Estudio de factibilidad para la implementación de una tecnología de aprovechamiento energético de residuos orgánicos en la ciudad de Bucaramanga
En la ciudad de Bucaramanga y área metropolitana anualmente se producen mil toneladas de residuos sólidos urbanos-RSU, de los cuales el 56% corresponde a material orgánico, siendo la causa de investigación cuyo objetivo principal fue la evaluación de implementación de la tecnología WTEF (Waste To En...
- Autores:
-
Pla Cala, Eduardo Alberto
López Miranda, Marlhin Amada
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Autónoma de Bucaramanga - UNAB
- Repositorio:
- Repositorio UNAB
- Idioma:
- spa
- OAI Identifier:
- oai:repository.unab.edu.co:20.500.12749/7174
- Acceso en línea:
- http://hdl.handle.net/20.500.12749/7174
- Palabra clave:
- Waste to energy
Fertilizers
Masters of business administration
Organic waste
Residuos orgánicos
Aprovechamiento de residuos
Energía eléctrica
Innovaciones tecnológicas
Maestría en administración de empresas
Waste to energy
Fertilizantes
Residuos orgánicos
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id |
UNAB2_692e1fac2c122765248fc5fcf6f4f4d0 |
---|---|
oai_identifier_str |
oai:repository.unab.edu.co:20.500.12749/7174 |
network_acronym_str |
UNAB2 |
network_name_str |
Repositorio UNAB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Estudio de factibilidad para la implementación de una tecnología de aprovechamiento energético de residuos orgánicos en la ciudad de Bucaramanga |
dc.title.translated.eng.fl_str_mv |
Feasibility study for the implementation of a technology for the energy use of organic waste in the city of Bucaramanga |
title |
Estudio de factibilidad para la implementación de una tecnología de aprovechamiento energético de residuos orgánicos en la ciudad de Bucaramanga |
spellingShingle |
Estudio de factibilidad para la implementación de una tecnología de aprovechamiento energético de residuos orgánicos en la ciudad de Bucaramanga Waste to energy Fertilizers Masters of business administration Organic waste Residuos orgánicos Aprovechamiento de residuos Energía eléctrica Innovaciones tecnológicas Maestría en administración de empresas Waste to energy Fertilizantes Residuos orgánicos |
title_short |
Estudio de factibilidad para la implementación de una tecnología de aprovechamiento energético de residuos orgánicos en la ciudad de Bucaramanga |
title_full |
Estudio de factibilidad para la implementación de una tecnología de aprovechamiento energético de residuos orgánicos en la ciudad de Bucaramanga |
title_fullStr |
Estudio de factibilidad para la implementación de una tecnología de aprovechamiento energético de residuos orgánicos en la ciudad de Bucaramanga |
title_full_unstemmed |
Estudio de factibilidad para la implementación de una tecnología de aprovechamiento energético de residuos orgánicos en la ciudad de Bucaramanga |
title_sort |
Estudio de factibilidad para la implementación de una tecnología de aprovechamiento energético de residuos orgánicos en la ciudad de Bucaramanga |
dc.creator.fl_str_mv |
Pla Cala, Eduardo Alberto López Miranda, Marlhin Amada |
dc.contributor.advisor.spa.fl_str_mv |
Acevedo Arenas, César Yobany |
dc.contributor.author.spa.fl_str_mv |
Pla Cala, Eduardo Alberto López Miranda, Marlhin Amada |
dc.contributor.cvlac.*.fl_str_mv |
Acevedo Arenas, César Yobany [0000376671] |
dc.contributor.orcid.*.fl_str_mv |
Acevedo Arenas, César Yobany [0000-0002-5470-181X] |
dc.contributor.researchgate.*.fl_str_mv |
Acevedo Arenas, César Yobany [Cesar-Yobany-Acevedo-Arenas] |
dc.contributor.apolounab.none.fl_str_mv |
Acevedo Arenas, César Yobany [cesar-yobany-acevedo-arenas] |
dc.contributor.linkedin.none.fl_str_mv |
Acevedo Arenas, César Yobany [césar-yobany-acevedo-arenas-355a062b] |
dc.subject.keywords.eng.fl_str_mv |
Waste to energy Fertilizers Masters of business administration Organic waste |
topic |
Waste to energy Fertilizers Masters of business administration Organic waste Residuos orgánicos Aprovechamiento de residuos Energía eléctrica Innovaciones tecnológicas Maestría en administración de empresas Waste to energy Fertilizantes Residuos orgánicos |
dc.subject.lemb.spa.fl_str_mv |
Residuos orgánicos Aprovechamiento de residuos Energía eléctrica Innovaciones tecnológicas |
dc.subject.proposal.spa.fl_str_mv |
Maestría en administración de empresas Waste to energy Fertilizantes Residuos orgánicos |
description |
En la ciudad de Bucaramanga y área metropolitana anualmente se producen mil toneladas de residuos sólidos urbanos-RSU, de los cuales el 56% corresponde a material orgánico, siendo la causa de investigación cuyo objetivo principal fue la evaluación de implementación de la tecnología WTEF (Waste To Energy FlexibusterTM) para la generación de energía eléctrica y subproductos en la ciudad. Para tal fin se desarrolló la caracterización del mercado potencial, seguido del estudio de la cadena de valor, la identificación de la normatividad legal vigente para el desarrollo de la tecnología WTE y la evaluación financiera para la puesta en marcha. Entre los resultados obtenidos se determinó que la Central de Abastos y las plazas de mercado son las mayores fuentes de generación de residuos orgánicos de Bucaramanga, puntos en los cuales se desaprovecha el 97% de estos recursos. De igual manera, se encontró que la cadena de valor de la tecnología WTE es la generación de energía en forma térmica-eléctrica además de la producción de fertilizantes asociados a la tecnología que en el país son altamente valorados y necesarios en el desarrollo del sector agro. En cuanto a la evaluación financiera de la tecnología WTE Flexibuster ™ se incluyó incertidumbre al modelo y con base en una inversión inicial (Capex) de alrededor de $700.000.000 COP y proyección de flujos estimados a 5 años como horizonte de investigación, los resultados que arrojó la investigación fueron valores de VPN positivos, TIR por encima del 40% calculado con un costo de capital de 18% en una probabilidad de ocurrencia de un 90%. Finalmente, la conclusión del estudio demostró que los ingresos que se generan por la implementación de esta tecnología se presentan por tres conceptos que son ahorro en la disposición de residuos, venta de energía e ingresos por la venta de fertilizantes |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019 |
dc.date.accessioned.none.fl_str_mv |
2020-08-06T19:33:01Z |
dc.date.available.none.fl_str_mv |
2020-08-06T19:33:01Z |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.local.spa.fl_str_mv |
Tesis |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12749/7174 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Autónoma de Bucaramanga - UNAB |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional UNAB |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.unab.edu.co |
url |
http://hdl.handle.net/20.500.12749/7174 |
identifier_str_mv |
instname:Universidad Autónoma de Bucaramanga - UNAB reponame:Repositorio Institucional UNAB repourl:https://repository.unab.edu.co |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Administración Municipal de Piedecuesta-Santander. (2015). Plan de Gestión Integral de Residuos Sólidos. Aguilar, C. A., & Blanco, J. E. (2016). Estudio de Prefactibilidad para Generación de Energía Eléctrica Aprovechando la Biomasa Depositada en el Relleno Sanitario El Carrasco Teniendo en Cuenta las Especificaciones de la Energía Transportar. Bucaramanga: Universidad Industrial de Santander. Obtenido de http://tangara.uis.edu.co/biblioweb/tesis/2016/163413.pdf Alcaldía de Bucaramanga. (2015). Plan de Gestión Integral de Residuos Sólidos PGIRS 2016-2027. Alcaldía Municipal de Floridablanca. (2014). Actualización del Plan de Gestión Integral de Residuos Sólidos del Municipio de Floridablanca. Alcaldía Municipal de Piedecuesta. (2015). Plan de Gestión Integral de Residuos Sólidos. Álvarez, C. A., & Peralta, J. P. (2016). Vigilancia tecnológica de digestión anaerobia en Colombia mediante el uso de software bibliométrico especializado. Bucaramanga: Universidad Industrial de Santander. Aristizábal, B. H., Vanegas, E., Mariscal, J. P., & M. A. (2015). Digestión anaerobia de residuos de poda como alternativa para disminuir emisiones de gases de efecto invernadero en rellenos sanitarios. Revista Energética, 28-36. Obtenido de http://eprints.whiterose.ac.uk/95557/1/51305-283593-1-PB.pdf Astrup, T., Tonini, F., Turconi, D., & Boldrin, R. (2014). Life cycle assessment of thermal waste-to-energy technologies: review and recommendations. Waste management, 104-115. Bitar, S. M., & Chamas, F. (2017). Estudio de factibilidad para la implementación de sistemas fotovoltaicos como fuente de energía en el sector industrial de Colombia. Bogotá: Colegio de Estudios Superiores de Administración –CESA. Bolívar, P., & Hernández, S. (2013). Análisis de viabilidad de la utilización de biomasa para la generación de energía eléctrica en la sede de la Universidad de La Salle. Bogotá: Universidad de La Salle. Bogotá: Universidad de La Salle. Obtenido de http://repository.lasalle.edu.co/ Cadavid, L. S., & Bolaños, I. V. (2015). Aprovechamiento de residuos orgánicos para la producción de energía renovable en una ciudad colombiana. Revista Energética, 23-28. Obtenido de https://revistas.unal.edu.co/index.php/energetica/article/view/46142/n46_a3_46142 Castro, W. (2014). Estudio de factibilidad para la creación de una planta procesadora de residuos orgánicos (biofabrica de abono) en el municipio de San Vicente de Chucuri – Santander. Bucaramanga: Universidad Industrial de Santander. Centro Abasto. (2016). Informe de gestión . Bucaramanga. Cerdá, E. (2018). Energía obtenida a partir de biomasa*. Obtenido de http://www.revistasice.com/CachePDF/CICE_83_117-140__78E2E154C2BB213409D09C083013930C.pdf Chamy, R., & Vivanco, E. (2008). Identificación y clasificación de los distintos tipos de biomasa disponibles en Chile para la generación de gas. Santiago de Chile: CNE/GTZ. Congreso de la República. (1974). Decreto 2811 de 1974. Obtenido de http://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=1551 Congreso de la República. (1993). Ley 99 de 1993. Obtenido de http://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=297 Congreso de la República. (2018). Constitución Política de la República de Colombia . Obtenido de http://www.oas.org/dsd/EnvironmentLaw/Serviciosambientales/Colombia/(Microsoft%20Word%20-%20Constituci.pdf CONPES. (2018). Políca de de Crecimiento Verde. Bogotá: Consejo Nacional de Política Económica y Social. DANE. (2018). Cuenta Ambiental y Económica de Flujo de Materiales – Residuos Sólidos 2012-2016 Provisional. Departamento Administrativo Nacional de Estadística. Díaz, M. C., Espitia, S. E., & Molina, F. (2002). Digestión anaerobia una aproximación a la tecnología. Bogotá: Universidad Nacional de Colombia. Obtenido de http://www.bdigital.unal.edu.co/43178/2/9587011961_Parte%201.pdf DNP. (2016). En Colombia más de la tercera parte de la comida termina en la basura. Departamento Nacional de Planeación. DNP. (2016). Pérdidas y desperdicio de alimentos en Colombia-Estudio de la dirección de seguimiento y evaluación de políticas públicas. Recuperado el 13 de Abril de 2019, de https://mrv.dnp.gov.co/Documentos%20de%20Interes/Perdida_y_Desperdicio_de_Alimentos_en_colombia.pdf DNP. (2017). Disposición Final de Residuos Sólidos. Informe Nacional-2016. Bogotá: Departamento Nacional de Planeación. Obtenido de https://www.superservicios.gov.co/sites/default/archivos/SSPD%20Publicaciones/Publicaciones/2018/Oct/informenacional2016disposicionfinalderesiduossolidos1.pdf Enersinc. (2018c). Green Growth Policy Proposals. Escalante, H., & Orduz, J. (2010). Atlas del potencial energético de la biomasa residual en Colombia. Ediciones UIS, 131-135. ESSA. (2019). Tarifas ESSA 2019-04. Recuperado el 13 de Abril de 2019, de http://www.essa.com.co/site/Portals/14/Docs/Tarifas/TARIFAS_2019/Tarifa_ESSA_201904.pdf FAO. (2014). Pérdidas y desperdicios de alimentos en América Latina y el Caribe. Recuperado el 13 de Abril de 2019, de http://www.fao.org/3/a-i3942s.pdf FAO. (2015). Los fertilizantes y su uso. Recuperado el 13 de Abril de 2019, de http://www.fao.org/3/a-x4781s.pdf Franco, L., Meza, M., & Almeira, J. (2018). Situación de la disposición final de residuos sólidos en el Área Metropolitana de Bucaramanga: caso relleno sanitario El Carrasco (revisión). AVANCES: Investigación en Ingeniería, 15(1), 180-193. Galán, X. (2016). Potencial energético de la biomasa residual agrícola en Colombia. Bogotá: Universidad America. González, J., & Rondón, J. (2012). Caracterización fisicoquímica de biomasa agrícola representativa en Santander: papa, yuca, mora, papaya, cebolla junca. Bucaramanga: Universidad Industrial de Santander. González, J., & Zamorano, J. (2017). Aplicación de tecnologías WTE en el tratamiento de los residuos municipales en España: una herramienta imprescindible en la implementaciónd e la economía circular. Santander, España: VII Simposio Iberoamericano en Ingeniería de Residuos. Obtenido de https://www.researchgate.net/publication/319748386_APLICACION_DE_TECNOLOGIAS_WtE_EN_EL_TRATAMIENTO_DE_LOS_RESIDUOS_MUNICIPALES_EN_ESPANA_UNA_HERRAMIENTA_IMPRESCINDIBLE_EN_LA_IMPLEMENTACION_DE_LA_ECONOMIA_CIRCULAR Grass, B. (2013). Evaluación y diseño para la implementación de una planta de biogás a partir de residuo orgánicos agroindustriales en la región metropolitana. Santiago de Chile: Universidad de Chile. Obtenido de http://repositorio.uchile.cl/bitstream/ Guerrero, R., & Shephard, L. (2017). Waste-to-energy. In Lecture Notes in Energy . Springer Verlag., 301-322. Obtenido de https://doi.org/10.1007/978-3-319-52311-8_12 Haladova, D., & Pecen, J. (2011). Selection of optimal anaerobic digestion technology for family sized farm use – case study of southwest Madagascar. Agricultura tropica et subtropica, 127-133. ICA. (2017). Comercialización de fertilizantes y acondicionadres de suelos año 2016. Recuperado el 13 de Abril de 2019, de https://www.ica.gov.co/areas/agricola/servicios/fertilizantes-y-bio-insumos-agricolas/cartilla-fertilizantes-2016_24-01-18.aspx Idae. (2007). Biomasa Gasificación. Madrid: Instituto de para la Diversificación y Ahorro de la Energía. Obtenido de https://www.idae.es/sites/default/files/publications/online/31/biomasa%20gasificacion_opf_files/pdfs/biomasa-gasificacion.pdf ISUSA. (2016). Ficha técnica N30 Fertilizante líquido nitrogenado. Recuperado el 13 de Abril de 2019, de http://isusa.com.uy/files/2016-01/ficha-t-cnica-n-30.pdf Jahirul, M. I., Rasul, M. G., Chowdhury, A. A., & 1, N. A. (2012). Biofuels Production through Biomass Pyrolysis —A Technological Review. Energies, 4952-5001. Obtenido de file:///C:/Users/kadil/Downloads/energies-05-04952.pdf López, G. (2003). Biodigestión anaerobia de residuos sólidos urbanos. Revista Udistrital, 31-43. Lupiáñez, L., Priede, T., & López, C. (2014). El emprendimiento como motor del crecimiento económico. Obtenido de http://www.revistasice.com/cachepdf/bice_3048_55__24385f894c3ef154d0382ebb24b0889d.pdf Medina, J., & Pérez, G. (2013). Propuesta para el uso exclusivo de la tasa interna de retorno modificada en la toma de decisión de proyectos industriales de inversión. Nexo Revista Científica, 26(2), 83-87. Mesa, J. (2013). Evaluación financiera de proyectos. Bogotá: Editorial Buena Semilla. Motta, L., & Pinzón, A. (2011). Evaluación de la viabilidad financiera del aprovechamiento de los residuos orgánicos producidos en Centroabastos S.A. para la generación de energía y compostaje para la empresa INCOM LTDA. Bucarmanga: Universidad de la Sabana. NEIA. (2015). Waste Management Equipment. Recuperado el 13 de Abril de 2019, de http://neia.org/wp-content/uploads/2015/10/03-Candice-Way-CWAY_Mobile-AD_NEIA-2015_v2.pdf Seab Energy. (2016). Muckbuster ® & Flexibuster™. Obtenido de Ecoservice UK: http://www.ecoserviceuk.co.uk/PDF/muckbuster_pesentation.pdf Seab Energy. (2018). FAQ'S. Recuperado el 13 de Abril de 2019, de https://seabenergy.com/products/mb400-faqs/ Siles, F. A. (2012). Generación de Energía Eléctrica a partir de producción de Biogás. México D.F: Instituto Politécnico Nacional. Obtenido de https://tesis.ipn.mx/bitstream/handle/123456789/10549/136.pdf?sequence=1&isAllowed=y Solarimpulse. (2018). Flexibuster™. Recuperado el 5 de Abril de 2019, de https://solarimpulse.com/efficient-solutions/flexibuster Stringfellow, T. (2014). An Independent Engineering Evaluation of Waste-to-Energy Technologies. Renewable Energy World. Suarez, A. (19 de Agosto de 2013). Colombia, campeón mundial en precio de fertilizantes. Obtenido de El Espectador: https://www.elespectador.com/noticias/nacional/colombia-campeon-mundial-precio-de-fertilizantes-articulo-440962 Su-Heo, H. (2010). Influence of operations variables on fast pyrolisis of miscanthus sinensivar. Sinensisvar. Bioresource Tecnology, 3672-3677. Tan, S. T., Ho, W. S., & Hashim, H. (2015). Energy, economic and environmental (3E) analysis of waste-to-energy (WTE) strategies for municipal solid waste (MSW) management in Malaysia. S.T. Tan et al. / Energy Conversion and Management 102, 111–120. Todoproductosfinancieros.com. (2018). TIR y VAN: Cálculo y concepto. Obtenido de http://todoproductosfinancieros.com/tir-calculo-y-concepto/ UPME. (2011). Atlas de potencial energético de la Biomasa Residual en Colombia. Bucaramanga: Universidad Industrial de Santander. Obtenido de https://biblioteca.minminas.gov.co/pdf/ATLAS%20POTENCIAL%20ENERGETICO%20BIOMASA%20RESIDUAL%20COL.%20UPME.pdf UPME. (2015). Integración de las energías renovables no convenciionales en Colombia. Bogotá: Unidad de Planeación Minero Energético. Valencia, W. (2011). Indicador de rentabilidad de proyectos: el valor actual neto (van) o el valor económico agregado (eva). Industrial Data-, 14(1), 15-18. Vinodh, S., & Joy, D. (2012). Structural equation modelling of lean manufacturing practices. International Journal of Production Research, 50(6), 1598-1607. WRAP. (2013). University of Southampton Science Park- Flexibuster Anaerobic Digester supplied by SEaB Energy. Recuperado el 13 de Abril de 2019, de http://www.wrap.org.uk/sites/files/wrap/University%20of%20Southampton.pptx |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
dc.rights.creativecommons.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 Atribución-NoComercial-SinDerivadas 2.5 Colombia |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.spatial.spa.fl_str_mv |
Bucaramanga (Santander, Colombia) |
dc.coverage.temporal.spa.fl_str_mv |
2019 |
dc.coverage.campus.spa.fl_str_mv |
UNAB Campus Bucaramanga |
dc.publisher.grantor.spa.fl_str_mv |
Universidad Autónoma de Bucaramanga UNAB |
dc.publisher.faculty.spa.fl_str_mv |
Facultad Economía y Negocios |
dc.publisher.program.spa.fl_str_mv |
Maestría en Administración de Empresas |
institution |
Universidad Autónoma de Bucaramanga - UNAB |
bitstream.url.fl_str_mv |
https://repository.unab.edu.co/bitstream/20.500.12749/7174/1/2019_Tesis_Eduardo_Alberto_Pla_Cala.pdf https://repository.unab.edu.co/bitstream/20.500.12749/7174/2/2019_Articulos_Eduardo_Alberto_Pla_Cala.pdf https://repository.unab.edu.co/bitstream/20.500.12749/7174/3/2019_Presentacion_Eduardo_Alberto_Pla_Cala.pdf https://repository.unab.edu.co/bitstream/20.500.12749/7174/8/2019_Licencia_Eduardo-Alberto_Pla.pdf https://repository.unab.edu.co/bitstream/20.500.12749/7174/4/license.txt https://repository.unab.edu.co/bitstream/20.500.12749/7174/5/2019_Tesis_Eduardo_Alberto_Pla_Cala.pdf.jpg https://repository.unab.edu.co/bitstream/20.500.12749/7174/6/2019_Articulos_Eduardo_Alberto_Pla_Cala.pdf.jpg https://repository.unab.edu.co/bitstream/20.500.12749/7174/7/2019_Presentacion_Eduardo_Alberto_Pla_Cala.pdf.jpg https://repository.unab.edu.co/bitstream/20.500.12749/7174/9/2019_Licencia_Eduardo-Alberto_Pla.pdf.jpg |
bitstream.checksum.fl_str_mv |
86e33e28dc699f6cf57b283a22108c99 683c1ac585e17d5941b3f9ac2eef2e06 195c9f802a4022623e856791bbeb1402 41c412fbe513c7dda8182221750da240 8a4605be74aa9ea9d79846c1fba20a33 86e1a8239e3d1b179c5e2b7508278a4a f5e90e809059e4c07f8e16aea69a741b 93f582f59ac4f1e45347935401e8836c 45964aeaaef805c1ea4ead250790ab19 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB |
repository.mail.fl_str_mv |
repositorio@unab.edu.co |
_version_ |
1814277872024551424 |
spelling |
Acevedo Arenas, César Yobanyd5668344-5671-4ba9-92fc-441b2ddecad6Pla Cala, Eduardo Alberto67aab084-5753-4739-83c1-fa22692ee161López Miranda, Marlhin Amada70d08c34-2419-476a-a0cf-42cc4443d802Acevedo Arenas, César Yobany [0000376671]Acevedo Arenas, César Yobany [0000-0002-5470-181X]Acevedo Arenas, César Yobany [Cesar-Yobany-Acevedo-Arenas]Acevedo Arenas, César Yobany [cesar-yobany-acevedo-arenas]Acevedo Arenas, César Yobany [césar-yobany-acevedo-arenas-355a062b]Bucaramanga (Santander, Colombia)2019UNAB Campus Bucaramanga2020-08-06T19:33:01Z2020-08-06T19:33:01Z2019http://hdl.handle.net/20.500.12749/7174instname:Universidad Autónoma de Bucaramanga - UNABreponame:Repositorio Institucional UNABrepourl:https://repository.unab.edu.coEn la ciudad de Bucaramanga y área metropolitana anualmente se producen mil toneladas de residuos sólidos urbanos-RSU, de los cuales el 56% corresponde a material orgánico, siendo la causa de investigación cuyo objetivo principal fue la evaluación de implementación de la tecnología WTEF (Waste To Energy FlexibusterTM) para la generación de energía eléctrica y subproductos en la ciudad. Para tal fin se desarrolló la caracterización del mercado potencial, seguido del estudio de la cadena de valor, la identificación de la normatividad legal vigente para el desarrollo de la tecnología WTE y la evaluación financiera para la puesta en marcha. Entre los resultados obtenidos se determinó que la Central de Abastos y las plazas de mercado son las mayores fuentes de generación de residuos orgánicos de Bucaramanga, puntos en los cuales se desaprovecha el 97% de estos recursos. De igual manera, se encontró que la cadena de valor de la tecnología WTE es la generación de energía en forma térmica-eléctrica además de la producción de fertilizantes asociados a la tecnología que en el país son altamente valorados y necesarios en el desarrollo del sector agro. En cuanto a la evaluación financiera de la tecnología WTE Flexibuster ™ se incluyó incertidumbre al modelo y con base en una inversión inicial (Capex) de alrededor de $700.000.000 COP y proyección de flujos estimados a 5 años como horizonte de investigación, los resultados que arrojó la investigación fueron valores de VPN positivos, TIR por encima del 40% calculado con un costo de capital de 18% en una probabilidad de ocurrencia de un 90%. Finalmente, la conclusión del estudio demostró que los ingresos que se generan por la implementación de esta tecnología se presentan por tres conceptos que son ahorro en la disposición de residuos, venta de energía e ingresos por la venta de fertilizantesIntroducción 12 Capítulo 1. Problema 15 1.1 Antecedentes 15 1.2 Pregunta de Investigación 18 1.3 Objetivos 18 1.4 Objetivo General 18 1.4.1 Objetivos Específicos 19 1.5 Manejo de Hipótesis 19 1.6 Justificación 20 1.6.1 Limitaciones 23 1.6.2 Delimitaciones 24 Capítulo 2. Marco Referencial 26 2.1 Marco Teórico 27 2.1.1 Aprovechamiento de Biomasa con Fines Energéticos en Colombia 27 2.1.2 Tecnología Waste To Energy -WTE 35 2.2 Estado del Arte 39 2.3 Marco Legal 42 Capítulo 3. Marco Metodológico 45 3.1 Tipo de Investigación 46 3.2 Diseño de la Investigación 46 3.3 Técnicas e Instrumentos de Recolección de Datos 49 3.4 Técnica de Análisis de los Datos 49 3.5 Operacionalización de Variables 49 Capítulo 4. Estudio factibilidad implementación tecnología WTE™ 51 4.1 Caracterización del mercado 52 4.1.1 Descripción del mercado colombiano 52 4.1.2 Fuentes primarias de recolección de residuos 54 4.1.3 Fuentes secundarias de producción de residuos 56 4.1.4 Mercado potencial 57 4.2 Disposición y uso de residuos orgánicos mediante la tecnología WTE Flexibuster™ 58 4.2.1 Poder Calorífico Equivalente de la Biomasa 60 4.2.2 Cadena de valor 60 4.2.3 Costos de implementación 65 4.3 Estructura legal y administrativa 75 4.3.1 Estructura legal 75 4.3.2 Estructura administrativa 77 4.4 Análisis financiero para la puesta en marcha 81 4.4.1 Tarifa de disposición de residuos generados al mes 81 4.4.2 Valor del servicio energía eléctrica 82 4.4.3 Ingresos operacionales por producción de fertilizantes 84 4.4.4 Estados Financieros de la puesta en marcha de la tecnología WTE Flexibuster™ 88 4.4.5 Modelo probabilístico. Valor presente Neto y Tasa interna de retorno 95 Capítulo 5. Conclusiones 105 Capítulo 6. Recomendaciones 109 Capítulo 7. Referencias 110 Capítulo 8. Glosario 115MaestríaIn Bucaramanga city and the metropolitan area, one thousand tons of Residual Solid Urban-RSU are produced per year, within 56% are part of organic waste, being the cause of this research, whose main objective was the evaluation of a WTEF technology implementation (Waste To Energy FlexibusterTM) to generate electrical and heat energy and also as secondary sub-products as fertilizer. For this purpose, the characterization of the potential market was developed, followed by the study of the chain productivity, the identification of the current legal regulations for the development of WTE; and the financial evaluation as well as other aspects required for the implementation of the business model. Among the results obtained, it was resolved that Central de Abastos and the agriculture market places are the main sources of generation of organic waste in Bucaramanga and all around, points in which 97% of these resources are currently disposed in landfills. Similarly, it was found the value chain of WTE technology is the generation of energy in thermal-electric way in addition to the production of fertilizers associated with technology which are highly valuable in Agro sector into country. Regarding to financial evaluation of the WTE Flexibuster ™ technology, the business model showed requires an investment around COP $ 700,000,000 in a forecast cash flow within 5 years as limit, the results showed in this research were VPN positive values, IRR above 40% calculated with WACC 18% within a probability around 90%. Finally, the conclusion of the study showed income generated by the implementation of this technology are presented by three concepts such as savings in disposal wastes, energy sales and incoming from fertilizer salesModalidad Presencialapplication/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial-SinDerivadas 2.5 ColombiaEstudio de factibilidad para la implementación de una tecnología de aprovechamiento energético de residuos orgánicos en la ciudad de BucaramangaFeasibility study for the implementation of a technology for the energy use of organic waste in the city of BucaramangaMagíster en Administración de EmpresasUniversidad Autónoma de Bucaramanga UNABFacultad Economía y NegociosMaestría en Administración de Empresasinfo:eu-repo/semantics/masterThesisTesishttp://purl.org/redcol/resource_type/TMWaste to energyFertilizersMasters of business administrationOrganic wasteResiduos orgánicosAprovechamiento de residuosEnergía eléctricaInnovaciones tecnológicasMaestría en administración de empresasWaste to energyFertilizantesResiduos orgánicosAdministración Municipal de Piedecuesta-Santander. (2015). Plan de Gestión Integral de Residuos Sólidos.Aguilar, C. A., & Blanco, J. E. (2016). Estudio de Prefactibilidad para Generación de Energía Eléctrica Aprovechando la Biomasa Depositada en el Relleno Sanitario El Carrasco Teniendo en Cuenta las Especificaciones de la Energía Transportar. Bucaramanga: Universidad Industrial de Santander. Obtenido de http://tangara.uis.edu.co/biblioweb/tesis/2016/163413.pdfAlcaldía de Bucaramanga. (2015). Plan de Gestión Integral de Residuos Sólidos PGIRS 2016-2027.Alcaldía Municipal de Floridablanca. (2014). Actualización del Plan de Gestión Integral de Residuos Sólidos del Municipio de Floridablanca.Alcaldía Municipal de Piedecuesta. (2015). Plan de Gestión Integral de Residuos Sólidos.Álvarez, C. A., & Peralta, J. P. (2016). Vigilancia tecnológica de digestión anaerobia en Colombia mediante el uso de software bibliométrico especializado. Bucaramanga: Universidad Industrial de Santander.Aristizábal, B. H., Vanegas, E., Mariscal, J. P., & M. A. (2015). Digestión anaerobia de residuos de poda como alternativa para disminuir emisiones de gases de efecto invernadero en rellenos sanitarios. Revista Energética, 28-36. Obtenido de http://eprints.whiterose.ac.uk/95557/1/51305-283593-1-PB.pdfAstrup, T., Tonini, F., Turconi, D., & Boldrin, R. (2014). Life cycle assessment of thermal waste-to-energy technologies: review and recommendations. Waste management, 104-115.Bitar, S. M., & Chamas, F. (2017). Estudio de factibilidad para la implementación de sistemas fotovoltaicos como fuente de energía en el sector industrial de Colombia. Bogotá: Colegio de Estudios Superiores de Administración –CESA.Bolívar, P., & Hernández, S. (2013). Análisis de viabilidad de la utilización de biomasa para la generación de energía eléctrica en la sede de la Universidad de La Salle. Bogotá: Universidad de La Salle. Bogotá: Universidad de La Salle. Obtenido de http://repository.lasalle.edu.co/Cadavid, L. S., & Bolaños, I. V. (2015). Aprovechamiento de residuos orgánicos para la producción de energía renovable en una ciudad colombiana. Revista Energética, 23-28. Obtenido de https://revistas.unal.edu.co/index.php/energetica/article/view/46142/n46_a3_46142Castro, W. (2014). Estudio de factibilidad para la creación de una planta procesadora de residuos orgánicos (biofabrica de abono) en el municipio de San Vicente de Chucuri – Santander. Bucaramanga: Universidad Industrial de Santander.Centro Abasto. (2016). Informe de gestión . Bucaramanga.Cerdá, E. (2018). Energía obtenida a partir de biomasa*. Obtenido de http://www.revistasice.com/CachePDF/CICE_83_117-140__78E2E154C2BB213409D09C083013930C.pdfChamy, R., & Vivanco, E. (2008). Identificación y clasificación de los distintos tipos de biomasa disponibles en Chile para la generación de gas. Santiago de Chile: CNE/GTZ.Congreso de la República. (1974). Decreto 2811 de 1974. Obtenido de http://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=1551Congreso de la República. (1993). Ley 99 de 1993. Obtenido de http://www.alcaldiabogota.gov.co/sisjur/normas/Norma1.jsp?i=297Congreso de la República. (2018). Constitución Política de la República de Colombia . Obtenido de http://www.oas.org/dsd/EnvironmentLaw/Serviciosambientales/Colombia/(Microsoft%20Word%20-%20Constituci.pdfCONPES. (2018). Políca de de Crecimiento Verde. Bogotá: Consejo Nacional de Política Económica y Social.DANE. (2018). Cuenta Ambiental y Económica de Flujo de Materiales – Residuos Sólidos 2012-2016 Provisional. Departamento Administrativo Nacional de Estadística.Díaz, M. C., Espitia, S. E., & Molina, F. (2002). Digestión anaerobia una aproximación a la tecnología. Bogotá: Universidad Nacional de Colombia. Obtenido de http://www.bdigital.unal.edu.co/43178/2/9587011961_Parte%201.pdfDNP. (2016). En Colombia más de la tercera parte de la comida termina en la basura. Departamento Nacional de Planeación.DNP. (2016). Pérdidas y desperdicio de alimentos en Colombia-Estudio de la dirección de seguimiento y evaluación de políticas públicas. Recuperado el 13 de Abril de 2019, de https://mrv.dnp.gov.co/Documentos%20de%20Interes/Perdida_y_Desperdicio_de_Alimentos_en_colombia.pdfDNP. (2017). Disposición Final de Residuos Sólidos. Informe Nacional-2016. Bogotá: Departamento Nacional de Planeación. Obtenido de https://www.superservicios.gov.co/sites/default/archivos/SSPD%20Publicaciones/Publicaciones/2018/Oct/informenacional2016disposicionfinalderesiduossolidos1.pdfEnersinc. (2018c). Green Growth Policy Proposals.Escalante, H., & Orduz, J. (2010). Atlas del potencial energético de la biomasa residual en Colombia. Ediciones UIS, 131-135.ESSA. (2019). Tarifas ESSA 2019-04. Recuperado el 13 de Abril de 2019, de http://www.essa.com.co/site/Portals/14/Docs/Tarifas/TARIFAS_2019/Tarifa_ESSA_201904.pdfFAO. (2014). Pérdidas y desperdicios de alimentos en América Latina y el Caribe. Recuperado el 13 de Abril de 2019, de http://www.fao.org/3/a-i3942s.pdfFAO. (2015). Los fertilizantes y su uso. Recuperado el 13 de Abril de 2019, de http://www.fao.org/3/a-x4781s.pdfFranco, L., Meza, M., & Almeira, J. (2018). Situación de la disposición final de residuos sólidos en el Área Metropolitana de Bucaramanga: caso relleno sanitario El Carrasco (revisión). AVANCES: Investigación en Ingeniería, 15(1), 180-193.Galán, X. (2016). Potencial energético de la biomasa residual agrícola en Colombia. Bogotá: Universidad America.González, J., & Rondón, J. (2012). Caracterización fisicoquímica de biomasa agrícola representativa en Santander: papa, yuca, mora, papaya, cebolla junca. Bucaramanga: Universidad Industrial de Santander.González, J., & Zamorano, J. (2017). Aplicación de tecnologías WTE en el tratamiento de los residuos municipales en España: una herramienta imprescindible en la implementaciónd e la economía circular. Santander, España: VII Simposio Iberoamericano en Ingeniería de Residuos. Obtenido de https://www.researchgate.net/publication/319748386_APLICACION_DE_TECNOLOGIAS_WtE_EN_EL_TRATAMIENTO_DE_LOS_RESIDUOS_MUNICIPALES_EN_ESPANA_UNA_HERRAMIENTA_IMPRESCINDIBLE_EN_LA_IMPLEMENTACION_DE_LA_ECONOMIA_CIRCULARGrass, B. (2013). Evaluación y diseño para la implementación de una planta de biogás a partir de residuo orgánicos agroindustriales en la región metropolitana. Santiago de Chile: Universidad de Chile. Obtenido de http://repositorio.uchile.cl/bitstream/Guerrero, R., & Shephard, L. (2017). Waste-to-energy. In Lecture Notes in Energy . Springer Verlag., 301-322. Obtenido de https://doi.org/10.1007/978-3-319-52311-8_12Haladova, D., & Pecen, J. (2011). Selection of optimal anaerobic digestion technology for family sized farm use – case study of southwest Madagascar. Agricultura tropica et subtropica, 127-133.ICA. (2017). Comercialización de fertilizantes y acondicionadres de suelos año 2016. Recuperado el 13 de Abril de 2019, de https://www.ica.gov.co/areas/agricola/servicios/fertilizantes-y-bio-insumos-agricolas/cartilla-fertilizantes-2016_24-01-18.aspxIdae. (2007). Biomasa Gasificación. Madrid: Instituto de para la Diversificación y Ahorro de la Energía. Obtenido de https://www.idae.es/sites/default/files/publications/online/31/biomasa%20gasificacion_opf_files/pdfs/biomasa-gasificacion.pdfISUSA. (2016). Ficha técnica N30 Fertilizante líquido nitrogenado. Recuperado el 13 de Abril de 2019, de http://isusa.com.uy/files/2016-01/ficha-t-cnica-n-30.pdfJahirul, M. I., Rasul, M. G., Chowdhury, A. A., & 1, N. A. (2012). Biofuels Production through Biomass Pyrolysis —A Technological Review. Energies, 4952-5001. Obtenido de file:///C:/Users/kadil/Downloads/energies-05-04952.pdfLópez, G. (2003). Biodigestión anaerobia de residuos sólidos urbanos. Revista Udistrital, 31-43.Lupiáñez, L., Priede, T., & López, C. (2014). El emprendimiento como motor del crecimiento económico. Obtenido de http://www.revistasice.com/cachepdf/bice_3048_55__24385f894c3ef154d0382ebb24b0889d.pdfMedina, J., & Pérez, G. (2013). Propuesta para el uso exclusivo de la tasa interna de retorno modificada en la toma de decisión de proyectos industriales de inversión. Nexo Revista Científica, 26(2), 83-87.Mesa, J. (2013). Evaluación financiera de proyectos. Bogotá: Editorial Buena Semilla.Motta, L., & Pinzón, A. (2011). Evaluación de la viabilidad financiera del aprovechamiento de los residuos orgánicos producidos en Centroabastos S.A. para la generación de energía y compostaje para la empresa INCOM LTDA. Bucarmanga: Universidad de la Sabana.NEIA. (2015). Waste Management Equipment. Recuperado el 13 de Abril de 2019, de http://neia.org/wp-content/uploads/2015/10/03-Candice-Way-CWAY_Mobile-AD_NEIA-2015_v2.pdfSeab Energy. (2016). Muckbuster ® & Flexibuster™. Obtenido de Ecoservice UK: http://www.ecoserviceuk.co.uk/PDF/muckbuster_pesentation.pdfSeab Energy. (2018). FAQ'S. Recuperado el 13 de Abril de 2019, de https://seabenergy.com/products/mb400-faqs/Siles, F. A. (2012). Generación de Energía Eléctrica a partir de producción de Biogás. México D.F: Instituto Politécnico Nacional. Obtenido de https://tesis.ipn.mx/bitstream/handle/123456789/10549/136.pdf?sequence=1&isAllowed=ySolarimpulse. (2018). Flexibuster™. Recuperado el 5 de Abril de 2019, de https://solarimpulse.com/efficient-solutions/flexibusterStringfellow, T. (2014). An Independent Engineering Evaluation of Waste-to-Energy Technologies. Renewable Energy World.Suarez, A. (19 de Agosto de 2013). Colombia, campeón mundial en precio de fertilizantes. Obtenido de El Espectador: https://www.elespectador.com/noticias/nacional/colombia-campeon-mundial-precio-de-fertilizantes-articulo-440962Su-Heo, H. (2010). Influence of operations variables on fast pyrolisis of miscanthus sinensivar. Sinensisvar. Bioresource Tecnology, 3672-3677.Tan, S. T., Ho, W. S., & Hashim, H. (2015). Energy, economic and environmental (3E) analysis of waste-to-energy (WTE) strategies for municipal solid waste (MSW) management in Malaysia. S.T. Tan et al. / Energy Conversion and Management 102, 111–120.Todoproductosfinancieros.com. (2018). TIR y VAN: Cálculo y concepto. Obtenido de http://todoproductosfinancieros.com/tir-calculo-y-concepto/UPME. (2011). Atlas de potencial energético de la Biomasa Residual en Colombia. Bucaramanga: Universidad Industrial de Santander. Obtenido de https://biblioteca.minminas.gov.co/pdf/ATLAS%20POTENCIAL%20ENERGETICO%20BIOMASA%20RESIDUAL%20COL.%20UPME.pdfUPME. (2015). Integración de las energías renovables no convenciionales en Colombia. Bogotá: Unidad de Planeación Minero Energético.Valencia, W. (2011). Indicador de rentabilidad de proyectos: el valor actual neto (van) o el valor económico agregado (eva). Industrial Data-, 14(1), 15-18.Vinodh, S., & Joy, D. (2012). Structural equation modelling of lean manufacturing practices. International Journal of Production Research, 50(6), 1598-1607.WRAP. (2013). University of Southampton Science Park- Flexibuster Anaerobic Digester supplied by SEaB Energy. Recuperado el 13 de Abril de 2019, de http://www.wrap.org.uk/sites/files/wrap/University%20of%20Southampton.pptxORIGINAL2019_Tesis_Eduardo_Alberto_Pla_Cala.pdf2019_Tesis_Eduardo_Alberto_Pla_Cala.pdfTesisapplication/pdf2738493https://repository.unab.edu.co/bitstream/20.500.12749/7174/1/2019_Tesis_Eduardo_Alberto_Pla_Cala.pdf86e33e28dc699f6cf57b283a22108c99MD51open access2019_Articulos_Eduardo_Alberto_Pla_Cala.pdf2019_Articulos_Eduardo_Alberto_Pla_Cala.pdfArticuloapplication/pdf699020https://repository.unab.edu.co/bitstream/20.500.12749/7174/2/2019_Articulos_Eduardo_Alberto_Pla_Cala.pdf683c1ac585e17d5941b3f9ac2eef2e06MD52open access2019_Presentacion_Eduardo_Alberto_Pla_Cala.pdf2019_Presentacion_Eduardo_Alberto_Pla_Cala.pdfPresentaciónapplication/pdf2170046https://repository.unab.edu.co/bitstream/20.500.12749/7174/3/2019_Presentacion_Eduardo_Alberto_Pla_Cala.pdf195c9f802a4022623e856791bbeb1402MD53open access2019_Licencia_Eduardo-Alberto_Pla.pdf2019_Licencia_Eduardo-Alberto_Pla.pdfLicenciaapplication/pdf643557https://repository.unab.edu.co/bitstream/20.500.12749/7174/8/2019_Licencia_Eduardo-Alberto_Pla.pdf41c412fbe513c7dda8182221750da240MD58metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.unab.edu.co/bitstream/20.500.12749/7174/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD54open accessTHUMBNAIL2019_Tesis_Eduardo_Alberto_Pla_Cala.pdf.jpg2019_Tesis_Eduardo_Alberto_Pla_Cala.pdf.jpgIM Thumbnailimage/jpeg5753https://repository.unab.edu.co/bitstream/20.500.12749/7174/5/2019_Tesis_Eduardo_Alberto_Pla_Cala.pdf.jpg86e1a8239e3d1b179c5e2b7508278a4aMD55open access2019_Articulos_Eduardo_Alberto_Pla_Cala.pdf.jpg2019_Articulos_Eduardo_Alberto_Pla_Cala.pdf.jpgIM Thumbnailimage/jpeg9380https://repository.unab.edu.co/bitstream/20.500.12749/7174/6/2019_Articulos_Eduardo_Alberto_Pla_Cala.pdf.jpgf5e90e809059e4c07f8e16aea69a741bMD56open access2019_Presentacion_Eduardo_Alberto_Pla_Cala.pdf.jpg2019_Presentacion_Eduardo_Alberto_Pla_Cala.pdf.jpgIM Thumbnailimage/jpeg10391https://repository.unab.edu.co/bitstream/20.500.12749/7174/7/2019_Presentacion_Eduardo_Alberto_Pla_Cala.pdf.jpg93f582f59ac4f1e45347935401e8836cMD57open access2019_Licencia_Eduardo-Alberto_Pla.pdf.jpg2019_Licencia_Eduardo-Alberto_Pla.pdf.jpgIM Thumbnailimage/jpeg12071https://repository.unab.edu.co/bitstream/20.500.12749/7174/9/2019_Licencia_Eduardo-Alberto_Pla.pdf.jpg45964aeaaef805c1ea4ead250790ab19MD59metadata only access20.500.12749/7174oai:repository.unab.edu.co:20.500.12749/71742023-12-14 13:01:13.735open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |