Desarrollo de un ciclo de conducción bajo condiciones reales en el área metropolitana de Bucaramanga

Este estudio presenta el ciclo de conducción construido en el área metropolitana de Bucaramanga. Para construir el ciclo de conducción se utilizó una base de datos de velocidad, RPM y consumo de combustible, se obtuvo monitoreando segundo a segundo la operación de 10 vehículos ligeros en condiciones...

Full description

Autores:
Navarro Quintero, Silvia Juliana
García Jaimes, Ricardo Andrés
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Universidad Autónoma de Bucaramanga - UNAB
Repositorio:
Repositorio UNAB
Idioma:
spa
OAI Identifier:
oai:repository.unab.edu.co:20.500.12749/15102
Acceso en línea:
http://hdl.handle.net/20.500.12749/15102
Palabra clave:
Mechatronic
Driving cycle
Fuel consumption
Speed ​​data
Automotive fleet
Driving
Automobiles
Road safety
Monitoring
Mecatrónica
Conducción
Automóviles
Seguridad vial
Monitoreo
Ciclo de conducción
Consumo de combustible
Datos de velocidad
Parque automotor
Rights
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UNAB2_65cc1cb062d89faa06b730c29b78160c
oai_identifier_str oai:repository.unab.edu.co:20.500.12749/15102
network_acronym_str UNAB2
network_name_str Repositorio UNAB
repository_id_str
dc.title.spa.fl_str_mv Desarrollo de un ciclo de conducción bajo condiciones reales en el área metropolitana de Bucaramanga
dc.title.translated.spa.fl_str_mv Development of a driving cycle under real conditions in the metropolitan area of ​​Bucaramanga
title Desarrollo de un ciclo de conducción bajo condiciones reales en el área metropolitana de Bucaramanga
spellingShingle Desarrollo de un ciclo de conducción bajo condiciones reales en el área metropolitana de Bucaramanga
Mechatronic
Driving cycle
Fuel consumption
Speed ​​data
Automotive fleet
Driving
Automobiles
Road safety
Monitoring
Mecatrónica
Conducción
Automóviles
Seguridad vial
Monitoreo
Ciclo de conducción
Consumo de combustible
Datos de velocidad
Parque automotor
title_short Desarrollo de un ciclo de conducción bajo condiciones reales en el área metropolitana de Bucaramanga
title_full Desarrollo de un ciclo de conducción bajo condiciones reales en el área metropolitana de Bucaramanga
title_fullStr Desarrollo de un ciclo de conducción bajo condiciones reales en el área metropolitana de Bucaramanga
title_full_unstemmed Desarrollo de un ciclo de conducción bajo condiciones reales en el área metropolitana de Bucaramanga
title_sort Desarrollo de un ciclo de conducción bajo condiciones reales en el área metropolitana de Bucaramanga
dc.creator.fl_str_mv Navarro Quintero, Silvia Juliana
García Jaimes, Ricardo Andrés
dc.contributor.advisor.none.fl_str_mv Huertas Cardozo, José Ignacio
Maradey Lázaro, Jessica Gissella
dc.contributor.author.none.fl_str_mv Navarro Quintero, Silvia Juliana
García Jaimes, Ricardo Andrés
dc.contributor.cvlac.spa.fl_str_mv Maradey Lázaro, Jessica Gissella [0000040553]
Huertas Cardozo, José Ignacio [0000057398]
dc.contributor.googlescholar.spa.fl_str_mv Huertas Cardozo, José Ignacio [es&oi=ao]
dc.contributor.orcid.spa.fl_str_mv Maradey Lázaro, Jessica Gissella [0000-0003-2319-1965]
Huertas Cardozo, José Ignacio [0000-0003-4508-6453]
dc.contributor.researchgate.spa.fl_str_mv Maradey Lázaro, Jessica Gissella [profile/Jessica-Maradey-Lazaro]
dc.subject.keywords.spa.fl_str_mv Mechatronic
Driving cycle
Fuel consumption
Speed ​​data
Automotive fleet
Driving
Automobiles
Road safety
Monitoring
topic Mechatronic
Driving cycle
Fuel consumption
Speed ​​data
Automotive fleet
Driving
Automobiles
Road safety
Monitoring
Mecatrónica
Conducción
Automóviles
Seguridad vial
Monitoreo
Ciclo de conducción
Consumo de combustible
Datos de velocidad
Parque automotor
dc.subject.lemb.spa.fl_str_mv Mecatrónica
Conducción
Automóviles
Seguridad vial
Monitoreo
dc.subject.proposal.spa.fl_str_mv Ciclo de conducción
Consumo de combustible
Datos de velocidad
Parque automotor
description Este estudio presenta el ciclo de conducción construido en el área metropolitana de Bucaramanga. Para construir el ciclo de conducción se utilizó una base de datos de velocidad, RPM y consumo de combustible, se obtuvo monitoreando segundo a segundo la operación de 10 vehículos ligeros en condiciones reales en las ciudades de Bucaramanga, Floridablanca, Girón y Piedecuesta durante siete meses. Los datos de velocidad con respecto al tiempo de la base de datos definen el patrón de conducción en el área metropolitana de Bucaramanga, se definieron 18 parámetros característicos que describen variables de velocidad, aceleración, modos de operación, dinámicas y consumo de combustible. Para observar las tendencias de los resultados se repitió el proceso 1000 veces y se obtuvieron la diferencia relativa promedio (ARD) y el rango intercuartílico (IQR) de las diferencias para cada parámetro característico. El método usado fue Micro viajes – basado en combustible (Microtrips Fuel Based Method- MTFBM), donde los criterios de evaluación son el consumo específico de combustible (SFC), la velocidad promedio y el porcentaje de tiempo en ralentí. Se obtuvieron 3072 micro viajes de los 222 viajes registrados en la base de datos.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-12-06T13:50:40Z
dc.date.available.none.fl_str_mv 2021-12-06T13:50:40Z
dc.date.issued.none.fl_str_mv 2021
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.local.spa.fl_str_mv Trabajo de Grado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12749/15102
dc.identifier.instname.spa.fl_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UNAB
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.unab.edu.co
url http://hdl.handle.net/20.500.12749/15102
identifier_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
reponame:Repositorio Institucional UNAB
repourl:https://repository.unab.edu.co
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv [1]. X. Zhao, Q. Yu, J. Ma, Y. Wu, M. Yu, and Y. Ye, “Development of a representative EV urban driving cycle based on a k-Means and SVM hybrid clustering algorithm,” J. Adv. Transp., vol. 2018, 2018, doi: 10.1155/2018/1890753
[2]. J. Zhang, Z. Wang, P. Liu, Z. Zhang, X. Li, and C. Qu, “Driving cycles construction for electric vehicles considering road environment: A case study in Beijing,” Appl. Energy, vol. 253, 2019, doi: 10.1016/j.apenergy.2019.113514.
[3]. P. Yuhui, Z. Yuan, and Y. Huibao, “Development of a representative driving cycle for urban buses based on the K-means cluster method,” Cluster Comput., vol. 22, pp. 6871–6880, 2019, doi: 10.1007/s10586-017-1673-y.
[4]. Y. Yang et al., “Development and emissions performance analysis of local driving cycle for small-sized passenger cars in Nanjing, China,” Atmos. Pollut. Res., vol. 10, no. 5, pp. 1514–1523, 2019, doi: 10.1016/j.apr.2019.04.009.
[5]. Z. Wang, J. Zhang, P. Liu, C. Qu, and X. Li, “Driving cycle construction for electric vehicles based on Markov chain and Monte Carlo method: A case study in Beijing,” in Energy Procedia, 2019, vol. 158, pp. 2494–2499, doi: 10.1016/j.egypro.2019.01.389
[6]. R. Tharvin et al., “Development of Driving Cycle for Passenger Car under Real World Driving Conditions in Kuala Lumpur, Malaysia,” in IOP Conference Series: Materials Science and Engineering, 2018, vol. 429, no. 1, doi: 10.1088/1757-899X/429/1/012047
[7]. P. Shen, Z. Zhao, J. Li, and X. Zhan, “Development of a typical driving cycle for an intra-city hybrid electric bus with a fixed route,” Transp. Res. Part D Transp. Environ., vol. 59, pp. 346–360, 2018, doi: 10.1016/j.trd.2018.01.032
[8]. L. F. Quirama, M. Giraldo, J. I. Huertas, and M. Jaller, “Driving cycles that reproduce driving patterns, energy consumptions and tailpipe emissions,” Transp. Res. Part D Transp. Environ., vol. 82, 2020, doi: 10.1016/j.trd.2020.102294.
[9]. M. A. Pouresmaeili, I. Aghayan, and S. A. Taghizadeh, “Development of Mashhad driving cycle for passenger car to model vehicle exhaust emissions calibrated using on-board measurements,” Sustain. Cities Soc., vol. 36, pp. 12–20, 2018, doi: 10.1016/j.scs.2017.09.034
[10]. Y.-L. T. Nguyen, T.-D. Nghiem, A.-T. Le, and N.-D. Bui, “Development of the typical driving cycle for buses in Hanoi, Vietnam,” J. Air Waste Manag. Assoc., vol. 69, no. 4, pp. 423–437, 2019, doi: 10.1080/10962247.2018.1543736.
[11]. S. Mongkonlerdmanee and S. Koetniyom, “Development of a realistic driving cycle using time series clustering technique for buses: Thailand case study,” Eng. J., vol. 23, no. 4, pp. 49–65, 2019, doi: 10.4186/ej.2019.23.4.49
[12]. S. K. Mayakuntla and A. Verma, “A novel methodology for construction of driving cycles for Indian cities,” Transp. Res. Part D Transp. Environ., vol. 65, pp. 725–735, 2018, doi: 10.1016/j.trd.2018.10.013
[13]. T. Koossalapeerom, T. Satiennam, W. Satiennam, W. Leelapatra, A. Seedam, and T. Rakpukdee, “Comparative study of real-world driving cycles, energy consumption, and CO<inf>2</inf> emissions of electric and gasoline motorcycles driving in a congested urban corridor,” Sustain. Cities Soc., vol. 45, pp. 619–627, 2019, doi: 10.1016/j.scs.2018.12.03
[14]. J. I. Huertas, L. F. Quirama, M. D. Giraldo, and J. Díaz, “Comparison of driving cycles obtained by the micro-trips, markov-chains and mwd-cp methods,” Int. J. Sustain. Energy Plan. Manag., vol. 22, pp. 109–120, 2019, doi: 10.5278/ijsepm.2554
[15]. J. I. Huertas, L. F. Quirama, M. Giraldo, and J. Díaz, “Comparison of three methodologies for driving cycles construction,” 2018
[16]. J. I. Huertas, M. Giraldo, L. F. Quirama, and J. Díaz, “Driving cycles based on fuel consumption,” Energies, vol. 11, no. 11, 2018, doi: 10.3390/en11113064.
[17]. J. I. Huertas, J. Díaz, D. Cordero, and K. Cedillo, “A new methodology to determine typical driving cycles for the design of vehicles power trains,” Int. J. Interact. Des. Manuf., vol. 12, no. 1, pp. 319–326, 2018, doi: 10.1007/s12008-017-0379-y.
[18]. Geetha and C. Subramani, “Development of driving cycle under real world traffic conditions: A case study,” Int. J. Electr. Comput. Eng., vol. 9, no. 6, pp. 4798–4803, 2019, doi: 10.11591/ijece.v9i6.pp4798-4803
[19]. N. H. Arun, S. Mahesh, G. Ramadurai, and S. M. Shiva Nagendra, “Development of driving cycles for passenger cars and motorcycles in Chennai, India,” Sustain. Cities Soc., vol. 32, pp. 508–512, 2017, doi: 10.1016/j.scs.2017.05.001
[20]. N. Anida, I. S. Ismail, J. S. Norbakyah, W. H. Atiq, and A. R. Salisa, “Characterisation and development of driving cycle for work route in Kuala Terengganu,” Int. J. Automot. Mech. Eng., vol. 14, no. 3, pp. 4508–4517, 2017, doi: 10.15282/ijame.14.3.2017.9.0356
[21]. H. Y. Tong and W. T. Hung, “A framework for developing driving cycles with on-road driving data,” Transp. Rev., vol. 30, no. 5, pp. 589–615, 2010, doi: 10.1080/01441640903286134
[22]. V. C. Magaña, “Eco-driving: ahorro de energía basado en el comportamiento del conductor,” Carlos III Madrid, 2014
[23]. L. A. Giraldo Amaya, “Estimación del inventario de emisiones de fuentes móviles para la ciudad de Bogotá e identificación de variables pertinentes.” Bogotá-Uniandes, 2006
[24]. A. H. Gomez, “Desarrollo de ciclos de conducción para el área metropolitana Centro Occidente-AMCO.” Universidad Tecnológica de Pereira. Facultad de Ingeniería Mecánica …, 2014
[25]. A. H. Restrepo, Y. A. Carranza, and J. E. Tibaquira, “Diseño y aplicación de una metodología para determinar ciclos de conducción vehicular en la ciudad de Pereira,” Sci. Tech., vol. 1, no. 37, 2007
[26]. A. H. Restrepo, S. Izquierdo, and R. A. López, “Estimación de factores que inciden sobre la contaminación ambiental generada por fuentes móviles en pereira,” Sci. Tech., vol. 1, no. 37, 2007
[27]. A. Valdez Aguilera “Desarrollo de Ciclos de Conducción Vehicular en el Municipio de Naucalpan-Edición Única.” Instituto Tecnológico y de Estudios Superiores de Monterrey, 2004, [Online]. Available: http://hdl.handle.net/11285/572354. 2004
[28]. F. D. E. U. N. P. DE CARRERAS, C. PETROL, B. E. I. M. ESPAÑA, P. J. C. TIPÁN, M. D. E. L. Z. LÓPEZ, and I. N. G. I. BENAVIDES, “TRABAJO DE TITULACIÓN, PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERA EN FINANZAS Y AUDITORÍA.”
[29]. Q. Shi, B. Liu, Q. Guan, L. He, and D. Qiu, “A genetic ant colony algorithm-based driving cycle generation approach for testing driving range of battery electric vehicle,” Adv. Mech. Eng., vol. 12, no. 1, 2020, doi: 10.1177/1687814019901054. [
[30]. Y. Peng, Y. Zhuang, and Y. Yang, “A driving cycle construction methodology combining k-means clustering and Markov model for urban mixed roads,” Proc. Inst. Mech. Eng. Part D J. Automob. Eng., vol. 234, no. 2–3, pp. 714–724, 2020, doi: 10.1177/0954407019848873
[31]. X. Zheng et al., “Real-world fuel consumption of light-duty passenger vehicles using on-board diagnostic (OBD) systems,” Front. Environ. Sci. Eng., vol. 14, no. 2, 2020, doi: 10.1007/s11783-019-1212-6
[32]. Chauhan, B. P., Joshi, G. J., & Purnima, P. (2020). Candidate Driving Cycle Construction for Emission Estimation. In Transportation Research (pp. 85-97). Springer, Singapore
[33]. Zhang, H., & Yao, Y. G. (2019). Construction of a Light-duty Vehicle Driving Cycle Based on Urban Road. Journal of Highway and Transportation Research and Development (English Edition), 13(4), 95-101
[34]. Tong, H. Y., Tung, H. D., Hung, W. T., & Nguyen, H. V. (2011). Development of driving cycles for motorcycles and light-duty vehicles in Vietnam. Atmospheric Environment, 45(29), 5191-5199
[35]. Lai, J., Yu, L., Song, G., Guo, P., & Chen, X. (2013). Development of cityspecific driving cycles for transit buses based on VSP distributions: Case of Beijing. Journal of transportation engineering, 139(7), 749-757
[36]. Tzirakis, E., & Zannikos, F. (2015). Development of processing methodologies used to form complete driving-cycle dynamometer tests based on urban on-road driving and road gradient data. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 229(1), 97-110.
[37]. Hwa, M. Y., & Yu, T. Y. (2014). Development of real-world driving cycles and estimation of emission factors for in-use light-duty gasoline vehicles in urban areas. Environmental monitoring and assessment, 186(7), 3985-3994.
[38]. Zhao, X., Ma, J., Wang, S., Ye, Y., Wu, Y., & Yu, M. (2019). Developing an electric vehicle urban driving cycle to study differences in energy consumption. Environmental Science and Pollution Research, 26(14), 13839-13853
[39]. Ho, S. H., Wong, Y. D., & Chang, V. W. C. (2014). Developing Singapore Driving Cycle for passenger cars to estimate fuel consumption and vehicular emissions. Atmospheric environment, 97, 353-362
[40]. Wu, X., Hu, C., & Du, J. (2015). Development of a driving cycle for city bus in Harbin of China. International Journal of Electric and Hybrid Vehicles, 7(2), 104-119
[41]. Seers, P., Nachin, G., & Glaus, M. (2015). Development of two driving cycles for utility vehicles. Transportation Research Part D: Transport and Environment, 41, 377-385.
[42]. Brady, J., & O’Mahony, M. (2016). Development of a driving cycle to evaluate the energy economy of electric vehicles in urban areas. Applied energy, 177, 165-178.
[43]. Berzi, L., Delogu, M., & Pierini, M. (2016). Development of driving cycles for electric vehicles in the context of the city of Florence. Transportation Research Part D: Transport and Environment, 47, 299-322
[44]. Yang, Y., Zhang, Q., Wang, Z., Chen, Z., & Cai, X. (2018). Markov chainbased approach of the driving cycle development for electric vehicle application. Energy Procedia, 152, 502-507
[45]. Mahayadin, A. R., Ibrahim, I., Zunaidi, I., Shahriman, A. B., Faizi, M. K., Sahari, M., ... & Rani, M. F. H. (2018, August). Development of Driving Cycle Construction Methodology in Malaysia's Urban Road System. In 2018 International Conference on Computational Approach in Smart Systems Design and Applications (ICASSDA) (pp. 1-5). IEE
[46]. Anida, I. N., & Salisa, A. R. (2019). Driving cycle development for Kuala Terengganu city using k-means method. International Journal of Electrical & Computer Engineering (2088-8708), 9(3).
[47]. Anida, I. N., Norbakyah, J. S., Zulfadli, M., Norainiza, M. H., & Salisa, A. R. (2019). Driving cycle development of BAS KITe in Kuala Terengganu city to optimize the energy consumption and emissions. In IOP Conference Series: Materials Science and Engineering (Vol. 469, No. 1, p. 012112). IOP Publishing
[48]. Kaymaz, H., Korkmaz, H., & Erdal, H. (2019). Development of a driving cycle for Istanbul bus rapid transit based on real-world data using stratified sampling method. Transportation Research Part D: Transport and Environment, 75, 123-135
[49]. Zhao, X., Ye, Y., Ma, J., Shi, P., & Chen, H. (2020). Construction of electric vehicle driving cycle for studying electric vehicle energy consumption and equivalent emissions. Environmental Science and Pollution Research, 1- 15.
[50]. M. F. Mohd Suhaimi, N. A. Mohd Salleh, D. T. M. Madani Sahari, and M. S. Sarip, “Development of Kuala Lumpur driving cycle for the estimation of fuel consumption and vehicular emission,” in IOP Conference Series: Materials Science and Engineering, 2020, vol. 834, no. 1, doi: 10.1088/1757- 899X/834/1/012040
[51]. Maamria, D., Gillet, K., Colin, G., Chamaillard, Y., & Nouillant, C. (2019). Optimal Predictive Eco-Driving Cycles for Conventional, Electric, and Hybrid Electric Cars. IEEE Transactions on Vehicular Technology, 68(7), 6320-6330
[52]. De Haan, P., & Keller, M. (2004). Modelling fuel consumption and pollutant emissions based on real-world driving patterns: the HBEFA approach. International journal of environment and pollution, 22(3), 240-25
[53]. Yu, L., Wang, Z., Qiao, F., & Qi, Y. (2008). Approach to Development and Evaluation of Driving Cycles for Classified Roads Based on Vehicle Emission Characteristics. Transportation Research Record, 2058(1), 58–67
[54]. Sawyer, R. F., R. A. Harley, S. H. Cadle, J. M. Norbeck, R. Slott, H. A. Bravo, K. L. Schere, G. M. Hidy, and H. B. Singh. Mobile Sources Critical Review: 1998 NARSTO Assessment. Journal of Atmospheric Environment, Vol. 34, No. 12–14, 2000, pp. 2161–2181.
[55]. Jiménez-Palacios, J. L. Understanding and Quantifying Motor Vehicle Emissions with Vehicle Specific Power and TILDAS Remote Sensing. PhD dissertation. Massachusetts Institute of Technology, Cambridge, Mass., Feb. 1999. http://cires.colorado.edu/jimenez/Papers/Jimenez_ PhD_Thesis.pdf. Accessed May 16, 2007
56]. Bluett, Jeff & Kuschel, Gerda & Rijkenberg, Micha & Shrestha, Kreepa. (2021). Are the harmful emissions from New Zealand's light duty vehicle fleet improving? May 2011
[57]. Hung, W. T., Tong, H. Y., Lee, C. P., Ha, K. and Pao, L. Y. (2007) Development of a practical driving cycle construction methodology: a case study in Hong Kong, Transportation Research D, 12,pp. 115–128
[58]. Ogata, K. (1996). Sistemas De Control En Tiempo Discreto (1a. ed.). México: Prentice Hall Hispanoamericana
[59]. Nutramon, T., & Supachart, C. (2009). Influence of driving cycles on exhaust emissions and fuel consumption of gasoline passenger car in Bangkok. Journal of environmental sciences, 21(5), 604-611
[60]. Gong, Q., Midlam-Mohler, S., Marano, V., & Rizzoni, G. (2011). An iterative markov chain approach for generating vehicle driving cycles. SAE International Journal of Engines, 4(1), 1035-1045
[61]. Shi, S., Lin, N., Zhang, Y., Cheng, J., Huang, C., Liu, L., & Lu, B. (2016). Research on Markov property analysis of driving cycles and its application. Transportation Research Part D: Transport and Environment, 47, 171-181
[62] Bishop, J. D., Axon, C. J., & McCulloch, M. D. (2012). A robust, data- driven methodology for real-world driving cycle development. Transportation Research Part D: Transport and Environment, 17(5), 389-397.
[63] Xiao, Z., Dui-Jia, Z., & Jun-Min, S. (2012). A synthesis of methodologies and practices for developing driving cycles. Energy Procedia, 16, 1868-1873
[64] R. Huang, C. Cui, W. Sun and D. Towey, "Poster: Is Euclidean Distance the best Distance Measurement for Adaptive Random Testing?," 2020 IEEE 13th International Conference on Software Testing, Validation and Verification (ICST), 2020, pp. 406-409, doi: 10.1109/ICST46399.2020.00049.
[65] León, C. M. (2019). Estimación del consumo de combustible mediante la determinación de ciclos de conducción representativos en Bucaramanga, Santander. Recuperado de: http://hdl.handle.net/20.500.12749/7051
[66] Velleman, P.F., and D.C. Hoaglin. Applications, Basics, and Computing of Exploratory Data Analysis. Pacific Grove, CA: Duxbury Press, 1981
[67] Quinde Medina, D. D. (2020). Estimación de emisiones de CO2 en taxis con cilindrada de 1400cc bajo parámetros de conducción normal en la ciudad de Cuenca, utilizando el modelo IVE (Master's thesis, Universidad del Azuay).
[68] Nouri, P., & Morency, C. (2017). Evaluating microtrip definitions for developing driving cycles. Transportation Research Record, 2627(1), 86-92
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.creativecommons.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
Atribución-NoComercial-SinDerivadas 2.5 Colombia
http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.spa.fl_str_mv Colombia
dc.publisher.grantor.spa.fl_str_mv Universidad Autónoma de Bucaramanga UNAB
dc.publisher.faculty.spa.fl_str_mv Facultad Ingeniería
dc.publisher.program.spa.fl_str_mv Pregrado Ingeniería Mecatrónica
institution Universidad Autónoma de Bucaramanga - UNAB
bitstream.url.fl_str_mv https://repository.unab.edu.co/bitstream/20.500.12749/15102/1/2021_Tesis_Silvia_Juliana_Navarro_Quintero.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/15102/2/2021_Licencia_Silvia_Juliana_Navarro_Quintero.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/15102/3/license.txt
https://repository.unab.edu.co/bitstream/20.500.12749/15102/4/2021_Tesis_Silvia_Juliana_Navarro_Quintero.pdf.jpg
https://repository.unab.edu.co/bitstream/20.500.12749/15102/5/2021_Licencia_Silvia_Juliana_Navarro_Quintero.pdf.jpg
bitstream.checksum.fl_str_mv c9ae2da92df35775bd4d51f99589942a
8608098a80bf0e7dd8a334fa767aa61c
3755c0cfdb77e29f2b9125d7a45dd316
5e123c65f4259d96ba28826941417ae1
c10d99ebc562a1a796c0282231256026
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB
repository.mail.fl_str_mv repositorio@unab.edu.co
_version_ 1814278398357274624
spelling Huertas Cardozo, José IgnacioMaradey Lázaro, Jessica GissellaNavarro Quintero, Silvia JulianaGarcía Jaimes, Ricardo AndrésMaradey Lázaro, Jessica Gissella [0000040553]Huertas Cardozo, José Ignacio [0000057398]Huertas Cardozo, José Ignacio [es&oi=ao]Maradey Lázaro, Jessica Gissella [0000-0003-2319-1965]Huertas Cardozo, José Ignacio [0000-0003-4508-6453]Maradey Lázaro, Jessica Gissella [profile/Jessica-Maradey-Lazaro]Colombia2021-12-06T13:50:40Z2021-12-06T13:50:40Z2021http://hdl.handle.net/20.500.12749/15102instname:Universidad Autónoma de Bucaramanga - UNABreponame:Repositorio Institucional UNABrepourl:https://repository.unab.edu.coEste estudio presenta el ciclo de conducción construido en el área metropolitana de Bucaramanga. Para construir el ciclo de conducción se utilizó una base de datos de velocidad, RPM y consumo de combustible, se obtuvo monitoreando segundo a segundo la operación de 10 vehículos ligeros en condiciones reales en las ciudades de Bucaramanga, Floridablanca, Girón y Piedecuesta durante siete meses. Los datos de velocidad con respecto al tiempo de la base de datos definen el patrón de conducción en el área metropolitana de Bucaramanga, se definieron 18 parámetros característicos que describen variables de velocidad, aceleración, modos de operación, dinámicas y consumo de combustible. Para observar las tendencias de los resultados se repitió el proceso 1000 veces y se obtuvieron la diferencia relativa promedio (ARD) y el rango intercuartílico (IQR) de las diferencias para cada parámetro característico. El método usado fue Micro viajes – basado en combustible (Microtrips Fuel Based Method- MTFBM), donde los criterios de evaluación son el consumo específico de combustible (SFC), la velocidad promedio y el porcentaje de tiempo en ralentí. Se obtuvieron 3072 micro viajes de los 222 viajes registrados en la base de datos.1. INTRODUCCIÓN .............................................................................................. 9 2. ESTADO DEL ARTE ....................................................................................... 12 3. MARCO TEÓRICO .......................................................................................... 18 3.1. CICLO DE CONDUCCIÓN .......................................................................... 18 3.2. PATRÓN DE CONDUCCIÓN ....................................................................... 19 3.3. TIPOS DE CICLOS DE CONDUCCIÓN ...................................................... 19 3.4. TÉCNICAS PARA LA ADQUISICIÓN DE DATOS ....................................... 20 3.5. METODOLOGÍAS PARA EL DESARROLLO DE CICLOS DE CONDUCCIÓN 20 4. OBJETIVOS .................................................................................................... 24 4.2. OBJETIVOS ESPECÍFICOS ........................................................................... 24 5. METODOLOGÍA Y DESARROLLO ................................................................. 25 5.1. VEHÍCULOS ................................................................................................ 25 5.2. REGIÓN DE ESTUDIO ................................................................................ 26 5.3. INSTRUMENTACIÓN .................................................................................. 27 5.4. TOMA DE DATOS ....................................................................................... 28 5.5. PARÁMETROS CARACTERÍSTICOS ......................................................... 31 5.6. BASE DE DATOS ........................................................................................ 39 5.7. CONSTRUCCIÓN DEL CICLO .................................................................... 46 6. RESULTADOS OBTENIDOS .......................................................................... 51 6.1. CICLO DE CONDUCCIÓN .......................................................................... 51 6.2. PARÁMETROS CARACTERÍSTICOS – DIFERENCIAS RELATIVAS. ....... 52 6.3. GRÁFICAS SAPD Y VSP ............................................................................... 55 6.3.1. SAPD ........................................................................................................... 55 6.3.2. VSP .............................................................................................................. 58 6.4. COMPARACIÓN .......................................................................................... 60 6.4.1. COMPARACIÓN DE PARÁMETROS CARACTERÍSTICOS .................... 60 6.4.2. COMPARACIÓN SAPD/SAFD ................................................................. 62 6.5. INTERFAZ PARA VISUALIZAR RESULTADOS. ......................................... 63 7. CONCLUSIONES ............................................................................................ 70 8. RECOMENDACIONES ................................................................................... 71 9. TRABAJO FUTURO ........................................................................................ 72 10. REFERENCIAS ............................................................................................ 72 11. ANEXOS ...................................................................................................... 79 ANEXO 1. CÓDIGO MATLAB ................................................................................ 79 9.2. BASE DE DATOS ........................................................................................... 94 9.3. ARTÍCULO CIENTÍFICO ................................................................................ 94PregradoThis study presents the driving cycle built in the metropolitan area of ​​Bucaramanga. To build the driving cycle, speed, RPM and fuel consumption database was used, it was obtained by monitoring second by second the operation of 10 light vehicles in real conditions in the cities of Bucaramanga, Floridablanca, Girón and Piedecuesta for seven months. The speed data with respect to time from the database define the driving pattern in the metropolitan area of ​​Bucaramanga, 18 characteristic parameters were defined that describe variables of speed, acceleration, operating modes, dynamics, and fuel consumption. To observe the trends of the results, the process was repeated 1000 times and the average relative difference (ARD) and the interquartile range (IQR) of the differences for each characteristic parameter were obtained. Fuel Based Method- MTFBM), where the evaluation criteria are the specific fuel consumption (SFC), the average speed and the percentage of time at idle. 3072 micro trips were obtained from the 222 trips registered in the database.application/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)Atribución-NoComercial-SinDerivadas 2.5 Colombiahttp://purl.org/coar/access_right/c_abf2Desarrollo de un ciclo de conducción bajo condiciones reales en el área metropolitana de BucaramangaDevelopment of a driving cycle under real conditions in the metropolitan area of ​​BucaramangaIngeniero MecatrónicoUniversidad Autónoma de Bucaramanga UNABFacultad IngenieríaPregrado Ingeniería Mecatrónicainfo:eu-repo/semantics/bachelorThesisTrabajo de Gradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/redcol/resource_type/TPMechatronicDriving cycleFuel consumptionSpeed ​​dataAutomotive fleetDrivingAutomobilesRoad safetyMonitoringMecatrónicaConducciónAutomóvilesSeguridad vialMonitoreoCiclo de conducciónConsumo de combustibleDatos de velocidadParque automotor[1]. X. Zhao, Q. Yu, J. Ma, Y. Wu, M. Yu, and Y. Ye, “Development of a representative EV urban driving cycle based on a k-Means and SVM hybrid clustering algorithm,” J. Adv. Transp., vol. 2018, 2018, doi: 10.1155/2018/1890753[2]. J. Zhang, Z. Wang, P. Liu, Z. Zhang, X. Li, and C. Qu, “Driving cycles construction for electric vehicles considering road environment: A case study in Beijing,” Appl. Energy, vol. 253, 2019, doi: 10.1016/j.apenergy.2019.113514.[3]. P. Yuhui, Z. Yuan, and Y. Huibao, “Development of a representative driving cycle for urban buses based on the K-means cluster method,” Cluster Comput., vol. 22, pp. 6871–6880, 2019, doi: 10.1007/s10586-017-1673-y.[4]. Y. Yang et al., “Development and emissions performance analysis of local driving cycle for small-sized passenger cars in Nanjing, China,” Atmos. Pollut. Res., vol. 10, no. 5, pp. 1514–1523, 2019, doi: 10.1016/j.apr.2019.04.009.[5]. Z. Wang, J. Zhang, P. Liu, C. Qu, and X. Li, “Driving cycle construction for electric vehicles based on Markov chain and Monte Carlo method: A case study in Beijing,” in Energy Procedia, 2019, vol. 158, pp. 2494–2499, doi: 10.1016/j.egypro.2019.01.389[6]. R. Tharvin et al., “Development of Driving Cycle for Passenger Car under Real World Driving Conditions in Kuala Lumpur, Malaysia,” in IOP Conference Series: Materials Science and Engineering, 2018, vol. 429, no. 1, doi: 10.1088/1757-899X/429/1/012047[7]. P. Shen, Z. Zhao, J. Li, and X. Zhan, “Development of a typical driving cycle for an intra-city hybrid electric bus with a fixed route,” Transp. Res. Part D Transp. Environ., vol. 59, pp. 346–360, 2018, doi: 10.1016/j.trd.2018.01.032[8]. L. F. Quirama, M. Giraldo, J. I. Huertas, and M. Jaller, “Driving cycles that reproduce driving patterns, energy consumptions and tailpipe emissions,” Transp. Res. Part D Transp. Environ., vol. 82, 2020, doi: 10.1016/j.trd.2020.102294.[9]. M. A. Pouresmaeili, I. Aghayan, and S. A. Taghizadeh, “Development of Mashhad driving cycle for passenger car to model vehicle exhaust emissions calibrated using on-board measurements,” Sustain. Cities Soc., vol. 36, pp. 12–20, 2018, doi: 10.1016/j.scs.2017.09.034[10]. Y.-L. T. Nguyen, T.-D. Nghiem, A.-T. Le, and N.-D. Bui, “Development of the typical driving cycle for buses in Hanoi, Vietnam,” J. Air Waste Manag. Assoc., vol. 69, no. 4, pp. 423–437, 2019, doi: 10.1080/10962247.2018.1543736.[11]. S. Mongkonlerdmanee and S. Koetniyom, “Development of a realistic driving cycle using time series clustering technique for buses: Thailand case study,” Eng. J., vol. 23, no. 4, pp. 49–65, 2019, doi: 10.4186/ej.2019.23.4.49[12]. S. K. Mayakuntla and A. Verma, “A novel methodology for construction of driving cycles for Indian cities,” Transp. Res. Part D Transp. Environ., vol. 65, pp. 725–735, 2018, doi: 10.1016/j.trd.2018.10.013[13]. T. Koossalapeerom, T. Satiennam, W. Satiennam, W. Leelapatra, A. Seedam, and T. Rakpukdee, “Comparative study of real-world driving cycles, energy consumption, and CO<inf>2</inf> emissions of electric and gasoline motorcycles driving in a congested urban corridor,” Sustain. Cities Soc., vol. 45, pp. 619–627, 2019, doi: 10.1016/j.scs.2018.12.03[14]. J. I. Huertas, L. F. Quirama, M. D. Giraldo, and J. Díaz, “Comparison of driving cycles obtained by the micro-trips, markov-chains and mwd-cp methods,” Int. J. Sustain. Energy Plan. Manag., vol. 22, pp. 109–120, 2019, doi: 10.5278/ijsepm.2554[15]. J. I. Huertas, L. F. Quirama, M. Giraldo, and J. Díaz, “Comparison of three methodologies for driving cycles construction,” 2018[16]. J. I. Huertas, M. Giraldo, L. F. Quirama, and J. Díaz, “Driving cycles based on fuel consumption,” Energies, vol. 11, no. 11, 2018, doi: 10.3390/en11113064.[17]. J. I. Huertas, J. Díaz, D. Cordero, and K. Cedillo, “A new methodology to determine typical driving cycles for the design of vehicles power trains,” Int. J. Interact. Des. Manuf., vol. 12, no. 1, pp. 319–326, 2018, doi: 10.1007/s12008-017-0379-y.[18]. Geetha and C. Subramani, “Development of driving cycle under real world traffic conditions: A case study,” Int. J. Electr. Comput. Eng., vol. 9, no. 6, pp. 4798–4803, 2019, doi: 10.11591/ijece.v9i6.pp4798-4803[19]. N. H. Arun, S. Mahesh, G. Ramadurai, and S. M. Shiva Nagendra, “Development of driving cycles for passenger cars and motorcycles in Chennai, India,” Sustain. Cities Soc., vol. 32, pp. 508–512, 2017, doi: 10.1016/j.scs.2017.05.001[20]. N. Anida, I. S. Ismail, J. S. Norbakyah, W. H. Atiq, and A. R. Salisa, “Characterisation and development of driving cycle for work route in Kuala Terengganu,” Int. J. Automot. Mech. Eng., vol. 14, no. 3, pp. 4508–4517, 2017, doi: 10.15282/ijame.14.3.2017.9.0356[21]. H. Y. Tong and W. T. Hung, “A framework for developing driving cycles with on-road driving data,” Transp. Rev., vol. 30, no. 5, pp. 589–615, 2010, doi: 10.1080/01441640903286134[22]. V. C. Magaña, “Eco-driving: ahorro de energía basado en el comportamiento del conductor,” Carlos III Madrid, 2014[23]. L. A. Giraldo Amaya, “Estimación del inventario de emisiones de fuentes móviles para la ciudad de Bogotá e identificación de variables pertinentes.” Bogotá-Uniandes, 2006[24]. A. H. Gomez, “Desarrollo de ciclos de conducción para el área metropolitana Centro Occidente-AMCO.” Universidad Tecnológica de Pereira. Facultad de Ingeniería Mecánica …, 2014[25]. A. H. Restrepo, Y. A. Carranza, and J. E. Tibaquira, “Diseño y aplicación de una metodología para determinar ciclos de conducción vehicular en la ciudad de Pereira,” Sci. Tech., vol. 1, no. 37, 2007[26]. A. H. Restrepo, S. Izquierdo, and R. A. López, “Estimación de factores que inciden sobre la contaminación ambiental generada por fuentes móviles en pereira,” Sci. Tech., vol. 1, no. 37, 2007[27]. A. Valdez Aguilera “Desarrollo de Ciclos de Conducción Vehicular en el Municipio de Naucalpan-Edición Única.” Instituto Tecnológico y de Estudios Superiores de Monterrey, 2004, [Online]. Available: http://hdl.handle.net/11285/572354. 2004[28]. F. D. E. U. N. P. DE CARRERAS, C. PETROL, B. E. I. M. ESPAÑA, P. J. C. TIPÁN, M. D. E. L. Z. LÓPEZ, and I. N. G. I. BENAVIDES, “TRABAJO DE TITULACIÓN, PREVIO A LA OBTENCIÓN DEL TÍTULO DE INGENIERA EN FINANZAS Y AUDITORÍA.”[29]. Q. Shi, B. Liu, Q. Guan, L. He, and D. Qiu, “A genetic ant colony algorithm-based driving cycle generation approach for testing driving range of battery electric vehicle,” Adv. Mech. Eng., vol. 12, no. 1, 2020, doi: 10.1177/1687814019901054. [[30]. Y. Peng, Y. Zhuang, and Y. Yang, “A driving cycle construction methodology combining k-means clustering and Markov model for urban mixed roads,” Proc. Inst. Mech. Eng. Part D J. Automob. Eng., vol. 234, no. 2–3, pp. 714–724, 2020, doi: 10.1177/0954407019848873[31]. X. Zheng et al., “Real-world fuel consumption of light-duty passenger vehicles using on-board diagnostic (OBD) systems,” Front. Environ. Sci. Eng., vol. 14, no. 2, 2020, doi: 10.1007/s11783-019-1212-6[32]. Chauhan, B. P., Joshi, G. J., & Purnima, P. (2020). Candidate Driving Cycle Construction for Emission Estimation. In Transportation Research (pp. 85-97). Springer, Singapore[33]. Zhang, H., & Yao, Y. G. (2019). Construction of a Light-duty Vehicle Driving Cycle Based on Urban Road. Journal of Highway and Transportation Research and Development (English Edition), 13(4), 95-101[34]. Tong, H. Y., Tung, H. D., Hung, W. T., & Nguyen, H. V. (2011). Development of driving cycles for motorcycles and light-duty vehicles in Vietnam. Atmospheric Environment, 45(29), 5191-5199[35]. Lai, J., Yu, L., Song, G., Guo, P., & Chen, X. (2013). Development of cityspecific driving cycles for transit buses based on VSP distributions: Case of Beijing. Journal of transportation engineering, 139(7), 749-757[36]. Tzirakis, E., & Zannikos, F. (2015). Development of processing methodologies used to form complete driving-cycle dynamometer tests based on urban on-road driving and road gradient data. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 229(1), 97-110.[37]. Hwa, M. Y., & Yu, T. Y. (2014). Development of real-world driving cycles and estimation of emission factors for in-use light-duty gasoline vehicles in urban areas. Environmental monitoring and assessment, 186(7), 3985-3994.[38]. Zhao, X., Ma, J., Wang, S., Ye, Y., Wu, Y., & Yu, M. (2019). Developing an electric vehicle urban driving cycle to study differences in energy consumption. Environmental Science and Pollution Research, 26(14), 13839-13853[39]. Ho, S. H., Wong, Y. D., & Chang, V. W. C. (2014). Developing Singapore Driving Cycle for passenger cars to estimate fuel consumption and vehicular emissions. Atmospheric environment, 97, 353-362[40]. Wu, X., Hu, C., & Du, J. (2015). Development of a driving cycle for city bus in Harbin of China. International Journal of Electric and Hybrid Vehicles, 7(2), 104-119[41]. Seers, P., Nachin, G., & Glaus, M. (2015). Development of two driving cycles for utility vehicles. Transportation Research Part D: Transport and Environment, 41, 377-385.[42]. Brady, J., & O’Mahony, M. (2016). Development of a driving cycle to evaluate the energy economy of electric vehicles in urban areas. Applied energy, 177, 165-178.[43]. Berzi, L., Delogu, M., & Pierini, M. (2016). Development of driving cycles for electric vehicles in the context of the city of Florence. Transportation Research Part D: Transport and Environment, 47, 299-322[44]. Yang, Y., Zhang, Q., Wang, Z., Chen, Z., & Cai, X. (2018). Markov chainbased approach of the driving cycle development for electric vehicle application. Energy Procedia, 152, 502-507[45]. Mahayadin, A. R., Ibrahim, I., Zunaidi, I., Shahriman, A. B., Faizi, M. K., Sahari, M., ... & Rani, M. F. H. (2018, August). Development of Driving Cycle Construction Methodology in Malaysia's Urban Road System. In 2018 International Conference on Computational Approach in Smart Systems Design and Applications (ICASSDA) (pp. 1-5). IEE[46]. Anida, I. N., & Salisa, A. R. (2019). Driving cycle development for Kuala Terengganu city using k-means method. International Journal of Electrical & Computer Engineering (2088-8708), 9(3).[47]. Anida, I. N., Norbakyah, J. S., Zulfadli, M., Norainiza, M. H., & Salisa, A. R. (2019). Driving cycle development of BAS KITe in Kuala Terengganu city to optimize the energy consumption and emissions. In IOP Conference Series: Materials Science and Engineering (Vol. 469, No. 1, p. 012112). IOP Publishing[48]. Kaymaz, H., Korkmaz, H., & Erdal, H. (2019). Development of a driving cycle for Istanbul bus rapid transit based on real-world data using stratified sampling method. Transportation Research Part D: Transport and Environment, 75, 123-135[49]. Zhao, X., Ye, Y., Ma, J., Shi, P., & Chen, H. (2020). Construction of electric vehicle driving cycle for studying electric vehicle energy consumption and equivalent emissions. Environmental Science and Pollution Research, 1- 15.[50]. M. F. Mohd Suhaimi, N. A. Mohd Salleh, D. T. M. Madani Sahari, and M. S. Sarip, “Development of Kuala Lumpur driving cycle for the estimation of fuel consumption and vehicular emission,” in IOP Conference Series: Materials Science and Engineering, 2020, vol. 834, no. 1, doi: 10.1088/1757- 899X/834/1/012040[51]. Maamria, D., Gillet, K., Colin, G., Chamaillard, Y., & Nouillant, C. (2019). Optimal Predictive Eco-Driving Cycles for Conventional, Electric, and Hybrid Electric Cars. IEEE Transactions on Vehicular Technology, 68(7), 6320-6330[52]. De Haan, P., & Keller, M. (2004). Modelling fuel consumption and pollutant emissions based on real-world driving patterns: the HBEFA approach. International journal of environment and pollution, 22(3), 240-25[53]. Yu, L., Wang, Z., Qiao, F., & Qi, Y. (2008). Approach to Development and Evaluation of Driving Cycles for Classified Roads Based on Vehicle Emission Characteristics. Transportation Research Record, 2058(1), 58–67[54]. Sawyer, R. F., R. A. Harley, S. H. Cadle, J. M. Norbeck, R. Slott, H. A. Bravo, K. L. Schere, G. M. Hidy, and H. B. Singh. Mobile Sources Critical Review: 1998 NARSTO Assessment. Journal of Atmospheric Environment, Vol. 34, No. 12–14, 2000, pp. 2161–2181.[55]. Jiménez-Palacios, J. L. Understanding and Quantifying Motor Vehicle Emissions with Vehicle Specific Power and TILDAS Remote Sensing. PhD dissertation. Massachusetts Institute of Technology, Cambridge, Mass., Feb. 1999. http://cires.colorado.edu/jimenez/Papers/Jimenez_ PhD_Thesis.pdf. Accessed May 16, 200756]. Bluett, Jeff & Kuschel, Gerda & Rijkenberg, Micha & Shrestha, Kreepa. (2021). Are the harmful emissions from New Zealand's light duty vehicle fleet improving? May 2011[57]. Hung, W. T., Tong, H. Y., Lee, C. P., Ha, K. and Pao, L. Y. (2007) Development of a practical driving cycle construction methodology: a case study in Hong Kong, Transportation Research D, 12,pp. 115–128[58]. Ogata, K. (1996). Sistemas De Control En Tiempo Discreto (1a. ed.). México: Prentice Hall Hispanoamericana[59]. Nutramon, T., & Supachart, C. (2009). Influence of driving cycles on exhaust emissions and fuel consumption of gasoline passenger car in Bangkok. Journal of environmental sciences, 21(5), 604-611[60]. Gong, Q., Midlam-Mohler, S., Marano, V., & Rizzoni, G. (2011). An iterative markov chain approach for generating vehicle driving cycles. SAE International Journal of Engines, 4(1), 1035-1045[61]. Shi, S., Lin, N., Zhang, Y., Cheng, J., Huang, C., Liu, L., & Lu, B. (2016). Research on Markov property analysis of driving cycles and its application. Transportation Research Part D: Transport and Environment, 47, 171-181[62] Bishop, J. D., Axon, C. J., & McCulloch, M. D. (2012). A robust, data- driven methodology for real-world driving cycle development. Transportation Research Part D: Transport and Environment, 17(5), 389-397.[63] Xiao, Z., Dui-Jia, Z., & Jun-Min, S. (2012). A synthesis of methodologies and practices for developing driving cycles. Energy Procedia, 16, 1868-1873[64] R. Huang, C. Cui, W. Sun and D. Towey, "Poster: Is Euclidean Distance the best Distance Measurement for Adaptive Random Testing?," 2020 IEEE 13th International Conference on Software Testing, Validation and Verification (ICST), 2020, pp. 406-409, doi: 10.1109/ICST46399.2020.00049.[65] León, C. M. (2019). Estimación del consumo de combustible mediante la determinación de ciclos de conducción representativos en Bucaramanga, Santander. Recuperado de: http://hdl.handle.net/20.500.12749/7051[66] Velleman, P.F., and D.C. Hoaglin. Applications, Basics, and Computing of Exploratory Data Analysis. Pacific Grove, CA: Duxbury Press, 1981[67] Quinde Medina, D. D. (2020). Estimación de emisiones de CO2 en taxis con cilindrada de 1400cc bajo parámetros de conducción normal en la ciudad de Cuenca, utilizando el modelo IVE (Master's thesis, Universidad del Azuay).[68] Nouri, P., & Morency, C. (2017). Evaluating microtrip definitions for developing driving cycles. Transportation Research Record, 2627(1), 86-92ORIGINAL2021_Tesis_Silvia_Juliana_Navarro_Quintero.pdf2021_Tesis_Silvia_Juliana_Navarro_Quintero.pdfTesisapplication/pdf4080463https://repository.unab.edu.co/bitstream/20.500.12749/15102/1/2021_Tesis_Silvia_Juliana_Navarro_Quintero.pdfc9ae2da92df35775bd4d51f99589942aMD51open access2021_Licencia_Silvia_Juliana_Navarro_Quintero.pdf2021_Licencia_Silvia_Juliana_Navarro_Quintero.pdfLicenciaapplication/pdf192710https://repository.unab.edu.co/bitstream/20.500.12749/15102/2/2021_Licencia_Silvia_Juliana_Navarro_Quintero.pdf8608098a80bf0e7dd8a334fa767aa61cMD52metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8829https://repository.unab.edu.co/bitstream/20.500.12749/15102/3/license.txt3755c0cfdb77e29f2b9125d7a45dd316MD53open accessTHUMBNAIL2021_Tesis_Silvia_Juliana_Navarro_Quintero.pdf.jpg2021_Tesis_Silvia_Juliana_Navarro_Quintero.pdf.jpgIM Thumbnailimage/jpeg4261https://repository.unab.edu.co/bitstream/20.500.12749/15102/4/2021_Tesis_Silvia_Juliana_Navarro_Quintero.pdf.jpg5e123c65f4259d96ba28826941417ae1MD54open access2021_Licencia_Silvia_Juliana_Navarro_Quintero.pdf.jpg2021_Licencia_Silvia_Juliana_Navarro_Quintero.pdf.jpgIM Thumbnailimage/jpeg9758https://repository.unab.edu.co/bitstream/20.500.12749/15102/5/2021_Licencia_Silvia_Juliana_Navarro_Quintero.pdf.jpgc10d99ebc562a1a796c0282231256026MD55metadata only access20.500.12749/15102oai:repository.unab.edu.co:20.500.12749/151022021-12-06 18:02:11.454open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.coRUwoTE9TKSBBVVRPUihFUyksIG1hbmlmaWVzdGEobWFuaWZlc3RhbW9zKSBxdWUgbGEgb2JyYSBvYmpldG8gZGUgbGEgcHJlc2VudGUgYXV0b3JpemFjacOzbiBlcyBvcmlnaW5hbCB5IGxhIHJlYWxpesOzIHNpbiB2aW9sYXIgbyB1c3VycGFyIGRlcmVjaG9zIGRlIGF1dG9yIGRlIHRlcmNlcm9zLCBwb3IgbG8gdGFudG8sIGxhIG9icmEgZXMgZGUgZXhjbHVzaXZhIGF1dG9yw61hIHkgdGllbmUgbGEgdGl0dWxhcmlkYWQgc29icmUgbGEgbWlzbWEuCgpFbiBjYXNvIGRlIHByZXNlbnRhcnNlIGN1YWxxdWllciByZWNsYW1hY2nDs24gbyBhY2Npw7NuIHBvciBwYXJ0ZSBkZSB1biB0ZXJjZXJvIGVuIGN1YW50byBhIGxvcyBkZXJlY2hvcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGVuIGN1ZXN0acOzbi4gRWwgQVVUT1IgYXN1bWlyw6EgdG9kYSBsYSByZXNwb25zYWJpbGlkYWQsIHkgc2FsZHLDoSBlbiBkZWZlbnNhIGRlIGxvcyBkZXJlY2hvcyBhcXXDrSBhdXRvcml6YWRvcywgcGFyYSB0b2RvcyBsb3MgZWZlY3RvcyBsYSBVTkFCIGFjdMO6YSBjb21vIHVuIHRlcmNlcm8gZGUgYnVlbmEgZmUuCgpFbCBBVVRPUiBhdXRvcml6YSBhIGxhIFVuaXZlcnNpZGFkIEF1dMOzbm9tYSBkZSBCdWNhcmFtYW5nYSBwYXJhIHF1ZSBlbiBsb3MgdMOpcm1pbm9zIGVzdGFibGVjaWRvcyBlbiBsYSBMZXkgMjMgZGUgMTk4MiwgTGV5IDQ0IGRlIDE5OTMsIERlY2lzacOzbiBBbmRpbmEgMzUxIGRlIDE5OTMgeSBkZW3DoXMgbm9ybWFzIGdlbmVyYWxlcyBzb2JyZSBsYSBtYXRlcmlhLCB1dGlsaWNlIGxhIG9icmEgb2JqZXRvIGRlIGxhIHByZXNlbnRlIGF1dG9yaXphY2nDs24uCg==