Diseño de una tinta de biomaterial a base de pegda y plasma rico en plaquetas para potenciales aplicaciones en el desarrollo de apósitos personalizados para úlceras crónicas de pie diabético
Las úlceras crónicas de pie diabético (UCPD) son una problemática que afecta la integridad de la piel, la cual necesita de una matriz extracelular (andamio) y biomoléculas para lograr el proceso cicatrización. Las biomoléculas inmersas en el plasma rico en plaquetas (PRP), incluyen factores de creci...
- Autores:
-
Mateus Suárez, Sofia Valentina
Torres Pinzón, Michelle María
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2021
- Institución:
- Universidad Autónoma de Bucaramanga - UNAB
- Repositorio:
- Repositorio UNAB
- Idioma:
- spa
- OAI Identifier:
- oai:repository.unab.edu.co:20.500.12749/13790
- Acceso en línea:
- http://hdl.handle.net/20.500.12749/13790
- Palabra clave:
- Biomedical engineering
Engineering
Medical electronics
Biological physics
Bioengineering
Medical instruments and apparatus
Medicine
Pegda
3D bioprinting
Biomaterial ink
CDFU
Foot diseases
Biomolecules
Ingeniería biomédica
Ingeniería
Biofísica
Bioingeniería
Medicina
Enfermedades de los pies
Biomoléculas
Ingeniería clínica
Clinical engineering
Electrónica médica
Instrumentos y aparatos médicos
Pegda
Bioimpresión 3D
Tinta de biomaterial
PRP
UCPD
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id |
UNAB2_8e26ba569bf4f3100611fea74dcf1e13 |
---|---|
oai_identifier_str |
oai:repository.unab.edu.co:20.500.12749/13790 |
network_acronym_str |
UNAB2 |
network_name_str |
Repositorio UNAB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Diseño de una tinta de biomaterial a base de pegda y plasma rico en plaquetas para potenciales aplicaciones en el desarrollo de apósitos personalizados para úlceras crónicas de pie diabético |
dc.title.translated.spa.fl_str_mv |
Design of a pegda-based biomaterial ink and platelet-rich plasma for potential applications in the development of personalized dressings for chronic diabetic foot ulcers |
title |
Diseño de una tinta de biomaterial a base de pegda y plasma rico en plaquetas para potenciales aplicaciones en el desarrollo de apósitos personalizados para úlceras crónicas de pie diabético |
spellingShingle |
Diseño de una tinta de biomaterial a base de pegda y plasma rico en plaquetas para potenciales aplicaciones en el desarrollo de apósitos personalizados para úlceras crónicas de pie diabético Biomedical engineering Engineering Medical electronics Biological physics Bioengineering Medical instruments and apparatus Medicine Pegda 3D bioprinting Biomaterial ink CDFU Foot diseases Biomolecules Ingeniería biomédica Ingeniería Biofísica Bioingeniería Medicina Enfermedades de los pies Biomoléculas Ingeniería clínica Clinical engineering Electrónica médica Instrumentos y aparatos médicos Pegda Bioimpresión 3D Tinta de biomaterial PRP UCPD |
title_short |
Diseño de una tinta de biomaterial a base de pegda y plasma rico en plaquetas para potenciales aplicaciones en el desarrollo de apósitos personalizados para úlceras crónicas de pie diabético |
title_full |
Diseño de una tinta de biomaterial a base de pegda y plasma rico en plaquetas para potenciales aplicaciones en el desarrollo de apósitos personalizados para úlceras crónicas de pie diabético |
title_fullStr |
Diseño de una tinta de biomaterial a base de pegda y plasma rico en plaquetas para potenciales aplicaciones en el desarrollo de apósitos personalizados para úlceras crónicas de pie diabético |
title_full_unstemmed |
Diseño de una tinta de biomaterial a base de pegda y plasma rico en plaquetas para potenciales aplicaciones en el desarrollo de apósitos personalizados para úlceras crónicas de pie diabético |
title_sort |
Diseño de una tinta de biomaterial a base de pegda y plasma rico en plaquetas para potenciales aplicaciones en el desarrollo de apósitos personalizados para úlceras crónicas de pie diabético |
dc.creator.fl_str_mv |
Mateus Suárez, Sofia Valentina Torres Pinzón, Michelle María |
dc.contributor.advisor.none.fl_str_mv |
Becerra Bayona, Silvia Milena Solarte David, Víctor Alfonso |
dc.contributor.author.none.fl_str_mv |
Mateus Suárez, Sofia Valentina Torres Pinzón, Michelle María |
dc.contributor.cvlac.spa.fl_str_mv |
Becerra Bayona, Silvia Milena [0001568861] Solarte David, Víctor Alfonso [0001329391] |
dc.contributor.googlescholar.spa.fl_str_mv |
Becerra Bayona, Silvia Milena [5wr21EQAAAAJ&hl=es&oi=ao] |
dc.contributor.orcid.spa.fl_str_mv |
Becerra Bayona, Silvia Milena [0000-0002-4499-5885] Solarte David, Víctor Alfonso [0000-0002-9856-1484] |
dc.contributor.scopus.none.fl_str_mv |
Becerra Bayona, Silvia Milena [36522328100] |
dc.contributor.researchgate.spa.fl_str_mv |
Becerra Bayona, Silvia Milena [Silvia-Becerra-Bayona] Solarte David, Víctor Alfonso [Victor-Solarte-David] |
dc.contributor.apolounab.none.fl_str_mv |
Becerra Bayona, Silvia Milena [silvia-milena-becerra-bayona] |
dc.contributor.linkedin.none.fl_str_mv |
Becerra Bayona, Silvia Milena [silvia-becerra-3174455a] |
dc.subject.keywords.spa.fl_str_mv |
Biomedical engineering Engineering Medical electronics Biological physics Bioengineering Medical instruments and apparatus Medicine Pegda 3D bioprinting Biomaterial ink CDFU Foot diseases Biomolecules |
topic |
Biomedical engineering Engineering Medical electronics Biological physics Bioengineering Medical instruments and apparatus Medicine Pegda 3D bioprinting Biomaterial ink CDFU Foot diseases Biomolecules Ingeniería biomédica Ingeniería Biofísica Bioingeniería Medicina Enfermedades de los pies Biomoléculas Ingeniería clínica Clinical engineering Electrónica médica Instrumentos y aparatos médicos Pegda Bioimpresión 3D Tinta de biomaterial PRP UCPD |
dc.subject.lemb.spa.fl_str_mv |
Ingeniería biomédica Ingeniería Biofísica Bioingeniería Medicina Enfermedades de los pies Biomoléculas |
dc.subject.proposal.spa.fl_str_mv |
Ingeniería clínica Clinical engineering Electrónica médica Instrumentos y aparatos médicos Pegda Bioimpresión 3D Tinta de biomaterial PRP UCPD |
description |
Las úlceras crónicas de pie diabético (UCPD) son una problemática que afecta la integridad de la piel, la cual necesita de una matriz extracelular (andamio) y biomoléculas para lograr el proceso cicatrización. Las biomoléculas inmersas en el plasma rico en plaquetas (PRP), incluyen factores de crecimiento que contribuyen a la regeneración de tejidos, por lo que se propuso el diseño de una tinta de biomaterial de polietilenglicol diacrilato (PEGDA) y PRP para potenciales aplicaciones en el desarrollo de apósitos personalizados, como tratamiento alternativo para promover la cicatrización de UCPD. El estudio planteo la búsqueda de un material viscoso (ThA) para aumentar la imprimibilidad del polímero, la inmovilización del PRP en la tinta de PEGDA al 10, 20 y 30% p/v, y ThA, y la evaluación de la imprimibilidad al variar los parámetros de flujo (150, 250 y 350%) y velocidad de extrusión (2 y 5 mm/s). Por lo anterior, se empleó gelatina para permitir la impresión de la mezcla, y utilizarla como una matriz de sacrificio que fuera liberada de la estructura. Así mismo se obtuvieron tintas de biomaterial con una óptima imprimibilidad según la fidelidad en la morfología y dimensiones diseñadas, con una formación de filamentos continuos. Posteriormente, se determinó que el PRP no es apto para la extrusión de un filamento y no permite la obtención de una solución homogénea al ser mezclado con la tinta de biomaterial, por lo que, basado en nuestro criterio, no puede ser utilizado para impresión. Con base en lo anterior, se establece que la tinta tiene potencial de ser usada para la inmovilización de biomoléculas y mejorar el tratamiento de las UCPD, al permitir la fabricación de andamios personalizados. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-08-12T13:53:24Z |
dc.date.available.none.fl_str_mv |
2021-08-12T13:53:24Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.local.spa.fl_str_mv |
Trabajo de Grado |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12749/13790 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Autónoma de Bucaramanga - UNAB |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional UNAB |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.unab.edu.co |
url |
http://hdl.handle.net/20.500.12749/13790 |
identifier_str_mv |
instname:Universidad Autónoma de Bucaramanga - UNAB reponame:Repositorio Institucional UNAB repourl:https://repository.unab.edu.co |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Alavi , A., Sibbald, R., Mayer, D., Goodman, L., Botros, M., Armstrong, D., . . . Kirsner, R. (2014). Diabetic foot ulcers: Part I. Pathophysiology and prevention. Journal of the American Academy of Dermatology. doi:10.1016/j.jaad.2013.06.055 Alexiadou, K., & Doupis, J. (2012). Management of Diabetic Foot Ulcers. Diabetes therapy : research, treatment and education of diabetes and related disorders. doi:10.1007/s13300012-0004-9 Amable, P. R., Carias, R. B., Teixeira, M. V., da Cruz Pacheco, I., Corrêa do Amaral, R. J., Granjeiro, J. M., & Borojevic, R. (2013). Platelet-rich plasma preparation for regenerative medicine: optimization and quantification of cytokines and growth factors. Stem cell research & therapy. doi:10.1186/scrt218 Armstrong, D., Boulton , A., & Bus, S. (2017). Diabetic Foot Ulcers and Their Recurrence. The New England journal of medicine. doi:10.1056/NEJMra1615439 Bahney, C. S., Lujan, T. J., Hsu, C. W., Bottlang, M., West, J. L., & Johnstone, B. (2011). Visible light photoinitiation of mesenchymal stem cell-laden bioresponsive hydrogel. European cells & materials. doi:10.22203/ecm.v022a04 Carr, M. E., & Carr, S. L. (1995). Fibrin structure and concentration alter clot elastic modulus but do not alter platelet mediated force development. Blood Coagulation & Fibrinolysis. doi:10.1097/00001721-199502000-00013 Chung, J., Naficy, S., Yue, Z., Kapsa, R., Quigley, A., Moulton, S. E., & Wallace, G. G. (2013). Bio-ink properties and printability for extrusion printing living cells. Biomaterials science. doi:10.1039/c3bm00012e Conde-Montero, E., de la Cueva Dobao, P., & Martínez González, J. (2017). Platelet-rich plasma for the treatment of chronic wounds: evidence to date. Chronic Wound Care Management and Research. doi:https://doi.org/10.2147/CWCMR.S118655 Deuel, T. F., & Chang, Y. (2014). Growth factors. In R. Lanza, R. Langer, & J. Vacanti, Principles of Tissue Engineering (pp. 291 - 308). doi:10.1016/b978-0-12-3983589.00016-1 Frost, B. A., Sutliff, B. P., Thayer, P., Bortner, M. J., & Foster, E. J. (2019). Gradient poly (ethylene glycol) diacrylate and cellulose nanocrystals tissue engineering composite scaffolds via extrusion bioprinting. Frontiers in bioengineering and biotechnology. Frontiers in bioengineering and biotechnology. doi:10.3389/fbioe.2019.00280 Game, F., Apelqvist, J., Attinger, C., Hartemann, A., Hinchliffe, R., Löndahl, M., . . . Jeffcoate, W. (2016). Effectiveness of interventions to enhance healing of chronic ulcers of the foot in diabetes: a systematic review. Diabetes/metabolism research and reviews. Retrieved from https://pubmed.ncbi.nlm.nih.gov/26344936/ Gao, X., Gao, L., Groth, T., Liu, T., He, D., Wang, M., . . . Zhao, M. (2019). Fabrication and properties of an injectable sodium alginate/PRP composite hydrogel as a potential cell carrier for cartilage repair. Journal of biomedical materials research. Part A. doi:10.1002/jbm.a.36720 Groll, J., Boland, T., Blunk, T., Burdick, J. A., Cho, D. W., Dalton, P. D., & Malda, J. (2016). Biofabrication: reappraising the definition of an evolving field. Biofabrication. Retrieved from https://iopscience.iop.org/article/10.1088/1758-5090/8/1/013001 Groll, J., Burdick, J., Cho, D.-W., Derby, B., Gelinsky, M., Heilshorn, S., . . . Woodfield, T. (2018). A definition of bioinks and their distinction from biomaterial inks. Biofabrication. doi:10.1088/1758-5090/aaec52 Gungor-Ozkerim, P., Inci, I., Zhang, Y., Khademhosseini, A., & Dokmeci, M. (2018). Bioinks for 3D bioprinting: an overview. Biomaterials science. doi:10.1039/c7bm00765e He, Y., Yang, F., Zhao, H., Gao, Q., Xia, B., & Fu , J. (2016). Research on the printability of hydrogels in 3D bioprinting. Scientific reports. doi:10.1038/srep29977 Hicks, C., Canner , J., Mathioudakis, N., Lippincott , C., Sherman, R., & Abularrage, C. (2020). Incidence and Risk Factors Associated With Ulcer Recurrence Among Patients With Diabetic Foot Ulcers Treated in a Multidisciplinary Setting. The Journal of surgical research. doi:10.1016/j.jss.2019.09.025 Hong, N., Yang, G.-H., Lee , J., & Kim , G. (2017). 3D bioprinting and its in vivo applications. Journal of biomedical materials research. Part B, Applied biomaterials. Retrieved from https://pubmed.ncbi.nlm.nih.gov/28106947/ Huber, S. C., Junior, J., Silva, L. Q., Montalvão, S., & Annichino-Bizzacchi, J. M. (2019). Freeze-dried versus fresh platelet-rich plasma in acute wound healing of an animal model. Regenerative medicine. doi:https://doi.org/10.2217/rme-2018-0119 International Diabetes Federation. (2019). IDF Diabetes Atlas (9th ed.). Brussels, Belgium. Retrieved from https://www.diabetesatlas.org/en/ Jain, E., Chinzei, N., Blanco, A., Case, N., Sandell, L., Sell, S., . . . Zustiak, S. (2019). PlateletRich Plasma Released From Polyethylene Glycol Hydrogels Exerts Beneficial Effects on Human Chondrocytes. Journal of orthopaedic research: official publication of the Orthopaedic Research Society. doi:10.1002/jor.24404 Jain, E., Sheth, S., Dunn, A., Zustiak, S., & Sell, S. (2017). Sustained release of multicomponent platelet-rich plasma proteins from hydrolytically degradable PEG hydrogels. Journal of biomedical materials research. Part A. Retrieved from https://pubmed.ncbi.nlm.nih.gov/28865187/ Jo, C. H., Roh, Y. H., Kim, J. E., Shin, S., & Yoon, K. S. (2013). Optimizing Platelet-Rich Plasma Gel Formation by Varying Time and Gravitational Forces During Centrifugation. Journal of Oral Implantology. doi:10.1563/AAID-JOI-D-10-00155 Joas, S., Tovar, G., Celik, O., Bonten, C., & Southan, A. (2018). Extrusion-Based 3D Printing of Poly(ethylene glycol) Diacrylate Hydrogels Containing Positively and Negatively Charged Groups. Gels (Basel, Switzerland). doi:https://doi.org/10.3390/gels4030069 Li, H., Ma, T., Zhang, M., Zhu, J., Liu, J., & Tan, F. (2018). Fabrication of sulphonated poly(ethylene glycol)-diacrylate hydrogel as a bone grafting scaffold. Journal of materials science. Materials in medicine. doi:10.1007/s10856-018-6199-1 Li, Z., Zhang, X., Yuan, T., Zhang, Y., Luo, C., Zhang, J., . . . Fan, W. (2020). Addition of Platelet-Rich Plasma to Silk Fibroin Hydrogel Bioprinting for Cartilage Regeneration. Tissue engineering. Part A. doi:10.1089/ten.TEA.2019.0304 Liang, J., Guo, Z., Timmerman, A., Grijpma, D., & Poot, A. (2018). Enhanced mechanical and cell adhesive properties of photo-crosslinked PEG hydrogels by incorporation of gelatin in the networks. Biomedical Materials. Retrieved from https://iopscience.iop.org/article/10.1088/1748-605X/aaf31b/meta Luo, Y., Engelmayr, G., Auguste, D., Ferreira, L., Karp, J., Saigal, R., & Langer, R. (2014). 3D Scaffolds. In R. Lanza, R. Langer, & J. Vacanti, Principles of Tissue Engineering (4 ed., pp. 475 - 494). doi:https://doi.org/10.1016/B978-0-12-398358-9.00024-0 Maione, A., Smith , A., Kashpur, O., Yanez, V., Knight, E., Mooney, D., . . . Garlick, J. (2016). Altered ECM deposition by diabetic foot ulcer-derived fibroblasts implicates fibronectin in chronic wound repair. Wound repair and regeneration: official publication of the Wound Healing Society [and] the European Tissue Repair Society. Retrieved from https://pubmed.ncbi.nlm.nih.gov/27102877/ Marinel.lo Roura, J., & Verdú Soriano, J. (2018). Conferencia nacional de consenso sobre las úlceras de la extremidad inferior (C.O.N.U.E.I.) (2da Edición ed.). Madrid, Ergon, España. Retrieved from https://gneaupp.info/wpcontent/uploads/2018/04/CONUEIX2018.pdf Mazzucco, L., Balbo, V., Cattana, E., & Borzini, P. (2008). Platelet-rich plasma and platelet gel preparation using Plateltex®. Vox sanguinis. doi:10.1111/j.1423-0410.2007.01027.x Mehta, S., & Watson, J. (2008). Platelet rich concentrate: basic science and current clinical applications. Journal of orthopaedic trauma. doi:10.1097/BOT.0b013e31817e793f Miraftab, M., Smart, G., Kennedy, J. F., Knill, C. J., Mistry, J., & Groocock, M. R. (2006). Novel chitosan-alginate fibres for advanced wound dressings. Medical Textiles and Biomaterials for Healthcare. doi:10.1533/9781845694104.1.3 Mouser, V., Melchels, F., Visser, J., Dhert, W., Gawlitta, D., & Malda, J. (2016). Yield stress determines bioprintability of hydrogels based on gelatin-methacryloyl and gellan gum for cartilage bioprinting. Biofabrication. doi:10.1088/1758-5090/8/3/035003 Murray, M. M., Spindler, K. P., Abreu, E., Muller, J. A., Nedder, A., Kelly, M., . . . Connolly, S. A. (2007). Collagen-platelet rich plasma hydrogel enhances primary repair of the porcine anterior cruciate ligament. Journal of orthopaedic research : official publication of the Orthopaedic Research Society. doi:10.1002/jor.20282 Naghieh, S., & Chen, D. (2021). Printability – a Key Issue in Extrusion-based Bioprinting. Journal of Pharmaceutical Analysis. doi:https://doi.org/10.1016/j.jpha.2021.02.001 Naghieh, S., Sarker, M., Sharma, N., Barhoumi, Z., & Chen, X. (2020). Printability of 3D Printed Hydrogel Scaffolds: Influence of Hydrogel Composition and Printing Parameters. Applied Sciences. doi:https://doi.org/10.3390/app10010292 Nemir, S., Hayenga, H. N., & West, J. L. (2010). PEGDA Hydrogels With Patterned Elasticity: Novel Tools for the Study of Cell Response to Substrate Rigidity. Biotechnology and bioengineering. doi:10.1002/bit.22574 Ortiz-Vargas, I., García-Campos, M. L., Beltrán-Campos, V., Gallardo-López, F., SánchezEspinosa, A., & Montalvo, M. E. (2017). Cura húmeda de úlceras por presión. Atención en el ámbito domiciliar. Enfermería universitaria. doi:14(4), 243-250 Ouyang, L., Armstrong, J., Lin, Y., Wojciechowski, J. P., Lee-Reeves, C., Hachim, D., . . . Stevens, M. M. (2020). Expanding and optimizing 3D bioprinting capabilities using complementary network bioinks. Science advances. doi:10.1126/sciadv.abc5529 Ouyang, L., Highley, C. B., Sun, W., & Burdick, J. A. (2017). A Generalizable Strategy for the 3D Bioprinting of Hydrogels from Nonviscous Photo-crosslinkable Inks. Advanced materials (Deerfield Beach, Fla.). Retrieved from https://pubmed.ncbi.nlm.nih.gov/27982464 Ouyang, L., Yao, R., Zhao, Y., & Sun, W. (2016). Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication. doi:10.1088/1758-5090/8/3/035020 Pan, L., Yong, Z., Yuk, K. S., Hoon, K. Y., Yuedong, S., & Xu, J. (2016). Growth Factor Release from Lyophilized Porcine Platelet-Rich Plasma: Quantitative Analysis and Implications for Clinical Applications. Aesthetic plastic surgery. doi:https://doi.org/10.1007/s00266015-0580-y Pang, L., Wang, Y., Zheng, M., Wang, Q., Lin, H., Zhang, L., & Wu, L. (2016). Transcriptomic study of high-glucose effects on human skin fibroblast cells. Molecular medicine reports. doi:https://doi.org/10.3892/mmr.2016.4822 Paxton, N., Smolan, W., Böck, T., Melchels, F., Groll, J., & Jungst, T. (2017). Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Biofabrication. doi:10.1088/1758-5090/aa8dd8 Peters, E., Christoforou , N., Leong, K., Truskey , G., & West, J. (2016). Poly(ethylene glycol) Hydrogel Scaffolds Containing Cell-Adhesive and Protease-Sensitive Peptides Support Microvessel Formation by Endothelial Progenitor Cells. Cellular and molecular bioengineering. doi:10.1007/s12195-015-0423-6 Pop, M. A., & Almquist, B. D. (2017). Biomaterials: A potential pathway to healing chronic wounds? Experimental dermatology. Retrieved from https://pubmed.ncbi.nlm.nih.gov/28094868 Qi , M., Zhou, Q., Zeng, W., Wu, L., Zhao, S., Chen, W., . . . Tang , C.-E. (2018). Growth factors in the pathogenesis of diabetic foot ulcers. Frontiers in bioscience (Landmark edition). doi:10.2741/4593 Qiu, M., Chen, D., Shen, C., Shen, J., Zhao, H., & He, Y. (2016). Platelet-Rich Plasma-Loaded Poly(d,l-lactide)-Poly(ethylene glycol)-Poly(d,l-lactide) Hydrogel Dressing Promotes Full-Thickness Skin Wound Healing in a Rodent Model. International journal of molecular sciences. doi:10.3390/ijms17071001 Ranganathan, N., Joseph Bensingh, R., Abdul Kader, M., & Nayak, S. (2018). Synthesis and Properties of Hydrogels Prepared by Various Polymerization Reaction Systems. In Polymers and Polymeric Composites: A Reference Series. Springer, Cham. doi:https://doi.org/10.1007/978-3-319-76573-0_18-1 Rodríguez Flor, J., Palomar Gallego, M., & García-Denche, J. (2012). Plasma rico en plaquetas: fundamentos biológicos y aplicaciones en cirugía maxilofacial y estética facial. Revista Española de cirugía oral y maxilofacial. doi:https://doi.org/10.1016/j.maxilo.2011.10.007 Rutz, A. L., Hyland, K. E., Jakus, A. E., Burghardt, W. R., & Shah, R. N. (2015). A Multimaterial Bioink Method for 3D Printing Tunable, Cell-Compatible Hydrogels. Advanced Materials. doi:https://doi.org/10.1002/adma.201405076 Sadeghi-Ataabadi, M., Mostafavi-pou, Z., Vojdani, Z., Sani, M., Latifi, M., & Talaei-Khozan, T. (2016). Fabrication and charaterization of platelet-rich plasma scaffolds for tissue engineering application. Materials Science & Engineering C. doi:10.1016/j.msec.2016.10.001 Samberg, M., Stone II, R., Natesan, S., Kowalczewski, A., Becerra, S., Wrice, N., & Christy, R. (2019). Platelet rich plasma hydrogels promote in vitro and in vivo angiogenic potential of adipose-derived stem cells. Acta biomaterialia. doi:10.1016/j.actbio.2019.01.039 Samberg, M., Stone, R. 2., Kowalczewski, A., Becerra, S., Wrice, N., Cap, A., & Christy, R. (2019). Platelet rich plasma hydrogels promote in vitro and in vivo angiogenic potential of adipose-derived stem cells. Acta biomaterialia. doi:10.1016/j.actbio.2019.01.039 Somasekharan, L. T., Kasoju, N., Raju, R., & Bhatt, A. (2020). Formulation and Characterization of Alginate Dialdehyde, Gelatin, and Platelet-Rich Plasma-Based Bioink for Bioprinting Applications. Bioengineering (Basel, Switzerland). doi:10.3390/bioengineering7030108 Tan, C. T., Liang, K., Ngo, Z. H., Dube, C. T., & Lim, C. Y. (2020). Application of 3D Bioprinting Technologies to the Management and Treatment of Diabetic Foot Ulcers. Biomedicines. doi:https://doi.org/10.3390/biomedicines8100441 Tan, C. T., Liang, K., Ngo, Z. H., Dube, C. T., & Lim, C. Y. (2020). Application of 3D Bioprinting Technologies to the Management and Treatment of Diabetic Foot Ulcers. Biomedicines, 8. doi:https://doi.org/10.3390/biomedicines8100441 Tan, F., Xu, X., Deng, T., Yin, M., Zhang, X., & Wang, J. (2012). Fabrication of positively charged poly(ethylene glycol)-diacrylate hydrogel as a bone tissue engineering scaffold. Biomedical materials. doi:https://doi.org/10.1088/1748-6041/7/5/055009 Uccioli, L., Izzo, V., Meloni, M., Vainieri, E., Ruotolo, V., & Giurato, L. (2015). Non-healing foot ulcers in diabetic patients: general and local interfering conditions and management options with advanced wound dressings. Journal of wound care. doi:10.12968/jowc.2015.24.Sup4b.35 Williams, D., Thayer, P., Martinez, H., Gatenholm, E., & Khademhosseini, A. (2018). A Perspective on the Physical, Mechanical and Biological Specifications of Bioinks and the Development of Functional Tissues in 3D Bioprinting. Bioprinting. doi:https://doi.org/10.1016/j.bprint.2018.02.003 Yang , J., Olanrele, O., Zhang, X., & Hsu, C. (2018). Fabrication of Hydrogel Materials for Biomedical Applications. Advances in experimental medicine and biology. doi:10.1007/978-981-13-0947-2_12 Zhang, B., Cristescu, R., Chrisey, D., & Narayan, R. (2020). Solvent-based Extrusion 3D Printing for the Fabrication of Tissue Engineering Scaffolds. International journal of bioprinting. doi:10.18063/ijb.v6i1.211 Zhang, X., Yang, D., & Nie, J. (2008). Chitosan/polyethylene glycol diacrylate films as potential. International journal of biological macromolecules Zhang, Z., Jin, Y., Yin, J., Xu, C., Xiong, R., Christensen, K., . . . Ringeisen, B. (2018). Evaluation of bioink printability for bioprinting applications. Applied Physics Reviews. doi:https://doi.org/10.1063/1.5053979 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
dc.rights.creativecommons.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 Atribución-NoComercial-SinDerivadas 2.5 Colombia |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.spatial.spa.fl_str_mv |
Colombia |
dc.coverage.campus.spa.fl_str_mv |
UNAB Campus Bucaramanga |
dc.publisher.grantor.spa.fl_str_mv |
Universidad Autónoma de Bucaramanga UNAB |
dc.publisher.faculty.spa.fl_str_mv |
Facultad Ingeniería |
dc.publisher.program.spa.fl_str_mv |
Pregrado Ingeniería Biomédica |
institution |
Universidad Autónoma de Bucaramanga - UNAB |
bitstream.url.fl_str_mv |
https://repository.unab.edu.co/bitstream/20.500.12749/13790/1/2021_Tesis_Michelle_Torres_Sofia_Mateus.pdf https://repository.unab.edu.co/bitstream/20.500.12749/13790/2/2021_Licencia_Michelle_Torres.pdf https://repository.unab.edu.co/bitstream/20.500.12749/13790/3/license.txt https://repository.unab.edu.co/bitstream/20.500.12749/13790/4/2021_Tesis_Michelle_Torres_Sofia_Mateus.pdf.jpg https://repository.unab.edu.co/bitstream/20.500.12749/13790/5/2021_Licencia_Michelle_Torres.pdf.jpg |
bitstream.checksum.fl_str_mv |
2d26a9c96ce7d03cc94ea206e75d4011 752cf97004813f0b0b1e8a4c6779f283 8a4605be74aa9ea9d79846c1fba20a33 78fca079c318f5ddc9259ef92d6bb125 70b6729c9b9190faf8399e1060b93317 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB |
repository.mail.fl_str_mv |
repositorio@unab.edu.co |
_version_ |
1814277244735979520 |
spelling |
Becerra Bayona, Silvia Milenaf59fde3b-924f-4fcc-96e9-5fd6250b2daeSolarte David, Víctor Alfonso54590e96-eda3-4b43-9ffa-14bd35ed7d08Mateus Suárez, Sofia Valentina87389606-c1e8-4250-8635-02bd8f322ad4Torres Pinzón, Michelle María41e3113e-eab7-4fec-bc88-cc7c3efcd5edBecerra Bayona, Silvia Milena [0001568861]Solarte David, Víctor Alfonso [0001329391]Becerra Bayona, Silvia Milena [5wr21EQAAAAJ&hl=es&oi=ao]Becerra Bayona, Silvia Milena [0000-0002-4499-5885]Solarte David, Víctor Alfonso [0000-0002-9856-1484]Becerra Bayona, Silvia Milena [36522328100]Becerra Bayona, Silvia Milena [Silvia-Becerra-Bayona]Solarte David, Víctor Alfonso [Victor-Solarte-David]Becerra Bayona, Silvia Milena [silvia-milena-becerra-bayona]Becerra Bayona, Silvia Milena [silvia-becerra-3174455a]ColombiaUNAB Campus Bucaramanga2021-08-12T13:53:24Z2021-08-12T13:53:24Z2021http://hdl.handle.net/20.500.12749/13790instname:Universidad Autónoma de Bucaramanga - UNABreponame:Repositorio Institucional UNABrepourl:https://repository.unab.edu.coLas úlceras crónicas de pie diabético (UCPD) son una problemática que afecta la integridad de la piel, la cual necesita de una matriz extracelular (andamio) y biomoléculas para lograr el proceso cicatrización. Las biomoléculas inmersas en el plasma rico en plaquetas (PRP), incluyen factores de crecimiento que contribuyen a la regeneración de tejidos, por lo que se propuso el diseño de una tinta de biomaterial de polietilenglicol diacrilato (PEGDA) y PRP para potenciales aplicaciones en el desarrollo de apósitos personalizados, como tratamiento alternativo para promover la cicatrización de UCPD. El estudio planteo la búsqueda de un material viscoso (ThA) para aumentar la imprimibilidad del polímero, la inmovilización del PRP en la tinta de PEGDA al 10, 20 y 30% p/v, y ThA, y la evaluación de la imprimibilidad al variar los parámetros de flujo (150, 250 y 350%) y velocidad de extrusión (2 y 5 mm/s). Por lo anterior, se empleó gelatina para permitir la impresión de la mezcla, y utilizarla como una matriz de sacrificio que fuera liberada de la estructura. Así mismo se obtuvieron tintas de biomaterial con una óptima imprimibilidad según la fidelidad en la morfología y dimensiones diseñadas, con una formación de filamentos continuos. Posteriormente, se determinó que el PRP no es apto para la extrusión de un filamento y no permite la obtención de una solución homogénea al ser mezclado con la tinta de biomaterial, por lo que, basado en nuestro criterio, no puede ser utilizado para impresión. Con base en lo anterior, se establece que la tinta tiene potencial de ser usada para la inmovilización de biomoléculas y mejorar el tratamiento de las UCPD, al permitir la fabricación de andamios personalizados.Capítulo 1. Problema u oportunidad ................................................................................................ 9 1.1 Introducción ............................................................................................................................ 9 1.2 Planteamiento del problema ................................................................................................... 9 1.3 Justificación .......................................................................................................................... 11 1.4 Pregunta Problema ................................................................................................................ 12 1.5 Objetivo General ................................................................................................................... 12 1.6 Objetivos Especificas ........................................................................................................... 12 1.7 Limitaciones y delimitaciones .............................................................................................. 13 Capítulo 2. Marco Teórico ............................................................................................................. 14 2.1 Úlceras crónicas de pie diabético y su proceso de cicatrización .......................................... 14 2.2 Los apósitos como alternativa terapéutica a las UCPD ........................................................ 15 2.2.1 Hidrogeles y el polímero PEGDA .................................................................................. 15 2.2.2 Biomoléculas y el Plasma Rico en Plaquetas ................................................................ 16 2.3 La bioimpresión y sus principales características ................................................................. 18 2.3.1 Tinta de biomaterial ....................................................................................................... 18 2.3.2 Características de imprimibilidad y los parámetros de impresión................................ 19 Capítulo 3. Estado del Arte ............................................................................................................ 23 Capítulo 4. Metodología ................................................................................................................. 28 4.1 Pruebas preliminares de viscosidad para la tinta .................................................................. 28 4.3 Fabricación de hidrogeles y estudio preliminar de liberación de gelatina ........................... 30 4.4 Caracterización mecánica preliminar de los hidrogeles ....................................................... 31 4.5 Impresión de los hidrogeles usando la tinta de biomaterial .................................................. 32 4.6 Evaluación de la velocidad y flujo de impresión según parámetros de imprimibilidad ....... 33 4.7 Estudio preliminar de liberación de gelatina en impresiones ............................................... 34 4.8 Análisis estadísticos .............................................................................................................. 34 Capítulo 5. Resultados y Análisis de resultados ............................................................................ 36 5.1 Resultados ............................................................................................................................. 36 5.1.1 Pruebas preliminares de viscosidad para la tinta ........................................................... 36 5.1.2 Preparación de la tinta de biomaterial ............................................................................ 39 5.1.3 Estudio preliminar de liberación de gelatina: Hidrogeles .............................................. 41 5.1.4 Caracterización mecánica preliminar de los hidrogeles ................................................. 42 5.1.5 Impresiones de los hidrogeles a partir de la tinta de biomaterial ................................... 44 5.1.5.1 Estandarización preliminar de las condiciones de impresión de la tinta de gelatina. ............................................................................................................................................. 46 5.1.5.2 Estandarización preliminar de las condiciones de impresión de la tinta de biomaterial de PEGDA y gelatina ....................................................................................... 49 5.1.6 Estudio preliminar de liberación de gelatina: Impresiones ............................................ 54 5.1.7 Preparación de la tinta de biomaterial con PRP ............................................................. 55 5.2. Análisis de Resultados ......................................................................................................... 56 Capítulo 6: Conclusiones y recomendaciones ................................................................................ 63 Referencias ..................................................................................................................................... 65PregradoChronic diabetic foot ulcers (UCPD) are a problem that affects the integrity of the skin, which needs an extracellular matrix (scaffold) and biomolecules to achieve the healing process. Biomolecules immersed in platelet-rich plasma (PRP) include growth factors that contribute to tissue regeneration, which is why the design of a polyethylene glycol diacrylate (PEGDA) and PRP biomaterial ink was proposed for potential applications in the development of personalized dressings, as an alternative treatment to promote the healing of UCPD. The study proposed the search for a viscous material (ThA) to increase the printability of the polymer, the immobilization of PRP in the PEGDA ink at 10, 20 and 30% w / v, and ThA, and the evaluation of the printability by varying the flow parameters (150, 250 and 350%) and extrusion speed (2 and 5 mm / s). Therefore, gelatin was used to allow the impression of the mixture, and use it as a sacrificial matrix that was released from the structure. Likewise, biomaterial inks were obtained with optimal printability according to the fidelity in the morphology and designed dimensions, with a formation of continuous filaments. Subsequently, it was determined that PRP is not suitable for the extrusion of a filament and does not allow obtaining a homogeneous solution when mixed with the biomaterial ink, therefore, based on our criteria, it cannot be used for printing. Based on the foregoing, it is established that the ink has the potential to be used for the immobilization of biomolecules and improve the treatment of UCPD, by allowing the manufacture of customized scaffolds.Modalidad Presencialapplication/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial-SinDerivadas 2.5 ColombiaDiseño de una tinta de biomaterial a base de pegda y plasma rico en plaquetas para potenciales aplicaciones en el desarrollo de apósitos personalizados para úlceras crónicas de pie diabéticoDesign of a pegda-based biomaterial ink and platelet-rich plasma for potential applications in the development of personalized dressings for chronic diabetic foot ulcersIngeniero BiomédicoUniversidad Autónoma de Bucaramanga UNABFacultad IngenieríaPregrado Ingeniería Biomédicainfo:eu-repo/semantics/bachelorThesisTrabajo de Gradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/redcol/resource_type/TPBiomedical engineeringEngineeringMedical electronicsBiological physicsBioengineeringMedical instruments and apparatusMedicinePegda3D bioprintingBiomaterial inkCDFUFoot diseasesBiomoleculesIngeniería biomédicaIngenieríaBiofísicaBioingenieríaMedicinaEnfermedades de los piesBiomoléculasIngeniería clínicaClinical engineeringElectrónica médicaInstrumentos y aparatos médicosPegdaBioimpresión 3DTinta de biomaterialPRPUCPDAlavi , A., Sibbald, R., Mayer, D., Goodman, L., Botros, M., Armstrong, D., . . . Kirsner, R. (2014). Diabetic foot ulcers: Part I. Pathophysiology and prevention. Journal of the American Academy of Dermatology. doi:10.1016/j.jaad.2013.06.055Alexiadou, K., & Doupis, J. (2012). Management of Diabetic Foot Ulcers. Diabetes therapy : research, treatment and education of diabetes and related disorders. doi:10.1007/s13300012-0004-9Amable, P. R., Carias, R. B., Teixeira, M. V., da Cruz Pacheco, I., Corrêa do Amaral, R. J., Granjeiro, J. M., & Borojevic, R. (2013). Platelet-rich plasma preparation for regenerative medicine: optimization and quantification of cytokines and growth factors. Stem cell research & therapy. doi:10.1186/scrt218Armstrong, D., Boulton , A., & Bus, S. (2017). Diabetic Foot Ulcers and Their Recurrence. The New England journal of medicine. doi:10.1056/NEJMra1615439Bahney, C. S., Lujan, T. J., Hsu, C. W., Bottlang, M., West, J. L., & Johnstone, B. (2011). Visible light photoinitiation of mesenchymal stem cell-laden bioresponsive hydrogel. European cells & materials. doi:10.22203/ecm.v022a04Carr, M. E., & Carr, S. L. (1995). Fibrin structure and concentration alter clot elastic modulus but do not alter platelet mediated force development. Blood Coagulation & Fibrinolysis. doi:10.1097/00001721-199502000-00013Chung, J., Naficy, S., Yue, Z., Kapsa, R., Quigley, A., Moulton, S. E., & Wallace, G. G. (2013). Bio-ink properties and printability for extrusion printing living cells. Biomaterials science. doi:10.1039/c3bm00012eConde-Montero, E., de la Cueva Dobao, P., & Martínez González, J. (2017). Platelet-rich plasma for the treatment of chronic wounds: evidence to date. Chronic Wound Care Management and Research. doi:https://doi.org/10.2147/CWCMR.S118655Deuel, T. F., & Chang, Y. (2014). Growth factors. In R. Lanza, R. Langer, & J. Vacanti, Principles of Tissue Engineering (pp. 291 - 308). doi:10.1016/b978-0-12-3983589.00016-1Frost, B. A., Sutliff, B. P., Thayer, P., Bortner, M. J., & Foster, E. J. (2019). Gradient poly (ethylene glycol) diacrylate and cellulose nanocrystals tissue engineering composite scaffolds via extrusion bioprinting. Frontiers in bioengineering and biotechnology. Frontiers in bioengineering and biotechnology. doi:10.3389/fbioe.2019.00280Game, F., Apelqvist, J., Attinger, C., Hartemann, A., Hinchliffe, R., Löndahl, M., . . . Jeffcoate, W. (2016). Effectiveness of interventions to enhance healing of chronic ulcers of the foot in diabetes: a systematic review. Diabetes/metabolism research and reviews. Retrieved from https://pubmed.ncbi.nlm.nih.gov/26344936/Gao, X., Gao, L., Groth, T., Liu, T., He, D., Wang, M., . . . Zhao, M. (2019). Fabrication and properties of an injectable sodium alginate/PRP composite hydrogel as a potential cell carrier for cartilage repair. Journal of biomedical materials research. Part A. doi:10.1002/jbm.a.36720Groll, J., Boland, T., Blunk, T., Burdick, J. A., Cho, D. W., Dalton, P. D., & Malda, J. (2016). Biofabrication: reappraising the definition of an evolving field. Biofabrication. Retrieved from https://iopscience.iop.org/article/10.1088/1758-5090/8/1/013001Groll, J., Burdick, J., Cho, D.-W., Derby, B., Gelinsky, M., Heilshorn, S., . . . Woodfield, T. (2018). A definition of bioinks and their distinction from biomaterial inks. Biofabrication. doi:10.1088/1758-5090/aaec52Gungor-Ozkerim, P., Inci, I., Zhang, Y., Khademhosseini, A., & Dokmeci, M. (2018). Bioinks for 3D bioprinting: an overview. Biomaterials science. doi:10.1039/c7bm00765eHe, Y., Yang, F., Zhao, H., Gao, Q., Xia, B., & Fu , J. (2016). Research on the printability of hydrogels in 3D bioprinting. Scientific reports. doi:10.1038/srep29977Hicks, C., Canner , J., Mathioudakis, N., Lippincott , C., Sherman, R., & Abularrage, C. (2020). Incidence and Risk Factors Associated With Ulcer Recurrence Among Patients With Diabetic Foot Ulcers Treated in a Multidisciplinary Setting. The Journal of surgical research. doi:10.1016/j.jss.2019.09.025Hong, N., Yang, G.-H., Lee , J., & Kim , G. (2017). 3D bioprinting and its in vivo applications. Journal of biomedical materials research. Part B, Applied biomaterials. Retrieved from https://pubmed.ncbi.nlm.nih.gov/28106947/Huber, S. C., Junior, J., Silva, L. Q., Montalvão, S., & Annichino-Bizzacchi, J. M. (2019). Freeze-dried versus fresh platelet-rich plasma in acute wound healing of an animal model. Regenerative medicine. doi:https://doi.org/10.2217/rme-2018-0119International Diabetes Federation. (2019). IDF Diabetes Atlas (9th ed.). Brussels, Belgium. Retrieved from https://www.diabetesatlas.org/en/Jain, E., Chinzei, N., Blanco, A., Case, N., Sandell, L., Sell, S., . . . Zustiak, S. (2019). PlateletRich Plasma Released From Polyethylene Glycol Hydrogels Exerts Beneficial Effects on Human Chondrocytes. Journal of orthopaedic research: official publication of the Orthopaedic Research Society. doi:10.1002/jor.24404Jain, E., Sheth, S., Dunn, A., Zustiak, S., & Sell, S. (2017). Sustained release of multicomponent platelet-rich plasma proteins from hydrolytically degradable PEG hydrogels. Journal of biomedical materials research. Part A. Retrieved from https://pubmed.ncbi.nlm.nih.gov/28865187/Jo, C. H., Roh, Y. H., Kim, J. E., Shin, S., & Yoon, K. S. (2013). Optimizing Platelet-Rich Plasma Gel Formation by Varying Time and Gravitational Forces During Centrifugation. Journal of Oral Implantology. doi:10.1563/AAID-JOI-D-10-00155Joas, S., Tovar, G., Celik, O., Bonten, C., & Southan, A. (2018). Extrusion-Based 3D Printing of Poly(ethylene glycol) Diacrylate Hydrogels Containing Positively and Negatively Charged Groups. Gels (Basel, Switzerland). doi:https://doi.org/10.3390/gels4030069Li, H., Ma, T., Zhang, M., Zhu, J., Liu, J., & Tan, F. (2018). Fabrication of sulphonated poly(ethylene glycol)-diacrylate hydrogel as a bone grafting scaffold. Journal of materials science. Materials in medicine. doi:10.1007/s10856-018-6199-1Li, Z., Zhang, X., Yuan, T., Zhang, Y., Luo, C., Zhang, J., . . . Fan, W. (2020). Addition of Platelet-Rich Plasma to Silk Fibroin Hydrogel Bioprinting for Cartilage Regeneration. Tissue engineering. Part A. doi:10.1089/ten.TEA.2019.0304Liang, J., Guo, Z., Timmerman, A., Grijpma, D., & Poot, A. (2018). Enhanced mechanical and cell adhesive properties of photo-crosslinked PEG hydrogels by incorporation of gelatin in the networks. Biomedical Materials. Retrieved from https://iopscience.iop.org/article/10.1088/1748-605X/aaf31b/metaLuo, Y., Engelmayr, G., Auguste, D., Ferreira, L., Karp, J., Saigal, R., & Langer, R. (2014). 3D Scaffolds. In R. Lanza, R. Langer, & J. Vacanti, Principles of Tissue Engineering (4 ed., pp. 475 - 494). doi:https://doi.org/10.1016/B978-0-12-398358-9.00024-0Maione, A., Smith , A., Kashpur, O., Yanez, V., Knight, E., Mooney, D., . . . Garlick, J. (2016). Altered ECM deposition by diabetic foot ulcer-derived fibroblasts implicates fibronectin in chronic wound repair. Wound repair and regeneration: official publication of the Wound Healing Society [and] the European Tissue Repair Society. Retrieved from https://pubmed.ncbi.nlm.nih.gov/27102877/Marinel.lo Roura, J., & Verdú Soriano, J. (2018). Conferencia nacional de consenso sobre las úlceras de la extremidad inferior (C.O.N.U.E.I.) (2da Edición ed.). Madrid, Ergon, España. Retrieved from https://gneaupp.info/wpcontent/uploads/2018/04/CONUEIX2018.pdfMazzucco, L., Balbo, V., Cattana, E., & Borzini, P. (2008). Platelet-rich plasma and platelet gel preparation using Plateltex®. Vox sanguinis. doi:10.1111/j.1423-0410.2007.01027.xMehta, S., & Watson, J. (2008). Platelet rich concentrate: basic science and current clinical applications. Journal of orthopaedic trauma. doi:10.1097/BOT.0b013e31817e793fMiraftab, M., Smart, G., Kennedy, J. F., Knill, C. J., Mistry, J., & Groocock, M. R. (2006). Novel chitosan-alginate fibres for advanced wound dressings. Medical Textiles and Biomaterials for Healthcare. doi:10.1533/9781845694104.1.3Mouser, V., Melchels, F., Visser, J., Dhert, W., Gawlitta, D., & Malda, J. (2016). Yield stress determines bioprintability of hydrogels based on gelatin-methacryloyl and gellan gum for cartilage bioprinting. Biofabrication. doi:10.1088/1758-5090/8/3/035003Murray, M. M., Spindler, K. P., Abreu, E., Muller, J. A., Nedder, A., Kelly, M., . . . Connolly, S. A. (2007). Collagen-platelet rich plasma hydrogel enhances primary repair of the porcine anterior cruciate ligament. Journal of orthopaedic research : official publication of the Orthopaedic Research Society. doi:10.1002/jor.20282Naghieh, S., & Chen, D. (2021). Printability – a Key Issue in Extrusion-based Bioprinting. Journal of Pharmaceutical Analysis. doi:https://doi.org/10.1016/j.jpha.2021.02.001Naghieh, S., Sarker, M., Sharma, N., Barhoumi, Z., & Chen, X. (2020). Printability of 3D Printed Hydrogel Scaffolds: Influence of Hydrogel Composition and Printing Parameters. Applied Sciences. doi:https://doi.org/10.3390/app10010292Nemir, S., Hayenga, H. N., & West, J. L. (2010). PEGDA Hydrogels With Patterned Elasticity: Novel Tools for the Study of Cell Response to Substrate Rigidity. Biotechnology and bioengineering. doi:10.1002/bit.22574Ortiz-Vargas, I., García-Campos, M. L., Beltrán-Campos, V., Gallardo-López, F., SánchezEspinosa, A., & Montalvo, M. E. (2017). Cura húmeda de úlceras por presión. Atención en el ámbito domiciliar. Enfermería universitaria. doi:14(4), 243-250Ouyang, L., Armstrong, J., Lin, Y., Wojciechowski, J. P., Lee-Reeves, C., Hachim, D., . . . Stevens, M. M. (2020). Expanding and optimizing 3D bioprinting capabilities using complementary network bioinks. Science advances. doi:10.1126/sciadv.abc5529Ouyang, L., Highley, C. B., Sun, W., & Burdick, J. A. (2017). A Generalizable Strategy for the 3D Bioprinting of Hydrogels from Nonviscous Photo-crosslinkable Inks. Advanced materials (Deerfield Beach, Fla.). Retrieved from https://pubmed.ncbi.nlm.nih.gov/27982464Ouyang, L., Yao, R., Zhao, Y., & Sun, W. (2016). Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication. doi:10.1088/1758-5090/8/3/035020Pan, L., Yong, Z., Yuk, K. S., Hoon, K. Y., Yuedong, S., & Xu, J. (2016). Growth Factor Release from Lyophilized Porcine Platelet-Rich Plasma: Quantitative Analysis and Implications for Clinical Applications. Aesthetic plastic surgery. doi:https://doi.org/10.1007/s00266015-0580-yPang, L., Wang, Y., Zheng, M., Wang, Q., Lin, H., Zhang, L., & Wu, L. (2016). Transcriptomic study of high-glucose effects on human skin fibroblast cells. Molecular medicine reports. doi:https://doi.org/10.3892/mmr.2016.4822Paxton, N., Smolan, W., Böck, T., Melchels, F., Groll, J., & Jungst, T. (2017). Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Biofabrication. doi:10.1088/1758-5090/aa8dd8Peters, E., Christoforou , N., Leong, K., Truskey , G., & West, J. (2016). Poly(ethylene glycol) Hydrogel Scaffolds Containing Cell-Adhesive and Protease-Sensitive Peptides Support Microvessel Formation by Endothelial Progenitor Cells. Cellular and molecular bioengineering. doi:10.1007/s12195-015-0423-6Pop, M. A., & Almquist, B. D. (2017). Biomaterials: A potential pathway to healing chronic wounds? Experimental dermatology. Retrieved from https://pubmed.ncbi.nlm.nih.gov/28094868Qi , M., Zhou, Q., Zeng, W., Wu, L., Zhao, S., Chen, W., . . . Tang , C.-E. (2018). Growth factors in the pathogenesis of diabetic foot ulcers. Frontiers in bioscience (Landmark edition). doi:10.2741/4593Qiu, M., Chen, D., Shen, C., Shen, J., Zhao, H., & He, Y. (2016). Platelet-Rich Plasma-Loaded Poly(d,l-lactide)-Poly(ethylene glycol)-Poly(d,l-lactide) Hydrogel Dressing Promotes Full-Thickness Skin Wound Healing in a Rodent Model. International journal of molecular sciences. doi:10.3390/ijms17071001Ranganathan, N., Joseph Bensingh, R., Abdul Kader, M., & Nayak, S. (2018). Synthesis and Properties of Hydrogels Prepared by Various Polymerization Reaction Systems. In Polymers and Polymeric Composites: A Reference Series. Springer, Cham. doi:https://doi.org/10.1007/978-3-319-76573-0_18-1Rodríguez Flor, J., Palomar Gallego, M., & García-Denche, J. (2012). Plasma rico en plaquetas: fundamentos biológicos y aplicaciones en cirugía maxilofacial y estética facial. Revista Española de cirugía oral y maxilofacial. doi:https://doi.org/10.1016/j.maxilo.2011.10.007Rutz, A. L., Hyland, K. E., Jakus, A. E., Burghardt, W. R., & Shah, R. N. (2015). A Multimaterial Bioink Method for 3D Printing Tunable, Cell-Compatible Hydrogels. Advanced Materials. doi:https://doi.org/10.1002/adma.201405076Sadeghi-Ataabadi, M., Mostafavi-pou, Z., Vojdani, Z., Sani, M., Latifi, M., & Talaei-Khozan, T. (2016). Fabrication and charaterization of platelet-rich plasma scaffolds for tissue engineering application. Materials Science & Engineering C. doi:10.1016/j.msec.2016.10.001Samberg, M., Stone II, R., Natesan, S., Kowalczewski, A., Becerra, S., Wrice, N., & Christy, R. (2019). Platelet rich plasma hydrogels promote in vitro and in vivo angiogenic potential of adipose-derived stem cells. Acta biomaterialia. doi:10.1016/j.actbio.2019.01.039Samberg, M., Stone, R. 2., Kowalczewski, A., Becerra, S., Wrice, N., Cap, A., & Christy, R. (2019). Platelet rich plasma hydrogels promote in vitro and in vivo angiogenic potential of adipose-derived stem cells. Acta biomaterialia. doi:10.1016/j.actbio.2019.01.039Somasekharan, L. T., Kasoju, N., Raju, R., & Bhatt, A. (2020). Formulation and Characterization of Alginate Dialdehyde, Gelatin, and Platelet-Rich Plasma-Based Bioink for Bioprinting Applications. Bioengineering (Basel, Switzerland). doi:10.3390/bioengineering7030108Tan, C. T., Liang, K., Ngo, Z. H., Dube, C. T., & Lim, C. Y. (2020). Application of 3D Bioprinting Technologies to the Management and Treatment of Diabetic Foot Ulcers. Biomedicines. doi:https://doi.org/10.3390/biomedicines8100441Tan, C. T., Liang, K., Ngo, Z. H., Dube, C. T., & Lim, C. Y. (2020). Application of 3D Bioprinting Technologies to the Management and Treatment of Diabetic Foot Ulcers. Biomedicines, 8. doi:https://doi.org/10.3390/biomedicines8100441Tan, F., Xu, X., Deng, T., Yin, M., Zhang, X., & Wang, J. (2012). Fabrication of positively charged poly(ethylene glycol)-diacrylate hydrogel as a bone tissue engineering scaffold. Biomedical materials. doi:https://doi.org/10.1088/1748-6041/7/5/055009Uccioli, L., Izzo, V., Meloni, M., Vainieri, E., Ruotolo, V., & Giurato, L. (2015). Non-healing foot ulcers in diabetic patients: general and local interfering conditions and management options with advanced wound dressings. Journal of wound care. doi:10.12968/jowc.2015.24.Sup4b.35Williams, D., Thayer, P., Martinez, H., Gatenholm, E., & Khademhosseini, A. (2018). A Perspective on the Physical, Mechanical and Biological Specifications of Bioinks and the Development of Functional Tissues in 3D Bioprinting. Bioprinting. doi:https://doi.org/10.1016/j.bprint.2018.02.003Yang , J., Olanrele, O., Zhang, X., & Hsu, C. (2018). Fabrication of Hydrogel Materials for Biomedical Applications. Advances in experimental medicine and biology. doi:10.1007/978-981-13-0947-2_12Zhang, B., Cristescu, R., Chrisey, D., & Narayan, R. (2020). Solvent-based Extrusion 3D Printing for the Fabrication of Tissue Engineering Scaffolds. International journal of bioprinting. doi:10.18063/ijb.v6i1.211Zhang, X., Yang, D., & Nie, J. (2008). Chitosan/polyethylene glycol diacrylate films as potential. International journal of biological macromoleculesZhang, Z., Jin, Y., Yin, J., Xu, C., Xiong, R., Christensen, K., . . . Ringeisen, B. (2018). Evaluation of bioink printability for bioprinting applications. Applied Physics Reviews. doi:https://doi.org/10.1063/1.5053979ORIGINAL2021_Tesis_Michelle_Torres_Sofia_Mateus.pdf2021_Tesis_Michelle_Torres_Sofia_Mateus.pdfTesisapplication/pdf1902337https://repository.unab.edu.co/bitstream/20.500.12749/13790/1/2021_Tesis_Michelle_Torres_Sofia_Mateus.pdf2d26a9c96ce7d03cc94ea206e75d4011MD51open access2021_Licencia_Michelle_Torres.pdf2021_Licencia_Michelle_Torres.pdfLicenciaapplication/pdf1064014https://repository.unab.edu.co/bitstream/20.500.12749/13790/2/2021_Licencia_Michelle_Torres.pdf752cf97004813f0b0b1e8a4c6779f283MD52metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.unab.edu.co/bitstream/20.500.12749/13790/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53open accessTHUMBNAIL2021_Tesis_Michelle_Torres_Sofia_Mateus.pdf.jpg2021_Tesis_Michelle_Torres_Sofia_Mateus.pdf.jpgIM Thumbnailimage/jpeg5398https://repository.unab.edu.co/bitstream/20.500.12749/13790/4/2021_Tesis_Michelle_Torres_Sofia_Mateus.pdf.jpg78fca079c318f5ddc9259ef92d6bb125MD54open access2021_Licencia_Michelle_Torres.pdf.jpg2021_Licencia_Michelle_Torres.pdf.jpgIM Thumbnailimage/jpeg10098https://repository.unab.edu.co/bitstream/20.500.12749/13790/5/2021_Licencia_Michelle_Torres.pdf.jpg70b6729c9b9190faf8399e1060b93317MD55metadata only access20.500.12749/13790oai:repository.unab.edu.co:20.500.12749/137902023-11-25 03:44:42.505open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |