Aprendizaje no supervisado: aplicación en epilepsia

La epilepsia es uno de los trastornos neurológicos comunes caracterizado por convulsiones recurrentes. El objetivo principal de este artículo es dar a conocer el análisis de los resultados presentados en las gráficas de simulación de los datos de entrenamiento. Los datos fueron recolectados mediante...

Full description

Autores:
Martínez Toro, Gabriel Mauricio
Rico Bautista, Dewar
Romero Riaño, Efrén
Romero Riaño, Paola Andrea
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2019
Institución:
Universidad Autónoma de Bucaramanga - UNAB
Repositorio:
Repositorio UNAB
Idioma:
eng
OAI Identifier:
oai:repository.unab.edu.co:20.500.12749/8823
Acceso en línea:
http://hdl.handle.net/20.500.12749/8823
Palabra clave:
Epilepsy
Deep learning
Automatic learning
Auto-encoding
Ciencia de los computadores
Investigación
Epilepsy
Deep learning
Automatic learning
Auto-encoding
Rights
License
Derechos de autor 2019 Revista Colombiana de Computación
id UNAB2_6d5ddd4239df77491e05489d654f18e5
oai_identifier_str oai:repository.unab.edu.co:20.500.12749/8823
network_acronym_str UNAB2
network_name_str Repositorio UNAB
repository_id_str
dc.title.none.fl_str_mv Aprendizaje no supervisado: aplicación en epilepsia
dc.title.translated.none.fl_str_mv Unsupervised learning: application to epilepsy
title Aprendizaje no supervisado: aplicación en epilepsia
spellingShingle Aprendizaje no supervisado: aplicación en epilepsia
Epilepsy
Deep learning
Automatic learning
Auto-encoding
Ciencia de los computadores
Investigación
Epilepsy
Deep learning
Automatic learning
Auto-encoding
title_short Aprendizaje no supervisado: aplicación en epilepsia
title_full Aprendizaje no supervisado: aplicación en epilepsia
title_fullStr Aprendizaje no supervisado: aplicación en epilepsia
title_full_unstemmed Aprendizaje no supervisado: aplicación en epilepsia
title_sort Aprendizaje no supervisado: aplicación en epilepsia
dc.creator.fl_str_mv Martínez Toro, Gabriel Mauricio
Rico Bautista, Dewar
Romero Riaño, Efrén
Romero Riaño, Paola Andrea
dc.contributor.author.spa.fl_str_mv Martínez Toro, Gabriel Mauricio
Rico Bautista, Dewar
Romero Riaño, Efrén
Romero Riaño, Paola Andrea
dc.contributor.cvlac.none.fl_str_mv Martínez Toro, Gabriel Mauricio [0001489133]
dc.contributor.googlescholar.none.fl_str_mv Martínez Toro, Gabriel Mauricio [NKXdCogAAAAJ]
Rico Bautista, Dewar [q_ZtKjsAAAAJ&hl=es&oi=ao]
Romero Riaño, Efrén [iduK4zEAAAAJ&hl=es&oi=ao]
dc.contributor.orcid.none.fl_str_mv Rico Bautista, Dewar [0000-0002-1808-3874]
Romero Riaño, Efrén [0000-0002-3627-9942]
dc.contributor.scopus.none.fl_str_mv Martínez Toro, Gabriel Mauricio [57205705742]
dc.subject.keywords.eng.fl_str_mv Epilepsy
Deep learning
Automatic learning
Auto-encoding
topic Epilepsy
Deep learning
Automatic learning
Auto-encoding
Ciencia de los computadores
Investigación
Epilepsy
Deep learning
Automatic learning
Auto-encoding
dc.subject.lemb.none.fl_str_mv Ciencia de los computadores
Investigación
dc.subject.proposal.none.fl_str_mv Epilepsy
Deep learning
Automatic learning
Auto-encoding
description La epilepsia es uno de los trastornos neurológicos comunes caracterizado por convulsiones recurrentes. El objetivo principal de este artículo es dar a conocer el análisis de los resultados presentados en las gráficas de simulación de los datos de entrenamiento. Los datos fueron recolectados mediante el sistema 10-20. El sistema "10-20" es un método reconocido internacionalmente, este describe la ubicación de electrodos en la cabeza para una prueba de EEG. Se muestran las diferencias obtenidas entre las pruebas generadas con las anomalías de los datos de prueba a partir de los datos de entrenamiento. Finalmente, se interpretan los resultados y se discute sobre la eficacia del procedimiento.
publishDate 2019
dc.date.issued.none.fl_str_mv 2019-12-01
dc.date.accessioned.none.fl_str_mv 2020-10-27T00:19:55Z
dc.date.available.none.fl_str_mv 2020-10-27T00:19:55Z
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.local.spa.fl_str_mv Artículo
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/CJournalArticle
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.issn.none.fl_str_mv 2539-2115
1657-2831
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12749/8823
dc.identifier.instname.spa.fl_str_mv instname:Universidad Autónoma de Bucaramanga UNAB
dc.identifier.repourl.none.fl_str_mv repourl:https://repository.unab.edu.co
dc.identifier.doi.none.fl_str_mv 10.29375/25392115.3718
identifier_str_mv 2539-2115
1657-2831
instname:Universidad Autónoma de Bucaramanga UNAB
repourl:https://repository.unab.edu.co
10.29375/25392115.3718
url http://hdl.handle.net/20.500.12749/8823
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.unab.edu.co/index.php/rcc/article/view/3718/3155
Https://revistas.unab.edu.co/index.php/rcc/article/view/3718/3141
dc.relation.uri.none.fl_str_mv https://revistas.unab.edu.co/index.php/rcc/article/view/3718
dc.relation.references.none.fl_str_mv Aarabi, A., & He, B. (2012). A rule-based seizure prediction method for focal neocortical epilepsy. Clinical Neurophysiology, 123(6), 1111–1122. https://doi.org/10.1016/j.clinph.2012.01.014
Aliper, A., Plis, S., Artemov, A., Ulloa, A., Mamoshina, P., Zhavoronkov, A., & Albuquerque, N. (2016). HHS Public Access, 13(7), 2524–2530. https://doi.org/10.1021/acs.molpharmaceut.6b00248.Deep
Alshebeili, S. A., Alshawi, T., Ahmad, I., & El-samie, F. E. A. (2014). EEG seizure detection and prediction algorithms: a survey. EURASIP Journal on Advances in Signal Processing, 183(1), 1,21. https://doi.org/10.1186/1687-6180-2014-183
Beatriz Pérez Salazar, Á., & Lillia Hernández López, D. (2007). Epilepsia: aspectos básicos para la práctica psiquiátrica Epilepsia: aspectos básicos para la práctica psiquiátrica Title: Epilepsy: Basic Aspects for the Practice of Psychiatry. Rev. Colomb. Psiquiat, XXXVI XXXV(1), 175–186
Chang, C.-C., & Lin, C.-J. (2011). Libsvm. ACM Transactions on Intelligent Systems and Technology, 2(3), 1–27. https://doi.org/10.1145/1961189.1961199
Chisci, L., Mavino, A., Perferi, G., Sciandrone, M., Anile, C., Colicchio, G., & Fuggetta, F. (2010). Real-Time Epileptic Seizure Prediction Using AR Models and Support Vector Machines. IEEE Transactions on Biomedical Engineering, 57(5), 1124–1132. https://doi.org/10.1109/TBME.2009.2038990
Cruces, H. De. (2014). Tipos de crisis epilépticas y pseudocrisis Diferencial characteristics of epileptic seizure and pseudoseizures, 105–107
Dreiseitl, S., & Ohno-Machado, L. (2002). Logistic regression and artificial neural network classification models: A methodology review. Journal of Biomedical Informatics, 35(5–6), 352–359. https://doi.org/10.1016/S1532-0464(03)00034-0
Dudoit, S., Fridlyand, J., & Speed, T. P. (2002). Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association, 97(457), 77–86. https://doi.org/10.1198/016214502753479248
Escalona-Morán, M., Cosenza, M. G., Guillén, P., & Coutin, P. (2007). Synchronization and clustering in electroencephalographic signals. Chaos, Solitons and Fractals, 31(4), 820–825. https://doi.org/10.1016/j.chaos.2005.10.049
Fuertes, B., López, R., & Gil, P. (2007). Epilepsia. Tratado de Geriatria Para Residentes, 519–530.
Garg, S., & Narvey, R. (2013). Denoising & feature extraction of eeg signal using wavelet transform. International Journal of Engineering Science and Technology., 5(06), 1249–1253
Griffis, J. C., Allendorfer, J. B., & Szaflarski, J. P. (2016). Voxel-based Gaussian naïve Bayes classification of ischemic stroke lesions in individual T1-weighted MRI scans. Journal of Neuroscience Methods, 257, 97–108. https://doi.org/10.1016/j.jneumeth.2015.09.019
Kuremoto, T., Kimura, S., Kobayashi, K., & Obayashi, M. (2014). Time series forecasting using a deep belief network with restricted Boltzmann machines. Neurocomputing, 137, 47–56. https://doi.org/10.1016/j.neucom.2013.03.047
Kurzynski, M., Krysmann, M., Trajdos, P., & Wolczowski, A. (2016). Multiclassifier system with hybrid learning applied to the control of bioprosthetic hand. Computers in Biology and Medicine, 69, 286–297. https://doi.org/10.1016/j.compbiomed.2015.04.023
Langkvist, M., Karlsson, L., & Loutfi, A. (2014). A review of unsupervised feature learning and deep learning for time-series modeling. Pattern Recognition Letters, 42(1), 11–24. https://doi.org/10.1016/j.patrec.2014.01.008
López-meraz, M. L., Rocha, L., Miquel, M., Hernández, M. E., Cárdenas, R. T., Coria-ávila, G. A., ... Manzo, J. (2009). Conceptos básicos de la epilepsia. Revista Medica de La Universidad Veracruzana, 9(2), 31–37
Mirowski, P., Madhavan, D., LeCun, Y., & Kuzniecky, R. (2009). Classification of patterns of EEG synchronization for seizure prediction. Clinical Neurophysiology, 120(11), 1927–1940. https://doi.org/10.1016/j.clinph.2009.09.002
Mirowski, P. W., Lecun, Y., Madhavan, D., & Kuzniecky, R. (2008). Comparing SVM and Convolutional Networks for Epileptic Seizure
Mirowski, P. W., Madhavan, D., & Lecun, Y. (2007). Time-delay neural networks and independent component analysis for eeg-based prediction of epileptic seizures propagation. Advancement of Artificial Intelligence Conference, 1892–1893
Soleimani-B., H., Lucas, C., N. Araabi, B., & Schwabe, L. (2012). Adaptive prediction of epileptic seizures from intracranial recordings. Biomedical Signal Processing and Control, 7(5), 456–464. https://doi.org/10.1016/j.bspc.2011.11.007
Tsai, C. F. (2014). Combining cluster analysis with classifier ensembles to predict financial distress. ACM Transactions on Intelligent Systems and Technology, 16(1), 46–58. https://doi.org/10.1016/j.inffus.2011.12.001
Valencia, J. F., Melia, U. S. P., Vallverdú, M., Borrat, X., Jospin, M., Jensen, E. W., ... Caminal, P. (2016). Assessment of nociceptive responsiveness levels during sedation-analgesia by entropy analysis of EEG. Entropy, 18(3). https://doi.org/10.3390/e18030103
Wang, D., & Shang, Y. (2014). Modeling Physiological Data with Deep Belief Networks. International Journal of Education Technology, 3(5), 505–511. https://doi.org/10.7763/IJIET.2013.V3.326.Modeling
Wulsin, D., Blanco, J., Mani, R., & Litt, B. (2010). Semi-supervised anomaly detection for EEG waveforms using deep belief nets. Proceedings - 9th International Conference on Machine Learning and Applications, ICMLA 2010, (April 2016), 436–441. https://doi.org/10.1109/ICMLA.2010.71
Wulsin, D. F., Gupta, J. R., Mani, R., Blanco, J. A., & Litt, B. (2011). Modeling electroencephalography waveforms with semi-supervised deep belief nets: Fast classification and anomaly measurement. Journal of Neural Engineering, 8(3). https://doi.org/10.1088/1741-2560/8/3/036015
dc.rights.none.fl_str_mv Derechos de autor 2019 Revista Colombiana de Computación
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.creativecommons.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
rights_invalid_str_mv Derechos de autor 2019 Revista Colombiana de Computación
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv application/pdf
Text/html
dc.publisher.none.fl_str_mv Universidad Autónoma de Bucaramanga UNAB
dc.publisher.faculty.none.fl_str_mv Facultad Ingeniería
dc.publisher.program.none.fl_str_mv Pregrado Ingeniería de Sistemas
publisher.none.fl_str_mv Universidad Autónoma de Bucaramanga UNAB
dc.source.none.fl_str_mv Revista Colombiana de Computación; Vol. 20 Núm. 2 (2019): Revista Colombiana de Computación; 20-27
institution Universidad Autónoma de Bucaramanga - UNAB
bitstream.url.fl_str_mv https://repository.unab.edu.co/bitstream/20.500.12749/8823/1/2019_Aprendizaje_no_supervisado.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/8823/2/2019_Aprendizaje_no_supervisado.pdf.jpg
bitstream.checksum.fl_str_mv abf47495fd5934aa71a843277d98c351
30f6c81cc4f98f78b6025f117fea6f07
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB
repository.mail.fl_str_mv repositorio@unab.edu.co
_version_ 1814278482290540544
spelling Martínez Toro, Gabriel Mauricioc3555eb3-ccab-4132-b8d5-f0badaad090bRico Bautista, Dewar19c5d768-34d2-47cc-8059-f1ab8df09ca7Romero Riaño, Efrén76106587-6d1f-4174-87cd-258f1540ce74Romero Riaño, Paola Andreaf1439795-c79c-4524-b92c-f04ba675d184Martínez Toro, Gabriel Mauricio [0001489133]Martínez Toro, Gabriel Mauricio [NKXdCogAAAAJ]Rico Bautista, Dewar [q_ZtKjsAAAAJ&hl=es&oi=ao]Romero Riaño, Efrén [iduK4zEAAAAJ&hl=es&oi=ao]Rico Bautista, Dewar [0000-0002-1808-3874]Romero Riaño, Efrén [0000-0002-3627-9942]Martínez Toro, Gabriel Mauricio [57205705742]2020-10-27T00:19:55Z2020-10-27T00:19:55Z2019-12-012539-21151657-2831http://hdl.handle.net/20.500.12749/8823instname:Universidad Autónoma de Bucaramanga UNABrepourl:https://repository.unab.edu.co10.29375/25392115.3718La epilepsia es uno de los trastornos neurológicos comunes caracterizado por convulsiones recurrentes. El objetivo principal de este artículo es dar a conocer el análisis de los resultados presentados en las gráficas de simulación de los datos de entrenamiento. Los datos fueron recolectados mediante el sistema 10-20. El sistema "10-20" es un método reconocido internacionalmente, este describe la ubicación de electrodos en la cabeza para una prueba de EEG. Se muestran las diferencias obtenidas entre las pruebas generadas con las anomalías de los datos de prueba a partir de los datos de entrenamiento. Finalmente, se interpretan los resultados y se discute sobre la eficacia del procedimiento.Epilepsy is a neurological disorder characterized by recurrent seizures. The primary objective is to present an analysis of the results shown in the training data simulation charts. Data were collected by means of the 10-20 system. The “10–20” system is an internationally recognized method to describe and apply the location of scalp electrodes in the context of an EEG exam. It shows the differences obtained between the tests generated and the anomalies of the test data based on training data. Finally, the results are interpreted and the efficacy of the procedure is discussed.application/pdfText/htmlengUniversidad Autónoma de Bucaramanga UNABFacultad IngenieríaPregrado Ingeniería de Sistemashttps://revistas.unab.edu.co/index.php/rcc/article/view/3718/3155Https://revistas.unab.edu.co/index.php/rcc/article/view/3718/3141https://revistas.unab.edu.co/index.php/rcc/article/view/3718Aarabi, A., & He, B. (2012). A rule-based seizure prediction method for focal neocortical epilepsy. Clinical Neurophysiology, 123(6), 1111–1122. https://doi.org/10.1016/j.clinph.2012.01.014Aliper, A., Plis, S., Artemov, A., Ulloa, A., Mamoshina, P., Zhavoronkov, A., & Albuquerque, N. (2016). HHS Public Access, 13(7), 2524–2530. https://doi.org/10.1021/acs.molpharmaceut.6b00248.DeepAlshebeili, S. A., Alshawi, T., Ahmad, I., & El-samie, F. E. A. (2014). EEG seizure detection and prediction algorithms: a survey. EURASIP Journal on Advances in Signal Processing, 183(1), 1,21. https://doi.org/10.1186/1687-6180-2014-183Beatriz Pérez Salazar, Á., & Lillia Hernández López, D. (2007). Epilepsia: aspectos básicos para la práctica psiquiátrica Epilepsia: aspectos básicos para la práctica psiquiátrica Title: Epilepsy: Basic Aspects for the Practice of Psychiatry. Rev. Colomb. Psiquiat, XXXVI XXXV(1), 175–186Chang, C.-C., & Lin, C.-J. (2011). Libsvm. ACM Transactions on Intelligent Systems and Technology, 2(3), 1–27. https://doi.org/10.1145/1961189.1961199Chisci, L., Mavino, A., Perferi, G., Sciandrone, M., Anile, C., Colicchio, G., & Fuggetta, F. (2010). Real-Time Epileptic Seizure Prediction Using AR Models and Support Vector Machines. IEEE Transactions on Biomedical Engineering, 57(5), 1124–1132. https://doi.org/10.1109/TBME.2009.2038990Cruces, H. De. (2014). Tipos de crisis epilépticas y pseudocrisis Diferencial characteristics of epileptic seizure and pseudoseizures, 105–107Dreiseitl, S., & Ohno-Machado, L. (2002). Logistic regression and artificial neural network classification models: A methodology review. Journal of Biomedical Informatics, 35(5–6), 352–359. https://doi.org/10.1016/S1532-0464(03)00034-0Dudoit, S., Fridlyand, J., & Speed, T. P. (2002). Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association, 97(457), 77–86. https://doi.org/10.1198/016214502753479248Escalona-Morán, M., Cosenza, M. G., Guillén, P., & Coutin, P. (2007). Synchronization and clustering in electroencephalographic signals. Chaos, Solitons and Fractals, 31(4), 820–825. https://doi.org/10.1016/j.chaos.2005.10.049Fuertes, B., López, R., & Gil, P. (2007). Epilepsia. Tratado de Geriatria Para Residentes, 519–530.Garg, S., & Narvey, R. (2013). Denoising & feature extraction of eeg signal using wavelet transform. International Journal of Engineering Science and Technology., 5(06), 1249–1253Griffis, J. C., Allendorfer, J. B., & Szaflarski, J. P. (2016). Voxel-based Gaussian naïve Bayes classification of ischemic stroke lesions in individual T1-weighted MRI scans. Journal of Neuroscience Methods, 257, 97–108. https://doi.org/10.1016/j.jneumeth.2015.09.019Kuremoto, T., Kimura, S., Kobayashi, K., & Obayashi, M. (2014). Time series forecasting using a deep belief network with restricted Boltzmann machines. Neurocomputing, 137, 47–56. https://doi.org/10.1016/j.neucom.2013.03.047Kurzynski, M., Krysmann, M., Trajdos, P., & Wolczowski, A. (2016). Multiclassifier system with hybrid learning applied to the control of bioprosthetic hand. Computers in Biology and Medicine, 69, 286–297. https://doi.org/10.1016/j.compbiomed.2015.04.023Langkvist, M., Karlsson, L., & Loutfi, A. (2014). A review of unsupervised feature learning and deep learning for time-series modeling. Pattern Recognition Letters, 42(1), 11–24. https://doi.org/10.1016/j.patrec.2014.01.008López-meraz, M. L., Rocha, L., Miquel, M., Hernández, M. E., Cárdenas, R. T., Coria-ávila, G. A., ... Manzo, J. (2009). Conceptos básicos de la epilepsia. Revista Medica de La Universidad Veracruzana, 9(2), 31–37Mirowski, P., Madhavan, D., LeCun, Y., & Kuzniecky, R. (2009). Classification of patterns of EEG synchronization for seizure prediction. Clinical Neurophysiology, 120(11), 1927–1940. https://doi.org/10.1016/j.clinph.2009.09.002Mirowski, P. W., Lecun, Y., Madhavan, D., & Kuzniecky, R. (2008). Comparing SVM and Convolutional Networks for Epileptic SeizureMirowski, P. W., Madhavan, D., & Lecun, Y. (2007). Time-delay neural networks and independent component analysis for eeg-based prediction of epileptic seizures propagation. Advancement of Artificial Intelligence Conference, 1892–1893Soleimani-B., H., Lucas, C., N. Araabi, B., & Schwabe, L. (2012). Adaptive prediction of epileptic seizures from intracranial recordings. Biomedical Signal Processing and Control, 7(5), 456–464. https://doi.org/10.1016/j.bspc.2011.11.007Tsai, C. F. (2014). Combining cluster analysis with classifier ensembles to predict financial distress. ACM Transactions on Intelligent Systems and Technology, 16(1), 46–58. https://doi.org/10.1016/j.inffus.2011.12.001Valencia, J. F., Melia, U. S. P., Vallverdú, M., Borrat, X., Jospin, M., Jensen, E. W., ... Caminal, P. (2016). Assessment of nociceptive responsiveness levels during sedation-analgesia by entropy analysis of EEG. Entropy, 18(3). https://doi.org/10.3390/e18030103Wang, D., & Shang, Y. (2014). Modeling Physiological Data with Deep Belief Networks. International Journal of Education Technology, 3(5), 505–511. https://doi.org/10.7763/IJIET.2013.V3.326.ModelingWulsin, D., Blanco, J., Mani, R., & Litt, B. (2010). Semi-supervised anomaly detection for EEG waveforms using deep belief nets. Proceedings - 9th International Conference on Machine Learning and Applications, ICMLA 2010, (April 2016), 436–441. https://doi.org/10.1109/ICMLA.2010.71Wulsin, D. F., Gupta, J. R., Mani, R., Blanco, J. A., & Litt, B. (2011). Modeling electroencephalography waveforms with semi-supervised deep belief nets: Fast classification and anomaly measurement. Journal of Neural Engineering, 8(3). https://doi.org/10.1088/1741-2560/8/3/036015Derechos de autor 2019 Revista Colombiana de Computaciónhttp://creativecommons.org/licenses/by-nc-sa/4.0/http://creativecommons.org/licenses/by-nc-nd/2.5/co/http://creativecommons.org/licenses/by-nc-nd/2.5/co/Atribución-NoComercial-SinDerivadas 2.5 Colombiahttp://purl.org/coar/access_right/c_abf2Revista Colombiana de Computación; Vol. 20 Núm. 2 (2019): Revista Colombiana de Computación; 20-27Aprendizaje no supervisado: aplicación en epilepsiaUnsupervised learning: application to epilepsyinfo:eu-repo/semantics/articleArtículohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/redcol/resource_type/CJournalArticlehttp://purl.org/coar/version/c_970fb48d4fbd8a85EpilepsyDeep learningAutomatic learningAuto-encodingCiencia de los computadoresInvestigaciónEpilepsyDeep learningAutomatic learningAuto-encodingORIGINAL2019_Aprendizaje_no_supervisado.pdf2019_Aprendizaje_no_supervisado.pdfArticuloapplication/pdf609865https://repository.unab.edu.co/bitstream/20.500.12749/8823/1/2019_Aprendizaje_no_supervisado.pdfabf47495fd5934aa71a843277d98c351MD51open accessTHUMBNAIL2019_Aprendizaje_no_supervisado.pdf.jpg2019_Aprendizaje_no_supervisado.pdf.jpgIM Thumbnailimage/jpeg12692https://repository.unab.edu.co/bitstream/20.500.12749/8823/2/2019_Aprendizaje_no_supervisado.pdf.jpg30f6c81cc4f98f78b6025f117fea6f07MD52open access20.500.12749/8823oai:repository.unab.edu.co:20.500.12749/88232022-11-28 17:32:00.446open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.co