Desarrollo de un apósito tipo hidrogel de plasma pobre en plaquetas y colágeno extraído de piel de tilapia con potencial uso para el tratamiento de úlceras crónicas de pie diabético

La diabetes mellitus es una enfermedad que en la actualidad se considera un problema de salud pública y se estima que afecte a más de 700 millones de personas adultas en los años venideros. Una de sus principales complicaciones son las úlceras crónicas de pie diabético (UCPD), lesiones cutáneas que...

Full description

Autores:
Rojas Cárdenas, Luis David
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2022
Institución:
Universidad Autónoma de Bucaramanga - UNAB
Repositorio:
Repositorio UNAB
Idioma:
spa
OAI Identifier:
oai:repository.unab.edu.co:20.500.12749/19050
Acceso en línea:
http://hdl.handle.net/20.500.12749/19050
Palabra clave:
Biomedical engineering
Engineering
Medical electronics
Biological physics
Bioengineering
Medical instruments and apparatus
Medicine
Biomedical
Clinical engineering
Collagen
Cytotoxicity
Fibroblasts
Hydrogels
Platelet poor plasma
Mellitus diabetes
Foot diseases
Feet (Ulcers)
Ingeniería biomédica
Ingeniería
Biofísica
Bioingeniería
Medicina
Biomédica
Diabetes mellitus
Enfermedades de lo pies
Pies (Ulceras)
Ingeniería clínica
Electrónica médica
Instrumentos y aparatos médicos
Colágeno
Citotoxicidad
Fibroblastos
Hidrogeles
Plasma pobre en plaquetas
Rights
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UNAB2_8c6e5f9d803484f4c4adc6bcee6c7fd9
oai_identifier_str oai:repository.unab.edu.co:20.500.12749/19050
network_acronym_str UNAB2
network_name_str Repositorio UNAB
repository_id_str
dc.title.spa.fl_str_mv Desarrollo de un apósito tipo hidrogel de plasma pobre en plaquetas y colágeno extraído de piel de tilapia con potencial uso para el tratamiento de úlceras crónicas de pie diabético
dc.title.translated.spa.fl_str_mv Development of a platelet-poor plasma hydrogel-type dressing and collagen extracted from tilapia skin with potential use for the treatment of chronic diabetic foot ulcers
title Desarrollo de un apósito tipo hidrogel de plasma pobre en plaquetas y colágeno extraído de piel de tilapia con potencial uso para el tratamiento de úlceras crónicas de pie diabético
spellingShingle Desarrollo de un apósito tipo hidrogel de plasma pobre en plaquetas y colágeno extraído de piel de tilapia con potencial uso para el tratamiento de úlceras crónicas de pie diabético
Biomedical engineering
Engineering
Medical electronics
Biological physics
Bioengineering
Medical instruments and apparatus
Medicine
Biomedical
Clinical engineering
Collagen
Cytotoxicity
Fibroblasts
Hydrogels
Platelet poor plasma
Mellitus diabetes
Foot diseases
Feet (Ulcers)
Ingeniería biomédica
Ingeniería
Biofísica
Bioingeniería
Medicina
Biomédica
Diabetes mellitus
Enfermedades de lo pies
Pies (Ulceras)
Ingeniería clínica
Electrónica médica
Instrumentos y aparatos médicos
Colágeno
Citotoxicidad
Fibroblastos
Hidrogeles
Plasma pobre en plaquetas
title_short Desarrollo de un apósito tipo hidrogel de plasma pobre en plaquetas y colágeno extraído de piel de tilapia con potencial uso para el tratamiento de úlceras crónicas de pie diabético
title_full Desarrollo de un apósito tipo hidrogel de plasma pobre en plaquetas y colágeno extraído de piel de tilapia con potencial uso para el tratamiento de úlceras crónicas de pie diabético
title_fullStr Desarrollo de un apósito tipo hidrogel de plasma pobre en plaquetas y colágeno extraído de piel de tilapia con potencial uso para el tratamiento de úlceras crónicas de pie diabético
title_full_unstemmed Desarrollo de un apósito tipo hidrogel de plasma pobre en plaquetas y colágeno extraído de piel de tilapia con potencial uso para el tratamiento de úlceras crónicas de pie diabético
title_sort Desarrollo de un apósito tipo hidrogel de plasma pobre en plaquetas y colágeno extraído de piel de tilapia con potencial uso para el tratamiento de úlceras crónicas de pie diabético
dc.creator.fl_str_mv Rojas Cárdenas, Luis David
dc.contributor.advisor.none.fl_str_mv Solarte David, Víctor Alfonso
Becerra Bayona, Silvia Milena
dc.contributor.author.none.fl_str_mv Rojas Cárdenas, Luis David
dc.contributor.cvlac.spa.fl_str_mv Solarte David, Víctor Alfonso [0001329391]
Becerra Bayona, Silvia Milena [0001568861]
dc.contributor.googlescholar.spa.fl_str_mv Becerra Bayona, Silvia Milena [5wr21EQAAAAJ]
dc.contributor.orcid.spa.fl_str_mv Solarte David, Víctor Alfonso [0000-0002-9856-1484]
Becerra Bayona, Silvia Milena [0000-0002-4499-5885]
dc.contributor.scopus.spa.fl_str_mv Becerra Bayona, Silvia Milena [36522328100]
dc.contributor.researchgate.spa.fl_str_mv Solarte David, Víctor Alfonso [Victor-Solarte-David]
Becerra Bayona, Silvia Milena [Silvia-Becerra-Bayona]
dc.contributor.apolounab.spa.fl_str_mv Solarte David, Víctor Alfonso [víctor-alfonso-solarte-david]
Becerra Bayona, Silvia Milena [silvia-milena-becerra-bayona]
dc.contributor.linkedin.none.fl_str_mv Becerra Bayona, Silvia Milena [silvia-becerra-3174455a]
dc.subject.keywords.spa.fl_str_mv Biomedical engineering
Engineering
Medical electronics
Biological physics
Bioengineering
Medical instruments and apparatus
Medicine
Biomedical
Clinical engineering
Collagen
Cytotoxicity
Fibroblasts
Hydrogels
Platelet poor plasma
Mellitus diabetes
Foot diseases
Feet (Ulcers)
topic Biomedical engineering
Engineering
Medical electronics
Biological physics
Bioengineering
Medical instruments and apparatus
Medicine
Biomedical
Clinical engineering
Collagen
Cytotoxicity
Fibroblasts
Hydrogels
Platelet poor plasma
Mellitus diabetes
Foot diseases
Feet (Ulcers)
Ingeniería biomédica
Ingeniería
Biofísica
Bioingeniería
Medicina
Biomédica
Diabetes mellitus
Enfermedades de lo pies
Pies (Ulceras)
Ingeniería clínica
Electrónica médica
Instrumentos y aparatos médicos
Colágeno
Citotoxicidad
Fibroblastos
Hidrogeles
Plasma pobre en plaquetas
dc.subject.lemb.spa.fl_str_mv Ingeniería biomédica
Ingeniería
Biofísica
Bioingeniería
Medicina
Biomédica
Diabetes mellitus
Enfermedades de lo pies
Pies (Ulceras)
dc.subject.proposal.spa.fl_str_mv Ingeniería clínica
Electrónica médica
Instrumentos y aparatos médicos
Colágeno
Citotoxicidad
Fibroblastos
Hidrogeles
Plasma pobre en plaquetas
description La diabetes mellitus es una enfermedad que en la actualidad se considera un problema de salud pública y se estima que afecte a más de 700 millones de personas adultas en los años venideros. Una de sus principales complicaciones son las úlceras crónicas de pie diabético (UCPD), lesiones cutáneas que en la actualidad no tienen tratamientos 100% efectivos y que afectan de manera significativa la calidad de vida de quienes la padecen, lo que ha incrementado la necesidad de encontrar tratamientos que mejoren el proceso de cicatrización de este tipo de heridas. Por lo anterior, en el presente proyecto se ha sido utilizado piel de tilapia roja, un desecho de la industria acuícola, para extraer colágeno y con este elaborar hidrogeles, los cuales se reticularon con plasma pobre en plaquetas (PPP), una fracción de la sangre que no ha sido frecuentemente utilizada para la investigación. El proceso de extracción de colágeno ácido soluble permitió obtener un rendimiento en base seca cercano al 40%, y a partir de este, fabricar los hidrogeles y reticularlos con el PPP, obteniendo una dinámica adecuada en cuanto a la liberación de proteínas. Estos hidrogeles se sometieron a diferentes ensayos con el fin de determinar sus propiedades mecánicas y físicas, encontrando módulos de compresión similares a los de las capas internas de la piel, así como una capacidad de hinchamiento óptima, lo que les permitiría entregar la humedad necesaria a la herida durante el proceso de cicatrización. Finalmente, a partir de pruebas in vitro, se determinó que el lixiviado producido por los hidrogeles mantiene la viabilidad celular en un periodo de 48 horas, al permitir la proliferación de fibroblastos de la línea celular HT1080. Estos resultados indican que los hidrogeles fabricados en el presente estudio podrían ser una alternativa terapéutica para el tratamiento de las UCPD.
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-02-20T14:22:21Z
dc.date.available.none.fl_str_mv 2023-02-20T14:22:21Z
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.local.spa.fl_str_mv Trabajo de Grado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.hasversion.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12749/19050
dc.identifier.instname.spa.fl_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UNAB
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.unab.edu.co
url http://hdl.handle.net/20.500.12749/19050
identifier_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
reponame:Repositorio Institucional UNAB
repourl:https://repository.unab.edu.co
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Afonso, A. C., Oliveira, D., Saavedra, M. J., Borges, A., & Simões, M. (2021). Biofilms in Diabetic Foot Ulcers: Impact, Risk Factors and Control Strategies. International Journal of Molecular Sciences, 22(15), 25. https://doi.org/10.3390/ijms22158278
Aguilar Hurtado, M. (2020). Plan Territorial de Salud “Santander por el mundo.” 433–553. http://santandercompetitivo.org/media/31e7ab1122d0b7c84b7dde25e69879dd863b0a59.pdf
Antoine, E. E., Vlachos, P. P., & Rylander, M. N. (2015). Tunable collagen I hydrogels for engineered physiological tissue micro-environments. PLoS ONE, 10(3). https://doi.org/10.1371/journal.pone.0122500
Aumiller, W. D., & Dollahite, H. A. (2015). Pathogenesis and management of diabetic foot ulcers. Journal of the American Academy of Physician Assistants, 28(5), 28–34. https://doi.org/10.1097/01.JAA.0000464276.44117.b1
Bader, D. L., & Bowker, P. (1983). Mechanical characteristics of skin and underlying tissues in vivo. Biomaterials, 4(4), 305–308. https://doi.org/10.1016/0142-9612(83)90033-9
Bandyk, D. F. (2018). The diabetic foot: Pathophysiology, evaluation, and treatment. Seminars in Vascular Surgery, 31(2–4), 43–48. https://doi.org/10.1053/j.semvascsurg.2019.02.001
Carretero Villanueva, N. C. (2014). Desarrollo de un hidrogel como soporte para el cultivo de células osteoprogenitoras [Universidad El Bosque]. http://hdl.handle.net/20.500.12495/5241
Catoira, M. C., Fusaro, L., Di Francesco, D., Ramella, M., & Boccafoschi, F. (2019). Overview of natural hydrogels for regenerative medicine applications. Journal of Materials Science: 85 Materials in Medicine, 30(10). https://doi.org/10.1007/s10856-019-6318-7
Chellini, F., Tani, A., Zecchi-Orlandini, S., & Sassoli, C. (2019). Influence of platelet-rich and platelet-poor plasma on endogenous mechanisms of skeletal muscle repair/regeneration. International Journal of Molecular Sciences, 20(3). https://doi.org/10.3390/ijms20030683
Chen, J., Li, L., Yi, R., Xu, N., Gao, R., & Hong, B. (2016). Extraction and characterization of acid-soluble collagen from scales and skin of tilapia (Oreochromis niloticus). LWT - Food Science and Technology, 66, 453–459. https://doi.org/10.1016/j.lwt.2015.10.070
Cheng, M., Wang, H., Yoshida, R., & Murray, M. M. (2010). Platelets and Plasma Proteins Are Both Required to Stimulate Collagen Gene Expression by Anterior Cruciate Ligament Cells in Three-Dimensional Culture. Tissue Engineering Part A, 16(5), 1479–1489. https://doi.org/10.1089/ten.tea.2009.0199
Chiang, N., Rodda, O. A., Kang, A., Sleigh, J., & Vasudevan, T. (2018). Clinical Evaluation of Portable Wound Volumetric Measurement Devices. Advances in Skin and Wound Care, 31(8), 374–380. https://doi.org/10.1097/01.ASW.0000540072.52782.24
Chisini, L. A., Karam, S. A., Noronha, T. G., Sartori, L. R. M., Martin, A. S. S., Demarco, F. F., & Conde, M. C. M. (2017). Platelet-Poor Plasma as a Supplement for Fibroblasts Cultured in Platelet-Rich Fibrin. Acta Stomatologica Croatica, 51(2), 133–140. https://doi.org/10.15644/asc51/2/6
Chuang, C. H., Lin, R. Z., Melero-Martin, J. M., & Chen, Y. C. (2018). Comparison of covalently and physically cross-linked collagen hydrogels on mediating vascular network formation for engineering adipose tissue. Artificial Cells, Nanomedicine and Biotechnology, 46(sup3), S434–S447. https://doi.org/10.1080/21691401.2018.1499660
Chung, E., Rytlewski, J. A., Merchant, A. G., Dhada, K. S., Lewis, E. W., & Suggs, L. J. (2015). Fibrin-based 3D matrices induce angiogenic behavior of adipose-derived stem cells. Acta Biomaterialia, 17(January), 78–88. https://doi.org/10.1016/j.actbio.2015.01.012
Cruz, A. (2003). Biología de la cicatrización. Revista Asociación Colombiana de Dermatología y Cirugía Dermatológica, 11(1), 45–62. https://revista.asocolderma.org.co/index.php/asocolderma/article/view/623/577
Dinescu, S., Albu Kaya, M., Chitoiu, L., Ignat, S., Kaya, D. A., & Costache, M. (2019). Collagen-Based Hydrogels and Their Applications for Tissue Engineering and Regenerative Medicine. January, 1643–1664. https://doi.org/10.1007/978-3-319-77830- 3_54
Diridollou, S., Vabre, V., Berson, M., Vaillant, L., Black, D., Lagarde, J. M., Grégoire, J. M., Gall, Y., & Patat, F. (2001). Skin ageing: Changes of physical properties of human skin in vivo. International Journal of Cosmetic Science, 23(6), 353–362. https://doi.org/10.1046/j.0412-5463.2001.00105.x
Egorikhina, M. N., Aleynik, D. Y., Rubtsova, Y. P., Levin, G. Y., Charykova, I. N., Semenycheva, L. L., Bugrova, M. L., & Zakharychev, E. A. (2019). Hydrogel scaffolds based on blood plasma cryoprecipitate and collagen derived from various sources: Structural, mechanical and biological characteristics. Bioactive Materials, 4(June 2019), 334–345. https://doi.org/10.1016/j.bioactmat.2019.10.003
Falanga, V. (2020). Bioengineered skin constructs. In Principles of Tissue Engineering. INC. https://doi.org/10.1016/B978-0-12-818422-6.00073-3
Fang, S. (2018). Development of collagen-based scaffolds for differentiation of induced 87 pluripotent stem cells [Binghamton University]. https://orb.binghamton.edu/dissertation_and_theses/87
Fleck, C. A., & Simman, R. (2010). Modern collagen wound dressings: Function and purpose. Journal of the American College of Certified Wound Specialists, 2(3), 50–54. https://doi.org/10.1016/j.jcws.2010.12.003
Ge, B., Wang, H., Li, J., Liu, H., Yin, Y., Zhang, N., & Qin, S. (2020). Comprehensive Assessment of Nile Tilapia Skin (Oreochromis niloticus) Collagen Hydrogels for Wound Dressings. Marine Drugs, 18(4), 178. https://doi.org/10.3390/md18040178
Geerligs, M. (2010). Skin layer mechanics. In Skin layer mechanics (Issue 2010).
Grover, C. N., Cameron, R. E., & Best, S. M. (2012). Investigating the morphological, mechanical and degradation properties of scaffolds comprising collagen, gelatin and elastin for use in soft tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 10, 62–74. https://doi.org/10.1016/j.jmbbm.2012.02.028
Gu, L., Shan, T., Ma, Y. xuan, Tay, F. R., & Niu, L. (2019). Novel Biomedical Applications of Crosslinked Collagen. Trends in Biotechnology, 37(5), 464–491. https://doi.org/10.1016/j.tibtech.2018.10.007
Holmes, C., Wrobel, J. S., Maceachern, M. P., & Boles, B. R. (2013). Collagen-based wound dressings for the treatment of diabetes-related foot ulcers: A systematic review. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 6, 17–29. https://doi.org/10.2147/DMSO.S36024
Houdek, M. T., Wyles, C. C., Stalboerger, P. G., Terzic, A., Behfar, A., & Moran, S. L. (2016). 88 Collagen and Fractionated Platelet-Rich Plasma Scaffold for Dermal Regeneration. Plastic and Reconstructive Surgery, 137(5), 1498–1506. https://doi.org/10.1097/PRS.0000000000002094
Hyland, J. C. (2007). Skin and connective tissue disorders. Molecular Pathology in Clinical Practice, Md, 191–203. https://doi.org/10.1007/978-0-387-33227-7_16
International Diabetes Federation. (2021). IDF Diabetes Atlas 2021 (10th ed.).
Isaza López, J. A. (2019). Mechanical Behavior of Skin in Function of its Layers Thickness. Universidad Nacional de Colombia.
Jafari, H., Lista, A., Siekapen, M. M., Ghaffari-Bohlouli, P., Nie, L., Alimoradi, H., & Shavandi, A. (2020). Fish collagen: Extraction, characterization, and applications for biomaterials engineering. Polymers, 12(10), 1–37. https://doi.org/10.3390/polym12102230
Joodaki, H., & Panzer, M. B. (2018). Skin mechanical properties and modeling: A review. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 232(4), 323–343. https://doi.org/10.1177/0954411918759801
Kalra, A., & Lowe, A. (2016). An Overview of Factors Affecting the Skins Youngs Modulus. Journal of Aging Science, 4(2). https://doi.org/10.4172/2329-8847.1000156
Karami, A., Tebyanian, H., Sayyad Soufdoost, R., Motavallian, E., Barkhordari, A., & Nourani, M. R. (2019). Extraction and Characterization of Collagen with Cost-Effective Method from Human Placenta for Biomedical Applications. World Journal of Plastic Surgery, 8(3), 352–358. https://doi.org/10.29252/wjps.8.3.352
Khan, Y., M. Khan, M., & Raza Farooqui, M. (2017). Diabetic foot ulcers: a review of current 89 management. International Journal of Research in Medical Sciences, 5(11), 4683. https://doi.org/10.18203/2320-6012.ijrms20174916
Kiran, A. S. K., & Ramakrishna, S. (2021). Biomaterials: Basic principles. An Introduction to Biomaterials Science and Engineering, 82–93. https://doi.org/10.1142/9789811228186_0004
Li, J., Wang, M., Qiao, Y., Tian, Y., Liu, J., Qin, S., & Wu, W. (2018). Extraction and characterization of type I collagen from skin of tilapia (Oreochromis niloticus) and its potential application in biomedical scaffold material for tissue engineering. Process Biochemistry, 74, 156–163. https://doi.org/10.1016/j.procbio.2018.07.009
Lim, J. Z. M., Ng, N. S. L., & Thomas, C. (2017). Prevention and treatment of diabetic foot ulcers. Journal of the Royal Society of Medicine, 110(3), 104–109. https://doi.org/10.1177/0141076816688346
Liu, C. Y., Matsusaki, M., & Akashi, M. (2015). Cell effects on the formation of collagen triple helix fibers inside collagen gels or on cell surfaces. Polymer Journal, 47(5), 391–399. https://doi.org/10.1038/pj.2015.2
Martínez-Correa, E., Osorio-Delgado, M. A., Henao-Tamayo, L. J., & Castro-Herazo, C. I. (2020). Systemic classification of wound dressings: A review. Revista Mexicana de Ingenieria Biomedica, 41(1), 5–28. https://doi.org/10.17488/RMIB.41.1.1
Meisenberg, G., & Simmons, W. (2018). Principles of Medical Biochemistry (4th ed.). Elsevier Inc.
Meyer, M. (2019). Processing of collagen based biomaterials and the resulting materials 90 properties. BioMedical Engineering Online, 18(1), 1–74. https://doi.org/10.1186/s12938- 019-0647-0
MinAgricultura - SIOC. (2020). Cadena de la Acuicultura 3°Trimestre 2020. https://sioc.minagricultura.gov.co/Acuicultura/Documentos/2020-09-30 Cifras Sectoriales.pdf
Misiura, M., Guszczyn, T., Oscilowska, I., Baszanowska, W., Palka, J., & Miltyk, W. (2021). Platelet-rich plasma promotes the proliferation of human keratinocytes via a progression of the cell cycle. A role of prolidase. International Journal of Molecular Sciences, 22(2), 1–14. https://doi.org/10.3390/ijms22020936
Monteiro-Soares, M., Boyko, E. J., Jeffcoate, W., Mills, J. L., Russell, D., Morbach, S., & Game, F. (2020). Diabetic foot ulcer classifications: A critical review. Diabetes/Metabolism Research and Reviews, 36(S1), 1–16. https://doi.org/10.1002/dmrr.3272
Montero, A., Quílez, C., Valencia, L., Girón, P., Jorcano, J. L., & Velasco, D. (2021). Effect of fibrin concentration on the in vitro production of dermo‐epidermal equivalents. International Journal of Molecular Sciences, 22(13). https://doi.org/10.3390/ijms22136746
Natesan, S., Stone, R., Coronado, R. E., Wrice, N. L., Kowalczewski, A. C., Zamora, D. O., & Christy, R. J. (2019). PEGylated Platelet-Free Blood Plasma-Based Hydrogels for FullThickness Wound Regeneration. Advances in Wound Care, 8(7), 323–340. https://doi.org/10.1089/wound.2018.0844
Nguyen, T. U., Watkins, K. E., & Kishore, V. (2019). Photochemically crosslinked cell-laden methacrylated collagen hydrogels with high cell viability and functionality. Journal of Biomedical Materials Research - Part A, September 2018, 1541–1550. 91 https://doi.org/10.1002/jbm.a.36668
Osidak, E. O., Kalabusheva, E. P., Alpeeva, E. V., Belousov, S. I., Krasheninnikov, S. V., Grigoriev, T. E., Domogatsky, S. P., Vorotelyak, E. A., & Chermnykh, E. S. (2021). Concentrated collagen hydrogels: A new approach for developing artificial tissues. Materialia, 20(September), 101217. https://doi.org/10.1016/j.mtla.2021.101217
Owczarzy, A., Kurasiński, R., Kulig, K., Rogóż, W., Szkudlarek, A., & Maciążek-Jurczyk, M. (2020). Collagen-structure, properties and application. Engineering of Biomaterials, 156, 17–23. https://doi.org/10.34821/eng.biomat.156.2020.17-23
Pankajakshan, D., Voytik-Harbin, S. L., Nör, J. E., & Bottino, M. C. (2020). Injectable Highly Tunable Oligomeric Collagen Matrices for Dental Tissue Regeneration. ACS Applied Bio Materials, 3(2), 859–868. https://doi.org/10.1021/acsabm.9b00944
Pawlaczyk, M., Lelonkiewicz, M., & Wieczorowski, M. (2013). Age-dependent biomechanical properties of the skin. Postepy Dermatologii i Alergologii, 30(5), 302–306. https://doi.org/10.5114/pdia.2013.38359
Peppas, N. A., Slaughter, B. V., & Kanzelberger, M. A. (2012). Hydrogels. In Polymer Science: A Comprehensive Reference (Vol. 9, pp. 385–395). https://doi.org/10.1016/B978-0-444- 53349-4.00226-0
Pereira C., N., Suh, H. P., & Hong, J. P. (JP). (2018). Úlceras Del Pie Diabético: Importancia Del Manejo Multidisciplinario Y Salvataje Microquirúrgico De La Extremidad. Revista Chilena de Cirugía, 70(6), 535–543. https://doi.org/10.4067/s0718-40262018000600535
Quintero, J., & Zapata, J. E. (2017). Optimización de la Extracción del Colágeno Soluble en 92 Ácido de Subproductos de Tilapia Roja (Oreochromis spp) mediante un Diseño de Superficie de Respuesta. Informacion Tecnologica, 28(1), 109–120. https://doi.org/10.4067/S0718-07642017000100011
Ratner, B. D., Hoffman, A. S., Schoen, F. J., & Lemons, J. E. (2013). Biomaterials Science: An Evolving, Multidisciplinary Endeavor. Biomaterials Science: An Introduction to Materials: Third Edition, xxv–xxxix. https://doi.org/10.1016/B978-0-08-087780-8.00153-4
Ramírez Rojas, D., Ramírez Sánchez, P., Santos Soto, J. (2022). Evaluación de las propiedades mecánicas de hidrogeles a base de colágeno de piel de tilapia con potencial uso en el tratamiento de quemaduras de segundo grado [Tesis de pregrado]. Universidad Autónoma de Bucaramanga.
Rosendo Fernandez, J. and Pérez Zarauza, M., 2016. Guía Práctica de Úlceras de Pie Diabético. Santiago de Compostela: Programa Úlceras Fóra
Sáenz Ramírez, A. (2004). Biomateriales. Tecnología En Marcha, 17(1), 34–45.
Sarrigiannidis, S. O., Rey, J. M., Dobre, O., González-García, C., Dalby, M. J., & SalmeronSanchez, M. (2021). A tough act to follow: collagen hydrogel modifications to improve mechanical and growth factor loading capabilities. Materials Today Bio, 10(January). https://doi.org/10.1016/j.mtbio.2021.100098
Schneider-Barthold, C., Baganz, S., Wilhelmi, M., Scheper, T., & Pepelanova, I. (2016). Hydrogels based on collagen and fibrin - Frontiers and applications. BioNanoMaterials, 17(1–2), 3–12. https://doi.org/10.1515/bnm-2015-0025
Serrano Gaona, J. C. (2011). Estandarización de un proceso de extracción de colágeno a partir 93 de los residuos de fileteo de tilapia (Oreochromis sp) y cachama (Piaractus brachypomus). 85. http://www.bdigital.unal.edu.co/4880/
Shoulders, M. D., & Raines, R. T. (2009). Collagen structure and stability. Annual Review of Biochemistry, 78, 929–958. https://doi.org/10.1146/annurev.biochem.77.032207.120833
Silvipriya, K. S., Krishna Kumar, K., Bhat, A. R., Dinesh Kumar, B., John, A., & Lakshmanan, P. (2015). Collagen: Animal sources and biomedical application. Journal of Applied Pharmaceutical Science, 5(3), 123–127. https://doi.org/10.7324/JAPS.2015.50322
Snyder, R. J., & Hanft, J. R. (2009). Diabetic foot ulcers--effects on QOL, costs, and mortality and the role of standard wound care and advanced-care therapies. Ostomy/Wound Management, 55(11), 28–38. http://www.ncbi.nlm.nih.gov/pubmed/19934461
Sobczak-Kupiec, A., Drabczyk, A., Florkiewicz, W., Głąb, M., Kudłacik-Kramarczyk, S., Słota, D., Tomala, A., & Tyliszczak, B. (2021). Review of the applications of biomedical compositions containing hydroxyapatite and collagen modified by bioactive components. Materials, 14(9). https://doi.org/10.3390/ma14092096
Taguchi, T., & Tanaka, J. (2002). Swelling behavior of hyaluronic acid and type II collagen hydrogels prepared by using conventional crosslinking and subsequent additional polymer interactions. Journal of Biomaterials Science, Polymer Edition, 13(1), 43–52. https://doi.org/10.1163/156856202753525927
Techatanawat, S., Surarit, R., Suddhasthira, T., & Khovidhunkit, S. O. P. (2011). Type I collagen extracted from rat-tail and bovine Achilles tendon for dental application: A comparative study. Asian Biomedicine, 5(6), 787–798. https://doi.org/10.5372/1905-7415.0506.111
Tian, H., Ren, Z., Shi, L., Hao, G., Chen, J., & Weng, W. (2021). Self-assembly characterization of tilapia skin collagen in simulated body fluid with different salt concentrations. Process Biochemistry, 108(June), 153–160. https://doi.org/10.1016/j.procbio.2021.06.013
Vallet-Regí, M. (2022). Evolution of Biomaterials. Frontiers in Materials, 9(March), 1–5. https://doi.org/10.3389/fmats.2022.864016
Willits, R. K., & Skornia, S. L. (2004). Effect of collagen gel stiffness on neurite extension. Journal of Biomaterials Science, Polymer Edition, 15(12), 1521–1531. https://doi.org/10.1163/1568562042459698
World Health Organization. (2021). Diabetes. https://www.who.int/es/news-room/factsheets/detail/diabetes
Wu, M., Cronin, K., & Crane, J. S. (2022). Biochemistry, Collagen Synthesis. In StatPearls. http://www.ncbi.nlm.nih.gov/pubmed/29939531
Zeng, S. kui, Zhang, C. hua, Lin, H., Yang, P., Hong, P. zhi, & Jiang, Z. (2009). Isolation and characterisation of acid-solubilised collagen from the skin of Nile tilapia (Oreochromis niloticus). Food Chemistry, 116(4), 879–883. https://doi.org/10.1016/j.foodchem.2009.03.038
Zhang, J., Zhang, J., Zhang, N., Li, T., Zhou, X., Jia, J., Liang, Y., Sun, X., & Chen, H. (2020). The Effects of Platelet-Rich and Platelet-Poor Plasma on Biological Characteristics of BMMSCs in Vitro. Analytical Cellular Pathology, 2020. https://doi.org/10.1155/2020/8546231
Zhou, C., Sheng, C., Chen, J., Liang, Y., Liu, Q., Li, P., Huang, X., & Liu, B. (2022). Gradual hydrogel degradation for programable repairing full-thickness skin defect wound. Chemical 95 Engineering Journal, 450(P3), 138200. https://doi.org/10.1016/j.cej.2022.138200Afonso, A. C., Oliveira, D., Saavedra, M. J., Borges, A., & Simões, M. (2021). Biofilms in Diabetic Foot Ulcers: Impact, Risk Factors and Control Strategies. International Journal of Molecular Sciences, 22(15), 25. https://doi.org/10.3390/ijms22158278
dc.relation.uriapolo.spa.fl_str_mv https://apolo.unab.edu.co/en/persons/v%C3%ADctor-alfonso-solarte-david
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.creativecommons.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.spa.fl_str_mv Bucaramanga (Santander, Colombia)
dc.coverage.temporal.spa.fl_str_mv 2022
dc.coverage.campus.spa.fl_str_mv UNAB Campus Bucaramanga
dc.publisher.grantor.spa.fl_str_mv Universidad Autónoma de Bucaramanga UNAB
dc.publisher.faculty.spa.fl_str_mv Facultad Ingeniería
dc.publisher.program.spa.fl_str_mv Pregrado Ingeniería Biomédica
institution Universidad Autónoma de Bucaramanga - UNAB
bitstream.url.fl_str_mv https://repository.unab.edu.co/bitstream/20.500.12749/19050/1/2022_Tesis_Rojas_C%c3%a1rdenas_Luis_David.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/19050/2/2022_Licencia_Rojas_C%c3%a1rdenas_Luis_David.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/19050/3/license.txt
https://repository.unab.edu.co/bitstream/20.500.12749/19050/4/2022_Tesis_Rojas_C%c3%a1rdenas_Luis_David.pdf.jpg
https://repository.unab.edu.co/bitstream/20.500.12749/19050/5/2022_Licencia_Rojas_C%c3%a1rdenas_Luis_David.pdf.jpg
bitstream.checksum.fl_str_mv ff8f6cb79d9f19fdab2b86506af12683
b7cc2beba0a2cefb386c07a9b85ffd6a
3755c0cfdb77e29f2b9125d7a45dd316
bad5e9d8c19b9f984e7d7fc7b80334b1
d32f22c462a1f66f973ab5a98a38b2e7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB
repository.mail.fl_str_mv repositorio@unab.edu.co
_version_ 1814277688492294144
spelling Solarte David, Víctor Alfonso54590e96-eda3-4b43-9ffa-14bd35ed7d08Becerra Bayona, Silvia Milenaf59fde3b-924f-4fcc-96e9-5fd6250b2daeRojas Cárdenas, Luis Davidbb7e0b38-6e76-4233-b16e-530f7693ebd6Solarte David, Víctor Alfonso [0001329391]Becerra Bayona, Silvia Milena [0001568861]Becerra Bayona, Silvia Milena [5wr21EQAAAAJ]Solarte David, Víctor Alfonso [0000-0002-9856-1484]Becerra Bayona, Silvia Milena [0000-0002-4499-5885]Becerra Bayona, Silvia Milena [36522328100]Solarte David, Víctor Alfonso [Victor-Solarte-David]Becerra Bayona, Silvia Milena [Silvia-Becerra-Bayona]Solarte David, Víctor Alfonso [víctor-alfonso-solarte-david]Becerra Bayona, Silvia Milena [silvia-milena-becerra-bayona]Becerra Bayona, Silvia Milena [silvia-becerra-3174455a]Bucaramanga (Santander, Colombia)2022UNAB Campus Bucaramanga2023-02-20T14:22:21Z2023-02-20T14:22:21Z2022http://hdl.handle.net/20.500.12749/19050instname:Universidad Autónoma de Bucaramanga - UNABreponame:Repositorio Institucional UNABrepourl:https://repository.unab.edu.coLa diabetes mellitus es una enfermedad que en la actualidad se considera un problema de salud pública y se estima que afecte a más de 700 millones de personas adultas en los años venideros. Una de sus principales complicaciones son las úlceras crónicas de pie diabético (UCPD), lesiones cutáneas que en la actualidad no tienen tratamientos 100% efectivos y que afectan de manera significativa la calidad de vida de quienes la padecen, lo que ha incrementado la necesidad de encontrar tratamientos que mejoren el proceso de cicatrización de este tipo de heridas. Por lo anterior, en el presente proyecto se ha sido utilizado piel de tilapia roja, un desecho de la industria acuícola, para extraer colágeno y con este elaborar hidrogeles, los cuales se reticularon con plasma pobre en plaquetas (PPP), una fracción de la sangre que no ha sido frecuentemente utilizada para la investigación. El proceso de extracción de colágeno ácido soluble permitió obtener un rendimiento en base seca cercano al 40%, y a partir de este, fabricar los hidrogeles y reticularlos con el PPP, obteniendo una dinámica adecuada en cuanto a la liberación de proteínas. Estos hidrogeles se sometieron a diferentes ensayos con el fin de determinar sus propiedades mecánicas y físicas, encontrando módulos de compresión similares a los de las capas internas de la piel, así como una capacidad de hinchamiento óptima, lo que les permitiría entregar la humedad necesaria a la herida durante el proceso de cicatrización. Finalmente, a partir de pruebas in vitro, se determinó que el lixiviado producido por los hidrogeles mantiene la viabilidad celular en un periodo de 48 horas, al permitir la proliferación de fibroblastos de la línea celular HT1080. Estos resultados indican que los hidrogeles fabricados en el presente estudio podrían ser una alternativa terapéutica para el tratamiento de las UCPD.Capítulo 1. Problemática identificada........................................................................................... 10 Planteamiento del problema ...................................................................................................... 10 Justificación............................................................................................................................... 11 Pregunta problema..................................................................................................................... 13 Objetivo general ........................................................................................................................ 13 Objetivos específicos................................................................................................................. 13 Capítulo 2. Marco teórico ............................................................................................................. 15 La piel........................................................................................................................................ 15 Propiedades mecánicas......................................................................................................... 16 Biomateriales............................................................................................................................. 17 El colágeno................................................................................................................................ 18 Estructura del colágeno......................................................................................................... 19 Propiedades y aplicaciones del colágeno ............................................................................. 20 Fuentes y proceso de extracción del colágeno...................................................................... 22 Plasma pobre en plaquetas (PPP).............................................................................................. 25 Hidrogeles ................................................................................................................................. 25 Úlceras crónicas de pie diabético (UCPD)................................................................................ 26 Tratamientos actuales para las UCPD ................................................................................. 28 Capítulo 3. Estado del arte ............................................................................................................ 29 Capítulo 4. Metodología ............................................................................................................... 33 Extracción de colágeno a partir de piel de tilapia roja .............................................................. 33 Preparación de la piel de tilapia roja ................................................................................... 34 Blanqueamiento de la piel ..................................................................................................... 34 Desengrasado de la piel ........................................................................................................ 34 Hidrólisis básica de la piel.................................................................................................... 35 Extracción ácida de la piel.................................................................................................... 35 Salting-out del precipitado .................................................................................................... 35 Diálisis del colágeno ............................................................................................................. 36 Liofilización del colágeno ..................................................................................................... 36 Rendimiento de extracción de colágeno ácido soluble (ASC)............................................... 36 Elaboración de hidrogeles......................................................................................................... 37 Hidrogeles de colágeno (HC)................................................................................................. 37 Hidrogeles de PPP y colágeno (HC+PPP)............................................................................... 38 Hidrogeles de PPP (HPPP)..................................................................................................... 38 Concentración de proteínas en los hidrogeles...................................................................... 39 Pruebas mecánicas..................................................................................................................... 40 Prueba mecánica de compresión (PMC)............................................................................... 40 Prueba mecánica de tensión (PMT)...................................................................................... 41 Prueba de hinchamiento........................................................................................................ 41 Prueba de degradación de los hidrogeles............................................................................. 42 Ensayo de citotoxicidad ............................................................................................................ 42 Prueba de proliferación celular con lixiviados de hidrogeles.............................................. 42 Análisis estadísticos.................................................................................................................. 45 Capítulo 5. Resultados y análisis.................................................................................................. 46 Extracción de colágeno a partir de piel de tilapia roja .............................................................. 46 Elaboración de hidrogeles de colágeno puro, PPP puro y colágeno + PPP .............................. 50 Concentración de proteínas inmovilizadas y liberadas por los hidrogeles................................ 52 Caracterización mecánica de los hidrogeles.............................................................................. 56 Evaluación del módulo de compresión.................................................................................. 56 Evaluación del módulo de Young .......................................................................................... 62 Evaluación de la capacidad de hinchamiento de los hidrogeles........................................... 63 Degradación de los hidrogeles.............................................................................................. 66 Ensayo de proliferación celular utilizando lixiviados de los hidrogeles................................... 69 Análisis de resultados................................................................................................................ 72 Capítulo 6. Conclusiones y recomendaciones .............................................................................. 82 Referencias.................................................................................................................................... 84 Anexos .......................................................................................................................................... 96PregradoDiabetes mellitus is a disease that is currently considered a public health problem and is estimated to affect more than 700 million adults in the coming years. One of its main complications are chronic diabetic foot ulcers, skin lesions that currently do not have 100% effective treatments and that significantly affect the quality of life of those who suffer it, which has increased the need to find treatments that improve the healing process of this type of wounds. Therefore, in the present project red tilapia skin, a waste from the aquaculture industry, has been used to extract collagen and with this to elaborate hydrogels, which were cross-linked with platelet-poor plasma (PPP), a fraction of the blood that has not been frequently used for research. The soluble acid collagen extraction process allowed to obtain a dry base yield close to 40%, and from this, to manufacture the hydrogels and cross-link them with the PPP, obtaining an adequate dynamic in terms of protein release. These hydrogels were subjected to different tests to determine their mechanical and physical properties, finding compression modules like those of the inner layers of the skin, as well as an optimal swelling capacity, which would allow them to deliver the necessary moisture to the wound during the healing process. Finally, from in vitro tests, it was determined that the leachate produced by the hydrogels maintains cell viability in a period of 48 hours, by allowing the proliferation of fibroblasts from the HT1080 cell line. These results indicate that the hydrogels manufactured in the present study could be a therapeutic alternative for the treatment of chronic diabetic foot ulcers.Modalidad Presencialapplication/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)Atribución-NoComercial-SinDerivadas 2.5 Colombiahttp://purl.org/coar/access_right/c_abf2Desarrollo de un apósito tipo hidrogel de plasma pobre en plaquetas y colágeno extraído de piel de tilapia con potencial uso para el tratamiento de úlceras crónicas de pie diabéticoDevelopment of a platelet-poor plasma hydrogel-type dressing and collagen extracted from tilapia skin with potential use for the treatment of chronic diabetic foot ulcersIngeniero BiomédicoUniversidad Autónoma de Bucaramanga UNABFacultad IngenieríaPregrado Ingeniería Biomédicainfo:eu-repo/semantics/bachelorThesisTrabajo de Gradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/acceptedVersionhttp://purl.org/redcol/resource_type/TPBiomedical engineeringEngineeringMedical electronicsBiological physicsBioengineeringMedical instruments and apparatusMedicineBiomedicalClinical engineeringCollagenCytotoxicityFibroblastsHydrogelsPlatelet poor plasmaMellitus diabetesFoot diseasesFeet (Ulcers)Ingeniería biomédicaIngenieríaBiofísicaBioingenieríaMedicinaBiomédicaDiabetes mellitusEnfermedades de lo piesPies (Ulceras)Ingeniería clínicaElectrónica médicaInstrumentos y aparatos médicosColágenoCitotoxicidadFibroblastosHidrogelesPlasma pobre en plaquetasAfonso, A. C., Oliveira, D., Saavedra, M. J., Borges, A., & Simões, M. (2021). Biofilms in Diabetic Foot Ulcers: Impact, Risk Factors and Control Strategies. International Journal of Molecular Sciences, 22(15), 25. https://doi.org/10.3390/ijms22158278Aguilar Hurtado, M. (2020). Plan Territorial de Salud “Santander por el mundo.” 433–553. http://santandercompetitivo.org/media/31e7ab1122d0b7c84b7dde25e69879dd863b0a59.pdfAntoine, E. E., Vlachos, P. P., & Rylander, M. N. (2015). Tunable collagen I hydrogels for engineered physiological tissue micro-environments. PLoS ONE, 10(3). https://doi.org/10.1371/journal.pone.0122500Aumiller, W. D., & Dollahite, H. A. (2015). Pathogenesis and management of diabetic foot ulcers. Journal of the American Academy of Physician Assistants, 28(5), 28–34. https://doi.org/10.1097/01.JAA.0000464276.44117.b1Bader, D. L., & Bowker, P. (1983). Mechanical characteristics of skin and underlying tissues in vivo. Biomaterials, 4(4), 305–308. https://doi.org/10.1016/0142-9612(83)90033-9Bandyk, D. F. (2018). The diabetic foot: Pathophysiology, evaluation, and treatment. Seminars in Vascular Surgery, 31(2–4), 43–48. https://doi.org/10.1053/j.semvascsurg.2019.02.001Carretero Villanueva, N. C. (2014). Desarrollo de un hidrogel como soporte para el cultivo de células osteoprogenitoras [Universidad El Bosque]. http://hdl.handle.net/20.500.12495/5241Catoira, M. C., Fusaro, L., Di Francesco, D., Ramella, M., & Boccafoschi, F. (2019). Overview of natural hydrogels for regenerative medicine applications. Journal of Materials Science: 85 Materials in Medicine, 30(10). https://doi.org/10.1007/s10856-019-6318-7Chellini, F., Tani, A., Zecchi-Orlandini, S., & Sassoli, C. (2019). Influence of platelet-rich and platelet-poor plasma on endogenous mechanisms of skeletal muscle repair/regeneration. International Journal of Molecular Sciences, 20(3). https://doi.org/10.3390/ijms20030683Chen, J., Li, L., Yi, R., Xu, N., Gao, R., & Hong, B. (2016). Extraction and characterization of acid-soluble collagen from scales and skin of tilapia (Oreochromis niloticus). LWT - Food Science and Technology, 66, 453–459. https://doi.org/10.1016/j.lwt.2015.10.070Cheng, M., Wang, H., Yoshida, R., & Murray, M. M. (2010). Platelets and Plasma Proteins Are Both Required to Stimulate Collagen Gene Expression by Anterior Cruciate Ligament Cells in Three-Dimensional Culture. Tissue Engineering Part A, 16(5), 1479–1489. https://doi.org/10.1089/ten.tea.2009.0199Chiang, N., Rodda, O. A., Kang, A., Sleigh, J., & Vasudevan, T. (2018). Clinical Evaluation of Portable Wound Volumetric Measurement Devices. Advances in Skin and Wound Care, 31(8), 374–380. https://doi.org/10.1097/01.ASW.0000540072.52782.24Chisini, L. A., Karam, S. A., Noronha, T. G., Sartori, L. R. M., Martin, A. S. S., Demarco, F. F., & Conde, M. C. M. (2017). Platelet-Poor Plasma as a Supplement for Fibroblasts Cultured in Platelet-Rich Fibrin. Acta Stomatologica Croatica, 51(2), 133–140. https://doi.org/10.15644/asc51/2/6Chuang, C. H., Lin, R. Z., Melero-Martin, J. M., & Chen, Y. C. (2018). Comparison of covalently and physically cross-linked collagen hydrogels on mediating vascular network formation for engineering adipose tissue. Artificial Cells, Nanomedicine and Biotechnology, 46(sup3), S434–S447. https://doi.org/10.1080/21691401.2018.1499660Chung, E., Rytlewski, J. A., Merchant, A. G., Dhada, K. S., Lewis, E. W., & Suggs, L. J. (2015). Fibrin-based 3D matrices induce angiogenic behavior of adipose-derived stem cells. Acta Biomaterialia, 17(January), 78–88. https://doi.org/10.1016/j.actbio.2015.01.012Cruz, A. (2003). Biología de la cicatrización. Revista Asociación Colombiana de Dermatología y Cirugía Dermatológica, 11(1), 45–62. https://revista.asocolderma.org.co/index.php/asocolderma/article/view/623/577Dinescu, S., Albu Kaya, M., Chitoiu, L., Ignat, S., Kaya, D. A., & Costache, M. (2019). Collagen-Based Hydrogels and Their Applications for Tissue Engineering and Regenerative Medicine. January, 1643–1664. https://doi.org/10.1007/978-3-319-77830- 3_54Diridollou, S., Vabre, V., Berson, M., Vaillant, L., Black, D., Lagarde, J. M., Grégoire, J. M., Gall, Y., & Patat, F. (2001). Skin ageing: Changes of physical properties of human skin in vivo. International Journal of Cosmetic Science, 23(6), 353–362. https://doi.org/10.1046/j.0412-5463.2001.00105.xEgorikhina, M. N., Aleynik, D. Y., Rubtsova, Y. P., Levin, G. Y., Charykova, I. N., Semenycheva, L. L., Bugrova, M. L., & Zakharychev, E. A. (2019). Hydrogel scaffolds based on blood plasma cryoprecipitate and collagen derived from various sources: Structural, mechanical and biological characteristics. Bioactive Materials, 4(June 2019), 334–345. https://doi.org/10.1016/j.bioactmat.2019.10.003Falanga, V. (2020). Bioengineered skin constructs. In Principles of Tissue Engineering. INC. https://doi.org/10.1016/B978-0-12-818422-6.00073-3Fang, S. (2018). Development of collagen-based scaffolds for differentiation of induced 87 pluripotent stem cells [Binghamton University]. https://orb.binghamton.edu/dissertation_and_theses/87Fleck, C. A., & Simman, R. (2010). Modern collagen wound dressings: Function and purpose. Journal of the American College of Certified Wound Specialists, 2(3), 50–54. https://doi.org/10.1016/j.jcws.2010.12.003Ge, B., Wang, H., Li, J., Liu, H., Yin, Y., Zhang, N., & Qin, S. (2020). Comprehensive Assessment of Nile Tilapia Skin (Oreochromis niloticus) Collagen Hydrogels for Wound Dressings. Marine Drugs, 18(4), 178. https://doi.org/10.3390/md18040178Geerligs, M. (2010). Skin layer mechanics. In Skin layer mechanics (Issue 2010).Grover, C. N., Cameron, R. E., & Best, S. M. (2012). Investigating the morphological, mechanical and degradation properties of scaffolds comprising collagen, gelatin and elastin for use in soft tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 10, 62–74. https://doi.org/10.1016/j.jmbbm.2012.02.028Gu, L., Shan, T., Ma, Y. xuan, Tay, F. R., & Niu, L. (2019). Novel Biomedical Applications of Crosslinked Collagen. Trends in Biotechnology, 37(5), 464–491. https://doi.org/10.1016/j.tibtech.2018.10.007Holmes, C., Wrobel, J. S., Maceachern, M. P., & Boles, B. R. (2013). Collagen-based wound dressings for the treatment of diabetes-related foot ulcers: A systematic review. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 6, 17–29. https://doi.org/10.2147/DMSO.S36024Houdek, M. T., Wyles, C. C., Stalboerger, P. G., Terzic, A., Behfar, A., & Moran, S. L. (2016). 88 Collagen and Fractionated Platelet-Rich Plasma Scaffold for Dermal Regeneration. Plastic and Reconstructive Surgery, 137(5), 1498–1506. https://doi.org/10.1097/PRS.0000000000002094Hyland, J. C. (2007). Skin and connective tissue disorders. Molecular Pathology in Clinical Practice, Md, 191–203. https://doi.org/10.1007/978-0-387-33227-7_16International Diabetes Federation. (2021). IDF Diabetes Atlas 2021 (10th ed.).Isaza López, J. A. (2019). Mechanical Behavior of Skin in Function of its Layers Thickness. Universidad Nacional de Colombia.Jafari, H., Lista, A., Siekapen, M. M., Ghaffari-Bohlouli, P., Nie, L., Alimoradi, H., & Shavandi, A. (2020). Fish collagen: Extraction, characterization, and applications for biomaterials engineering. Polymers, 12(10), 1–37. https://doi.org/10.3390/polym12102230Joodaki, H., & Panzer, M. B. (2018). Skin mechanical properties and modeling: A review. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 232(4), 323–343. https://doi.org/10.1177/0954411918759801Kalra, A., & Lowe, A. (2016). An Overview of Factors Affecting the Skins Youngs Modulus. Journal of Aging Science, 4(2). https://doi.org/10.4172/2329-8847.1000156Karami, A., Tebyanian, H., Sayyad Soufdoost, R., Motavallian, E., Barkhordari, A., & Nourani, M. R. (2019). Extraction and Characterization of Collagen with Cost-Effective Method from Human Placenta for Biomedical Applications. World Journal of Plastic Surgery, 8(3), 352–358. https://doi.org/10.29252/wjps.8.3.352Khan, Y., M. Khan, M., & Raza Farooqui, M. (2017). Diabetic foot ulcers: a review of current 89 management. International Journal of Research in Medical Sciences, 5(11), 4683. https://doi.org/10.18203/2320-6012.ijrms20174916Kiran, A. S. K., & Ramakrishna, S. (2021). Biomaterials: Basic principles. An Introduction to Biomaterials Science and Engineering, 82–93. https://doi.org/10.1142/9789811228186_0004Li, J., Wang, M., Qiao, Y., Tian, Y., Liu, J., Qin, S., & Wu, W. (2018). Extraction and characterization of type I collagen from skin of tilapia (Oreochromis niloticus) and its potential application in biomedical scaffold material for tissue engineering. Process Biochemistry, 74, 156–163. https://doi.org/10.1016/j.procbio.2018.07.009Lim, J. Z. M., Ng, N. S. L., & Thomas, C. (2017). Prevention and treatment of diabetic foot ulcers. Journal of the Royal Society of Medicine, 110(3), 104–109. https://doi.org/10.1177/0141076816688346Liu, C. Y., Matsusaki, M., & Akashi, M. (2015). Cell effects on the formation of collagen triple helix fibers inside collagen gels or on cell surfaces. Polymer Journal, 47(5), 391–399. https://doi.org/10.1038/pj.2015.2Martínez-Correa, E., Osorio-Delgado, M. A., Henao-Tamayo, L. J., & Castro-Herazo, C. I. (2020). Systemic classification of wound dressings: A review. Revista Mexicana de Ingenieria Biomedica, 41(1), 5–28. https://doi.org/10.17488/RMIB.41.1.1Meisenberg, G., & Simmons, W. (2018). Principles of Medical Biochemistry (4th ed.). Elsevier Inc.Meyer, M. (2019). Processing of collagen based biomaterials and the resulting materials 90 properties. BioMedical Engineering Online, 18(1), 1–74. https://doi.org/10.1186/s12938- 019-0647-0MinAgricultura - SIOC. (2020). Cadena de la Acuicultura 3°Trimestre 2020. https://sioc.minagricultura.gov.co/Acuicultura/Documentos/2020-09-30 Cifras Sectoriales.pdfMisiura, M., Guszczyn, T., Oscilowska, I., Baszanowska, W., Palka, J., & Miltyk, W. (2021). Platelet-rich plasma promotes the proliferation of human keratinocytes via a progression of the cell cycle. A role of prolidase. International Journal of Molecular Sciences, 22(2), 1–14. https://doi.org/10.3390/ijms22020936Monteiro-Soares, M., Boyko, E. J., Jeffcoate, W., Mills, J. L., Russell, D., Morbach, S., & Game, F. (2020). Diabetic foot ulcer classifications: A critical review. Diabetes/Metabolism Research and Reviews, 36(S1), 1–16. https://doi.org/10.1002/dmrr.3272Montero, A., Quílez, C., Valencia, L., Girón, P., Jorcano, J. L., & Velasco, D. (2021). Effect of fibrin concentration on the in vitro production of dermo‐epidermal equivalents. International Journal of Molecular Sciences, 22(13). https://doi.org/10.3390/ijms22136746Natesan, S., Stone, R., Coronado, R. E., Wrice, N. L., Kowalczewski, A. C., Zamora, D. O., & Christy, R. J. (2019). PEGylated Platelet-Free Blood Plasma-Based Hydrogels for FullThickness Wound Regeneration. Advances in Wound Care, 8(7), 323–340. https://doi.org/10.1089/wound.2018.0844Nguyen, T. U., Watkins, K. E., & Kishore, V. (2019). Photochemically crosslinked cell-laden methacrylated collagen hydrogels with high cell viability and functionality. Journal of Biomedical Materials Research - Part A, September 2018, 1541–1550. 91 https://doi.org/10.1002/jbm.a.36668Osidak, E. O., Kalabusheva, E. P., Alpeeva, E. V., Belousov, S. I., Krasheninnikov, S. V., Grigoriev, T. E., Domogatsky, S. P., Vorotelyak, E. A., & Chermnykh, E. S. (2021). Concentrated collagen hydrogels: A new approach for developing artificial tissues. Materialia, 20(September), 101217. https://doi.org/10.1016/j.mtla.2021.101217Owczarzy, A., Kurasiński, R., Kulig, K., Rogóż, W., Szkudlarek, A., & Maciążek-Jurczyk, M. (2020). Collagen-structure, properties and application. Engineering of Biomaterials, 156, 17–23. https://doi.org/10.34821/eng.biomat.156.2020.17-23Pankajakshan, D., Voytik-Harbin, S. L., Nör, J. E., & Bottino, M. C. (2020). Injectable Highly Tunable Oligomeric Collagen Matrices for Dental Tissue Regeneration. ACS Applied Bio Materials, 3(2), 859–868. https://doi.org/10.1021/acsabm.9b00944Pawlaczyk, M., Lelonkiewicz, M., & Wieczorowski, M. (2013). Age-dependent biomechanical properties of the skin. Postepy Dermatologii i Alergologii, 30(5), 302–306. https://doi.org/10.5114/pdia.2013.38359Peppas, N. A., Slaughter, B. V., & Kanzelberger, M. A. (2012). Hydrogels. In Polymer Science: A Comprehensive Reference (Vol. 9, pp. 385–395). https://doi.org/10.1016/B978-0-444- 53349-4.00226-0Pereira C., N., Suh, H. P., & Hong, J. P. (JP). (2018). Úlceras Del Pie Diabético: Importancia Del Manejo Multidisciplinario Y Salvataje Microquirúrgico De La Extremidad. Revista Chilena de Cirugía, 70(6), 535–543. https://doi.org/10.4067/s0718-40262018000600535Quintero, J., & Zapata, J. E. (2017). Optimización de la Extracción del Colágeno Soluble en 92 Ácido de Subproductos de Tilapia Roja (Oreochromis spp) mediante un Diseño de Superficie de Respuesta. Informacion Tecnologica, 28(1), 109–120. https://doi.org/10.4067/S0718-07642017000100011Ratner, B. D., Hoffman, A. S., Schoen, F. J., & Lemons, J. E. (2013). Biomaterials Science: An Evolving, Multidisciplinary Endeavor. Biomaterials Science: An Introduction to Materials: Third Edition, xxv–xxxix. https://doi.org/10.1016/B978-0-08-087780-8.00153-4Ramírez Rojas, D., Ramírez Sánchez, P., Santos Soto, J. (2022). Evaluación de las propiedades mecánicas de hidrogeles a base de colágeno de piel de tilapia con potencial uso en el tratamiento de quemaduras de segundo grado [Tesis de pregrado]. Universidad Autónoma de Bucaramanga.Rosendo Fernandez, J. and Pérez Zarauza, M., 2016. Guía Práctica de Úlceras de Pie Diabético. Santiago de Compostela: Programa Úlceras FóraSáenz Ramírez, A. (2004). Biomateriales. Tecnología En Marcha, 17(1), 34–45.Sarrigiannidis, S. O., Rey, J. M., Dobre, O., González-García, C., Dalby, M. J., & SalmeronSanchez, M. (2021). A tough act to follow: collagen hydrogel modifications to improve mechanical and growth factor loading capabilities. Materials Today Bio, 10(January). https://doi.org/10.1016/j.mtbio.2021.100098Schneider-Barthold, C., Baganz, S., Wilhelmi, M., Scheper, T., & Pepelanova, I. (2016). Hydrogels based on collagen and fibrin - Frontiers and applications. BioNanoMaterials, 17(1–2), 3–12. https://doi.org/10.1515/bnm-2015-0025Serrano Gaona, J. C. (2011). Estandarización de un proceso de extracción de colágeno a partir 93 de los residuos de fileteo de tilapia (Oreochromis sp) y cachama (Piaractus brachypomus). 85. http://www.bdigital.unal.edu.co/4880/Shoulders, M. D., & Raines, R. T. (2009). Collagen structure and stability. Annual Review of Biochemistry, 78, 929–958. https://doi.org/10.1146/annurev.biochem.77.032207.120833Silvipriya, K. S., Krishna Kumar, K., Bhat, A. R., Dinesh Kumar, B., John, A., & Lakshmanan, P. (2015). Collagen: Animal sources and biomedical application. Journal of Applied Pharmaceutical Science, 5(3), 123–127. https://doi.org/10.7324/JAPS.2015.50322Snyder, R. J., & Hanft, J. R. (2009). Diabetic foot ulcers--effects on QOL, costs, and mortality and the role of standard wound care and advanced-care therapies. Ostomy/Wound Management, 55(11), 28–38. http://www.ncbi.nlm.nih.gov/pubmed/19934461Sobczak-Kupiec, A., Drabczyk, A., Florkiewicz, W., Głąb, M., Kudłacik-Kramarczyk, S., Słota, D., Tomala, A., & Tyliszczak, B. (2021). Review of the applications of biomedical compositions containing hydroxyapatite and collagen modified by bioactive components. Materials, 14(9). https://doi.org/10.3390/ma14092096Taguchi, T., & Tanaka, J. (2002). Swelling behavior of hyaluronic acid and type II collagen hydrogels prepared by using conventional crosslinking and subsequent additional polymer interactions. Journal of Biomaterials Science, Polymer Edition, 13(1), 43–52. https://doi.org/10.1163/156856202753525927Techatanawat, S., Surarit, R., Suddhasthira, T., & Khovidhunkit, S. O. P. (2011). Type I collagen extracted from rat-tail and bovine Achilles tendon for dental application: A comparative study. Asian Biomedicine, 5(6), 787–798. https://doi.org/10.5372/1905-7415.0506.111Tian, H., Ren, Z., Shi, L., Hao, G., Chen, J., & Weng, W. (2021). Self-assembly characterization of tilapia skin collagen in simulated body fluid with different salt concentrations. Process Biochemistry, 108(June), 153–160. https://doi.org/10.1016/j.procbio.2021.06.013Vallet-Regí, M. (2022). Evolution of Biomaterials. Frontiers in Materials, 9(March), 1–5. https://doi.org/10.3389/fmats.2022.864016Willits, R. K., & Skornia, S. L. (2004). Effect of collagen gel stiffness on neurite extension. Journal of Biomaterials Science, Polymer Edition, 15(12), 1521–1531. https://doi.org/10.1163/1568562042459698World Health Organization. (2021). Diabetes. https://www.who.int/es/news-room/factsheets/detail/diabetesWu, M., Cronin, K., & Crane, J. S. (2022). Biochemistry, Collagen Synthesis. In StatPearls. http://www.ncbi.nlm.nih.gov/pubmed/29939531Zeng, S. kui, Zhang, C. hua, Lin, H., Yang, P., Hong, P. zhi, & Jiang, Z. (2009). Isolation and characterisation of acid-solubilised collagen from the skin of Nile tilapia (Oreochromis niloticus). Food Chemistry, 116(4), 879–883. https://doi.org/10.1016/j.foodchem.2009.03.038Zhang, J., Zhang, J., Zhang, N., Li, T., Zhou, X., Jia, J., Liang, Y., Sun, X., & Chen, H. (2020). The Effects of Platelet-Rich and Platelet-Poor Plasma on Biological Characteristics of BMMSCs in Vitro. Analytical Cellular Pathology, 2020. https://doi.org/10.1155/2020/8546231Zhou, C., Sheng, C., Chen, J., Liang, Y., Liu, Q., Li, P., Huang, X., & Liu, B. (2022). Gradual hydrogel degradation for programable repairing full-thickness skin defect wound. Chemical 95 Engineering Journal, 450(P3), 138200. https://doi.org/10.1016/j.cej.2022.138200Afonso, A. C., Oliveira, D., Saavedra, M. J., Borges, A., & Simões, M. (2021). Biofilms in Diabetic Foot Ulcers: Impact, Risk Factors and Control Strategies. International Journal of Molecular Sciences, 22(15), 25. https://doi.org/10.3390/ijms22158278https://apolo.unab.edu.co/en/persons/v%C3%ADctor-alfonso-solarte-davidORIGINAL2022_Tesis_Rojas_Cárdenas_Luis_David.pdf2022_Tesis_Rojas_Cárdenas_Luis_David.pdfTesisapplication/pdf1266934https://repository.unab.edu.co/bitstream/20.500.12749/19050/1/2022_Tesis_Rojas_C%c3%a1rdenas_Luis_David.pdfff8f6cb79d9f19fdab2b86506af12683MD51open access2022_Licencia_Rojas_Cárdenas_Luis_David.pdf2022_Licencia_Rojas_Cárdenas_Luis_David.pdfLicenciaapplication/pdf175617https://repository.unab.edu.co/bitstream/20.500.12749/19050/2/2022_Licencia_Rojas_C%c3%a1rdenas_Luis_David.pdfb7cc2beba0a2cefb386c07a9b85ffd6aMD52metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8829https://repository.unab.edu.co/bitstream/20.500.12749/19050/3/license.txt3755c0cfdb77e29f2b9125d7a45dd316MD53open accessTHUMBNAIL2022_Tesis_Rojas_Cárdenas_Luis_David.pdf.jpg2022_Tesis_Rojas_Cárdenas_Luis_David.pdf.jpgIM Thumbnailimage/jpeg5220https://repository.unab.edu.co/bitstream/20.500.12749/19050/4/2022_Tesis_Rojas_C%c3%a1rdenas_Luis_David.pdf.jpgbad5e9d8c19b9f984e7d7fc7b80334b1MD54open access2022_Licencia_Rojas_Cárdenas_Luis_David.pdf.jpg2022_Licencia_Rojas_Cárdenas_Luis_David.pdf.jpgIM Thumbnailimage/jpeg9123https://repository.unab.edu.co/bitstream/20.500.12749/19050/5/2022_Licencia_Rojas_C%c3%a1rdenas_Luis_David.pdf.jpgd32f22c462a1f66f973ab5a98a38b2e7MD55metadata only access20.500.12749/19050oai:repository.unab.edu.co:20.500.12749/190502023-11-25 03:41:29.816open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbi4gRWwgQVVUT1IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVTkFCIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuCgpFbCBBVVRPUiBhdXRvcml6YSBhIGxhIFVuaXZlcnNpZGFkIEF1dMOzbm9tYSBkZSBCdWNhcmFtYW5nYSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24uCg==