Diseño de una biotinta tipo hidrogel a base de polietilenglicol diacrilado con plasma rico en plaquetas, dirigida a la fabricación de apósitos para úlceras crónicas de pie diabético por bioimpresión 3D
La diabetes afecta a más de 463 millones de personas en el mundo, y se estima que dentro de 25 años más de 700 millones padecerán esta enfermedad. Entre las complicaciones más frecuentes están las úlceras crónicas de pie diabético (UCPD), y se estima que se presentarán en un cuarto de la población d...
- Autores:
-
Solarte David, Víctor Alfonso
- Tipo de recurso:
- Investigation report
- Fecha de publicación:
- 2020
- Institución:
- Universidad Autónoma de Bucaramanga - UNAB
- Repositorio:
- Repositorio UNAB
- Idioma:
- spa
- OAI Identifier:
- oai:repository.unab.edu.co:20.500.12749/21358
- Acceso en línea:
- http://hdl.handle.net/20.500.12749/21358
- Palabra clave:
- Metabolism disorders
Platelet rich plasma
Blood
Three-dimensional image in design
Bioink
Diabetic foot
Diabetes
Trastornos del metabolismo
Plasma rico en plaquetas
Sangre
Imagen tridimensional en diseño
Biotinta
Pie diabético
- Rights
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id |
UNAB2_7ccc9d7a0bd0bc5749b667c1e7660988 |
---|---|
oai_identifier_str |
oai:repository.unab.edu.co:20.500.12749/21358 |
network_acronym_str |
UNAB2 |
network_name_str |
Repositorio UNAB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Diseño de una biotinta tipo hidrogel a base de polietilenglicol diacrilado con plasma rico en plaquetas, dirigida a la fabricación de apósitos para úlceras crónicas de pie diabético por bioimpresión 3D |
dc.title.translated.spa.fl_str_mv |
Design of a hydrogel-type bioink based on diacrylated polyethylene glycol with platelet-rich plasma, aimed at the manufacture of dressings for chronic diabetic foot ulcers by 3D bioprinting |
title |
Diseño de una biotinta tipo hidrogel a base de polietilenglicol diacrilado con plasma rico en plaquetas, dirigida a la fabricación de apósitos para úlceras crónicas de pie diabético por bioimpresión 3D |
spellingShingle |
Diseño de una biotinta tipo hidrogel a base de polietilenglicol diacrilado con plasma rico en plaquetas, dirigida a la fabricación de apósitos para úlceras crónicas de pie diabético por bioimpresión 3D Metabolism disorders Platelet rich plasma Blood Three-dimensional image in design Bioink Diabetic foot Diabetes Trastornos del metabolismo Plasma rico en plaquetas Sangre Imagen tridimensional en diseño Biotinta Pie diabético |
title_short |
Diseño de una biotinta tipo hidrogel a base de polietilenglicol diacrilado con plasma rico en plaquetas, dirigida a la fabricación de apósitos para úlceras crónicas de pie diabético por bioimpresión 3D |
title_full |
Diseño de una biotinta tipo hidrogel a base de polietilenglicol diacrilado con plasma rico en plaquetas, dirigida a la fabricación de apósitos para úlceras crónicas de pie diabético por bioimpresión 3D |
title_fullStr |
Diseño de una biotinta tipo hidrogel a base de polietilenglicol diacrilado con plasma rico en plaquetas, dirigida a la fabricación de apósitos para úlceras crónicas de pie diabético por bioimpresión 3D |
title_full_unstemmed |
Diseño de una biotinta tipo hidrogel a base de polietilenglicol diacrilado con plasma rico en plaquetas, dirigida a la fabricación de apósitos para úlceras crónicas de pie diabético por bioimpresión 3D |
title_sort |
Diseño de una biotinta tipo hidrogel a base de polietilenglicol diacrilado con plasma rico en plaquetas, dirigida a la fabricación de apósitos para úlceras crónicas de pie diabético por bioimpresión 3D |
dc.creator.fl_str_mv |
Solarte David, Víctor Alfonso |
dc.contributor.author.none.fl_str_mv |
Solarte David, Víctor Alfonso |
dc.contributor.cvlac.spa.fl_str_mv |
Solarte David, Víctor Alfonso [1329391] |
dc.contributor.googlescholar.spa.fl_str_mv |
Solarte David, Víctor Alfonso [es&oi=ao] |
dc.contributor.orcid.spa.fl_str_mv |
Solarte David, Víctor Alfonso [0000-0002-9856-1484] |
dc.contributor.apolounab.spa.fl_str_mv |
Solarte David, Víctor Alfonso [Victor-Solarte-David] |
dc.subject.keywords.spa.fl_str_mv |
Metabolism disorders Platelet rich plasma Blood Three-dimensional image in design Bioink Diabetic foot |
topic |
Metabolism disorders Platelet rich plasma Blood Three-dimensional image in design Bioink Diabetic foot Diabetes Trastornos del metabolismo Plasma rico en plaquetas Sangre Imagen tridimensional en diseño Biotinta Pie diabético |
dc.subject.lemb.spa.fl_str_mv |
Diabetes Trastornos del metabolismo Plasma rico en plaquetas Sangre Imagen tridimensional en diseño |
dc.subject.proposal.spa.fl_str_mv |
Biotinta Pie diabético |
description |
La diabetes afecta a más de 463 millones de personas en el mundo, y se estima que dentro de 25 años más de 700 millones padecerán esta enfermedad. Entre las complicaciones más frecuentes están las úlceras crónicas de pie diabético (UCPD), y se estima que se presentarán en un cuarto de la población diabética a lo largo de su vida. Las UCPD, presentan un alto riesgo de infección convirtiéndose en la principal causa de amputaciones no traumáticas en el mundo, adicionalmente, es una enfermedad de alto costo para los sistemas de salud. En la actualidad, los tratamientos son efectivos solo en la mitad de las UCPD tratadas, lo que evidencia que los métodos terapéuticos tradicionales no son adecuados para todos los pacientes, adicionalmente, este tipo de úlceras presentan altas cantidades de metaloproteinasas (MPMs) lo que no permite la formación de matriz que lleve a la cicatrización del tejido. |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2023-08-23T12:31:47Z |
dc.date.available.none.fl_str_mv |
2023-08-23T12:31:47Z |
dc.type.eng.fl_str_mv |
Research report |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_8042 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/workingPaper |
dc.type.local.spa.fl_str_mv |
Informe de investigación |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_18ws |
dc.type.hasversion.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/IFI |
format |
http://purl.org/coar/resource_type/c_18ws |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12749/21358 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Autónoma de Bucaramanga - UNAB |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional UNAB |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.unab.edu.co |
url |
http://hdl.handle.net/20.500.12749/21358 |
identifier_str_mv |
instname:Universidad Autónoma de Bucaramanga - UNAB reponame:Repositorio Institucional UNAB repourl:https://repository.unab.edu.co |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Federation, I. D. Vol. Novena edición 180 (2019). salud, A. v. e. in semestral (2020). Vargas-Uricoechea, H. & Casas-Figueroa, L. A. An Epidemiologic Analysis of Diabetes in Colombia. Ann Glob Health 81, 742-753, doi:10.1016/j.aogh.2015.11.001 (2015). Papatheodorou, K., Banach, M., Bekiari, E., Rizzo, M. & Edmonds, M. Complications of Diabetes 2017. J Diabetes Res 2018, 3086167, doi:10.1155/2018/3086167 (2018). Tsioufis, C., Bafakis, I., Kasiakogias, A. & Stefanadis, C. The role of matrix metalloproteinases in diabetes mellitus. Curr Top Med Chem 12, 1159-1165, doi:10.2174/1568026611208011159 (2012). Jones, J. I., Nguyen, T. T., Peng, Z. & Chang, M. Targeting MMP-9 in Diabetic Foot Ulcers. Pharmaceuticals (Basel) 12, doi:10.3390/ph12020079 (2019). Everett, E. & Mathioudakis, N. Update on management of diabetic foot ulcers. Ann N Y Acad Sci 1411, 153-165, doi:10.1111/nyas.13569 (2018). Ahmad, J. The diabetic foot. Diabetes Metab Syndr 10, 48-60, doi:10.1016/j.dsx.2015.04.002 (2016). Perez-Favila, A. et al. Current Therapeutic Strategies in Diabetic Foot Ulcers. Medicina (Kaunas) 55, doi:10.3390/medicina55110714 (2019). Ogurtsova, K. et al. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Research and Clinical Practice 128, 40-50, doi:https://doi.org/10.1016/j.diabres.2017.03.024 (2017). Martins-Mendes, D. et al. The independent contribution of diabetic foot ulcer on lower extremity amputation and mortality risk. Journal of Diabetes and its Complications 28, 632-638, doi:https://doi.org/10.1016/j.jdiacomp.2014.04.011 (2014). Ogurtsova, K. et al. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract 128, 40-50, doi:10.1016/j.diabres.2017.03.024 (2017). Dubsky, M. et al. Risk factors for recurrence of diabetic foot ulcers: prospective follow-up analysis in the Eurodiale subgroup. Int Wound J 10, 555-561, doi:10.1111/j.1742-481X.2012.01022.x (2013). Ardila, Y. J. P. C. F. G. (Asociacion Colombiana De Diabéticos, 2019). Reyes-Martinez, J. E. et al. Advanced hydrogels for treatment of diabetes. J Tissue Eng Regen Med 13, 1375-1393, doi:10.1002/term.2880 (2019). Etulain, J. Platelets in wound healing and regenerative medicine. Platelets 29, 556-568, doi:10.1080/09537104.2018.1430357 (2018). Caruana, A., Savina, D., Macedo, J. P. & Soares, S. C. From Platelet-Rich Plasma to Advanced Platelet-Rich Fibrin: Biological Achievements and Clinical Advances in Modern Surgery. Eur J Dent 13, 280-286, doi:10.1055/s-0039-1696585 (2019). Gianino, E., Miller, C. & Gilmore, J. Smart Wound Dressings for Diabetic Chronic Wounds. Bioengineering (Basel) 5, doi:10.3390/bioengineering5030051 (2018). Dumville, J. C., Stubbs, N., Keogh, S. J., Walker, R. M. & Liu, Z. Hydrogel dressings for treating pressure ulcers. Cochrane Database Syst Rev, CD011226, doi:10.1002/14651858.CD011226.pub2 (2015). Choi, J. R., Yong, K. W., Choi, J. Y. & Cowie, A. C. Recent advances in photo-crosslinkable hydrogels for biomedical applications. Biotechniques 66, 40-53, doi:10.2144/btn-2018-0083 (2019). Gungor-Ozkerim, P. S., Inci, I., Zhang, Y. S., Khademhosseini, A. & Dokmeci, M. R. Bioinks for 3D bioprinting: an overview. Biomater Sci 6, 915-946, doi:10.1039/c7bm00765e (2018). Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 37, S81-S90 (2014). Adler, A. I., Boyko Ej Fau - Ahroni, J. H., Ahroni Jh Fau - Smith, D. G. & Smith, D. G. Lower-extremity amputation in diabetes. The independent effects of peripheral vascular disease, sensory neuropathy, and foot ulcers. (1999). IDF Diabetes Atlas. 9th edn, (International Diabetes Federation, 2019). Aschner, P. Epidemiología de la diabetes en Colombia. Avances en Diabetología 26, 95-100, doi:https://doi.org/10.1016/S1134-3230(10)62005-4 (2010). Dagenais, G. R. et al. Variations in Diabetes Prevalence in Low-, Middle-, and High-Income Countries: Results From the Prospective Urban and Rural Epidemiological Study. Diabetes Care 39, 780-787, doi:10.2337/dc15-2338 (2016). Mendenhall, E., Kohrt, B. A., Norris, S. A., Ndetei, D. & Prabhakaran, D. Non-communicable disease syndemics: poverty, depression, and diabetes among low-income populations. Lancet 389, 951-963, doi:10.1016/S0140-6736(17)30402-6 (2017). Mulder, G. D., Lee, D. K. & Jeppesen, N. S. Comprehensive review of the clinical application of autologous mesenchymal stem cells in the treatment of chronic wounds and diabetic bone healing. Int Wound J 9, 595-600, doi:10.1111/j.1742-481x.2011.00922.x (2012). Paisey, R. B., Abbott, A., Paisey, C. F. & Walker, D. Diabetic foot ulcer incidence and survival with improved diabetic foot services: an 18-year study. Diabet Med 36, 1424-1430, doi:10.1111/dme.14045 (2019). Bartus, C. L. & Margolis, D. J. Reducing the incidence of foot ulceration and amputation in diabetes. Current Diabetes Reports 4, 413-418, doi:10.1007/s11892-004-0049-x (2004). Snyder, R. J. & Hanft, J. R. Diabetic foot ulcers--effects on QOL, costs, and mortality and the role of standard wound care and advanced-care therapies. Ostomy Wound Manage 55, 28-38 (2009). Uçkay, I., Gariani, K., Pataky, Z. & Lipsky, B. A. Diabetic foot infections: state-of-the-art. Diabetes, obesity & metabolism 16, 305-316, doi:10.1111/dom.12190 (2014). Tallis, A. et al. Clinical and Economic Assessment of Diabetic Foot Ulcer Debridement with Collagenase: Results of a Randomized Controlled Study. Clinical Therapeutics 35, 1805-1820, doi:https://doi.org/10.1016/j.clinthera.2013.09.013 (2013). Guo, S. & Dipietro, L. A. Factors affecting wound healing. J Dent Res 89, 219-229, doi:0022034509359125 [pii] 10.1177/0022034509359125 (2010). Lanza, R., Langer, R. & Vacanti, J. Principles of Tissue Engineering. (Academic Press, 2013). Le, A. D. K., Enweze, L., DeBaun, M. R. & Dragoo, J. L. Platelet-Rich Plasma. Clin Sports Med 38, 17-44, doi:10.1016/j.csm.2018.08.001 (2019). Astori, G. et al. Platelet lysate as a substitute for animal serum for the ex-vivo expansion of mesenchymal stem/stromal cells: present and future. Stem Cell Res Ther 7, 93, doi:10.1186/s13287-016-0352-x (2016). Harrison, P. & Cramer, E. M. Platelet alpha-granules. Blood Rev 7, 52-62 (1993). Lacci, K. M. & Dardik, A. Platelet-rich plasma: support for its use in wound healing. Yale J Biol Med 83, 1-9 (2010). Bieback, K. Platelet lysate as replacement for fetal bovine serum in mesenchymal stromal cell cultures. Transfus Med Hemother 40, 326-335, doi:10.1159/000354061 (2013). Fekete, N. et al. Platelet lysate from whole blood-derived pooled platelet concentrates and apheresis-derived platelet concentrates for the isolation and expansion of human bone marrow mesenchymal stromal cells: production process, content and identification of active components. Cytotherapy 14, 540-554, doi:10.3109/14653249.2012.655420 (2012). Qiu, Y. et al. PEG-based hydrogels with tunable degradation characteristics to control delivery of marrow stromal cells for tendon overuse injuries. Acta Biomater. 7, 959-966 (2011). Lutolf, M. P. & Hubbell, J. A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotech 23, 47-55 (2005). Munoz-Pinto, D. J., Samavedi, S., Grigoryan, B. & Hahn, M. S. Impact of secondary reactive species on the apparent decoupling of poly(ethylene glycol) diacrylate hydrogel average mesh size and modulus. Polymer 77, 227-238 (2015). Nguyen, K. T. & West, J. L. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials. 23, 4307-4314 (2002). Huglin, M. R. Hydrogels in medicine and pharmacy Edited by N. A. Peppas, CRC Press Inc., Boca Raton, Florida, 1986 (Vol. l), 1987 (Vols 2 and 3). Vol. 1 Fundamentals, pp. vii + 180, £72.00, ISBN 0-8493-5546-X; Vol. 2 Polymers, pp. vii + 171, £72.00, ISBN 0-8493-5547-8; Vol. 3 Properties and Applications, pp. vii + 195, £8000, ISBN 0-8493-5548-6. British Polymer Journal 21, 184-184 (1989). Gombotz, W. R. & Pettit, D. K. Biodegradable polymers for protein and peptide drug delivery. Bioconjug Chem. 6, 332-351 (1995). Campoccia, D. et al. Semisynthetic resorbable materials from hyaluronan esterification. Biomaterials 19, 2101-2127 (1998). Groll, J. et al. Biofabrication: reappraising the definition of an evolving field. Biofabrication 8, 013001, doi:10.1088/1758-5090/8/1/013001 (2016). Moroni, L. et al. Biofabrication: A Guide to Technology and Terminology. Trends in Biotechnology 36, 384-402, doi:10.1016/j.tibtech.2017.10.015 (2018). Lee, J. M., Sing, S. L., Zhou, M. & Yeong, W. Y. 3D bioprinting processes: A perspective on classification and terminology. International Journal of Bioprinting 4, doi:10.18063/IJB.v4i2.151 (2018). Camacho, P., Busari, H., Seims, K. B., J.W.Tolbert & Chow, L. W. in 3D Bioprinting in Medicine (ed Springer) 67-100 (2019). Peng, W., Unutmaz, D. & Ozbolat, I. T. Bioprinting towards Physiologically Relevant Tissue Models for Pharmaceutics. Trends in Biotechnology 34, 722-732, doi:10.1016/j.tibtech.2016.05.013 (2016). Jose, R. R., Rodriguez, M. J., Dixon, T. A., Omenetto, F. & Kaplan, D. L. Evolution of Bioinks and Additive Manufacturing Technologies for 3D Bioprinting. ACS Biomaterials Science & Engineering 2, 1662-1678, doi:10.1021/acsbiomaterials.6b00088 (2016) Murphy, S. V. & Atala, A. 3D bioprinting of tissues and organs. Nature Biotechnology 32, 773-785, doi:10.1038/nbt.2958 (2014). Lee, J. M., Ng, W. L. & Yeong, W. Y. Resolution and shape in bioprinting: Strategizing towards complex tissue and organ printing Applied Physics Reviews 6, doi:10.1063/1.5053909 (2019). Vyas, K. S. & Vasconez, H. C. Wound Healing: Biologics, Skin Substitutes, Biomembranes and Scaffolds. Healthcare 2, 356-400, doi:10.3390/healthcare2030356 (2014). Winter, G. D. Formation of the Scab and the Rate of Epithelization of Superficial Wounds in the Skin of the Young Domestic Pig. Nature 193, 293-294, doi:10.1038/193293a0 (1962). Chattopadhyay, S. & Raines, R. T. Review collagen-based biomaterials for wound healing. Biopolymers 101, 821-833, doi:10.1002/bip.22486 (2014). Avila Rodriguez, M. I., Rodriguez Barroso, L. G. & Sanchez, M. L. Collagen: A review on its sources and potential cosmetic applications. J Cosmet Dermatol 17, 20-26, doi:10.1111/jocd.12450 (2018). Yan, H., Chen J Fau - Peng, X. & Peng, X. Recombinant human granulocyte-macrophage colony-stimulating factor hydrogel promotes healing of deep partial thickness burn wounds. Burns. 38, 877-881 (2012). Lin, C. C. & Anseth, K. S. PEG hydrogels for the controlled release of biomolecules in regenerative medicine. 26, 631-643 (2009). Miller, J. S. et al. Bioactive Hydrogels Made from Step-Growth Derived PEG-Peptide Macromers. Biomaterials 31, 3736-3743 (2010). Xu, K., Kleinbeck, K. R. & Kao, W. J. Multifunctional Biomaterial Matrix for Advanced Wound Healing. Advances in Wound Care 1, 75-80 (2012). Becerra-Bayona, S., Guiza-Arguello, V., Qu, X., Munoz-Pinto, D. J. & Hahn, M. S. Influence of select extracellular matrix proteins on mesenchymal stem cell osteogenic commitment in three-dimensional contexts. Acta Biomater 8, 4397-4404, doi:10.1016/j.actbio.2012.07.048 (2012). Qu, X. et al. Regulation of smooth muscle cell phenotype by glycosaminoglycan identity. Acta Biomater 7, 1031-1039, doi:S1742-7061(10)00527-1 [pii]10.1016/j.actbio.2010.11.020 (2011). Hahn, M. S. et al. Influence of hydrogel mechanical properties and mesh size on vocal fold fibroblast extracellular matrix production and phenotype. Acta biomaterialia 4, 1161-1171 (2008). Caley, M. P., Martins, V. L. C. & O'Toole, E. A. Metalloproteinases and Wound Healing. Advances in Wound Care 4, 225-234 (2015). Xu, Q. et al. A hybrid injectable hydrogel from hyperbranched PEG macromer as a stem cell delivery and retention platform for diabetic wound healing. Acta Biomater 75, 63-74, doi:S1742-7061(18)30315-5 [pii] 10.1016/j.actbio.2018.05.039 (2018). Cereceres, S. et al. Chronic Wound Dressings Based on Collagen-Mimetic Proteins. Advances in Wound Care 4, 444-456 (2015). Jain, E., Sheth, S., Dunn, A., Zustiak, S. P. & Sell, S. A. Sustained release of multicomponent platelet-rich plasma proteins from hydrolytically degradable PEG hydrogels. J Biomed Mater Res A 105, 3304-3314, doi:10.1002/jbm.a.36187 (2017). Qiu, M. et al. Platelet-Rich Plasma-Loaded Poly(d,l-lactide)-Poly(ethylene glycol)-Poly(d,l-lactide) Hydrogel Dressing Promotes Full-Thickness Skin Wound Healing in a Rodent Model. Int J Mol Sci 17, doi:ijms17071001 [pii]10.3390/ijms17071001 (2016). El-Mabood, E.-S. A. A. & Ali, H. E. Platelet-rich plasma versus conventional dressing: does this really affect diabetic foot wound-healing outcomes? The Egyptian Journal of Surgery 37, 16 (2018). Driver, V. R., Hanft, J., Fylling, C. P. & Beriou, J. M. A prospective, randomized, controlled trial of autologous platelet-rich plasma gel for the treatment of diabetic foot ulcers. Ostomy/wound management 52, 68-70, 72, 74 passim (2006). Wu, D. et al. 3D bioprinting of gellan gum and poly (ethylene glycol) diacrylate based hydrogels to produce human-scale constructs with high-fidelity. Materials & Design 160, 486-495, doi:https://doi.org/10.1016/j.matdes.2018.09.040 (2018). Faramarzi, N. et al. Patient-Specific Bioinks for 3D Bioprinting of Tissue Engineering Scaffolds. Adv Healthc Mater 7, e1701347, doi:10.1002/adhm.201701347 (2018). Prendergast, M. E. & Burdick, J. A. Recent Advances in Enabling Technologies in 3D Printing for Precision Medicine. Advanced Materials 32, 1902516, doi:10.1002/adma.201902516 (2020) |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.creativecommons.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Abierto (Texto Completo) Atribución-NoComercial-SinDerivadas 2.5 Colombia http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.spatial.spa.fl_str_mv |
Bucaramanga (Santander, Colombia) |
dc.coverage.campus.spa.fl_str_mv |
UNAB Campus Bucaramanga |
dc.publisher.grantor.spa.fl_str_mv |
Universidad Autónoma de Bucaramanga UNAB |
dc.publisher.faculty.spa.fl_str_mv |
Facultad Ciencias de la Salud |
institution |
Universidad Autónoma de Bucaramanga - UNAB |
bitstream.url.fl_str_mv |
https://repository.unab.edu.co/bitstream/20.500.12749/21358/1/Informe.pdf https://repository.unab.edu.co/bitstream/20.500.12749/21358/2/Acta%20de%20Incio_Proyecto%20de%20Investigacion.pdf https://repository.unab.edu.co/bitstream/20.500.12749/21358/3/license.txt https://repository.unab.edu.co/bitstream/20.500.12749/21358/4/Informe.pdf.jpg https://repository.unab.edu.co/bitstream/20.500.12749/21358/5/Acta%20de%20Incio_Proyecto%20de%20Investigacion.pdf.jpg |
bitstream.checksum.fl_str_mv |
fba13de89cf64dffe0d5c518bfc8e7da 6983461587c45dad8eadf389c10aa050 3755c0cfdb77e29f2b9125d7a45dd316 053a1e291879887bdd9879c9c4f5ffce 090d0a1ecfa432dee03a7f04b4e5ac56 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB |
repository.mail.fl_str_mv |
repositorio@unab.edu.co |
_version_ |
1814277300985790464 |
spelling |
Solarte David, Víctor Alfonso9023b799-a526-46ec-b9e8-a06fc75314dfSolarte David, Víctor Alfonso [1329391]Solarte David, Víctor Alfonso [es&oi=ao]Solarte David, Víctor Alfonso [0000-0002-9856-1484]Solarte David, Víctor Alfonso [Victor-Solarte-David]Bucaramanga (Santander, Colombia)UNAB Campus Bucaramanga2023-08-23T12:31:47Z2023-08-23T12:31:47Z2020http://hdl.handle.net/20.500.12749/21358instname:Universidad Autónoma de Bucaramanga - UNABreponame:Repositorio Institucional UNABrepourl:https://repository.unab.edu.coLa diabetes afecta a más de 463 millones de personas en el mundo, y se estima que dentro de 25 años más de 700 millones padecerán esta enfermedad. Entre las complicaciones más frecuentes están las úlceras crónicas de pie diabético (UCPD), y se estima que se presentarán en un cuarto de la población diabética a lo largo de su vida. Las UCPD, presentan un alto riesgo de infección convirtiéndose en la principal causa de amputaciones no traumáticas en el mundo, adicionalmente, es una enfermedad de alto costo para los sistemas de salud. En la actualidad, los tratamientos son efectivos solo en la mitad de las UCPD tratadas, lo que evidencia que los métodos terapéuticos tradicionales no son adecuados para todos los pacientes, adicionalmente, este tipo de úlceras presentan altas cantidades de metaloproteinasas (MPMs) lo que no permite la formación de matriz que lleve a la cicatrización del tejido.Diabetes affects more than 463 million people in the world, and it is estimated that within 25 years more than 700 million will suffer from this disease. Chronic diabetic foot ulcers (UCPD) are among the most frequent complications, and it is estimated that they will occur in a quarter of the diabetic population throughout their lives. The UCPD present a high risk of infection, becoming the main cause of non-traumatic amputations in the world, additionally, it is a high-cost disease for health systems. At present, the treatments are effective in only half of the UCPD treated, which shows that traditional therapeutic methods are not suitable for all patients, additionally, this type of ulcers have high amounts of metalloproteinases (MPMs), which is not allows the formation of matrix that leads to tissue healing.Modalidad Presencialapplication/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)Atribución-NoComercial-SinDerivadas 2.5 Colombiahttp://purl.org/coar/access_right/c_abf2Diseño de una biotinta tipo hidrogel a base de polietilenglicol diacrilado con plasma rico en plaquetas, dirigida a la fabricación de apósitos para úlceras crónicas de pie diabético por bioimpresión 3DDesign of a hydrogel-type bioink based on diacrylated polyethylene glycol with platelet-rich plasma, aimed at the manufacture of dressings for chronic diabetic foot ulcers by 3D bioprintingResearch reportinfo:eu-repo/semantics/workingPaperInforme de investigaciónhttp://purl.org/coar/resource_type/c_18wshttp://purl.org/coar/resource_type/c_8042info:eu-repo/semantics/acceptedVersionhttp://purl.org/redcol/resource_type/IFIUniversidad Autónoma de Bucaramanga UNABFacultad Ciencias de la SaludMetabolism disordersPlatelet rich plasmaBloodThree-dimensional image in designBioinkDiabetic footDiabetesTrastornos del metabolismoPlasma rico en plaquetasSangreImagen tridimensional en diseñoBiotintaPie diabéticoFederation, I. D. Vol. Novena edición 180 (2019).salud, A. v. e. in semestral (2020).Vargas-Uricoechea, H. & Casas-Figueroa, L. A. An Epidemiologic Analysis of Diabetes in Colombia. Ann Glob Health 81, 742-753, doi:10.1016/j.aogh.2015.11.001 (2015).Papatheodorou, K., Banach, M., Bekiari, E., Rizzo, M. & Edmonds, M. Complications of Diabetes 2017. J Diabetes Res 2018, 3086167, doi:10.1155/2018/3086167 (2018).Tsioufis, C., Bafakis, I., Kasiakogias, A. & Stefanadis, C. The role of matrix metalloproteinases in diabetes mellitus. Curr Top Med Chem 12, 1159-1165, doi:10.2174/1568026611208011159 (2012).Jones, J. I., Nguyen, T. T., Peng, Z. & Chang, M. Targeting MMP-9 in Diabetic Foot Ulcers. Pharmaceuticals (Basel) 12, doi:10.3390/ph12020079 (2019).Everett, E. & Mathioudakis, N. Update on management of diabetic foot ulcers. Ann N Y Acad Sci 1411, 153-165, doi:10.1111/nyas.13569 (2018).Ahmad, J. The diabetic foot. Diabetes Metab Syndr 10, 48-60, doi:10.1016/j.dsx.2015.04.002 (2016).Perez-Favila, A. et al. Current Therapeutic Strategies in Diabetic Foot Ulcers. Medicina (Kaunas) 55, doi:10.3390/medicina55110714 (2019).Ogurtsova, K. et al. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Research and Clinical Practice 128, 40-50, doi:https://doi.org/10.1016/j.diabres.2017.03.024 (2017).Martins-Mendes, D. et al. The independent contribution of diabetic foot ulcer on lower extremity amputation and mortality risk. Journal of Diabetes and its Complications 28, 632-638, doi:https://doi.org/10.1016/j.jdiacomp.2014.04.011 (2014).Ogurtsova, K. et al. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract 128, 40-50, doi:10.1016/j.diabres.2017.03.024 (2017).Dubsky, M. et al. Risk factors for recurrence of diabetic foot ulcers: prospective follow-up analysis in the Eurodiale subgroup. Int Wound J 10, 555-561, doi:10.1111/j.1742-481X.2012.01022.x (2013).Ardila, Y. J. P. C. F. G. (Asociacion Colombiana De Diabéticos, 2019).Reyes-Martinez, J. E. et al. Advanced hydrogels for treatment of diabetes. J Tissue Eng Regen Med 13, 1375-1393, doi:10.1002/term.2880 (2019).Etulain, J. Platelets in wound healing and regenerative medicine. Platelets 29, 556-568, doi:10.1080/09537104.2018.1430357 (2018).Caruana, A., Savina, D., Macedo, J. P. & Soares, S. C. From Platelet-Rich Plasma to Advanced Platelet-Rich Fibrin: Biological Achievements and Clinical Advances in Modern Surgery. Eur J Dent 13, 280-286, doi:10.1055/s-0039-1696585 (2019).Gianino, E., Miller, C. & Gilmore, J. Smart Wound Dressings for Diabetic Chronic Wounds. Bioengineering (Basel) 5, doi:10.3390/bioengineering5030051 (2018).Dumville, J. C., Stubbs, N., Keogh, S. J., Walker, R. M. & Liu, Z. Hydrogel dressings for treating pressure ulcers. Cochrane Database Syst Rev, CD011226, doi:10.1002/14651858.CD011226.pub2 (2015).Choi, J. R., Yong, K. W., Choi, J. Y. & Cowie, A. C. Recent advances in photo-crosslinkable hydrogels for biomedical applications. Biotechniques 66, 40-53, doi:10.2144/btn-2018-0083 (2019).Gungor-Ozkerim, P. S., Inci, I., Zhang, Y. S., Khademhosseini, A. & Dokmeci, M. R. Bioinks for 3D bioprinting: an overview. Biomater Sci 6, 915-946, doi:10.1039/c7bm00765e (2018).Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 37, S81-S90 (2014).Adler, A. I., Boyko Ej Fau - Ahroni, J. H., Ahroni Jh Fau - Smith, D. G. & Smith, D. G. Lower-extremity amputation in diabetes. The independent effects of peripheral vascular disease, sensory neuropathy, and foot ulcers. (1999).IDF Diabetes Atlas. 9th edn, (International Diabetes Federation, 2019).Aschner, P. Epidemiología de la diabetes en Colombia. Avances en Diabetología 26, 95-100, doi:https://doi.org/10.1016/S1134-3230(10)62005-4 (2010).Dagenais, G. R. et al. Variations in Diabetes Prevalence in Low-, Middle-, and High-Income Countries: Results From the Prospective Urban and Rural Epidemiological Study. Diabetes Care 39, 780-787, doi:10.2337/dc15-2338 (2016).Mendenhall, E., Kohrt, B. A., Norris, S. A., Ndetei, D. & Prabhakaran, D. Non-communicable disease syndemics: poverty, depression, and diabetes among low-income populations. Lancet 389, 951-963, doi:10.1016/S0140-6736(17)30402-6 (2017).Mulder, G. D., Lee, D. K. & Jeppesen, N. S. Comprehensive review of the clinical application of autologous mesenchymal stem cells in the treatment of chronic wounds and diabetic bone healing. Int Wound J 9, 595-600, doi:10.1111/j.1742-481x.2011.00922.x (2012).Paisey, R. B., Abbott, A., Paisey, C. F. & Walker, D. Diabetic foot ulcer incidence and survival with improved diabetic foot services: an 18-year study. Diabet Med 36, 1424-1430, doi:10.1111/dme.14045 (2019).Bartus, C. L. & Margolis, D. J. Reducing the incidence of foot ulceration and amputation in diabetes. Current Diabetes Reports 4, 413-418, doi:10.1007/s11892-004-0049-x (2004).Snyder, R. J. & Hanft, J. R. Diabetic foot ulcers--effects on QOL, costs, and mortality and the role of standard wound care and advanced-care therapies. Ostomy Wound Manage 55, 28-38 (2009).Uçkay, I., Gariani, K., Pataky, Z. & Lipsky, B. A. Diabetic foot infections: state-of-the-art. Diabetes, obesity & metabolism 16, 305-316, doi:10.1111/dom.12190 (2014).Tallis, A. et al. Clinical and Economic Assessment of Diabetic Foot Ulcer Debridement with Collagenase: Results of a Randomized Controlled Study. Clinical Therapeutics 35, 1805-1820, doi:https://doi.org/10.1016/j.clinthera.2013.09.013 (2013).Guo, S. & Dipietro, L. A. Factors affecting wound healing. J Dent Res 89, 219-229, doi:0022034509359125 [pii] 10.1177/0022034509359125 (2010).Lanza, R., Langer, R. & Vacanti, J. Principles of Tissue Engineering. (Academic Press, 2013).Le, A. D. K., Enweze, L., DeBaun, M. R. & Dragoo, J. L. Platelet-Rich Plasma. Clin Sports Med 38, 17-44, doi:10.1016/j.csm.2018.08.001 (2019).Astori, G. et al. Platelet lysate as a substitute for animal serum for the ex-vivo expansion of mesenchymal stem/stromal cells: present and future. Stem Cell Res Ther 7, 93, doi:10.1186/s13287-016-0352-x (2016).Harrison, P. & Cramer, E. M. Platelet alpha-granules. Blood Rev 7, 52-62 (1993).Lacci, K. M. & Dardik, A. Platelet-rich plasma: support for its use in wound healing. Yale J Biol Med 83, 1-9 (2010).Bieback, K. Platelet lysate as replacement for fetal bovine serum in mesenchymal stromal cell cultures. Transfus Med Hemother 40, 326-335, doi:10.1159/000354061 (2013).Fekete, N. et al. Platelet lysate from whole blood-derived pooled platelet concentrates and apheresis-derived platelet concentrates for the isolation and expansion of human bone marrow mesenchymal stromal cells: production process, content and identification of active components. Cytotherapy 14, 540-554, doi:10.3109/14653249.2012.655420 (2012).Qiu, Y. et al. PEG-based hydrogels with tunable degradation characteristics to control delivery of marrow stromal cells for tendon overuse injuries. Acta Biomater. 7, 959-966 (2011).Lutolf, M. P. & Hubbell, J. A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotech 23, 47-55 (2005).Munoz-Pinto, D. J., Samavedi, S., Grigoryan, B. & Hahn, M. S. Impact of secondary reactive species on the apparent decoupling of poly(ethylene glycol) diacrylate hydrogel average mesh size and modulus. Polymer 77, 227-238 (2015).Nguyen, K. T. & West, J. L. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials. 23, 4307-4314 (2002).Huglin, M. R. Hydrogels in medicine and pharmacy Edited by N. A. Peppas, CRC Press Inc., Boca Raton, Florida, 1986 (Vol. l), 1987 (Vols 2 and 3). Vol. 1 Fundamentals, pp. vii + 180, £72.00, ISBN 0-8493-5546-X; Vol. 2 Polymers, pp. vii + 171, £72.00, ISBN 0-8493-5547-8; Vol. 3 Properties and Applications, pp. vii + 195, £8000, ISBN 0-8493-5548-6. British Polymer Journal 21, 184-184 (1989).Gombotz, W. R. & Pettit, D. K. Biodegradable polymers for protein and peptide drug delivery. Bioconjug Chem. 6, 332-351 (1995).Campoccia, D. et al. Semisynthetic resorbable materials from hyaluronan esterification. Biomaterials 19, 2101-2127 (1998).Groll, J. et al. Biofabrication: reappraising the definition of an evolving field. Biofabrication 8, 013001, doi:10.1088/1758-5090/8/1/013001 (2016).Moroni, L. et al. Biofabrication: A Guide to Technology and Terminology. Trends in Biotechnology 36, 384-402, doi:10.1016/j.tibtech.2017.10.015 (2018).Lee, J. M., Sing, S. L., Zhou, M. & Yeong, W. Y. 3D bioprinting processes: A perspective on classification and terminology. International Journal of Bioprinting 4, doi:10.18063/IJB.v4i2.151 (2018).Camacho, P., Busari, H., Seims, K. B., J.W.Tolbert & Chow, L. W. in 3D Bioprinting in Medicine (ed Springer) 67-100 (2019).Peng, W., Unutmaz, D. & Ozbolat, I. T. Bioprinting towards Physiologically Relevant Tissue Models for Pharmaceutics. Trends in Biotechnology 34, 722-732, doi:10.1016/j.tibtech.2016.05.013 (2016).Jose, R. R., Rodriguez, M. J., Dixon, T. A., Omenetto, F. & Kaplan, D. L. Evolution of Bioinks and Additive Manufacturing Technologies for 3D Bioprinting. ACS Biomaterials Science & Engineering 2, 1662-1678, doi:10.1021/acsbiomaterials.6b00088 (2016)Murphy, S. V. & Atala, A. 3D bioprinting of tissues and organs. Nature Biotechnology 32, 773-785, doi:10.1038/nbt.2958 (2014).Lee, J. M., Ng, W. L. & Yeong, W. Y. Resolution and shape in bioprinting: Strategizing towards complex tissue and organ printing Applied Physics Reviews 6, doi:10.1063/1.5053909 (2019).Vyas, K. S. & Vasconez, H. C. Wound Healing: Biologics, Skin Substitutes, Biomembranes and Scaffolds. Healthcare 2, 356-400, doi:10.3390/healthcare2030356 (2014).Winter, G. D. Formation of the Scab and the Rate of Epithelization of Superficial Wounds in the Skin of the Young Domestic Pig. Nature 193, 293-294, doi:10.1038/193293a0 (1962).Chattopadhyay, S. & Raines, R. T. Review collagen-based biomaterials for wound healing. Biopolymers 101, 821-833, doi:10.1002/bip.22486 (2014).Avila Rodriguez, M. I., Rodriguez Barroso, L. G. & Sanchez, M. L. Collagen: A review on its sources and potential cosmetic applications. J Cosmet Dermatol 17, 20-26, doi:10.1111/jocd.12450 (2018).Yan, H., Chen J Fau - Peng, X. & Peng, X. Recombinant human granulocyte-macrophage colony-stimulating factor hydrogel promotes healing of deep partial thickness burn wounds. Burns. 38, 877-881 (2012).Lin, C. C. & Anseth, K. S. PEG hydrogels for the controlled release of biomolecules in regenerative medicine. 26, 631-643 (2009).Miller, J. S. et al. Bioactive Hydrogels Made from Step-Growth Derived PEG-Peptide Macromers. Biomaterials 31, 3736-3743 (2010).Xu, K., Kleinbeck, K. R. & Kao, W. J. Multifunctional Biomaterial Matrix for Advanced Wound Healing. Advances in Wound Care 1, 75-80 (2012).Becerra-Bayona, S., Guiza-Arguello, V., Qu, X., Munoz-Pinto, D. J. & Hahn, M. S. Influence of select extracellular matrix proteins on mesenchymal stem cell osteogenic commitment in three-dimensional contexts. Acta Biomater 8, 4397-4404, doi:10.1016/j.actbio.2012.07.048 (2012).Qu, X. et al. Regulation of smooth muscle cell phenotype by glycosaminoglycan identity. Acta Biomater 7, 1031-1039, doi:S1742-7061(10)00527-1 [pii]10.1016/j.actbio.2010.11.020 (2011).Hahn, M. S. et al. Influence of hydrogel mechanical properties and mesh size on vocal fold fibroblast extracellular matrix production and phenotype. Acta biomaterialia 4, 1161-1171 (2008).Caley, M. P., Martins, V. L. C. & O'Toole, E. A. Metalloproteinases and Wound Healing. Advances in Wound Care 4, 225-234 (2015).Xu, Q. et al. A hybrid injectable hydrogel from hyperbranched PEG macromer as a stem cell delivery and retention platform for diabetic wound healing. Acta Biomater 75, 63-74, doi:S1742-7061(18)30315-5 [pii] 10.1016/j.actbio.2018.05.039 (2018).Cereceres, S. et al. Chronic Wound Dressings Based on Collagen-Mimetic Proteins. Advances in Wound Care 4, 444-456 (2015).Jain, E., Sheth, S., Dunn, A., Zustiak, S. P. & Sell, S. A. Sustained release of multicomponent platelet-rich plasma proteins from hydrolytically degradable PEG hydrogels. J Biomed Mater Res A 105, 3304-3314, doi:10.1002/jbm.a.36187 (2017).Qiu, M. et al. Platelet-Rich Plasma-Loaded Poly(d,l-lactide)-Poly(ethylene glycol)-Poly(d,l-lactide) Hydrogel Dressing Promotes Full-Thickness Skin Wound Healing in a Rodent Model. Int J Mol Sci 17, doi:ijms17071001 [pii]10.3390/ijms17071001 (2016).El-Mabood, E.-S. A. A. & Ali, H. E. Platelet-rich plasma versus conventional dressing: does this really affect diabetic foot wound-healing outcomes? The Egyptian Journal of Surgery 37, 16 (2018).Driver, V. R., Hanft, J., Fylling, C. P. & Beriou, J. M. A prospective, randomized, controlled trial of autologous platelet-rich plasma gel for the treatment of diabetic foot ulcers. Ostomy/wound management 52, 68-70, 72, 74 passim (2006).Wu, D. et al. 3D bioprinting of gellan gum and poly (ethylene glycol) diacrylate based hydrogels to produce human-scale constructs with high-fidelity. Materials & Design 160, 486-495, doi:https://doi.org/10.1016/j.matdes.2018.09.040 (2018).Faramarzi, N. et al. Patient-Specific Bioinks for 3D Bioprinting of Tissue Engineering Scaffolds. Adv Healthc Mater 7, e1701347, doi:10.1002/adhm.201701347 (2018).Prendergast, M. E. & Burdick, J. A. Recent Advances in Enabling Technologies in 3D Printing for Precision Medicine. Advanced Materials 32, 1902516, doi:10.1002/adma.201902516 (2020)ORIGINALInforme.pdfInforme.pdfInformeapplication/pdf576694https://repository.unab.edu.co/bitstream/20.500.12749/21358/1/Informe.pdffba13de89cf64dffe0d5c518bfc8e7daMD51open accessActa de Incio_Proyecto de Investigacion.pdfActa de Incio_Proyecto de Investigacion.pdfLicenciaapplication/pdf1717414https://repository.unab.edu.co/bitstream/20.500.12749/21358/2/Acta%20de%20Incio_Proyecto%20de%20Investigacion.pdf6983461587c45dad8eadf389c10aa050MD52metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8829https://repository.unab.edu.co/bitstream/20.500.12749/21358/3/license.txt3755c0cfdb77e29f2b9125d7a45dd316MD53open accessTHUMBNAILInforme.pdf.jpgInforme.pdf.jpgIM Thumbnailimage/jpeg9506https://repository.unab.edu.co/bitstream/20.500.12749/21358/4/Informe.pdf.jpg053a1e291879887bdd9879c9c4f5ffceMD54open accessActa de Incio_Proyecto de Investigacion.pdf.jpgActa de Incio_Proyecto de Investigacion.pdf.jpgIM Thumbnailimage/jpeg11330https://repository.unab.edu.co/bitstream/20.500.12749/21358/5/Acta%20de%20Incio_Proyecto%20de%20Investigacion.pdf.jpg090d0a1ecfa432dee03a7f04b4e5ac56MD55metadata only access20.500.12749/21358oai:repository.unab.edu.co:20.500.12749/213582023-08-23 22:00:33.948open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbi4gRWwgQVVUT1IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVTkFCIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuCgpFbCBBVVRPUiBhdXRvcml6YSBhIGxhIFVuaXZlcnNpZGFkIEF1dMOzbm9tYSBkZSBCdWNhcmFtYW5nYSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24uCg== |