Estudio numérico de intercambiadores de calor de tubos concéntricos con superficies extendidas en planta piloto UNAB
La implementación de los sistemas de intercambio de calor son muy frecuentes en las industrias y tienen como fin la producción y generación de energía. Como herramientas que permiten la transferencia de calor de un Huido a otro mediante el aprovechamiento del poder calorífico que portan los fluidos,...
- Autores:
-
Suárez Díaz, José Andrés
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2015
- Institución:
- Universidad Autónoma de Bucaramanga - UNAB
- Repositorio:
- Repositorio UNAB
- Idioma:
- spa
- OAI Identifier:
- oai:repository.unab.edu.co:20.500.12749/28416
- Acceso en línea:
- http://hdl.handle.net/20.500.12749/28416
- Palabra clave:
- Energy engineering
Technological innovations
Energy
I Heat transfer
Sustainability
Distributed generation of electric power
Electrical energy production
Ingeniería en energía
Innovaciones tecnológicas
Energía
Generación de energía eléctrica distribuida
Producción de energía eléctrica
Transferencia de calor
ICTCSE
COMSOL
Aprovechamiento energético
- Rights
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id |
UNAB2_72f67ce5f5cffcee424e07b847f2c383 |
---|---|
oai_identifier_str |
oai:repository.unab.edu.co:20.500.12749/28416 |
network_acronym_str |
UNAB2 |
network_name_str |
Repositorio UNAB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Estudio numérico de intercambiadores de calor de tubos concéntricos con superficies extendidas en planta piloto UNAB |
dc.title.translated.spa.fl_str_mv |
Numerical study of a heat exchanger concentric extended surface tubes planta piloto UNAB |
title |
Estudio numérico de intercambiadores de calor de tubos concéntricos con superficies extendidas en planta piloto UNAB |
spellingShingle |
Estudio numérico de intercambiadores de calor de tubos concéntricos con superficies extendidas en planta piloto UNAB Energy engineering Technological innovations Energy I Heat transfer Sustainability Distributed generation of electric power Electrical energy production Ingeniería en energía Innovaciones tecnológicas Energía Generación de energía eléctrica distribuida Producción de energía eléctrica Transferencia de calor ICTCSE COMSOL Aprovechamiento energético |
title_short |
Estudio numérico de intercambiadores de calor de tubos concéntricos con superficies extendidas en planta piloto UNAB |
title_full |
Estudio numérico de intercambiadores de calor de tubos concéntricos con superficies extendidas en planta piloto UNAB |
title_fullStr |
Estudio numérico de intercambiadores de calor de tubos concéntricos con superficies extendidas en planta piloto UNAB |
title_full_unstemmed |
Estudio numérico de intercambiadores de calor de tubos concéntricos con superficies extendidas en planta piloto UNAB |
title_sort |
Estudio numérico de intercambiadores de calor de tubos concéntricos con superficies extendidas en planta piloto UNAB |
dc.creator.fl_str_mv |
Suárez Díaz, José Andrés |
dc.contributor.advisor.none.fl_str_mv |
Pacheco Sandoval, Leonardo Esteban |
dc.contributor.author.none.fl_str_mv |
Suárez Díaz, José Andrés |
dc.contributor.cvlac.spa.fl_str_mv |
Pacheco Sandoval, Leonardo Esteban [1478220] |
dc.contributor.googlescholar.spa.fl_str_mv |
Pacheco Sandoval, Leonardo Esteban [yZ1HEiIAAAAJ] |
dc.contributor.orcid.spa.fl_str_mv |
Pacheco Sandoval, Leonardo Esteban [0000-0001-7262-382X] |
dc.contributor.scopus.spa.fl_str_mv |
Pacheco Sandoval, Leonardo Esteban [56117105700] |
dc.contributor.researchgate.spa.fl_str_mv |
Pacheco Sandoval, Leonardo Esteban [Leonardo_Esteban_Pacheco_Sandoval] |
dc.contributor.apolounab.spa.fl_str_mv |
Pacheco Sandoval, Leonardo Esteban [leonardo-esteban-pacheco-sandoval] |
dc.contributor.linkedin.spa.fl_str_mv |
Pacheco Sandoval, Leonardo Esteban [leo-pacheco] |
dc.subject.keywords.spa.fl_str_mv |
Energy engineering Technological innovations Energy I Heat transfer Sustainability Distributed generation of electric power Electrical energy production |
topic |
Energy engineering Technological innovations Energy I Heat transfer Sustainability Distributed generation of electric power Electrical energy production Ingeniería en energía Innovaciones tecnológicas Energía Generación de energía eléctrica distribuida Producción de energía eléctrica Transferencia de calor ICTCSE COMSOL Aprovechamiento energético |
dc.subject.lemb.spa.fl_str_mv |
Ingeniería en energía Innovaciones tecnológicas Energía Generación de energía eléctrica distribuida Producción de energía eléctrica |
dc.subject.proposal.spa.fl_str_mv |
Transferencia de calor ICTCSE COMSOL Aprovechamiento energético |
description |
La implementación de los sistemas de intercambio de calor son muy frecuentes en las industrias y tienen como fin la producción y generación de energía. Como herramientas que permiten la transferencia de calor de un Huido a otro mediante el aprovechamiento del poder calorífico que portan los fluidos, Estos sistemas son muy atractivos para el aprovechamiento energético y ahorro económico en un proceso industrial. La Universidad Autónoma de Bucaramanga, en pro de la implementación del concepto de sostenibilidad y por consiguiente, del consumo eficiente de la energía, ha construido el laboratorio de Planta Piloto UNAB, que cuenta con equipos de Intercambio de Calor de Tubos Concéntricos con Superficies Extendidas (ICTCSE). Estos equipos son a su vez, objeto general de estudio e investigación. Este proyecto planeta un estudio numérico de los ICTCSE para el reconocimiento y análisis de su transferencia mediante el uso de la herramienta de simulación COMSOL, que busca simular el funcionamiento de los intercambiadores de calor de tubos concéntricos con superficies extendidas para la determinación del arreglo geométrico de mayor eficiencia en el proceso de transferencia de calor. |
publishDate |
2015 |
dc.date.issued.none.fl_str_mv |
2015 |
dc.date.accessioned.none.fl_str_mv |
2025-02-20T20:58:15Z |
dc.date.available.none.fl_str_mv |
2025-02-20T20:58:15Z |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
dc.type.local.spa.fl_str_mv |
Trabajo de Grado |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.hasversion.none.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TP |
format |
http://purl.org/coar/resource_type/c_7a1f |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12749/28416 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Autónoma de Bucaramanga - UNAB |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional UNAB |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.unab.edu.co |
url |
http://hdl.handle.net/20.500.12749/28416 |
identifier_str_mv |
instname:Universidad Autónoma de Bucaramanga - UNAB reponame:Repositorio Institucional UNAB repourl:https://repository.unab.edu.co |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
F.P. Incropera, D.P. DeWitt, T.L. Bergman, and A.S. Lavine, Fundamentáis ofHeat and Mass Transfer, 6th ed., John Wiley & Sons, 2006. A. Rejan, Heat Transfer, John Wiley & Sons, 1993. R.B. Bird, W.E. Stewart, and E.N. Lightfoot, Transport Phenomena, 2nd ed., John Wiley & Sons, 2007. W. Wagner and ll-J Kretzschmar, International Steam Tables, 2nd ed., Springer, 2008. Kern, Donald Q. "Procesos de Transferencia de Calor", Compañía Editorial Continental, S.A., México, 1974. Kreith, Frank. "Principios de transferencia de calor”, Intex Educational Publishers, NewYork, 1973. Perry, R. & Don Green. "Perry's Chemical Enqineers Handbook", 6th. Ed. McGraw I lili Book, Co. Inc., New York, 1984. Me. Cabe, W. L. y Smith, J. “Unit Operatios of Chemical Engineering”, 2nd. Ed. McGraw-Hill Book Co. Inc., New York, 1967 Arlette, Canut Noval & Garza, Adelwart. "Laboratorio de operaciones unitarias, Tubos aleteados", Universidad Iberoamericana, facultad de ingeniería química, 2008 Rosenow, W y I lartnett, j “Handbook of Heat transfer” Me Graw I lili, 1973 Briseño M. I. “Dimensionamiento de Intercambiadores de Calor Tubulares" Universidad de los Andes, Mérida Venezuela, 2005 Cengel Y.A, "Heat Transfer A Practica! Approach", McGraw ¡ lili, U.S.A, 1998. Lalot, S., Tournier, C., Jensen, M., "Fin Efficiency of Anular Fins”, international of Heat and Mass Transfer, 121 (2006) lncropera, DeWitt Bergman, Lavine, Fundamentáis of Heat and Mass Transfer, O1'1 edition, John Willey & Sons, 2007. A. J. Chapman, Transmisión del Calor, 2a edición, Ediciones Interciencia, Madrid, 1968. Heggs, P. J., Ingham, D.B., Mansoor, M., “The effeets of Nonuniform Heat Transfer from Annular Fin of Triangular Profile”, ASME Journal of heat transfer, 103, 184-184(1981) COMSOL Multifhysics 4.3 user's guide. Arenas, J., Galdamez, F.; Proyecto Modelación numérica en intercambiadores con superficies extendidas. Instituto de ingenierías, Universidad Austral de Chile. 2005. B. V. Karlekar- R. M. Desmond. “Transferencia de Calor”. Editorial Limusa. 1984 D.C. Wilcox, Turbulence Modeling for CFD, 2nd ed., DCW Industries, 1998. D.M. Driver and H.L. Seegmiller, “Features of a Reattaching Turbulent Shear Layer in Diverging Channel Flow,” AIAA Journal, vol. 23, pp. 163- 171, 1985. H.K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics, Prentice Hall, 1995. A. Durbin, "On the k-c Stagnation Point Anomality," hit. J. Ileat and Fluid Flow, vol. 17, pp. 89 90, 1986. A, Svenningsson, Turbulence Transport Modeling in Gas Tuibine Relatad Applications," doctoral dissertation, Depar tment of Applied Mechanics, Chalmers University of Technology, 2006. C.H. Park and S.O. Park, “On the Limiters of Two-equation Tuibulenue Modele,’’ Int. J. Computational Fluid Dynamics, vol. 19, no. 1,pp. 79-8G, 2005. J. Larsson, Numerical Simulation of Turbulent Flows for Turbina Fiado Heat transfer, doctoral dissertation, Chalmers University of Technology, Sweden, 1998. 1. Ignat, D Pelletier, and F. Hinca, "A Universal Formulation of Two-equation Models for Adaptive Computation of Turbulent Flows,” Compute/ Methods in Applied Mechanics and Engineeríng, vol. 189, pp. 1119-1139, 2000. D. Kuzmin, O. fviieika, and S. iurek, "On the Impiernentation of the k £ Turbulence Model in Incompressible Flow Solvers Based on a Finite Element Discretization," Int.J. Computing Science and Mathcmatics, vol. 1, no. 2-4, pp. 193-206, 2007. H. Grotjans and F.R. Menter, “Wall Functions for General Application CFD Codes,” ECCOMAS 98, Proceedings of the Fourth European Computational Fluid Dynamics Conference, John Wiley & Sons, pp. 1112-1117, 1998. K. Abe, T. Kondoh, and Y. Nagano, “A New Turbulence Model for Predicting Fluid Flow and Heat Transfer in Separating and Reattaching Flows—I. Flow Field Calculations,” Int. J. Heat and Mass Transfer, vol. 37, no. 1, pp. 139- 151, 1994. “The Spalart-Allmaras Turbulence Model,” http://turbmodels.larc.nasa.gov/spalart.html. J. Dacles-Mariani, G.G. Zilliac and J.S. Chow, “Numerical/Experimental Study of a Wingtip Vortex in the Near Field”, AIAA Journal, vol. 33, no. 9, 1995. “The Menter Shear Stress Transport Turbulence Model,” http://turbmodels.larc.nasa.gov/sst.html F.R. Menter, “Two-Equation Eddy-Viscosity Turbulence Models for Engineeríng Applications,” AIAA Journal, vol. 32, no. 8, 1994. F.R. Menter, M. Kuntz, and R. Langtry, "Ten Years of Industrial Experience with the SST Turbulence Model,” Turbulence Heat and Mass Transfer, vol. 4, 2003. M. Vázquez, M. Ravachol, F. Chalot, and M. Mallet, "The Robustness Issue on Multigrid Schemes Applied to the Navier-Stokes Equations for Laminar and Turbulent, Incompressible and Compressible Flows," Int. J.for Numérica! Methods in Fluida, vol. 45, pp. 555-579, 2004. T. Cebeci, Analysis of Turbulent Flows, 2nd ed., Elsevier, Amsterdam, 2004. J. Nikuradse, “Strómungsgesetze in rauhen Rohren", Forschg. Arb. Ing.- Wes., no. 361, 1933. D. Agonafer, L. Gan-I i and D.B. Spalding, “LVEL turbulence model for conjúgate heat transfer at low Reynolds numbers", EEP 6, ASME Intornational Mechanical Congress and Exposition, Atlanta, 1996. lncropera, Trank P. (1999). Fundamentos do transferencia de calor. (4a. ed. edición). México: Prentice Hall. p. 912 |
dc.relation.uriapolo.spa.fl_str_mv |
https://apolo.unab.edu.co/en/persons/leonardo-esteban-pacheco-sandoval |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.creativecommons.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Abierto (Texto Completo) Atribución-NoComercial-SinDerivadas 2.5 Colombia http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.spatial.spa.fl_str_mv |
Bucaramanga (Santander, Colombia) |
dc.coverage.campus.spa.fl_str_mv |
UNAB Campus Bucaramanga |
dc.publisher.grantor.spa.fl_str_mv |
Universidad Autónoma de Bucaramanga UNAB |
dc.publisher.program.spa.fl_str_mv |
Pregrado Ingeniería en Energía |
dc.publisher.programid.none.fl_str_mv |
IES-3034 |
institution |
Universidad Autónoma de Bucaramanga - UNAB |
bitstream.url.fl_str_mv |
https://repository.unab.edu.co/bitstream/20.500.12749/28416/1/2015_Tesis_Jose_Andres_Suarez_Diaz.pdf https://repository.unab.edu.co/bitstream/20.500.12749/28416/2/license.txt https://repository.unab.edu.co/bitstream/20.500.12749/28416/3/2015_Tesis_Jose_Andres_Suarez_Diaz.pdf.jpg |
bitstream.checksum.fl_str_mv |
2d40abe300dfb83a211823bf182fb35b 3755c0cfdb77e29f2b9125d7a45dd316 2b2af52df0d855bc028ce1ae760b8ec1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB |
repository.mail.fl_str_mv |
repositorio@unab.edu.co |
_version_ |
1828219970256896000 |
spelling |
Pacheco Sandoval, Leonardo Estebaneffbbb92-dd6f-4c7a-af53-409b4a0a744dSuárez Díaz, José Andrésee292da9-5725-414d-910d-f0a89ea971a3Pacheco Sandoval, Leonardo Esteban [1478220]Pacheco Sandoval, Leonardo Esteban [yZ1HEiIAAAAJ]Pacheco Sandoval, Leonardo Esteban [0000-0001-7262-382X]Pacheco Sandoval, Leonardo Esteban [56117105700]Pacheco Sandoval, Leonardo Esteban [Leonardo_Esteban_Pacheco_Sandoval]Pacheco Sandoval, Leonardo Esteban [leonardo-esteban-pacheco-sandoval]Pacheco Sandoval, Leonardo Esteban [leo-pacheco]Bucaramanga (Santander, Colombia)UNAB Campus Bucaramanga2025-02-20T20:58:15Z2025-02-20T20:58:15Z2015http://hdl.handle.net/20.500.12749/28416instname:Universidad Autónoma de Bucaramanga - UNABreponame:Repositorio Institucional UNABrepourl:https://repository.unab.edu.coLa implementación de los sistemas de intercambio de calor son muy frecuentes en las industrias y tienen como fin la producción y generación de energía. Como herramientas que permiten la transferencia de calor de un Huido a otro mediante el aprovechamiento del poder calorífico que portan los fluidos, Estos sistemas son muy atractivos para el aprovechamiento energético y ahorro económico en un proceso industrial. La Universidad Autónoma de Bucaramanga, en pro de la implementación del concepto de sostenibilidad y por consiguiente, del consumo eficiente de la energía, ha construido el laboratorio de Planta Piloto UNAB, que cuenta con equipos de Intercambio de Calor de Tubos Concéntricos con Superficies Extendidas (ICTCSE). Estos equipos son a su vez, objeto general de estudio e investigación. Este proyecto planeta un estudio numérico de los ICTCSE para el reconocimiento y análisis de su transferencia mediante el uso de la herramienta de simulación COMSOL, que busca simular el funcionamiento de los intercambiadores de calor de tubos concéntricos con superficies extendidas para la determinación del arreglo geométrico de mayor eficiencia en el proceso de transferencia de calor.INTRODUCCIÓN...................................................................................................................21 1. PLANTEAMIENTO DEL PROBLEMA............................................................................22 1.1. FORMULACION DEL PROBLEMA........................................................................22 1.2. IMPORTANCIA Y JUSTIFICACIÓN.......................................................................23 2. OBJETIVOS....................................................................................................................24 2.1. OBJETIVO GENERAL............................................................................................24 2.2. OBJETIVOS ESPECÍFICOS.................................................................................. 24 3. MARCO TEÓRICO.........................................................................................................25 3.1. TRANSFERENCIA DE CALOR.............................................................................25 3.2. TIPOS DE INTERCAMBIADORES DE CALOR..................................................... 25 3.3 PROCESOS DF TRANSFERENCIA DE CALOR................................................. 27 3.4. NUMERO DE NUSSELT........................................................................................ 30 3.5. NUMERO DE PRANDTL........................................................................................31 3.6 NI JMERO DE REYNOLDS.....................................................................................32 3.7. USO DEL SOFTWARE COMSOL...........................................................................32 4. DIAGNÓSTICO INCIAL ICTCSE................................................................................... 38 4.1. DESCRIPCIÓN DEL BANCO ICTCSE.................................................................. 38 4.2. COMPOSICIÓN Y MATERIAI ES UTILIZADOS.................................................... 42 4.3. DIMENSIONAMIENTO INTERCAMBIADORES.................................................... 43 5. SIMULACIONES DIAGNÓSTICO.................................................................................. 46 5.1. SIMULACION EN 2D..............................................................................................46 5.2. MATERIALES DE LOS ICTCSE............................................................................ 51 5.3. MODULO DE TRANSFERENCIA DE CALOR COMSOL...................................... 55 5.4. MODULO DE MECANICA DE FLUIDOS............................................................... 63 5.5. ENTRADAS DEL MODELO....................................................................................67 5.6. PROCESO DE MALLADO..................................................................................... 73 5.7. CRITERIOS DE SIMULACION COMSOL.............................................................. 76 5.8. PROCESAMIENTO DE RESULTADOS.................................................................79 5.9. SIMULACION 3D....................................................................................................83 6. SIMULACIÓN ICTCSE PLANTA PILOTO UNAB........................................................ 100 6.1. DEFINICIONES GLOBALES................................................................................102 6.2. RESULTADO CONDICIONES REALES.............................................................. 113 7. OPTIMIZACION GEOMETRICA ICTCSE..................................................................... 129 7.1. DEFINICIONES GLOBALES................................................................................ 129 7.2. RESULTADOS OPTIMIZACION GEOMÉTRICA ICTCSE...................................137 7.3. ICTCSE 4 ALETAS...............................................................................................138 7.4. ICTCSE 6 ALETAS............................................................................................... 154 7.5. ICTCSE 8 ALETAS.............................................................................................. 1G8 8. CONCLUSIONES.................................................... 171 9. REFERENCIAS............................................................................................................. 172 10. ANEXOS........................................................................................................................ 175PregradoThe implomentation of heat exchange systems is very common in industries that are aimed at production of energy and/or power generation. These systems, such as tools that allow heat transfer from one fluid to another by taking advantage of its calorific fluid valúes, are very attractive for energy and cost savings in an industrial process. The Autonomous University of Bucaramanga, in advance of implementing the concept of sustainability and thus efficient consumption of energy, has built the Planta Piloto Laboratory, which place has been equipped with a heat exchange of concentric tubes with extended surfaces (HECTES). The aforementioned equipment is the object and general study of this research. This project is based on a numerical study of the HECTES for the recognition and analysis of its transfer through the use of the COMSOL simulation tool, which sought to simúlate the operation of the heat exchangers tubular surfaces extended for the determination of the geometric arrangement of greater efficiency in the heat transfer process.Modalidad Presencialapplication/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)Atribución-NoComercial-SinDerivadas 2.5 Colombiahttp://purl.org/coar/access_right/c_abf2Estudio numérico de intercambiadores de calor de tubos concéntricos con superficies extendidas en planta piloto UNABNumerical study of a heat exchanger concentric extended surface tubes planta piloto UNABIngeniero en EnergíaUniversidad Autónoma de Bucaramanga UNABPregrado Ingeniería en EnergíaIES-3034info:eu-repo/semantics/bachelorThesisTrabajo de Gradohttp://purl.org/coar/resource_type/c_7a1finfo:eu-repo/semantics/acceptedVersionhttp://purl.org/redcol/resource_type/TPEnergy engineeringTechnological innovationsEnergyI Heat transferSustainabilityDistributed generation of electric powerElectrical energy productionIngeniería en energíaInnovaciones tecnológicasEnergíaGeneración de energía eléctrica distribuidaProducción de energía eléctricaTransferencia de calorICTCSECOMSOLAprovechamiento energéticoF.P. Incropera, D.P. DeWitt, T.L. Bergman, and A.S. Lavine, Fundamentáis ofHeat and Mass Transfer, 6th ed., John Wiley & Sons, 2006. A. Rejan, Heat Transfer, John Wiley & Sons, 1993.R.B. Bird, W.E. Stewart, and E.N. Lightfoot, Transport Phenomena, 2nd ed., John Wiley & Sons, 2007.W. Wagner and ll-J Kretzschmar, International Steam Tables, 2nd ed., Springer, 2008.Kern, Donald Q. "Procesos de Transferencia de Calor", Compañía Editorial Continental, S.A., México, 1974.Kreith, Frank. "Principios de transferencia de calor”, Intex Educational Publishers, NewYork, 1973.Perry, R. & Don Green. "Perry's Chemical Enqineers Handbook", 6th. Ed. McGraw I lili Book, Co. Inc., New York, 1984.Me. Cabe, W. L. y Smith, J. “Unit Operatios of Chemical Engineering”, 2nd. Ed. McGraw-Hill Book Co. Inc., New York, 1967Arlette, Canut Noval & Garza, Adelwart. "Laboratorio de operaciones unitarias, Tubos aleteados", Universidad Iberoamericana, facultad de ingeniería química, 2008Rosenow, W y I lartnett, j “Handbook of Heat transfer” Me Graw I lili, 1973Briseño M. I. “Dimensionamiento de Intercambiadores de Calor Tubulares" Universidad de los Andes, Mérida Venezuela, 2005Cengel Y.A, "Heat Transfer A Practica! Approach", McGraw ¡ lili, U.S.A, 1998.Lalot, S., Tournier, C., Jensen, M., "Fin Efficiency of Anular Fins”, international of Heat and Mass Transfer, 121 (2006)lncropera, DeWitt Bergman, Lavine, Fundamentáis of Heat and Mass Transfer, O1'1 edition, John Willey & Sons, 2007. A. J. Chapman, Transmisión del Calor, 2a edición, Ediciones Interciencia, Madrid, 1968.Heggs, P. J., Ingham, D.B., Mansoor, M., “The effeets of Nonuniform Heat Transfer from Annular Fin of Triangular Profile”, ASME Journal of heat transfer, 103, 184-184(1981)COMSOL Multifhysics 4.3 user's guide.Arenas, J., Galdamez, F.; Proyecto Modelación numérica en intercambiadores con superficies extendidas. Instituto de ingenierías, Universidad Austral de Chile. 2005.B. V. Karlekar- R. M. Desmond. “Transferencia de Calor”. Editorial Limusa. 1984D.C. Wilcox, Turbulence Modeling for CFD, 2nd ed., DCW Industries, 1998.D.M. Driver and H.L. Seegmiller, “Features of a Reattaching Turbulent Shear Layer in Diverging Channel Flow,” AIAA Journal, vol. 23, pp. 163- 171, 1985.H.K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics, Prentice Hall, 1995. A. Durbin, "On the k-c Stagnation Point Anomality," hit. J. Ileat and Fluid Flow, vol. 17, pp. 89 90, 1986.A, Svenningsson, Turbulence Transport Modeling in Gas Tuibine Relatad Applications," doctoral dissertation, Depar tment of Applied Mechanics, Chalmers University of Technology, 2006.C.H. Park and S.O. Park, “On the Limiters of Two-equation Tuibulenue Modele,’’ Int. J. Computational Fluid Dynamics, vol. 19, no. 1,pp. 79-8G, 2005.J. Larsson, Numerical Simulation of Turbulent Flows for Turbina Fiado Heat transfer, doctoral dissertation, Chalmers University of Technology, Sweden, 1998.1. Ignat, D Pelletier, and F. Hinca, "A Universal Formulation of Two-equation Models for Adaptive Computation of Turbulent Flows,” Compute/ Methods in Applied Mechanics and Engineeríng, vol. 189, pp. 1119-1139, 2000.D. Kuzmin, O. fviieika, and S. iurek, "On the Impiernentation of the k £ Turbulence Model in Incompressible Flow Solvers Based on a Finite Element Discretization," Int.J. Computing Science and Mathcmatics, vol. 1, no. 2-4, pp. 193-206, 2007.H. Grotjans and F.R. Menter, “Wall Functions for General Application CFD Codes,” ECCOMAS 98, Proceedings of the Fourth European Computational Fluid Dynamics Conference, John Wiley & Sons, pp. 1112-1117, 1998.K. Abe, T. Kondoh, and Y. Nagano, “A New Turbulence Model for Predicting Fluid Flow and Heat Transfer in Separating and Reattaching Flows—I. Flow Field Calculations,” Int. J. Heat and Mass Transfer, vol. 37, no. 1, pp. 139- 151, 1994.“The Spalart-Allmaras Turbulence Model,” http://turbmodels.larc.nasa.gov/spalart.html.J. Dacles-Mariani, G.G. Zilliac and J.S. Chow, “Numerical/Experimental Study of a Wingtip Vortex in the Near Field”, AIAA Journal, vol. 33, no. 9, 1995.“The Menter Shear Stress Transport Turbulence Model,” http://turbmodels.larc.nasa.gov/sst.htmlF.R. Menter, “Two-Equation Eddy-Viscosity Turbulence Models for Engineeríng Applications,” AIAA Journal, vol. 32, no. 8, 1994.F.R. Menter, M. Kuntz, and R. Langtry, "Ten Years of Industrial Experience with the SST Turbulence Model,” Turbulence Heat and Mass Transfer, vol. 4, 2003.M. Vázquez, M. Ravachol, F. Chalot, and M. Mallet, "The Robustness Issue on Multigrid Schemes Applied to the Navier-Stokes Equations for Laminar and Turbulent, Incompressible and Compressible Flows," Int. J.for Numérica! Methods in Fluida, vol. 45, pp. 555-579, 2004.T. Cebeci, Analysis of Turbulent Flows, 2nd ed., Elsevier, Amsterdam, 2004.J. Nikuradse, “Strómungsgesetze in rauhen Rohren", Forschg. Arb. Ing.- Wes., no. 361, 1933.D. Agonafer, L. Gan-I i and D.B. Spalding, “LVEL turbulence model for conjúgate heat transfer at low Reynolds numbers", EEP 6, ASME Intornational Mechanical Congress and Exposition, Atlanta, 1996.lncropera, Trank P. (1999). Fundamentos do transferencia de calor. (4a. ed. edición). México: Prentice Hall. p. 912https://apolo.unab.edu.co/en/persons/leonardo-esteban-pacheco-sandovalORIGINAL2015_Tesis_Jose_Andres_Suarez_Diaz.pdf2015_Tesis_Jose_Andres_Suarez_Diaz.pdfTesisapplication/pdf56990727https://repository.unab.edu.co/bitstream/20.500.12749/28416/1/2015_Tesis_Jose_Andres_Suarez_Diaz.pdf2d40abe300dfb83a211823bf182fb35bMD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8829https://repository.unab.edu.co/bitstream/20.500.12749/28416/2/license.txt3755c0cfdb77e29f2b9125d7a45dd316MD52open accessTHUMBNAIL2015_Tesis_Jose_Andres_Suarez_Diaz.pdf.jpg2015_Tesis_Jose_Andres_Suarez_Diaz.pdf.jpgIM Thumbnailimage/jpeg7767https://repository.unab.edu.co/bitstream/20.500.12749/28416/3/2015_Tesis_Jose_Andres_Suarez_Diaz.pdf.jpg2b2af52df0d855bc028ce1ae760b8ec1MD53open access20.500.12749/28416oai:repository.unab.edu.co:20.500.12749/284162025-02-20 22:01:55.694open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbi4gRWwgQVVUT1IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVTkFCIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuCgpFbCBBVVRPUiBhdXRvcml6YSBhIGxhIFVuaXZlcnNpZGFkIEF1dMOzbm9tYSBkZSBCdWNhcmFtYW5nYSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24uCg== |