–39. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27624572
73. Gutiérrez-Gutiérrez B, Bonomo RA, Carmeli Y, Paterson DL, Pascual A, Rodríguez-Baño J. Combination therapy for bloodstream infections with carbapenemase-producing Enterobacteriaceae – Authors’ reply. Lancet Infect Dis [Internet]. 2017 Oct [cited 2018 Nov 25];17(10):1020–1. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1473309917305224
74. Jacobs DM, Safir MC, Huang D, Minhaj F, Parker A, Rao GG. Triple combination antibiotic therapy for carbapenemase-producing Klebsiella pneumoniae: a systematic review. Ann Clin Microbiol Antimicrob [Internet]. 2017 Dec 25 [cited 2018 Nov 25];16(1):76. Available from: https://ann-clinmicrob.biomedcentral.com/articles/10.1186/s12941-017-0249-2
75. Daikos GL, Tsaousi S, Tzouvelekis LS, Anyfantis I, Psichogiou M, Argyropoulou A, et al. Carbapenemase-Producing Klebsiella pneumoniae Bloodstream Infections: Lowering Mortality by Antibiotic Combination Schemes and the Role of Carbapenems. Antimicrob Agents Chemother [Internet]. 2014 Apr [cited 2018 Nov 25];58(4):2322–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24514083
76. Souli M, Konstantinidou E, Tzepi I, Tsaganos T, Pefanis A, Chryssouli Z, et al. Efficacy of carbapenems against a metallo- -lactamase-producing Escherichia coli clinical isolate in a rabbit intra-abdominal abscess model. J Antimicrob Chemother [Internet]. 2011 Mar 1 [cited 2018 Nov 25];66(3):611–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21177674
77. Wiskirchen DE, Nordmann P, Crandon JL, Nicolau DP. In vivo efficacy of human simulated regimens of carbapenems and comparator agents against NDM-1-producing Enterobacteriaceae. Antimicrob Agents Chemother [Internet]. 2014 [cited 2018 Nov 25];58(3):1671–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24379195
78. Bulik CC, Christensen H, Li P, Sutherland CA, Nicolau DP, Kuti JL. Comparison of the Activity of a Human Simulated, High-Dose, Prolonged Infusion of Meropenem against Klebsiella pneumoniae Producing the KPC Carbapenemase versus That against Pseudomonas aeruginosa in an In Vitro Pharmacodynamic Model. Antimicrob Agents Chemother [Internet]. 2010 Feb 1 [cited 2018 Nov 25];54(2):804–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19995927
79. Daikos GL, Markogiannakis A. Carbapenemase-producing Klebsiella pneumoniae: (when) might we still consider treating with carbapenems? Clin Microbiol Infect [Internet]. 2011 Aug [cited 2018 Nov 25];17(8):1135–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21635663
80. Bulik CC, Nicolau DP. Double-carbapenem therapy for carbapenemase-producing Klebsiella pneumoniae. Antimicrob Agents Chemother [Internet]. 2011 Jun [cited 2018 Nov 25];55(6):3002–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21422205
81. Giamarellou H, Galani L, Baziaka F, Karaiskos I. Effectiveness of a Double-Carbapenem Regimen for Infections in Humans Due to Carbapenemase-Producing Pandrug-Resistant Klebsiella pneumoniae. Antimicrob Agents Chemother [Internet]. 2013 May [cited 2018 Nov 25];57(5):2388–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23439635
82. Ceccarelli G, Falcone M, Giordano A, Mezzatesta ML, Caio C, Stefani S, et al. Successful ertapenem-doripenem combination treatment of bacteremic ventilator-associated pneumonia due to colistin-resistant KPC-producing Klebsiella pneumoniae. Antimicrob Agents Chemother [Internet]. 2013 Jun [cited 2018 Nov 25];57(6):2900–1. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23571536
83. Mimoz O, Grégoire N, Poirel L, Marliat M, Couet W, Nordmann P. Broad-Spectrum β-Lactam Antibiotics for Treating Experimental Peritonitis in Mice Due to Klebsiella pneumoniae Producing the Carbapenemase OXA-48. Antimicrob Agents Chemother [Internet]. 2012 May [cited 2018 Nov 25];56(5):2759–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22330912
84. Wagenlehner FM, Sobel JD, Newell P, Armstrong J, Huang X, Stone GG, et al. Ceftazidime-avibactam Versus Doripenem for the Treatment of Complicated Urinary Tract Infections, Including Acute Pyelonephritis: RECAPTURE, a Phase 3 Randomized Trial Program. Clin Infect Dis [Internet]. 2016 Sep 15 [cited 2018 Nov 25];63(6):754–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27313268
85. Carmeli Y, Armstrong J, Laud PJ, Newell P, Stone G, Wardman A, et al. Ceftazidime-avibactam or best available therapy in patients with ceftazidime-resistant Enterobacteriaceae and Pseudomonas aeruginosa complicated urinary tract infections or complicated intra-abdominal infections (REPRISE): a randomised, pathogen-directed, phase 3 study. Lancet Infect Dis [Internet]. 2016 Jun [cited 2018 Nov 25];16(6):661–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27107460
86. Woodford N, Turton JF, Livermore DM. Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol Rev [Internet]. 2011 Sep [cited 2018 Nov 25];35(5):736–55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21303394
87. Liu Y-Y, Wang Y, Walsh TR, Yi L-X, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis [Internet]. 2016 Feb [cited 2018 Nov 25];16(2):161–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26603172
88. Garonzik SM, Li J, Thamlikitkul V, Paterson DL, Shoham S, Jacob J, et al. Population Pharmacokinetics of Colistin Methanesulfonate and Formed Colistin in Critically Ill Patients from a Multicenter Study Provide Dosing Suggestions for Various Categories of Patients. Antimicrob Agents Chemother [Internet]. 2011 Jul [cited 2018 Nov 25];55(7):3284–94. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21555763
89. Doi Y, Wachino J, Arakawa Y. Aminoglycoside Resistance. Infect Dis Clin North Am [Internet]. 2016 Jun [cited 2018 Nov 25];30(2):523–37. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27208771
90. Gonzalez-Padilla M, Torre-Cisneros J, Rivera-Espinar F, Pontes-Moreno A, Lopez-Cerero L, Pascual A, et al. Gentamicin therapy for sepsis due to carbapenem-resistant and colistin-resistant Klebsiella pneumoniae. J Antimicrob Chemother [Internet]. 2015 Mar 1 [cited 2018 Nov 25];70(3):905–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25344809
91. Falagas ME, Giannopoulou KP, Kokolakis GN, Rafailidis PI. Fosfomycin: Use Beyond Urinary Tract and Gastrointestinal Infections. Clin Infect Dis [Internet]. 2008 Apr 1 [cited 2018 Nov 25];46(7):1069–77. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18444827
92. Giamarellou H. Multidrug-resistant Gram-negative bacteria: how to treat and for how long. Int J Antimicrob Agents [Internet]. 2010 Dec [cited 2018 Nov 25];36:S50–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21129924
93. Sastry S, Doi Y. Fosfomycin: Resurgence of an old companion. J Infect Chemother [Internet]. 2016 May [cited 2018 Nov 25];22(5):273–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26923259
94. Shorr AF, Pogue JM, Mohr JF. Intravenous fosfomycin for the treatment of hospitalized patients with serious infections. Expert Rev Anti Infect Ther [Internet]. 2017 Oct 3 [cited 2018 Nov 25];15(10):935–45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28901793
95. Tasina E, Haidich A-B, Kokkali S, Arvanitidou M. Efficacy and safety of tigecycline for the treatment of infectious diseases: a meta-analysis. Lancet Infect Dis [Internet]. 2011 Nov [cited 2018 Nov 25];11(11):834–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21784708
96. Bucaneve G, Micozzi A, Picardi M, Ballanti S, Cascavilla N, Salutari P, et al. Results of a Multicenter, Controlled, Randomized Clinical Trial Evaluating the Combination of Piperacillin/Tazobactam and Tigecycline in High-Risk Hematologic Patients With Cancer With Febrile Neutropenia. J Clin Oncol [Internet]. 2014 May 10 [cited 2018 Nov 25];32(14):1463–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24733807
97. Iosifidis E, Violaki A, Michalopoulou E, Volakli E, Diamanti E, Koliouskas D, et al. Use of Tigecycline in Pediatric Patients With Infections Predominantly Due to Extensively Drug-Resistant Gram-Negative Bacteria. J Pediatric Infect Dis Soc [Internet]. 2016 Mar 21 [cited 2018 Nov 25];6(2):piw009. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27000866
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
Atribución-NoComercial-SinDerivadas 2.5 Colombia
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.spa.fl_str_mv Floridablanca (Santander, Colombia)
dc.coverage.temporal.spa.fl_str_mv 2016-2018
dc.publisher.grantor.spa.fl_str_mv Universidad Autónoma de Bucaramanga UNAB
dc.publisher.faculty.spa.fl_str_mv Facultad Ciencias de la Salud
dc.publisher.program.spa.fl_str_mv Especialización en Medicina Interna
institution Universidad Autónoma de Bucaramanga - UNAB
bitstream.url.fl_str_mv https://repository.unab.edu.co/bitstream/20.500.12749/7187/1/2020_Tesis_Fabio_Alberto_Gonzalez_Plata.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/7187/2/2020_Licencia_Fabio_Alberto_Gonzalez_Plata.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/7187/3/license.txt
https://repository.unab.edu.co/bitstream/20.500.12749/7187/4/2020_Tesis_Fabio_Alberto_Gonzalez_Plata.pdf.jpg
https://repository.unab.edu.co/bitstream/20.500.12749/7187/5/2020_Licencia_Fabio_Alberto_Gonzalez_Plata.pdf.jpg
bitstream.checksum.fl_str_mv cb6b51802847ff4d666941ed65b309c7
134c85400562e47a6ae7633fa58a5402
8a4605be74aa9ea9d79846c1fba20a33
7705063da4d23623ff4a95d7e914ef12
fbe870761e05edbf1d6b77f1dc19a79a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB
repository.mail.fl_str_mv repositorio@unab.edu.co
_version_ 1808410567830929408
spelling Bernal García, Edgar Augusto572826e3-f6ee-4c13-930c-c37276d64bc6Peña Castellanos, Angela Maríafec92ee7-2a6b-44c8-88bb-b252fd21f567Ochoa Vera, Miguel Enriquebf83ca83-93c9-401e-91d3-b424889e868fGonzález Plata, Fabio Alberto943c1a57-5043-4fe8-89fb-c02b0bcd9ef9https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000898465https://orcid.org/0000-0003-1693-9429https://orcid.org/0000-0002-4552-3388https://www.scopus.com/authid/detail.uri?authorId=36987156500https://www.researchgate.net/profile/Miguel_Ochoa7Floridablanca (Santander, Colombia)2016-20182020-08-15T05:57:00Z2020-08-15T05:57:00Z2020http://hdl.handle.net/20.500.12749/7187instname:Universidad Autónoma de Bucaramanga - UNABreponame:Repositorio Institucional UNABrepourl:https://repository.unab.edu.coIntroducción: La forma de identificar a los pacientes hematoncológicos con riesgo de bacteriemia en el contexto de lesión de barrera mucosa está asociada a lo profundo de la neutropenia. La posibilidad de identificar a través del hisopado rectal la colonización por enterobacterias productoras de carbapenemasas ha cambiado el enfoque de la terapia antibiótica empírica dado que en este lapso de tiempo podemos impactar drásticamente en la mortalidad, bacteriemia por EPC es una verdadera emergencia médica (equiparable a Infarto de miocardio con elevación del ST y ECV isquémico en ventana) engloba la Neutropenia febril, inmunosupresión y severas comorbilidades como las Neoplasias hematolinfoides. Sin embargo se desconoce la correlación entre colonización rectal del hisopado y la predicción de la bacteriemia, esto ha motivando a conocer que otros factores de riesgo están asociados y la utilidad del hisopado rectal como predictor de bacteriemia. Evaluar la incidencia de bacteriemia por enterobacterias productoras de carbapenemasas, en pacientes que se encontraran recibiendo quimioterapia con neutropenia severa, fiebre e hisopado rectal positivo, en el servicio de Hemato-oncología. de la clínica la FOSCAL, en el periodo comprendido entre Enero 1 de 2016 y Diciembre 31 de 2018.1. RESUMEN DEL PROYECTO. 10 2. PLANTEAMIENTO Y JUSTIFICACIÓN 11 3. MARCO TEORICO Y ESTADO DEL ARTE 13 4. OBJETIVOS 33 4.1. Objetivo General 33 4.2. Objetivos específicos 33 5. METODOLOGÍA 33 5.1. Tipo de estudio 33 5.2. Población 33 5.3. Criterios de inclusión 34 5.4. Criterios de exclusión 34 5.5. Muestra 34 5.6. Recolección de la información 34 6. VARIABLES 35 6.1. DEFINICION DE LAS VARIABLES 43 7. PLAN DE ANÁLISIS DE DATOS 44 8. CONSIDERACIONES ÉTICAS 45 9. RESULTADOS / PRODUCTOS ESPERADOS Y POTENCIALES BENEFICIARIOS 46 10. CRONOGRAMA 47 11. PRESUPUESTO 48 12. RESULTADOS 48 12.1. Características demográficas de la población 49 12.1.2 Comorbilidades de los pacientes colonizados por hisopado rectal positivo para EPC 50 12.2 Tipo de Neoplasia Hemato-oncológica: 51 12.2.1 Esquema de Quimioterapia 52 12.2.2 Dia de quimioterapia en relación con el día cero de fiebre 53 12.2.3 Duración de la neutropenia febril 54 12.3 Severidad de la neutropenia al momento de la colonización por EPC 55 12.3.1 Día de inicio de fiebre pos hisopado (+) 55 12.4 Recuento de neutrófilos al inicio de la bacteriemia 56 12.4.1 Profilaxis farmacológica antimicrobiana 56 12.4.2 Antibioticoterapia recibida en el último mes 57 12.4.3 Antibioticoterapia empírica 57 12.4.4 Perfil de resistencia antibiótica del hisopado rectal para Enterobacterias Productoras de Cabapenemasas 58 12.4.5 Antibioticoterapia indicada según sensibilidad del hisopado 59 12.5 Terapia inmunomoduladora 59 12.6 Bacteriemia por Enterobacterias Productoras de Carbapenemasas 59 12.6.1 Bacteriemia por enterobacterias no productoras de carbapenemasa y bacilos gram negativos no fermentadores 60 12.6.2 Antibioticoterapia Dirigida según resultados de hemocultivo y antibiograma 61 12.6.3 Desescalamiento y escalonamiento antibiótico según resultado de Hemocultivo 62 12.6.4 Tiempo de defervescencia de la fiebre con respecto al inicio del antibiótico 63 12.6.5 SOFA score en el momento de inicio de fiebre y mortalidad 63 13. ANÁLISIS BIVARIADO 65 14. DISCUSIÓN 66 15. CONCLUSIONES 73 16. BIBLIOGRAFIA 79EspecializaciónIntroduction: The way to identify hematoncological patients at risk of bacteremia in the context of mucosal barrier injury is associated with the depth of neutropenia. The possibility of identifying colonization by carbapenemase-producing enterobacteria through the rectal swab has changed the focus of empirical antibiotic therapy given that in this period of time we can dramatically impact mortality, EPC bacteremia is a true medical emergency (comparable to Myocardial infarction with ST elevation and ischemic CVD in the window) includes febrile neutropenia, immunosuppression and severe comorbidities such as hematolymphoid neoplasms. However, the correlation between rectal swab colonization and the prediction of bacteremia is unknown, which has motivated us to know that other risk factors are associated and the usefulness of rectal swab as a predictor of bacteremia. To assess the incidence of bacteremia due to carbapenemase-producing enterobacteriaceae, in patients who were receiving chemotherapy with severe neutropenia, fever and positive rectal swab, in the Hemato-oncology department. of the FOSCAL clinic, in the period between January 1, 2016 and December 31, 2018.application/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial-SinDerivadas 2.5 ColombiaIncidencia y factores asociados a bacteriemia por enterobacterias productoras de carbapenemasas en pacientes con neutropenia febril e hisopado rectal positivoIncidence and factors associated with bacteremia due to carbapenemase-producing enterobacteriaceae in patients with febrile neutropenia and positive rectal swabEspecialista en Medicina InternaUniversidad Autónoma de Bucaramanga UNABFacultad Ciencias de la SaludEspecialización en Medicina Internainfo:eu-repo/semantics/masterThesisTesishttp://purl.org/redcol/resource_type/TMInternal medicineMedicineMedical sciencesHealth sciencesNeutropeniaFeverChemotherapyBacteremiaEnterobacteriaMucosal barrier injuryNeoplasiaTreatmentAntibioticsMedicina internaMedicinaCiencias médicasNeoplasiaTratamientoAntibióticosCiencias de la saludNeutropeniaFiebreQuimioterapiaBacteriemiaEnterobacteriasLesión de barrera mucosa1. Atallah E, Cortes J, O’Brien S, Pierce S, Rios MB, Estey E, et al. Establishment of baseline toxicity expectations with standard frontline chemotherapy in acute myelogenous leukemia. Blood [Internet]. 2007 Nov 15 [cited 2018 Nov 23];110(10):3547–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/176736052. Zhang MJ, Hoelzer D, Horowitz MM, Gale RP, Messerer D, Klein JP, et al. Long-term follow-up of adults with acute lymphoblastic leukemia in first remission treated with chemotherapy or bone marrow transplantation. The Acute Lymphoblastic Leukemia Working Committee. Ann Intern Med [Internet]. 1995 Sep 15 [cited 2018 Nov 23];123(6):428–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/76394423. DeVita - Cancer : Principles and Practice of Oncology. Clin Trials. 2001;(July).4. Enciso L, Rodríguez M, del Socorro García J, Rosales J, Enrique Duque J, Abello V, et al. Consenso Colombiano sobRe el tRatamiento De la leuCemia linfoCítiCa CRóniCa Consenso colombiano sobre el tratamiento de la leucemia linfocítica crónica Colombian consensus for the treatment of chronic lymphocytic leukemia Miembros del Consenso Colombiano de Hematología Oncológica [Internet]. [cited 2018 Nov 25]. Available from: http://www.ebmt.org/5Workingparty/CLWP/clwp6.htlm.5. Kantarjian HM, O’Brien S, Smith TL, Cortes J, Giles FJ, Beran M, et al. Results of Treatment With Hyper-CVAD, a Dose-Intensive Regimen, in Adult Acute Lymphocytic Leukemia. J Clin Oncol [Internet]. 2000 Feb [cited 2018 Nov 25];18(3):547–547. Available from: http://www.ncbi.nlm.nih.gov/pubmed/106538706. Kantarjian H, Thomas D, O’Brien S, Cortes J, Giles F, Jeha S, et al. Long-term follow-up results of hyperfractionated cyclophosphamide, vincristine, doxorubicin, and dexamethasone (Hyper-CVAD), a dose-intensive regimen, in adult acute lymphocytic leukemia. Cancer [Internet]. 2004 Dec 15 [cited 2018 Nov 25];101(12):2788–801. Available from: http://doi.wiley.com/10.1002/cncr.206687. Análisis de Situación del Cáncer en Colombia [Internet]. 2015 [cited 2018 Nov 25]. Available from: http://www.cancer.gov.co/Situacion_del_Cancer_en_Colombia_2015.pdf8. Carlisle PS, Gucalp R, Wiernik PH. Nosocomial infections in neutropenic cancer patients. Infect Control Hosp Epidemiol [Internet]. 1993 Jun [cited 2018 Nov 25];14(6):320–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/83604629. Orasch C, Weisser M, Mertz D, Conen A, Heim D, Christen S, et al. Comparison of infectious complications during induction/consolidation chemotherapy versus allogeneic hematopoietic stem cell transplantation. Bone Marrow Transplant [Internet]. 2010 Mar 10 [cited 2018 Nov 25];45(3):521–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1966823810. Cano A, Gutiérrez-Gutiérrez B, Machuca I, Gracia-Ahufinger I, Pérez-Nadales E, Causse M, et al. Risks of Infection and Mortality Among Patients Colonized With Klebsiella pneumoniae Carbapenemase–Producing K. pneumoniae: Validation of Scores and Proposal for Management. Clin Infect Dis [Internet]. 2018 Apr 3 [cited 2018 Nov 25];66(8):1204–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2912611011. Guía de práctica clínica [Internet]. [cited 2018 Nov 25]. Available from: www.cancer.gov.co12. M. Giannella, E. M. Trecarichi, F. G. De Rosa et al, Risk factors for carbapenem-resistant Klebsiella pneumoniae bloodstream infection among rectal carriers: A prospective observational multicentre study.13. Albiger B, Glasner C, Struelens MJ, Grundmann H, Monnet DL, European Survey of Carbapenemase-Producing Enterobacteriaceae (EuSCAPE) working group. Carbapenemase-producing Enterobacteriaceae in Europe: assessment by national experts from 38 countries, May 2015. Eurosurveillance [Internet]. 2015 Nov 12 [cited 2018 Nov 24];20(45):30062. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2667503814. Surveillance atlas of infectious diseases. The European Centre for Disease Prevention and Control (ECDC) website. http://ecdc. europa.eu/en/healthtopics/antimicrobial_resistance/database/Pages/table_reports.aspx. Published 2015. Accessed October 9 2016. Atlas de vigilancia de enfermedades infecciosas [Internet]. 2016. 2016 [cited 2018 Nov 25]. p. 1. Available from: https://atlas.ecdc.europa.eu/public/index.aspx15. Culakova E, Thota R, Poniewierski MS, Kuderer NM, Wogu AF, Dale DC, et al. Patterns of chemotherapy-associated toxicity and supportive care in US oncology practice: a nationwide prospective cohort study. Cancer Med [Internet]. 2014 Apr [cited 2018 Nov 23];3(2):434–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2470659216. Weycker D, Li X, Edelsberg J, Barron R, Kartashov A, Xu H, et al. Risk and Consequences of Chemotherapy-Induced Febrile Neutropenia in Patients With Metastatic Solid Tumors. J Oncol Pract [Internet]. 2015 Jan [cited 2018 Nov 23];11(1):47–54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2549104217. Chan A, Fu WH, Shih V, Coyuco JC, Tan SH, Ng R. Impact of colony-stimulating factors to reduce febrile neutropenic events in breast cancer patients receiving docetaxel plus cyclophosphamide chemotherapy. Support Care Cancer [Internet]. 2011 Apr 17 [cited 2018 Nov 23];19(4):497–504. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2023208718. Fiegl M, Steger GG, Studnicka M, Eisterer W, Jaeger C, Willenbacher W. Pegfilgrastim prophylaxis in patients at different levels of risk for chemotherapy-associated febrile neutropenia: an observational study. Curr Med Res Opin [Internet]. 2013 May 19 [cited 2018 Nov 23];29(5):505–15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2344496919. Aapro M, Crawford J, Kamioner D. Prophylaxis of chemotherapy-induced febrile neutropenia with granulocyte colony-stimulating factors: where are we now? Support Care Cancer [Internet]. 2010 May 27 [cited 2018 Nov 23];18(5):529–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2019129220. Aarts MJ, Peters FP, Mandigers CM, Dercksen MW, Stouthard JM, Nortier HJ, et al. Primary Granulocyte Colony-Stimulating Factor Prophylaxis During the First Two Cycles Only or Throughout All Chemotherapy Cycles in Patients With Breast Cancer at Risk for Febrile Neutropenia. J Clin Oncol [Internet]. 2013 Dec 1 [cited 2018 Nov 23];31(34):4290–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2363021121. Aapro MS, Bohlius J, Cameron DA, Lago LD, Donnelly JP, Kearney N, et al. 2010 update of EORTC guidelines for the use of granulocyte-colony stimulating factor to reduce the incidence of chemotherapy-induced febrile neutropenia in adult patients with lymphoproliferative disorders and solid tumours. Eur J Cancer [Internet]. 2011 Jan [cited 2018 Nov 23];47(1):8–32. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2109511622. Ozer H, Armitage JO, Bennett CL, Crawford J, Demetri GD, Pizzo PA, et al. 2000 Update of Recommendations for the Use of Hematopoietic Colony-Stimulating Factors: Evidence-Based, Clinical Practice Guidelines. J Clin Oncol [Internet]. 2000 Oct 20 [cited 2018 Nov 23];18(20):3558–85. Available from: http://ascopubs.org/doi/10.1200/JCO.2000.18.20.355823. Lyman GH, Abella E, Pettengell R. Risk factors for febrile neutropenia among patients with cancer receiving chemotherapy: A systematic review. Crit Rev Oncol Hematol [Internet]. 2014 Jun [cited 2018 Nov 23];90(3):190–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2443403424. Jones SE, Savin MA, Holmes FA, O’Shaughnessy JA, Blum JL, Vukelja S, et al. Phase III Trial Comparing Doxorubicin Plus Cyclophosphamide With Docetaxel Plus Cyclophosphamide As Adjuvant Therapy for Operable Breast Cancer. J Clin Oncol [Internet]. 2006 Dec 1 [cited 2018 Nov 25];24(34):5381–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1713563925. Ramos P, , Ricardo Sánchez, Óscar Gamboa AFC. Factores pronósticos relacionados con la mortalidad en pacientes con cáncer y neutropenia febril. Rev Colomb Hematol y Oncol.26. Muñoz Maya O G, Rodelo Vélez A M, Carvajal J J, González J M, Jaimes Barragán F A. Características clínicas y microbiológicas de los pacientes neutropénicos febriles con neoplasias hematológicas. Iatreia. 2008; 21(1): S9.27. Josa DF, Bustos G, Cristina I, Esparza G. Evaluación de tres métodos de tamizaje para detección de. :253–61.28. Iredell J, Brown J, Tagg K. Antibiotic resistance in Enterobacteriaceae: mechanisms and clinical implications. BMJ [Internet]. 2016 Feb 8 [cited 2018 Nov 24];352:h6420. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2685824529. Frère J-M, Galleni M, Bush K, Dideberg O. Is it necessary to change the classification of β-lactamases? J Antimicrob Chemother [Internet]. 2005 Jun 1 [cited 2018 Nov 25];55(6):1051–3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1588626230. Nordmann P, Dortet L, Poirel L. Carbapenem resistance in Enterobacteriaceae: here is the storm! Trends Mol Med [Internet]. 2012 May [cited 2018 Nov 24];18(5):263–72. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2248077531. Dautzenberg MJD, Wekesa AN, Gniadkowski M, Antoniadou A, Giamarellou H, Petrikkos GL, et al. The Association Between Colonization With Carbapenemase-Producing Enterobacteriaceae and Overall ICU Mortality. Crit Care Med [Internet]. 2015 Jun [cited 2018 Nov 25];43(6):1170–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2588276432. Nordmann P, Mariotte S, Naas T, Labia R, Nicolas MH. Biochemical properties of a carbapenem-hydrolyzing beta-lactamase from Enterobacter cloacae and cloning of the gene into Escherichia coli. Antimicrob Agents Chemother [Internet]. 1993 May [cited 2018 Nov 24];37(5):939–46. Available from: http://www.ncbi.nlm.nih.gov/pubmed/851772033. Aubron C, Poirel L, Ash RJ, Nordmann P. Carbapenemase-producing Enterobacteriaceae, U.S. rivers. Emerg Infect Dis. 2005;11(2):260–4.34. Queenan AM, Bush K. Carbapenemases: the Versatile -Lactamases. Clin Microbiol Rev [Internet]. 2007 Jul 1 [cited 2018 Nov 24];20(3):440–58. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1763033435. Borer A, Saidel-Odes L, Riesenberg K, Eskira S, Peled N, Nativ R, et al. Attributable Mortality Rate for Carbapenem-Resistant Klebsiella pneumoniae Bacteremia. Infect Control Hosp Epidemiol [Internet]. 2009 Oct 2 [cited 2018 Nov 24];30(10):972–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1971203036. Lauretti L, Riccio ML, Mazzariol A, Cornaglia G, Amicosante G, Fontana R, et al. Cloning and characterization of blaVIM, a new integron-borne metallo-beta-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob Agents Chemother [Internet]. 1999 Jul [cited 2018 Nov 24];43(7):1584–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1039020737. Docquier J-D, Lamotte-Brasseur J, Galleni M, Amicosante G, Frère J-M, Rossolini GM. On functional and structural heterogeneity of VIM-type metallo-beta-lactamases. J Antimicrob Chemother [Internet]. 2003 Feb [cited 2018 Nov 24];51(2):257–66. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1256268938. Nordmann P, Poirel L, Toleman MA, Walsh TR. Does broad-spectrum -lactam resistance due to NDM-1 herald the end of the antibiotic era for treatment of infections caused by Gram-negative bacteria? J Antimicrob Chemother [Internet]. 2011 Apr 1 [cited 2018 Nov 25];66(4):689–92. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2139318439. Coque TM, Novais Â, Carattoli A, Poirel L, Pitout J, Peixe L, et al. Dissemination of Clonally Related Escherichia coli Strains Expressing Extended-Spectrum β-Lactamase CTX-M-15. Emerg Infect Dis [Internet]. 2008 Feb [cited 2018 Nov 25];14(2):195–200. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1825811040. Walsh TR, Weeks J, Livermore DM, Toleman MA. Dissemination of NDM-1 positive bacteria in the New Delhi environment and its implications for human health: an environmental point prevalence study. Lancet Infect Dis [Internet]. 2011 May [cited 2018 Nov 24];11(5):355–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2147805741. Kaase M, Nordmann P, Wichelhaus TA, Gatermann SG, Bonnin RA, Poirel L. NDM-2 carbapenemase in Acinetobacter baumannii from Egypt. J Antimicrob Chemother [Internet]. 2011 Jun 1 [cited 2018 Nov 24];66(6):1260–2. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2142710742. Poirel L, Héritier C, Tolün V, Nordmann P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother [Internet]. 2004 Jan [cited 2018 Nov 24];48(1):15–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1469351343. Potron A, Kalpoe J, Poirel L, Nordmann P. European dissemination of a single OXA-48-producing Klebsiella pneumoniae clone. Clin Microbiol Infect [Internet]. 2011 Dec [cited 2018 Nov 24];17(12):E24–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2197318544. Carmeli Y, Akova M, Cornaglia G, Daikos GL, Garau J, Harbarth S, et al. Controlling the spread of carbapenemase-producing Gram-negatives: therapeutic approach and infection control. Clin Microbiol Infect [Internet]. 2010 Feb [cited 2018 Nov 25];16(2):102–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2008560445. Tumbarello M, Viale P, Viscoli C, Trecarichi EM, Tumietto F, Marchese A, et al. Predictors of Mortality in Bloodstream Infections Caused by Klebsiella pneumoniae Carbapenemase-Producing K. pneumoniae: Importance of Combination Therapy. Clin Infect Dis [Internet]. 2012 Oct 1 [cited 2018 Nov 25];55(7):943–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2275251646. Qureshi ZA, Paterson DL, Potoski BA, Kilayko MC, Sandovsky G, Sordillo E, et al. Treatment Outcome of Bacteremia Due to KPC-Producing Klebsiella pneumoniae: Superiority of Combination Antimicrobial Regimens. Antimicrob Agents Chemother [Internet]. 2012 Apr [cited 2018 Nov 25];56(4):2108–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2225281647. Zarkotou O, Pournaras S, Tselioti P, Dragoumanos V, Pitiriga V, Ranellou K, et al. Predictors of mortality in patients with bloodstream infections caused by KPC-producing Klebsiella pneumoniae and impact of appropriate antimicrobial treatment. Clin Microbiol Infect [Internet]. 2011 Dec [cited 2018 Nov 25];17(12):1798–803. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2159579348. Pano-Pardo JR, Ruiz-Carrascoso G, Navarro-San Francisco C, Gomez-Gil R, Mora-Rillo M, Romero-Gomez MP, et al. Infections caused by OXA-48-producing Klebsiella pneumoniae in a tertiary hospital in Spain in the setting of a prolonged, hospital-wide outbreak. J Antimicrob Chemother [Internet]. 2013 Jan 1 [cited 2018 Nov 25];68(1):89–96. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2304522449. Daikos GL, Panagiotakopoulou A, Tzelepi E, Loli A, Tzouvelekis LS, Miriagou V. Activity of imipenem against VIM-1 metallo-β-lactamase-producing Klebsiella pneumoniae in the murine thigh infection model. Clin Microbiol Infect [Internet]. 2007 Feb [cited 2018 Nov 25];13(2):202–5. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1732873550. Villegas MV, Pallares CJ, Escandón-Vargas K, Hernández-Gómez C, Correa A, Álvarez C, et al. Characterization and Clinical Impact of Bloodstream Infection Caused by Carbapenemase-Producing Enterobacteriaceae in Seven Latin American Countries. Selvey LA, editor. PLoS One [Internet]. 2016 Apr 22 [cited 2018 Nov 25];11(4):e0154092. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2710491051. Gomez-Simmonds A, Nelson B, Eiras DP, Loo A, Jenkins SG, Whittier S, et al. Combination Regimens for Treatment of Carbapenem-Resistant Klebsiella pneumoniae Bloodstream Infections. Antimicrob Agents Chemother [Internet]. 2016 Jun [cited 2018 Nov 25];60(6):3601–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2704455552. Falagas ME, Lourida P, Poulikakos P, Rafailidis PI, Tansarli GS. Antibiotic Treatment of Infections Due to Carbapenem-Resistant Enterobacteriaceae: Systematic Evaluation of the Available Evidence. Antimicrob Agents Chemother [Internet]. 2014 Feb [cited 2018 Nov 25];58(2):654–63. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2408064653. Fraenkel-Wandel Y, Raveh-Brawer D, Wiener-Well Y, Yinnon AM, Assous M V. Mortality due to bla KPC Klebsiella pneumoniae bacteraemia. J Antimicrob Chemother [Internet]. 2016 Apr [cited 2018 Nov 25];71(4):1083–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2666139654. Tzouvelekis LS, Markogiannakis A, Psichogiou M, Tassios PT, Daikos GL. Carbapenemases in Klebsiella pneumoniae and Other Enterobacteriaceae: an Evolving Crisis of Global Dimensions. Clin Microbiol Rev [Internet]. 2012 Oct 1 [cited 2018 Nov 25];25(4):682–707. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2303432655. Mouloudi E, Protonotariou E, Zagorianou A, Iosifidis E, Karapanagiotou A, Giasnetsova T, et al. Bloodstream Infections Caused by Metallo-β-Lactamase/Klebsiella pneumoniae Carbapenemase–Producing K. pneumoniae among Intensive Care Unit Patients in Greece: Risk Factors for Infection and Impact of Type of Resistance on Outcomes. Infect Control Hosp Epidemiol [Internet]. 2010 Dec 2 [cited 2018 Nov 25];31(12):1250–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2097372556. Ben-David D, Kordevani R, Keller N, Tal I, Marzel A, Gal-Mor O, et al. Outcome of carbapenem resistant Klebsiella pneumoniae bloodstream infections. Clin Microbiol Infect [Internet]. 2012 Jan [cited 2018 Nov 25];18(1):54–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2172225757. Capone A, Giannella M, Fortini D, Giordano A, Meledandri M, Ballardini M, et al. High rate of colistin resistance among patients with carbapenem-resistant Klebsiella pneumoniae infection accounts for an excess of mortality. Clin Microbiol Infect [Internet]. 2013 Jan [cited 2018 Nov 25];19(1):E23–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2313723558. Neuner EA, Yeh J-Y, Hall GS, Sekeres J, Endimiani A, Bonomo RA, et al. Treatment and outcomes in carbapenem-resistant Klebsiella pneumoniae bloodstream infections. Diagn Microbiol Infect Dis [Internet]. 2011 Apr [cited 2018 Nov 25];69(4):357–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2139652959. Patel G, Huprikar S, Factor SH, Jenkins SG, Calfee DP. Outcomes of Carbapenem-Resistant Klebsiella pneumoniae Infection and the Impact of Antimicrobial and Adjunctive Therapies. Infect Control Hosp Epidemiol [Internet]. 2008 Dec 2 [cited 2018 Nov 25];29(12):1099–106. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1897345560. Nguyen M, Eschenauer GA, Bryan M, O’Neil K, Furuya EY, Della-Latta P, et al. Carbapenem-resistant Klebsiella pneumoniae bacteremia: factors correlated with clinical and microbiologic outcomes. Diagn Microbiol Infect Dis [Internet]. 2010 Jun [cited 2018 Nov 25];67(2):180–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2035669961. Satlin MJ, Jenkins SG, Walsh TJ. The Global Challenge of Carbapenem-Resistant Enterobacteriaceae in Transplant Recipients and Patients With Hematologic Malignancies. Clin Infect Dis [Internet]. 2014 May 1 [cited 2018 Nov 25];58(9):1274–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2446328062. Kalpoe JS, Sonnenberg E, Factor SH, del Rio Martin J, Schiano T, Patel G, et al. Mortality associated with carbapenem-resistant Klebsiella pneumoniae infections in liver transplant recipients. Liver Transplant [Internet]. 2012 Apr [cited 2018 Nov 25];18(4):468–74. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2246754863. Johnson K, Boucher HW. Editorial Commentary: Imminent Challenges: Carbapenem-Resistant Enterobacteriaceae in Transplant Recipients and Patients With Hematologic Malignancy. Clin Infect Dis [Internet]. 2014 May 1 [cited 2018 Nov 25];58(9):1284–6. Available from: https://academic.oup.com/cid/article-lookup/doi/10.1093/cid/ciu05664. Satlin MJ, Calfee DP, Chen L, Fauntleroy KA, Wilson SJ, Jenkins SG, et al. Emergence of carbapenem-resistant Enterobacteriaceae as causes of bloodstream infections in patients with hematologic malignancies. Leuk Lymphoma [Internet]. 2013 Apr 14 [cited 2018 Nov 25];54(4):799–806. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2291682665. Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Intensive Care Med [Internet]. 2008 Jan [cited 2018 Nov 25];34(1):17–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1805808566. Mouncey PR, Osborn TM, Power GS, Harrison DA, Sadique MZ, Grieve RD, et al. Trial of Early, Goal-Directed Resuscitation for Septic Shock. N Engl J Med [Internet]. 2015 Apr 2 [cited 2018 Nov 25];372(14):1301–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2577653267. Rodríguez-Baño J, Cisneros JM, Cobos-Trigueros N, Fresco G, Navarro-San Francisco C, Gudiol C, et al. Diagnosis and antimicrobial treatment of invasive infections due to multidrug-resistant Enterobacteriaceae. Guidelines of the Spanish Society of Infectious Diseases and Clinical Microbiology. Enferm Infecc Microbiol Clin [Internet]. 2015 May [cited 2018 Nov 25];33(5):337.e1-337.e21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2560021868. Retamar P, Portillo MM, López-Prieto MD, Rodríguez-López F, de Cueto M, García M V., et al. Impact of Inadequate Empirical Therapy on the Mortality of Patients with Bloodstream Infections: a Propensity Score-Based Analysis. Antimicrob Agents Chemother [Internet]. 2012 Jan [cited 2018 Nov 25];56(1):472–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2200599969. Qureshi ZA, Syed A, Clarke LG, Doi Y, Shields RK. Epidemiology and Clinical Outcomes of Patients with Carbapenem-Resistant Klebsiella pneumoniae Bacteriuria. Antimicrob Agents Chemother [Internet]. 2014 Jun [cited 2018 Nov 25];58(6):3100–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2463769170. Tumbarello M, Trecarichi EM, De Rosa FG, Giannella M, Giacobbe DR, Bassetti M, et al. Infections caused by KPC-producing Klebsiella pneumoniae: differences in therapy and mortality in a multicentre study. J Antimicrob Chemother [Internet]. 2015 Jul 1 [cited 2018 Nov 25];70(7):2133–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2590015971. Paul M, Carmeli Y, Durante-Mangoni E, Mouton JW, Tacconelli E, Theuretzbacher U, et al. Combination therapy for carbapenem-resistant Gram-negative bacteria. J Antimicrob Chemother [Internet]. 2014 Sep 1 [cited 2018 Nov 25];69(9):2305–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2487234672. Zusman O, Altunin S, Koppel F, Dishon Benattar Y, Gedik H, Paul M. Polymyxin monotherapy or in combination against carbapenem-resistant bacteria: systematic review and meta-analysis. J Antimicrob Chemother [Internet]. 2017 Jan [cited 2018 Nov 25];72(1):29–39. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2762457273. Gutiérrez-Gutiérrez B, Bonomo RA, Carmeli Y, Paterson DL, Pascual A, Rodríguez-Baño J. Combination therapy for bloodstream infections with carbapenemase-producing Enterobacteriaceae – Authors’ reply. Lancet Infect Dis [Internet]. 2017 Oct [cited 2018 Nov 25];17(10):1020–1. Available from: https://linkinghub.elsevier.com/retrieve/pii/S147330991730522474. Jacobs DM, Safir MC, Huang D, Minhaj F, Parker A, Rao GG. Triple combination antibiotic therapy for carbapenemase-producing Klebsiella pneumoniae: a systematic review. Ann Clin Microbiol Antimicrob [Internet]. 2017 Dec 25 [cited 2018 Nov 25];16(1):76. Available from: https://ann-clinmicrob.biomedcentral.com/articles/10.1186/s12941-017-0249-275. Daikos GL, Tsaousi S, Tzouvelekis LS, Anyfantis I, Psichogiou M, Argyropoulou A, et al. Carbapenemase-Producing Klebsiella pneumoniae Bloodstream Infections: Lowering Mortality by Antibiotic Combination Schemes and the Role of Carbapenems. Antimicrob Agents Chemother [Internet]. 2014 Apr [cited 2018 Nov 25];58(4):2322–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2451408376. Souli M, Konstantinidou E, Tzepi I, Tsaganos T, Pefanis A, Chryssouli Z, et al. Efficacy of carbapenems against a metallo- -lactamase-producing Escherichia coli clinical isolate in a rabbit intra-abdominal abscess model. J Antimicrob Chemother [Internet]. 2011 Mar 1 [cited 2018 Nov 25];66(3):611–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2117767477. Wiskirchen DE, Nordmann P, Crandon JL, Nicolau DP. In vivo efficacy of human simulated regimens of carbapenems and comparator agents against NDM-1-producing Enterobacteriaceae. Antimicrob Agents Chemother [Internet]. 2014 [cited 2018 Nov 25];58(3):1671–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2437919578. Bulik CC, Christensen H, Li P, Sutherland CA, Nicolau DP, Kuti JL. Comparison of the Activity of a Human Simulated, High-Dose, Prolonged Infusion of Meropenem against Klebsiella pneumoniae Producing the KPC Carbapenemase versus That against Pseudomonas aeruginosa in an In Vitro Pharmacodynamic Model. Antimicrob Agents Chemother [Internet]. 2010 Feb 1 [cited 2018 Nov 25];54(2):804–10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1999592779. Daikos GL, Markogiannakis A. Carbapenemase-producing Klebsiella pneumoniae: (when) might we still consider treating with carbapenems? Clin Microbiol Infect [Internet]. 2011 Aug [cited 2018 Nov 25];17(8):1135–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2163566380. Bulik CC, Nicolau DP. Double-carbapenem therapy for carbapenemase-producing Klebsiella pneumoniae. Antimicrob Agents Chemother [Internet]. 2011 Jun [cited 2018 Nov 25];55(6):3002–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2142220581. Giamarellou H, Galani L, Baziaka F, Karaiskos I. Effectiveness of a Double-Carbapenem Regimen for Infections in Humans Due to Carbapenemase-Producing Pandrug-Resistant Klebsiella pneumoniae. Antimicrob Agents Chemother [Internet]. 2013 May [cited 2018 Nov 25];57(5):2388–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2343963582. Ceccarelli G, Falcone M, Giordano A, Mezzatesta ML, Caio C, Stefani S, et al. Successful ertapenem-doripenem combination treatment of bacteremic ventilator-associated pneumonia due to colistin-resistant KPC-producing Klebsiella pneumoniae. Antimicrob Agents Chemother [Internet]. 2013 Jun [cited 2018 Nov 25];57(6):2900–1. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2357153683. Mimoz O, Grégoire N, Poirel L, Marliat M, Couet W, Nordmann P. Broad-Spectrum β-Lactam Antibiotics for Treating Experimental Peritonitis in Mice Due to Klebsiella pneumoniae Producing the Carbapenemase OXA-48. Antimicrob Agents Chemother [Internet]. 2012 May [cited 2018 Nov 25];56(5):2759–60. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2233091284. Wagenlehner FM, Sobel JD, Newell P, Armstrong J, Huang X, Stone GG, et al. Ceftazidime-avibactam Versus Doripenem for the Treatment of Complicated Urinary Tract Infections, Including Acute Pyelonephritis: RECAPTURE, a Phase 3 Randomized Trial Program. Clin Infect Dis [Internet]. 2016 Sep 15 [cited 2018 Nov 25];63(6):754–62. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2731326885. Carmeli Y, Armstrong J, Laud PJ, Newell P, Stone G, Wardman A, et al. Ceftazidime-avibactam or best available therapy in patients with ceftazidime-resistant Enterobacteriaceae and Pseudomonas aeruginosa complicated urinary tract infections or complicated intra-abdominal infections (REPRISE): a randomised, pathogen-directed, phase 3 study. Lancet Infect Dis [Internet]. 2016 Jun [cited 2018 Nov 25];16(6):661–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2710746086. Woodford N, Turton JF, Livermore DM. Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol Rev [Internet]. 2011 Sep [cited 2018 Nov 25];35(5):736–55. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2130339487. Liu Y-Y, Wang Y, Walsh TR, Yi L-X, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis [Internet]. 2016 Feb [cited 2018 Nov 25];16(2):161–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2660317288. Garonzik SM, Li J, Thamlikitkul V, Paterson DL, Shoham S, Jacob J, et al. Population Pharmacokinetics of Colistin Methanesulfonate and Formed Colistin in Critically Ill Patients from a Multicenter Study Provide Dosing Suggestions for Various Categories of Patients. Antimicrob Agents Chemother [Internet]. 2011 Jul [cited 2018 Nov 25];55(7):3284–94. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2155576389. Doi Y, Wachino J, Arakawa Y. Aminoglycoside Resistance. Infect Dis Clin North Am [Internet]. 2016 Jun [cited 2018 Nov 25];30(2):523–37. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2720877190. Gonzalez-Padilla M, Torre-Cisneros J, Rivera-Espinar F, Pontes-Moreno A, Lopez-Cerero L, Pascual A, et al. Gentamicin therapy for sepsis due to carbapenem-resistant and colistin-resistant Klebsiella pneumoniae. J Antimicrob Chemother [Internet]. 2015 Mar 1 [cited 2018 Nov 25];70(3):905–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2534480991. Falagas ME, Giannopoulou KP, Kokolakis GN, Rafailidis PI. Fosfomycin: Use Beyond Urinary Tract and Gastrointestinal Infections. Clin Infect Dis [Internet]. 2008 Apr 1 [cited 2018 Nov 25];46(7):1069–77. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1844482792. Giamarellou H. Multidrug-resistant Gram-negative bacteria: how to treat and for how long. Int J Antimicrob Agents [Internet]. 2010 Dec [cited 2018 Nov 25];36:S50–4. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2112992493. Sastry S, Doi Y. Fosfomycin: Resurgence of an old companion. J Infect Chemother [Internet]. 2016 May [cited 2018 Nov 25];22(5):273–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2692325994. Shorr AF, Pogue JM, Mohr JF. Intravenous fosfomycin for the treatment of hospitalized patients with serious infections. Expert Rev Anti Infect Ther [Internet]. 2017 Oct 3 [cited 2018 Nov 25];15(10):935–45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2890179395. Tasina E, Haidich A-B, Kokkali S, Arvanitidou M. Efficacy and safety of tigecycline for the treatment of infectious diseases: a meta-analysis. Lancet Infect Dis [Internet]. 2011 Nov [cited 2018 Nov 25];11(11):834–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2178470896. Bucaneve G, Micozzi A, Picardi M, Ballanti S, Cascavilla N, Salutari P, et al. Results of a Multicenter, Controlled, Randomized Clinical Trial Evaluating the Combination of Piperacillin/Tazobactam and Tigecycline in High-Risk Hematologic Patients With Cancer With Febrile Neutropenia. J Clin Oncol [Internet]. 2014 May 10 [cited 2018 Nov 25];32(14):1463–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2473380797. Iosifidis E, Violaki A, Michalopoulou E, Volakli E, Diamanti E, Koliouskas D, et al. Use of Tigecycline in Pediatric Patients With Infections Predominantly Due to Extensively Drug-Resistant Gram-Negative Bacteria. J Pediatric Infect Dis Soc [Internet]. 2016 Mar 21 [cited 2018 Nov 25];6(2):piw009. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27000866ORIGINAL2020_Tesis_Fabio_Alberto_Gonzalez_Plata.pdf2020_Tesis_Fabio_Alberto_Gonzalez_Plata.pdfTesisapplication/pdf1998858https://repository.unab.edu.co/bitstream/20.500.12749/7187/1/2020_Tesis_Fabio_Alberto_Gonzalez_Plata.pdfcb6b51802847ff4d666941ed65b309c7MD51open access2020_Licencia_Fabio_Alberto_Gonzalez_Plata.pdf2020_Licencia_Fabio_Alberto_Gonzalez_Plata.pdfLicenciaapplication/pdf71558https://repository.unab.edu.co/bitstream/20.500.12749/7187/2/2020_Licencia_Fabio_Alberto_Gonzalez_Plata.pdf134c85400562e47a6ae7633fa58a5402MD52metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.unab.edu.co/bitstream/20.500.12749/7187/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53open accessTHUMBNAIL2020_Tesis_Fabio_Alberto_Gonzalez_Plata.pdf.jpg2020_Tesis_Fabio_Alberto_Gonzalez_Plata.pdf.jpgIM Thumbnailimage/jpeg4891https://repository.unab.edu.co/bitstream/20.500.12749/7187/4/2020_Tesis_Fabio_Alberto_Gonzalez_Plata.pdf.jpg7705063da4d23623ff4a95d7e914ef12MD54open access2020_Licencia_Fabio_Alberto_Gonzalez_Plata.pdf.jpg2020_Licencia_Fabio_Alberto_Gonzalez_Plata.pdf.jpgIM Thumbnailimage/jpeg10241https://repository.unab.edu.co/bitstream/20.500.12749/7187/5/2020_Licencia_Fabio_Alberto_Gonzalez_Plata.pdf.jpgfbe870761e05edbf1d6b77f1dc19a79aMD55open access20.500.12749/7187oai:repository.unab.edu.co:20.500.12749/71872022-11-20 08:06:48.514open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=