Asociación entre el polimorfismo de la AQP-5 -1364A/C con la disfunción cardiovascular en pacientes con sepsis
“Estudio anidado al proyecto de investigación “Valor pronóstico de los polimorfismos de la Metaloproteinasa de Matriz extracelular-9 (MMP-9: SNP-1562C/T), su inhibidor tisular endógeno (TIMP-1: SNP-372T/C), MMP-2 (– 1575 A/G) y de la Acuaporina 5 (AQP5: SNP-1364A/C) en pacientes sépticos.” Introducc...
- Autores:
-
Correa Gómez, David Fernando
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad Autónoma de Bucaramanga - UNAB
- Repositorio:
- Repositorio UNAB
- Idioma:
- spa
- OAI Identifier:
- oai:repository.unab.edu.co:20.500.12749/7193
- Acceso en línea:
- http://hdl.handle.net/20.500.12749/7193
- Palabra clave:
- Internal medicine
Medicine
Medical sciences
Health sciences
Sepsis
Troponin I
Mortality
Heart failure systolic
Heart failure diastolic
Ventricular dysfunction
Septic shock
Aquaporin 5
Infections
Hematology
Heart
Medicina interna
Medicina
Ciencias médicas
Infecciones
Hematología
Corazón
Ciencias de la salud
Sepsis
Troponina I
NT pro BNP
Mortalidad
Insuficiencia cardíaca sistólica
Insuficiencia cardiaca diastólica
Disfunción ventricular
Choque séptico
Acuaporina 5
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id |
UNAB2_64cc66008bb3af4040a941d53fdee1b3 |
---|---|
oai_identifier_str |
oai:repository.unab.edu.co:20.500.12749/7193 |
network_acronym_str |
UNAB2 |
network_name_str |
Repositorio UNAB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Asociación entre el polimorfismo de la AQP-5 -1364A/C con la disfunción cardiovascular en pacientes con sepsis |
dc.title.translated.eng.fl_str_mv |
Association between AQP-5 -1364A / C polymorphism with cardiovascular dysfunction in patients with sepsis |
title |
Asociación entre el polimorfismo de la AQP-5 -1364A/C con la disfunción cardiovascular en pacientes con sepsis |
spellingShingle |
Asociación entre el polimorfismo de la AQP-5 -1364A/C con la disfunción cardiovascular en pacientes con sepsis Internal medicine Medicine Medical sciences Health sciences Sepsis Troponin I Mortality Heart failure systolic Heart failure diastolic Ventricular dysfunction Septic shock Aquaporin 5 Infections Hematology Heart Medicina interna Medicina Ciencias médicas Infecciones Hematología Corazón Ciencias de la salud Sepsis Troponina I NT pro BNP Mortalidad Insuficiencia cardíaca sistólica Insuficiencia cardiaca diastólica Disfunción ventricular Choque séptico Acuaporina 5 |
title_short |
Asociación entre el polimorfismo de la AQP-5 -1364A/C con la disfunción cardiovascular en pacientes con sepsis |
title_full |
Asociación entre el polimorfismo de la AQP-5 -1364A/C con la disfunción cardiovascular en pacientes con sepsis |
title_fullStr |
Asociación entre el polimorfismo de la AQP-5 -1364A/C con la disfunción cardiovascular en pacientes con sepsis |
title_full_unstemmed |
Asociación entre el polimorfismo de la AQP-5 -1364A/C con la disfunción cardiovascular en pacientes con sepsis |
title_sort |
Asociación entre el polimorfismo de la AQP-5 -1364A/C con la disfunción cardiovascular en pacientes con sepsis |
dc.creator.fl_str_mv |
Correa Gómez, David Fernando |
dc.contributor.advisor.spa.fl_str_mv |
Torres Dueñas, Diego Higuera Cobos, Juan Diego Ochoa Vera, Miguel Enrique |
dc.contributor.author.spa.fl_str_mv |
Correa Gómez, David Fernando |
dc.contributor.cvlac.*.fl_str_mv |
https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000066885 https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001692834 https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000898465 |
dc.contributor.orcid.*.fl_str_mv |
https://orcid.org/0000-0002-8006-7461 https://orcid.org/0000-0003-2622-9412 https://orcid.org/0000-0002-4552-3388 |
dc.contributor.scopus.*.fl_str_mv |
https://www.scopus.com/authid/detail.uri?authorId=24282065800 https://www.scopus.com/authid/detail.uri?authorId=36987156500 |
dc.contributor.researchgate.*.fl_str_mv |
https://www.researchgate.net/scientific-contributions/29124133_David_Fernando_Correa_Gomez https://www.researchgate.net/profile/Miguel_Ochoa7 |
dc.subject.keywords.eng.fl_str_mv |
Internal medicine Medicine Medical sciences Health sciences Sepsis Troponin I Mortality Heart failure systolic Heart failure diastolic Ventricular dysfunction Septic shock Aquaporin 5 Infections Hematology Heart |
topic |
Internal medicine Medicine Medical sciences Health sciences Sepsis Troponin I Mortality Heart failure systolic Heart failure diastolic Ventricular dysfunction Septic shock Aquaporin 5 Infections Hematology Heart Medicina interna Medicina Ciencias médicas Infecciones Hematología Corazón Ciencias de la salud Sepsis Troponina I NT pro BNP Mortalidad Insuficiencia cardíaca sistólica Insuficiencia cardiaca diastólica Disfunción ventricular Choque séptico Acuaporina 5 |
dc.subject.lemb.spa.fl_str_mv |
Medicina interna Medicina Ciencias médicas Infecciones Hematología Corazón |
dc.subject.proposal.spa.fl_str_mv |
Ciencias de la salud Sepsis Troponina I NT pro BNP Mortalidad Insuficiencia cardíaca sistólica Insuficiencia cardiaca diastólica Disfunción ventricular Choque séptico Acuaporina 5 |
description |
“Estudio anidado al proyecto de investigación “Valor pronóstico de los polimorfismos de la Metaloproteinasa de Matriz extracelular-9 (MMP-9: SNP-1562C/T), su inhibidor tisular endógeno (TIMP-1: SNP-372T/C), MMP-2 (– 1575 A/G) y de la Acuaporina 5 (AQP5: SNP-1364A/C) en pacientes sépticos.” Introducción: La disfunción cardiovascular asociada a la sepsis tiene un papel fundamental a nivel diagnóstico y pronóstico. Varios biomarcadores se han estudiado para objetivar la disfunción cardiovascular en la sepsis tales como la troponina, péptidos natriuréticos y parámetros ecocardiográficos. Se han encontrado moléculas como las acuaporinas y su polimorfismo AQP-5 SNP- 1364A/C que se han asociado a la fisiopatología de la sepsis y que impactan en la mortalidad. Objetivo: Determinar la asociación entre polimorfismo de la AQP-5 SNP-1364A/C con la disfunción cardiovascular en pacientes adultos con sepsis. Materiales y Métodos: Estudio analítico de corte transversal anidado a la cohorte del estudio “Valor pronóstico de los polimorfismos de la Metaloproteinasa de Matriz extracelular-9 (MMP-9: SNP-1562C/T), su inhibidor tisular endógeno (TIMP-1: SNP- 372T/C), MMP-2 (– 1575 A/G) y de la Acuaporina 5 (AQP5: SNP-1364 A/C) en pacientes sépticos.” Se calculó la asociación del NT pro BNP, troponina I disfunción sistólica /diastólicas medidas por variables ecocardiográficas con el polimorfismo AQP-5 -SNP1364A/C en pacientes con sepsis. Resultados: Se analizó 540 registros. La mediana de edad de los pacientes fue de 59 años con un rango de edad entre 45-74 años. La mediana de NT-pro BNP fue 762 (RIQ: 215.5-3284), de la troponina I 0.1 (RIQ: 0.1- 0.1). El origen más frecuente de la sepsis fue tracto urinario (34.4%). El 14.63% de los pacientes fallecieron. La disfunción sistólica estuvo presente en 29.64 %, la disfunción diastólica 66.1%. El 76.67% fueron manejados en unidad de cuidados intensivo, 22.04% presentaron choque séptico. La asociación entre el polimorfismo de la AQP-5 -SNP1364A/C con la disfunción sistólica (RP:0.94; IC 95%= 0.64- 1.3 Valor P: 0.4503), disfunción diastólica, (RP: 0.93; IC 95%= 0 .75- 1.14 Valor P: 0.2909) Troponina I (RP: 1.2; IC 95%= 0 .75- 2.1 Valor P: 0.2006 ) y NT-proBNP (RP: 1.0; IC 95%= 0 .90- 1.15 Valor P: 0.4169). Conclusiones: No se encontró una asociación estadísticamente significativa entre el polimorfismo AQP-5 -SNP1364A/C con los biomarcadores de lesión miocárdica y variables ecocardiográficas en pacientes con sepsis. A partir de los hallazgos, la metodología de análisis y la evidencia es necesario reorientar las estrategias de investigación alrededor, de la relacion polimorfismo de la AQP-5 -SNP1364A/C con la disfunción cardiovascular incluyendo más pacientes para evaluar su asociación. |
publishDate |
2020 |
dc.date.accessioned.none.fl_str_mv |
2020-08-22T01:28:30Z |
dc.date.available.none.fl_str_mv |
2020-08-22T01:28:30Z |
dc.date.issued.none.fl_str_mv |
2020 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.local.spa.fl_str_mv |
Tesis |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12749/7193 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Autónoma de Bucaramanga - UNAB |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional UNAB |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.unab.edu.co |
url |
http://hdl.handle.net/20.500.12749/7193 |
identifier_str_mv |
instname:Universidad Autónoma de Bucaramanga - UNAB reponame:Repositorio Institucional UNAB repourl:https://repository.unab.edu.co |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
1. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, et al. Definitions for Sepsis and Organ Failure and Guidelines for the Use of Innovative Therapies in Sepsis. Chest. 1992 Jun;101(6):1644-55. 2. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Intensive Care Med. 2003 Apr;29(4):530-8. 3. Singer M. The new sepsis consensus definitions (Sepsis-3): the good, the not- so-bad, and the actually-quite-pretty. Intensive Care Med. 2016 Dec;42(12):2027- 9. 4. Seymour CW, Liu VX, Iwashyna TJ, Brunkhorst FM, Rea TD, Scherag A, et al. Assessment of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016 Feb 23,;315(8):762-74. 5. Parrillo JE, Parker MM, Natanson C, Suffredini AF, Danner RL, Cunnion RE, et al. Septic shock in humans. Advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. Annals of internal medicine. 1990 Aug 1,;113(3):227. 6. Nayer J, Aggarwal P, Galwankar S. Utility of point-of-care testing of natriuretic peptides (brain natriuretic peptide and n-terminal pro-brain natriuretic peptide) in the emergency department. International Journal of Critical Illness and Injury Science. 2014 Sep 1,;4(3):209-15. 7. Bessière F, Khenifer S, Dubourg J, Durieu I, Lega J. Prognostic value of troponins in sepsis: a meta-analysis. Intensive Care Med. 2013 Jul;39(7):1181-9. 8. Rump K, Adamzik M. Function of aquaporins in sepsis: a systematic review. Cell & bioscience. 2018;8(1):10. 9. R. Madonna, J jiangi YJ gengi. Attenuated expression of gelsolin in association with induction of aquaporin-l and nitric oxide synthase in dysfunctional hearts of aging mice exposed to endotoxin. ;25. 10. Montiel V, Montiel V, Leon Gomez E, Leon Gomez E, Bouzin C, Bouzin C, et al. Genetic deletion of aquaporin-1 results in microcardia and low blood pressure in mouse with intact nitric oxide-dependent relaxation, but enhanced prostanoids- dependent relaxation. Pflugers Arch - Eur J Physiol. 2014 Feb;466(2):237-51. 11. Adamzik M, Frey UH, Möhlenkamp S, Scherag A, Waydhas C, Marggraf G, et al. Aquaporin 5 Gene Promoter −1364A/C Polymorphism Associated with 30-day Survival in Severe Sepsis. Anesthesiology. 2011 Apr;114(4):912-7. 12. Adamzik M, Frey U, Bitzer K, Jakob H, Baba H, Schmieder R, et al. A novel- 1364A/C aquaporin 5 gene promoter polymorphism influences the responses to salt loading of the renin-angiotensin-aldosterone system and of blood pressure in young healthy men. Basic Res Cardiol. 2008 Nov;103(6):598-610. 13. Martin Arsanios D, Barragan AF, Garzón DA, Cuervo Millán F, Pinzón J, Ramos Isaza E, et al. Actualización en sepsis y choque séptico: nuevas definiciones y evaluación clínica. Acta Colombiana de Cuidado Intensivo. 2017 Jul;17(3):158-83. 14. Mayr FB, Yende S, Angus DC. Epidemiology of severe sepsis. Virulence. 2014 Jan 1,;5(1):4-11. 15. National Inpatient Hospital Costs: The Most Expensive Conditions by Payer, 2011. The HCUP Report : Healthcare Cost and Utilization Project (HCUP): Statistical Briefs;2013 ASI 4186-20.160;Statistical Brief No. 160. 2013. 16. Liu V, Escobar GJ, Greene JD, Soule J, Whippy A, Angus DC, et al. Hospital Deaths in Patients With Sepsis From 2 Independent Cohorts. JAMA. 2014 Jul 2,;312(1):90-2. 17. Martin GS. Sepsis, severe sepsis and septic shock: changes in incidence, pathogens and outcomes. Expert Review of Anti-infective Therapy. 2012 Jun 1,;10(6):701-6. 18. Paoli C, Reynolds M, Sinha M, Gitlin M, Crouser E. Epidemiology and Costs of Sepsis in the United States—An Analysis Based on Timing of Diagnosis and Severity Level. Critical Care Medicine. 2018 Dec;46(12):1889-97. 19. Ortíz G, Dueñas C, Rodríguez F, Barrera L, de La Rosa G, Dennis R, et al. Epidemiology of sepsis in Colombian intensive care units. Biomedica : revista del Instituto Nacional de Salud. 2014 Jan;34(1):40. 20. Rudiger A, Singer M. Mechanisms of sepsis-induced cardiac dysfunction. Critical Care Medicine. 2007 Jun;35(6):1599-608. 21. Charpentier J, Luyt C, Fulla Y, Vinsonneau C, Cariou A, Grabar S, et al. Brain natriuretic peptide: A marker of myocardial dysfunction and prognosis during severe sepsis. Critical Care Medicine. 2004 Mar;32(3):660-5. 22. Flynn A, Chokkalingam Mani B, Mather PJ. Sepsis-induced cardiomyopathy: a review of pathophysiologic mechanisms. Heart failure reviews. 2010 Nov;15(6):605-11. 23. Francisco J. Romero-Bermejo, Manuel Ruiz-Bailen, Julian Gil-Cebrian, Maria J. Huertos-Ranchal. Sepsis-induced Cardiomyopathy. Current Cardiology Reviews. 2011 Aug;7(3):163-83. 24. Angus DC, van der Poll T. Severe Sepsis and Septic Shock. New England journal of medicine. 2013;369(9):840-51. 25. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, et al. Definitions for Sepsis and Organ Failure and Guidelines for the Use of Innovative Therapies in Sepsis. Chest. 1992 Jun;101(6):1644-55. 26. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Critical Care Medicine. 2003 Jan 1,;31(4):1250-6. 27. Rabello, Lígia Sarmet Cunha Farah, Rosolem MdM, Leal JV, Soares M, Lisboa T, Salluh JIF. Entendendo o conceito PIRO: da teoria à prática clínica - Parte 1. Revista Brasileira de Terapia Intensiva. 2009 Dec;21(4):425-31. 28. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016 Feb 23,;315(8):801-10. 29. Vincent J, Prof, Opal SM, Prof, Marshall JC, Prof, Tracey KJ, Prof. Sepsis definitions: time for change. Lancet, The. 2013;381(9868):774-5. 30. Carré JE, Singer M. Cellular energetic metabolism in sepsis: the need for a systems approach. Biochimica et biophysica acta. 2008 Jul;1777(7-8):763. 31. Laguado-Nieto MA, Amaris-Vergara AA, Vargas-Ordoñez JE, Rangel-Vera JA, García-León SJ, Centeno-Hurtado KT. Actualización en sepsis y choque séptico en adultos. Medunab. 2019 Jul 1,;22(2):213-27. 32. Keeley A, Hine P, Nsutebu E. The recognition and management of sepsis and septic shock: a guide for non-intensivists. Postgraduate Medical Journal. 2017 Oct;93(1104):626-34. 33. Niño-Mantilla ME, Hormiga-Sánchez CM, Ordoñez IT, Villarreal-Ibarra VP, Ardila-Acuña L, Torres-Dueñas D. Mortalidad por sepsis e infecciones complicadas en el departamento de Santander, Colombia. Universidad y Salud. 2014 Dec 1,;16(2):139-49. 34. Huttunen R, Aittoniemi J. New concepts in the pathogenesis, diagnosis and treatment of bacteremia and sepsis. Journal of Infection. 2011;63(6):407-19. 35. Andersson U, Tracey KJ. Reflex Principles of Immunological Homeostasis. Annual Review of Immunology. 2012 Apr 23,;30(1):313-35. 36. Angus DC, van der Poll T. Severe Sepsis and Septic Shock. The New England Journal of Medicine. 2013 Aug 29,;369(9):840-51. 37. Hamlin SK, Parmley CL, Hanneman SK. Microcirculatory Alterations in Shock States. Critical Care Nursing Clinics of North America. 2014 Sep;26(3):399-412. 38. Ince C. The microcirculation is the motor of sepsis. Critical care (London, England). 2005;9(Suppl. 4):S13-9. 39. De Backer D, Donadello K, Taccone F, Ospina-Tascon G, Salgado D, Vincent J. Microcirculatory alterations: potential mechanisms and implications for therapy. Ann Intensive Care. 2011 Dec;1(1):1-8. 40. Andersson U, Tracey KJ. Reflex Principles of Immunological Homeostasis. Annual Review of Immunology. 2012 Apr 23,;30(1):313-35. 41. Vanasco V, Saez T, Magnani ND, Pereyra L, Marchini T, Corach A, et al. Cardiac mitochondrial biogenesis in endotoxemia is not accompanied by mitochondrial function recovery. Free Radical Biology and Medicine. 2014 Dec;77:1-9. 42. Cimolai MC, Alvarez S, Bode C, Bugger H. Mitochondrial Mechanisms in Septic Cardiomyopathy. International journal of molecular sciences. 2015 Aug 3,;16(8):17763-78. 43. Francisco J. Romero-Bermejo, Manuel Ruiz-Bailen, Julian Gil-Cebrian, Maria J. Huertos-Ranchal. Sepsis-induced Cardiomyopathy. Current Cardiology Reviews. 2011 Aug;7(3):163-83. 44. Alvarez S, Vico T, Vanasco V. Cardiac dysfunction, mitochondrial architecture, energy production, and inflammatory pathways: Interrelated aspects in endotoxemia and sepsis. International Journal of Biochemistry and Cell Biology. 2016 Dec;81(Pt B):307-14. 45. Thiemermann C, Vane J. Inhibition of nitric oxide synthesis reduces the hypotension induced by bacterial lipopolysaccharides in the rat in vivo. European Journal of Pharmacology. 1990;182(3):591-5. 46. Southey A, Tanaka S, Murakami T, Miyoshi H, Ishizuka T, Sugiura M, et al. Pathophysiological role of nitric oxide in rat experimental colitis. International journal of immunopharmacology. 1997 Nov;19(11-12):669. 47. Coppo JA. Acuaporinas. Revista Veterinaria. 2008 Jul 1,;19(2):167. 48. De Acha Torrez R, Dolz Tejerina H, Dolz Tejerina V. Acuaporinas, implicaciones en modelos patológicos, de tratamiento y rol clínico. Revista Científica Ciencia Médica. 2015;18(2):38-42. 49. Verkman AS, Anderson MO, Papadopoulos MC. Aquaporins: important but elusive drug targets. Nature reviews. Drug discovery. 2014 Apr;13(4):259-77. 50. Papadopoulos M, Papadopoulos M, Saadoun S, Saadoun S, Verkman A, Verkman A. Aquaporins and cell migration. Pflugers Arch - Eur J Physiol. 2008 Jul;456(4):693-700. 51. Karlsson T, Glogauer M, Ellen RP, Loitto V, Magnusson K, Magalhaes MA. Aquaporin 9 phosphorylation mediates membrane localization and neutrophil polarization. Journal of Leukocyte Biology. 2011 Jan 1,;90(5):963-73. 52. Moon C, Rousseau R, Soria J, Hoque MO, Lee J, Jang SJ, et al. Aquaporin expression in human lymphocytes and dendritic cells. American Journal of Hematology. 2004 Mar;75(3):128-33. 53. Hara‐Chikuma M, Sugiyama Y, Kabashima K, Sohara E, Uchida S, Sasaki S, et al. Involvement of aquaporin‐7 in the cutaneous primary immune response through modulation of antigen uptake and migration in dendritic cells. The FASEB Journal. 2012 Jan;26(1):211-8. 54. Rump K, Unterberg M, Bergmann L, Bankfalvi A, Menon A, Schäfer S, et al. AQP5-1364A/C polymorphism and the AQP5 expression influence sepsis survival and immune cell migration: a prospective laboratory and patient study. Journal of translational medicine. 2016 Nov 21,;14(1):321-11. 55. Vieillard-Baron A, Caille V, Charron C, Belliard G, Page B, Jardin F. Actual incidence of global left ventricular hypokinesia in adult septic shock. Critical Care Medicine. 2008 Jun;36(6):1701-6. 56. Heyndrickx GR, Millard RW, McRitchie RJ, Maroko PR, Vatner SF. Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. The Journal of clinical investigation. 1975 Oct;56(4):978-85. 57. Weisel, R. D., Vito, L., Dennis, R. C., Valeri, C. R., & Hechtman, H. B. Myocardial depression during sepsis. The American Journal of Surgery. 1977:512- 21. 58. Vieillard-Baron A. Septic cardiomyopathy. Ann Intensive Care. 2011 Dec;1(1):1-7. 59. Ayuela Azcarate JM, Clau Terré F, Ochagavia A, Vicho Pereira R. Papel de la ecocardiografía en la monitorización hemodinámica de los pacientes críticos. Medicina Intensiva. 2011;36(3):220-32. 60. Cunnion RE, Schaer GL, Parker MM, Natanson C, Parrillo JE. The coronary circulation in human septic shock. Circulation. 1986 Apr;73(4):637-44. 61. Antonucci E, MD, Fiaccadori E, MD, Donadello K, MD, Taccone FS, MD, Franchi F, MD, Scolletta S, MD. Myocardial depression in sepsis: From pathogenesis to clinical manifestations and treatment. Journal of Critical Care. 2014;29(4):500-11. 62. Blanco J, Muriel-Bombín A, Sagredo V, Taboada F, Gandía F, Tamayo L, et al. Incidence, organ dysfunction and mortality in severe sepsis: a Spanish multicentre study. Critical Care. 2008 Dec 1,;12(6):R158. 63. McDonough KH, Virag JI. Sepsis-induced myocardial dysfunction and myocardial protection from ischemia/reperfusion injury. Frontiers in bioscience : a journal and virtual library. 2006 Jan 1,;11(1):23. 64. Smeding L, Plotz FB, Groeneveld ABJ, Kneijber MCJ. Structural Changes of the Heart During Severe Sepsis Or Septic Shock. Shock. 2012;37(5):449-56. 65. Larche J, Lancel S, Hassoun SM, Favory R, Decoster B, Marchetti P, et al. Inhibition of Mitochondrial Permeability Transition Prevents Sepsis-Induced Myocardial Dysfunction and Mortality. Journal of the American College of Cardiology. 2006 Jul 18,;48(2):377-85. 66. Levy R, Piel D, Acton P, Zhou R, Ferrari V, Karp J, et al. Evidence of myocardial hibernation in the septic heart. Critical Care Medicine. 2005 Dec;33(12):2752-6. 67. Piantadosi CA, Suliman HB. Transcriptional control of mitochondrial biogenesis and its interface with inflammatory processes. BBA - General Subjects. 2012 Apr;1820(4):532-41. 68. Dos Santos CC, Gattas DJ, Tsoporis JN, Smeding L, Kabir G, Masoom H, et al. Sepsis-induced myocardial depression is associated with transcriptional changes in energy metabolism and contractile related genes: A physiological and gene expression-based approach. Critical Care Medicine. 2010;38(3):894-902. 69. Stengl M, Bartak F, Sykora R, Chvojka J, Benes J, Krouzecky A, et al. Reduced L-type calcium current in ventricular myocytes from pigs with hyperdynamic septic shock. Critical Care Medicine. 2010 Feb;38(2):579-87. 70. Hochstadt A, MD, Meroz Y, MD, Landesberg, Giora, MD, DSc, MBA. Myocardial Dysfunction in Severe Sepsis and Septic Shock: More Questions Than Answers? Journal of Cardiothoracic and Vascular Anesthesia. 2011;25(3):526-35. 71. Repessé X, Charron C, Vieillard-Baron A. Evaluation of left ventricular systolic function revisited in septic shock. Critical care (London, England). 2013 Jul 4,;17(4):164. 72. Pulido JN, MD, Afessa B, MD, Masaki, Mitsuru, MD, PhD, Yuasa, Toshinori, MD, PhD, Gillespie S, DO, Herasevich, Vitaly, MD, PhD, et al. Clinical Spectrum, Frequency, and Significance of Myocardial Dysfunction in Severe Sepsis and Septic Shock. Mayo Clinic Proceedings. 2012;87(7):620-8. 73. Vieillard-Baron A, Caille V, Charron C, Belliard G, Page B, Jardin F. Actual incidence of global left ventricular hypokinesia in adult septic shock. Critical Care Medicine. 2008 Jun;36(6):1701-6. 74. Parker MM, Shelhamer JH, Bacharach SL, Green MV, Natanson C, Frederick TM, et al. Profound but Reversible Myocardial Depression in Patients with Septic Shock. Annals of internal medicine. 1984 Apr;100(4):483. 75. Guarracino F, Baldassarri R, Pinsky MR. Ventriculo-arterial decoupling in acutely altered hemodynamic states. Critical care (London, England). 2013 Mar 19,;17(2):213. 76. Jardin F, Fourme T, Page B, Loubières Y, Vieillard-Baron A, Beauchet A, et al. Persistent preload defect in severe sepsis despite fluid loading: A longitudinal echocardiographic study in patients with septic shock. Chest. 1999 Nov;116(5):1354. 77. Poelaert J, Declerck C, Vogelaers D, Colardyn F, Visser CA. Left ventricular systolic and diastolic function in septic shock. Intensive Care Med. 1997;23(5):553- 60. 78. Rajaram SS, Desai NK, Kalra A, Gajera M, Cavanaugh SK, Brampton W, et al. Pulmonary artery catheters for adult patients in intensive care. Cochrane Database of Systematic Reviews. 2013 Feb 28,;2018(12):CD003408. 79. Sandham JD, Douglas R, Hull D. A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients. ACC Current Journal Review. 2003;12(2):17. 80. The National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Pulmonary-Artery versus Central Venous Catheter to Guide Treatment of Acute Lung Injury. The New England Journal of Medicine. 2006 May 25,;354(21):2213-24. 81. Phua J, Lim T, Lee K. B-type natriuretic peptide: Issues for the intensivist and pulmonologist. Critical Care Medicine. 2005 Sep;33(9):2094-13. 82. Wang F, Wu Y, Tang L, Zhu W, Chen F, Xu T, et al. Brain natriuretic peptide for prediction of mortality in patients with sepsis: a systematic review and meta- analysis. Critical care (London, England). 2012 May 6,;16(3):R74. 83. Brett J, Gerlach H, Nawroth P, Steinberg S, Godman G, Stern D. Tumor necrosis factor/cachectin increases permeability of endothelial cell monolayers by a mechanism involving regulatory G proteins. The Journal of experimental medicine. 1989 Jun 1,;169(6):1977-91. 84. Bessière F, Khenifer S, Dubourg J, Durieu I, Lega J. Prognostic value of troponins in sepsis: a meta-analysis. Intensive Care Med. 2013 Jul;39(7):1181-9. 85. ver Elst KM, Spapen HD, Nguyen DN, Garbar C, Huyghens LP, Gorus FK. Cardiac Troponins I and T Are Biological Markers of Left Ventricular Dysfunction in Septic Shock. Clinical Chemistry. 2000 May 1,;46(5):650-7. 86. Mehta NJ, Khan IA, Gupta V, Jani K, Gowda RM, Smith PR. Cardiac troponin I predicts myocardial dysfunction and adverse outcome in septic shock. International Journal of Cardiology. 2004;95(1):13-7. 87. Arlati S, Brenna S, Prencipe L, Marocchi A, Casella GP, Lanzani M, et al. Myocardial necrosis in ICU patients with acute non-cardiac disease: a prospective study. Intensive Care Med. 2000 Jan;26(1):31-7. 88. Turner A, Tsamitros M, Bellomo R. Myocardial cell injury in septic shock. Crit Care Med. 1775 1999;27(9):-80. 89. Landesberg G, Jaffe A, Gilon D, Levin P, Goodman S, Abu-Baih A, et al. Troponin Elevation in Severe Sepsis and Septic Shock: The Role of Left Ventricular Diastolic Dysfunction and Right Ventricular Dilatation. Critical Care Medicine. 2014 Apr;42(4):790-800. 90. Landesberg G, Gilon D, Meroz Y, Georgieva M, Levin PD, Goodman S, et al. Diastolic dysfunction and mortality in severe sepsis and septic shock. European heart journal. 2012 Apr;33(7):895-903. 91. Hestenes S, Halvorsen P, Skulstad H, Remme E, Espinoza A, Hyler S, et al. Advantages of Strain Echocardiography in Assessment of Myocardial Function in Severe Sepsis: An Experimental Study. Critical Care Medicine. 2014 Jun;42(6):e432-40. 92. Werdan K, Oelke A, Hettwer S, Nuding S, Bubel S, Hoke R, et al. Septic cardiomyopathy: hemodynamic quantification, occurrence, and prognostic implications. Clin Res Cardiol. 2011 Aug;100(8):661-8. 93. Brown S, Pittman J, Hirshberg E, Jones J, Lanspa M, Kuttler K, et al. Diastolic dysfunction and mortality in early severe sepsis and septic shock: a prospective, observational echocardiography study. Crit Ultrasound J. 2012 Dec;4(1):1-9. 94. Bouhemad B, Nicolas-Robin A, Benois A, Lemaire S, Goarin J, Rouby J. Echocardiographic Doppler Assessment of Pulmonary Capillary Wedge Pressure in Surgical Patients with Postoperative Circulatory Shock and Acute Lung Injury. Anesthesiology. 2003 May;98(5):1091-100. 95. Laski ME. Structure-Function Relationships in Aquaporins. Seminars in Nephrology. 2006;26(3):189-99. 96. Cardiac aquaporin expression in humans, rats, and mice. American journal of physiology. Heart and circulatory physiology. 2006 Aug 1,;291(2):H705-13. 97. Mehlhorn U, Geissler HJ, Laine GA, Allen SJ. Myocardial fluid balance. Eur J Cardiothorac Surg. 2001 Dec;20(6):1220-30. 98. Hasler U, Vinciguerra M, Vandewalle A, Martin P, Féraille E. Dual Effects of Hypertonicity on Aquaporin-2 Expression in Cultured Renal Collecting Duct Principal Cells. Journal of the American Society of Nephrology : JASN. 2005 Jun;16(6):1571-82. 99. Wright AR, Rees SA. Cardiac Cell Volume: Crystal Clear or Murky Waters? A Comparison with Other Cell Types. Pharmacology and Therapeutics. 1998;80(1):89-121. 100. Chapter J. Homeostasis hídrica: vasopresina y acuaporinas. 101. Bergmann L, Nowak H, Siffert W, Peters J, Adamzik M, Koos B, et al. Major Adverse Kidney Events Are Associated with the Aquaporin 5 -1364A/C Promoter Polymorphism in Sepsis: A Prospective Validation Study. Cells. 2020 Apr 7,;9(4):904. 102. Article S. Biotipos genotipos y genotipos ¿De qué tipos somos? 103. Niño-Mantilla ME, Hormiga-Sánchez CM, Ordoñez IT, Villarreal-Ibarra VP, Ardila-Acuña L, Torres-Dueñas D. Mortalidad por sepsis e infecciones complicadas en el departamento de Santander, Colombia. Universidad y Salud. 2014 Dec 1,;16(2):139-49. 104. Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. The Lancet. 2020 Jan 18,;395(10219):200-11. 105. Sinapidis D, Kosmas V, Vittoros V, Koutelidakis IM, Pantazi A, Stefos A, et al. Progression into sepsis: an individualized process varying by the interaction of comorbidities with the underlying infection. BMC infectious diseases. 2018 May 29,;18(1):242. 106. Vincent J, Sakr Y, Sprung C, Ranieri V, Reinhart K, Gerlach H, et al. Sepsis in European intensive care units: Results of the SOAP study. Critical Care Medicine. 2006 Feb;34(2):344-53. 107. Vieillard-Baron A, Cecconi M. Understanding cardiac failure in sepsis. Intensive Care Med. 2014 Oct;40(10):1560-3. 108. Kakoullis L, Giannopoulou E, Papachristodoulou E, Pantzaris N, Karamouzos V, Kounis NG, et al. The utility of brain natriuretic peptides in septic shock as markers for mortality and cardiac dysfunction: A systematic review. International Journal of Clinical Practice. 2019 Jul;73(7):e13374,n/a. 109. Castillo JR, Zagler A, Carrillo-Jimenez R, Hennekens CH. Brain natriuretic peptide: a potential marker for mortality in septic shock. International Journal of Infectious Diseases. 2004;8(5):271-4. 110. Papanikolaou J, Makris D, Mpaka M, Palli E, Zygoulis P, Zakynthinos E. New insights into the mechanisms involved in B-type natriuretic peptide elevation and its prognostic value in septic patients. Critical care (London, England). 2014 May 9,;18(3):R94. 111. Turner, Krista L., MD, FACS, Moore, Laura J., MD, FACS, Todd, S. Rob, MD, FACS, Sucher, Joseph F., MD, FACS, Jones SA, MD, McKinley BA, PhD, et al. Identification of Cardiac Dysfunction in Sepsis with B-Type Natriuretic Peptide. Journal of the American College of Surgeons. 2011;213(1):139-46. 112. Landesberg G, Gilon D, Meroz Y, Georgieva M, Levin PD, Goodman S, et al. Diastolic dysfunction and mortality in severe sepsis and septic shock. European heart journal. 2012 Apr;33(7):895-903. 113. Rump K, Unterberg M, Dahlke A, Nowak H, Koos B, Bergmann L, et al. DNA methylation of a NF-κB binding site in the aquaporin 5 promoter impacts on mortality in sepsis. Scientific reports. 2019 Dec 6,;9(1):18511-11. 114. Nomura J, Hisatsune A, Miyata T, Isohama Y. The role of CpG methylation in cell type-specific expression of the aquaporin-5 gene. Biochemical and Biophysical Research Communications. 2007;353(4):1017-22. |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
dc.rights.creativecommons.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 Atribución-NoComercial-SinDerivadas 2.5 Colombia |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.spatial.spa.fl_str_mv |
Floridablanca (Santander, Colombia) |
dc.publisher.grantor.spa.fl_str_mv |
Universidad Autónoma de Bucaramanga UNAB |
dc.publisher.faculty.spa.fl_str_mv |
Facultad Ciencias de la Salud |
dc.publisher.program.spa.fl_str_mv |
Especialización en Medicina Interna |
institution |
Universidad Autónoma de Bucaramanga - UNAB |
bitstream.url.fl_str_mv |
https://repository.unab.edu.co/bitstream/20.500.12749/7193/3/license.txt https://repository.unab.edu.co/bitstream/20.500.12749/7193/4/2020_Tesis_David_Fernando_Correa_Gomez.pdf.jpg https://repository.unab.edu.co/bitstream/20.500.12749/7193/5/2020_Licencia_David_Fernando_Correa_Gomez.pdf.jpg https://repository.unab.edu.co/bitstream/20.500.12749/7193/1/2020_Tesis_David_Fernando_Correa_Gomez.pdf https://repository.unab.edu.co/bitstream/20.500.12749/7193/2/2020_Licencia_David_Fernando_Correa_Gomez.pdf |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 399431f7ff6e2272ff93da084dccbf6a 877f68b8f0f9b2e77964acaee102a5bb feac0ecf17561e7203e06da618aa31c6 430d8f7ee14ebc3e2ea7f3bc7f30e862 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB |
repository.mail.fl_str_mv |
repositorio@unab.edu.co |
_version_ |
1814277861770526720 |
spelling |
Torres Dueñas, Diego04828f3d-baa3-44d8-94b0-40406fe0bfa0-1Higuera Cobos, Juan Diego186d9eee-08a0-49b0-aa1d-20f6d2234f70-1Ochoa Vera, Miguel Enriquebf83ca83-93c9-401e-91d3-b424889e868f-1Correa Gómez, David Fernando10d292c8-a1d1-4a83-b677-bb235301c609-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000066885https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001692834https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000898465https://orcid.org/0000-0002-8006-7461https://orcid.org/0000-0003-2622-9412https://orcid.org/0000-0002-4552-3388https://www.scopus.com/authid/detail.uri?authorId=24282065800https://www.scopus.com/authid/detail.uri?authorId=36987156500https://www.researchgate.net/scientific-contributions/29124133_David_Fernando_Correa_Gomezhttps://www.researchgate.net/profile/Miguel_Ochoa7Floridablanca (Santander, Colombia)2020-08-22T01:28:30Z2020-08-22T01:28:30Z2020http://hdl.handle.net/20.500.12749/7193instname:Universidad Autónoma de Bucaramanga - UNABreponame:Repositorio Institucional UNABrepourl:https://repository.unab.edu.co“Estudio anidado al proyecto de investigación “Valor pronóstico de los polimorfismos de la Metaloproteinasa de Matriz extracelular-9 (MMP-9: SNP-1562C/T), su inhibidor tisular endógeno (TIMP-1: SNP-372T/C), MMP-2 (– 1575 A/G) y de la Acuaporina 5 (AQP5: SNP-1364A/C) en pacientes sépticos.” Introducción: La disfunción cardiovascular asociada a la sepsis tiene un papel fundamental a nivel diagnóstico y pronóstico. Varios biomarcadores se han estudiado para objetivar la disfunción cardiovascular en la sepsis tales como la troponina, péptidos natriuréticos y parámetros ecocardiográficos. Se han encontrado moléculas como las acuaporinas y su polimorfismo AQP-5 SNP- 1364A/C que se han asociado a la fisiopatología de la sepsis y que impactan en la mortalidad. Objetivo: Determinar la asociación entre polimorfismo de la AQP-5 SNP-1364A/C con la disfunción cardiovascular en pacientes adultos con sepsis. Materiales y Métodos: Estudio analítico de corte transversal anidado a la cohorte del estudio “Valor pronóstico de los polimorfismos de la Metaloproteinasa de Matriz extracelular-9 (MMP-9: SNP-1562C/T), su inhibidor tisular endógeno (TIMP-1: SNP- 372T/C), MMP-2 (– 1575 A/G) y de la Acuaporina 5 (AQP5: SNP-1364 A/C) en pacientes sépticos.” Se calculó la asociación del NT pro BNP, troponina I disfunción sistólica /diastólicas medidas por variables ecocardiográficas con el polimorfismo AQP-5 -SNP1364A/C en pacientes con sepsis. Resultados: Se analizó 540 registros. La mediana de edad de los pacientes fue de 59 años con un rango de edad entre 45-74 años. La mediana de NT-pro BNP fue 762 (RIQ: 215.5-3284), de la troponina I 0.1 (RIQ: 0.1- 0.1). El origen más frecuente de la sepsis fue tracto urinario (34.4%). El 14.63% de los pacientes fallecieron. La disfunción sistólica estuvo presente en 29.64 %, la disfunción diastólica 66.1%. El 76.67% fueron manejados en unidad de cuidados intensivo, 22.04% presentaron choque séptico. La asociación entre el polimorfismo de la AQP-5 -SNP1364A/C con la disfunción sistólica (RP:0.94; IC 95%= 0.64- 1.3 Valor P: 0.4503), disfunción diastólica, (RP: 0.93; IC 95%= 0 .75- 1.14 Valor P: 0.2909) Troponina I (RP: 1.2; IC 95%= 0 .75- 2.1 Valor P: 0.2006 ) y NT-proBNP (RP: 1.0; IC 95%= 0 .90- 1.15 Valor P: 0.4169). Conclusiones: No se encontró una asociación estadísticamente significativa entre el polimorfismo AQP-5 -SNP1364A/C con los biomarcadores de lesión miocárdica y variables ecocardiográficas en pacientes con sepsis. A partir de los hallazgos, la metodología de análisis y la evidencia es necesario reorientar las estrategias de investigación alrededor, de la relacion polimorfismo de la AQP-5 -SNP1364A/C con la disfunción cardiovascular incluyendo más pacientes para evaluar su asociación.RESUMEN 9 SUMMARY 11 INTRODUCCIÓN 12 PLANTEAMIENTO DEL PROBLEMA Y JUSTIFICACIÓN 15 MARCO TEÓRICO Y ESTADO DEL ARTE 18 Definición y epidemiologia de la Sepsis 18 Fisiopatología de la sepsis: 22 Disfunción cardiaca asociada a la sepsis 29 Disfunción cardiaca asociada a la sepsis, fisiopatología: 31 Alteraciones hemodinámicas en miocardiopatía séptica 34 Definición de cardiomiopatía séptica 35 Métodos diagnósticos de cardiomiopatía séptica: 37 Biomarcadores de origen cardiogénico 38 Manifestaciones ecocardiográficas 40 Acuaporinas conceptos generales 42 Acuaporinas de origen cardiaco: 43 Acuaporinas cardiacas asociada a la sepsis: 45 OBJETIVOS 47 Objetivos específicos 47 METODOLOGÍA PROPUESTA 48 Tipo de estudio: 48 Población 48 Muestra 49 Recolección de la información 50 Procesamiento y control de calidad 52 Procesamiento y análisis estadístico 52 CONSIDERACIONES ÉTICAS 54 RESULTADOS 56 Características de base 56 Desenlaces primarios 57 Asociación entre el polimorfismo de la AQP-5 -SNP1364A/C con la disfunción sistólica medida por ecocardiograma. 57 Asociación entre el polimorfismo de la AQP-5 -SNP1364A/C con la disfunción diastólica medida por ecocardiograma. 57 Asociación entre el polimorfismo de la AQP-5 -SNP1364A/C con la troponina I.................................................................................................................................................. 58 Asociación entre el polimorfismo de la AQP-5 -SNP1364A/C con el NT- pro BNP. .................................................................................................................................................. 58 DISCUSIÓN 59 CONCLUSIONES 66 BIBLIOGRAFÍA 67 TABLAS 78 FIGURAS 82 ANEXOS 83 CRONOGRAMA 85 CARTAS AUTORIZACIÓN 86EspecializaciónBackground: Cardiovascular dysfunction associated with sepsis plays a fundamental role at a diagnostic and prognostic level. Various cardiac biomarkers have been studied to identify the cardiovascular dysfunction in sepsis such as troponin, natriuretic peptides and echocardiographic parameters. Molecules have been found such as aquaporins and its polymorphism AQP-5 SNP-136A/C that have been associated to the pathophysiology of sepsis that impact mortality. Objective: An association was determined between polymorphism of the AQP-5 SNP-1364A/C molecule with cardiovascular dysfunction in adult patients with sepsis Methods: Analytic study in a transversal cut added to the cohort of study “Prognostic value of polymorphisms of Extracellular Matrix Metalloproteinase-9 (MMP-9: SNP- 1562C / T), its endogenous tissue inhibitor (TIMP-1: SNP-372T / C), MMP-2 (- 1575 A / G ) and Aquaporin 5 (AQP5: SNP-1364 A / C) in septic patients.” An association was calculated of the NT pro BNP, troponin I dysfunction systolic/diastolic measurements through echocardiographic variables with the polymorphism AQP-5-SNP1364A/C in patients with sepsis. Results: 540 charts were reviewed. The average age of the patients was 59 years with a range of age between 45-74 years. The average NT-pro BNP was 762 (RIQ: 215.5-3284), and the average of troponin I was 0.1 (RIQ: 0.1- 0.1). The most frequent origin of sepsis was via the urinary tract (34.4%). 14.63% of patients expired. Systolic dysfunction was present in 29.64% and diastolic dysfunction was 66.1%. 76.67% were managed in the intensive care unit, 22.04% presented with septic shock. The association between polymorphism of AQP-5 SNP-1364A/C with systolic dysfunction (RP:0.94; IC 95%= 0.64- 1.3; P Value: 0.4503), diastolic dysfunction, (RP: 0.93; IC 95%= 0 .75- 1.14; P value: 0.2909), Troponin I (RP: 1.2; IC 95%= 0 .75- 2.1; P Value: 0.2006) and NT-proBNP (RP: 1.0; IC 95%= 0 .90- 1.15;P Value: 0.4169). Conclusions: There was not a stadistically significant association found between polymorphism AQP-5 SNP-136A/C with the biomarkers of myocardial injury and echocardiographic variables in patients with sepsis. As a result of these findings, the methodology of analysis and evidence is necessary to reorient the strategies of research surrounding the relation between AQP-5 -SNP1364A/C with cardiovascular dysfunction including more patients to assess their association.application/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial-SinDerivadas 2.5 ColombiaAsociación entre el polimorfismo de la AQP-5 -1364A/C con la disfunción cardiovascular en pacientes con sepsisAssociation between AQP-5 -1364A / C polymorphism with cardiovascular dysfunction in patients with sepsisEspecialista en Medicina InternaUniversidad Autónoma de Bucaramanga UNABFacultad Ciencias de la SaludEspecialización en Medicina Internainfo:eu-repo/semantics/masterThesisTesishttp://purl.org/redcol/resource_type/TMInternal medicineMedicineMedical sciencesHealth sciencesSepsisTroponin IMortalityHeart failure systolicHeart failure diastolicVentricular dysfunctionSeptic shockAquaporin 5InfectionsHematologyHeartMedicina internaMedicinaCiencias médicasInfeccionesHematologíaCorazónCiencias de la saludSepsisTroponina INT pro BNPMortalidadInsuficiencia cardíaca sistólicaInsuficiencia cardiaca diastólicaDisfunción ventricularChoque sépticoAcuaporina 51. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, et al. Definitions for Sepsis and Organ Failure and Guidelines for the Use of Innovative Therapies in Sepsis. Chest. 1992 Jun;101(6):1644-55.2. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Intensive Care Med. 2003 Apr;29(4):530-8.3. Singer M. The new sepsis consensus definitions (Sepsis-3): the good, the not- so-bad, and the actually-quite-pretty. Intensive Care Med. 2016 Dec;42(12):2027- 9.4. Seymour CW, Liu VX, Iwashyna TJ, Brunkhorst FM, Rea TD, Scherag A, et al. Assessment of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016 Feb 23,;315(8):762-74.5. Parrillo JE, Parker MM, Natanson C, Suffredini AF, Danner RL, Cunnion RE, et al. Septic shock in humans. Advances in the understanding of pathogenesis, cardiovascular dysfunction, and therapy. Annals of internal medicine. 1990 Aug 1,;113(3):227.6. Nayer J, Aggarwal P, Galwankar S. Utility of point-of-care testing of natriuretic peptides (brain natriuretic peptide and n-terminal pro-brain natriuretic peptide) in the emergency department. International Journal of Critical Illness and Injury Science. 2014 Sep 1,;4(3):209-15.7. Bessière F, Khenifer S, Dubourg J, Durieu I, Lega J. Prognostic value of troponins in sepsis: a meta-analysis. Intensive Care Med. 2013 Jul;39(7):1181-9.8. Rump K, Adamzik M. Function of aquaporins in sepsis: a systematic review. Cell & bioscience. 2018;8(1):10.9. R. Madonna, J jiangi YJ gengi. Attenuated expression of gelsolin in association with induction of aquaporin-l and nitric oxide synthase in dysfunctional hearts of aging mice exposed to endotoxin. ;25.10. Montiel V, Montiel V, Leon Gomez E, Leon Gomez E, Bouzin C, Bouzin C, et al. Genetic deletion of aquaporin-1 results in microcardia and low blood pressure in mouse with intact nitric oxide-dependent relaxation, but enhanced prostanoids- dependent relaxation. Pflugers Arch - Eur J Physiol. 2014 Feb;466(2):237-51.11. Adamzik M, Frey UH, Möhlenkamp S, Scherag A, Waydhas C, Marggraf G, et al. Aquaporin 5 Gene Promoter −1364A/C Polymorphism Associated with 30-day Survival in Severe Sepsis. Anesthesiology. 2011 Apr;114(4):912-7.12. Adamzik M, Frey U, Bitzer K, Jakob H, Baba H, Schmieder R, et al. A novel- 1364A/C aquaporin 5 gene promoter polymorphism influences the responses to salt loading of the renin-angiotensin-aldosterone system and of blood pressure in young healthy men. Basic Res Cardiol. 2008 Nov;103(6):598-610.13. Martin Arsanios D, Barragan AF, Garzón DA, Cuervo Millán F, Pinzón J, Ramos Isaza E, et al. Actualización en sepsis y choque séptico: nuevas definiciones y evaluación clínica. Acta Colombiana de Cuidado Intensivo. 2017 Jul;17(3):158-83.14. Mayr FB, Yende S, Angus DC. Epidemiology of severe sepsis. Virulence. 2014 Jan 1,;5(1):4-11.15. National Inpatient Hospital Costs: The Most Expensive Conditions by Payer, 2011. The HCUP Report : Healthcare Cost and Utilization Project (HCUP): Statistical Briefs;2013 ASI 4186-20.160;Statistical Brief No. 160. 2013.16. Liu V, Escobar GJ, Greene JD, Soule J, Whippy A, Angus DC, et al. Hospital Deaths in Patients With Sepsis From 2 Independent Cohorts. JAMA. 2014 Jul 2,;312(1):90-2.17. Martin GS. Sepsis, severe sepsis and septic shock: changes in incidence, pathogens and outcomes. Expert Review of Anti-infective Therapy. 2012 Jun 1,;10(6):701-6.18. Paoli C, Reynolds M, Sinha M, Gitlin M, Crouser E. Epidemiology and Costs of Sepsis in the United States—An Analysis Based on Timing of Diagnosis and Severity Level. Critical Care Medicine. 2018 Dec;46(12):1889-97.19. Ortíz G, Dueñas C, Rodríguez F, Barrera L, de La Rosa G, Dennis R, et al. Epidemiology of sepsis in Colombian intensive care units. Biomedica : revista del Instituto Nacional de Salud. 2014 Jan;34(1):40.20. Rudiger A, Singer M. Mechanisms of sepsis-induced cardiac dysfunction. Critical Care Medicine. 2007 Jun;35(6):1599-608.21. Charpentier J, Luyt C, Fulla Y, Vinsonneau C, Cariou A, Grabar S, et al. Brain natriuretic peptide: A marker of myocardial dysfunction and prognosis during severe sepsis. Critical Care Medicine. 2004 Mar;32(3):660-5.22. Flynn A, Chokkalingam Mani B, Mather PJ. Sepsis-induced cardiomyopathy: a review of pathophysiologic mechanisms. Heart failure reviews. 2010 Nov;15(6):605-11.23. Francisco J. Romero-Bermejo, Manuel Ruiz-Bailen, Julian Gil-Cebrian, Maria J. Huertos-Ranchal. Sepsis-induced Cardiomyopathy. Current Cardiology Reviews. 2011 Aug;7(3):163-83.24. Angus DC, van der Poll T. Severe Sepsis and Septic Shock. New England journal of medicine. 2013;369(9):840-51.25. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, et al. Definitions for Sepsis and Organ Failure and Guidelines for the Use of Innovative Therapies in Sepsis. Chest. 1992 Jun;101(6):1644-55.26. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Critical Care Medicine. 2003 Jan 1,;31(4):1250-6.27. Rabello, Lígia Sarmet Cunha Farah, Rosolem MdM, Leal JV, Soares M, Lisboa T, Salluh JIF. Entendendo o conceito PIRO: da teoria à prática clínica - Parte 1. Revista Brasileira de Terapia Intensiva. 2009 Dec;21(4):425-31.28. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016 Feb 23,;315(8):801-10.29. Vincent J, Prof, Opal SM, Prof, Marshall JC, Prof, Tracey KJ, Prof. Sepsis definitions: time for change. Lancet, The. 2013;381(9868):774-5.30. Carré JE, Singer M. Cellular energetic metabolism in sepsis: the need for a systems approach. Biochimica et biophysica acta. 2008 Jul;1777(7-8):763.31. Laguado-Nieto MA, Amaris-Vergara AA, Vargas-Ordoñez JE, Rangel-Vera JA, García-León SJ, Centeno-Hurtado KT. Actualización en sepsis y choque séptico en adultos. Medunab. 2019 Jul 1,;22(2):213-27.32. Keeley A, Hine P, Nsutebu E. The recognition and management of sepsis and septic shock: a guide for non-intensivists. Postgraduate Medical Journal. 2017 Oct;93(1104):626-34.33. Niño-Mantilla ME, Hormiga-Sánchez CM, Ordoñez IT, Villarreal-Ibarra VP, Ardila-Acuña L, Torres-Dueñas D. Mortalidad por sepsis e infecciones complicadas en el departamento de Santander, Colombia. Universidad y Salud. 2014 Dec 1,;16(2):139-49.34. Huttunen R, Aittoniemi J. New concepts in the pathogenesis, diagnosis and treatment of bacteremia and sepsis. Journal of Infection. 2011;63(6):407-19.35. Andersson U, Tracey KJ. Reflex Principles of Immunological Homeostasis. Annual Review of Immunology. 2012 Apr 23,;30(1):313-35.36. Angus DC, van der Poll T. Severe Sepsis and Septic Shock. The New England Journal of Medicine. 2013 Aug 29,;369(9):840-51.37. Hamlin SK, Parmley CL, Hanneman SK. Microcirculatory Alterations in Shock States. Critical Care Nursing Clinics of North America. 2014 Sep;26(3):399-412.38. Ince C. The microcirculation is the motor of sepsis. Critical care (London, England). 2005;9(Suppl. 4):S13-9.39. De Backer D, Donadello K, Taccone F, Ospina-Tascon G, Salgado D, Vincent J. Microcirculatory alterations: potential mechanisms and implications for therapy. Ann Intensive Care. 2011 Dec;1(1):1-8.40. Andersson U, Tracey KJ. Reflex Principles of Immunological Homeostasis. Annual Review of Immunology. 2012 Apr 23,;30(1):313-35.41. Vanasco V, Saez T, Magnani ND, Pereyra L, Marchini T, Corach A, et al. Cardiac mitochondrial biogenesis in endotoxemia is not accompanied by mitochondrial function recovery. Free Radical Biology and Medicine. 2014 Dec;77:1-9.42. Cimolai MC, Alvarez S, Bode C, Bugger H. Mitochondrial Mechanisms in Septic Cardiomyopathy. International journal of molecular sciences. 2015 Aug 3,;16(8):17763-78.43. Francisco J. Romero-Bermejo, Manuel Ruiz-Bailen, Julian Gil-Cebrian, Maria J. Huertos-Ranchal. Sepsis-induced Cardiomyopathy. Current Cardiology Reviews. 2011 Aug;7(3):163-83.44. Alvarez S, Vico T, Vanasco V. Cardiac dysfunction, mitochondrial architecture, energy production, and inflammatory pathways: Interrelated aspects in endotoxemia and sepsis. International Journal of Biochemistry and Cell Biology. 2016 Dec;81(Pt B):307-14.45. Thiemermann C, Vane J. Inhibition of nitric oxide synthesis reduces the hypotension induced by bacterial lipopolysaccharides in the rat in vivo. European Journal of Pharmacology. 1990;182(3):591-5.46. Southey A, Tanaka S, Murakami T, Miyoshi H, Ishizuka T, Sugiura M, et al. Pathophysiological role of nitric oxide in rat experimental colitis. International journal of immunopharmacology. 1997 Nov;19(11-12):669.47. Coppo JA. Acuaporinas. Revista Veterinaria. 2008 Jul 1,;19(2):167.48. De Acha Torrez R, Dolz Tejerina H, Dolz Tejerina V. Acuaporinas, implicaciones en modelos patológicos, de tratamiento y rol clínico. Revista Científica Ciencia Médica. 2015;18(2):38-42.49. Verkman AS, Anderson MO, Papadopoulos MC. Aquaporins: important but elusive drug targets. Nature reviews. Drug discovery. 2014 Apr;13(4):259-77.50. Papadopoulos M, Papadopoulos M, Saadoun S, Saadoun S, Verkman A, Verkman A. Aquaporins and cell migration. Pflugers Arch - Eur J Physiol. 2008 Jul;456(4):693-700.51. Karlsson T, Glogauer M, Ellen RP, Loitto V, Magnusson K, Magalhaes MA. Aquaporin 9 phosphorylation mediates membrane localization and neutrophil polarization. Journal of Leukocyte Biology. 2011 Jan 1,;90(5):963-73.52. Moon C, Rousseau R, Soria J, Hoque MO, Lee J, Jang SJ, et al. Aquaporin expression in human lymphocytes and dendritic cells. American Journal of Hematology. 2004 Mar;75(3):128-33.53. Hara‐Chikuma M, Sugiyama Y, Kabashima K, Sohara E, Uchida S, Sasaki S, et al. Involvement of aquaporin‐7 in the cutaneous primary immune response through modulation of antigen uptake and migration in dendritic cells. The FASEB Journal. 2012 Jan;26(1):211-8.54. Rump K, Unterberg M, Bergmann L, Bankfalvi A, Menon A, Schäfer S, et al. AQP5-1364A/C polymorphism and the AQP5 expression influence sepsis survival and immune cell migration: a prospective laboratory and patient study. Journal of translational medicine. 2016 Nov 21,;14(1):321-11.55. Vieillard-Baron A, Caille V, Charron C, Belliard G, Page B, Jardin F. Actual incidence of global left ventricular hypokinesia in adult septic shock. Critical Care Medicine. 2008 Jun;36(6):1701-6.56. Heyndrickx GR, Millard RW, McRitchie RJ, Maroko PR, Vatner SF. Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. The Journal of clinical investigation. 1975 Oct;56(4):978-85.57. Weisel, R. D., Vito, L., Dennis, R. C., Valeri, C. R., & Hechtman, H. B. Myocardial depression during sepsis. The American Journal of Surgery. 1977:512- 21.58. Vieillard-Baron A. Septic cardiomyopathy. Ann Intensive Care. 2011 Dec;1(1):1-7.59. Ayuela Azcarate JM, Clau Terré F, Ochagavia A, Vicho Pereira R. Papel de la ecocardiografía en la monitorización hemodinámica de los pacientes críticos. Medicina Intensiva. 2011;36(3):220-32.60. Cunnion RE, Schaer GL, Parker MM, Natanson C, Parrillo JE. The coronary circulation in human septic shock. Circulation. 1986 Apr;73(4):637-44.61. Antonucci E, MD, Fiaccadori E, MD, Donadello K, MD, Taccone FS, MD, Franchi F, MD, Scolletta S, MD. Myocardial depression in sepsis: From pathogenesis to clinical manifestations and treatment. Journal of Critical Care. 2014;29(4):500-11.62. Blanco J, Muriel-Bombín A, Sagredo V, Taboada F, Gandía F, Tamayo L, et al. Incidence, organ dysfunction and mortality in severe sepsis: a Spanish multicentre study. Critical Care. 2008 Dec 1,;12(6):R158.63. McDonough KH, Virag JI. Sepsis-induced myocardial dysfunction and myocardial protection from ischemia/reperfusion injury. Frontiers in bioscience : a journal and virtual library. 2006 Jan 1,;11(1):23.64. Smeding L, Plotz FB, Groeneveld ABJ, Kneijber MCJ. Structural Changes of the Heart During Severe Sepsis Or Septic Shock. Shock. 2012;37(5):449-56.65. Larche J, Lancel S, Hassoun SM, Favory R, Decoster B, Marchetti P, et al. Inhibition of Mitochondrial Permeability Transition Prevents Sepsis-Induced Myocardial Dysfunction and Mortality. Journal of the American College of Cardiology. 2006 Jul 18,;48(2):377-85.66. Levy R, Piel D, Acton P, Zhou R, Ferrari V, Karp J, et al. Evidence of myocardial hibernation in the septic heart. Critical Care Medicine. 2005 Dec;33(12):2752-6.67. Piantadosi CA, Suliman HB. Transcriptional control of mitochondrial biogenesis and its interface with inflammatory processes. BBA - General Subjects. 2012 Apr;1820(4):532-41.68. Dos Santos CC, Gattas DJ, Tsoporis JN, Smeding L, Kabir G, Masoom H, et al. Sepsis-induced myocardial depression is associated with transcriptional changes in energy metabolism and contractile related genes: A physiological and gene expression-based approach. Critical Care Medicine. 2010;38(3):894-902.69. Stengl M, Bartak F, Sykora R, Chvojka J, Benes J, Krouzecky A, et al. Reduced L-type calcium current in ventricular myocytes from pigs with hyperdynamic septic shock. Critical Care Medicine. 2010 Feb;38(2):579-87.70. Hochstadt A, MD, Meroz Y, MD, Landesberg, Giora, MD, DSc, MBA. Myocardial Dysfunction in Severe Sepsis and Septic Shock: More Questions Than Answers? Journal of Cardiothoracic and Vascular Anesthesia. 2011;25(3):526-35.71. Repessé X, Charron C, Vieillard-Baron A. Evaluation of left ventricular systolic function revisited in septic shock. Critical care (London, England). 2013 Jul 4,;17(4):164.72. Pulido JN, MD, Afessa B, MD, Masaki, Mitsuru, MD, PhD, Yuasa, Toshinori, MD, PhD, Gillespie S, DO, Herasevich, Vitaly, MD, PhD, et al. Clinical Spectrum, Frequency, and Significance of Myocardial Dysfunction in Severe Sepsis and Septic Shock. Mayo Clinic Proceedings. 2012;87(7):620-8.73. Vieillard-Baron A, Caille V, Charron C, Belliard G, Page B, Jardin F. Actual incidence of global left ventricular hypokinesia in adult septic shock. Critical Care Medicine. 2008 Jun;36(6):1701-6.74. Parker MM, Shelhamer JH, Bacharach SL, Green MV, Natanson C, Frederick TM, et al. Profound but Reversible Myocardial Depression in Patients with Septic Shock. Annals of internal medicine. 1984 Apr;100(4):483.75. Guarracino F, Baldassarri R, Pinsky MR. Ventriculo-arterial decoupling in acutely altered hemodynamic states. Critical care (London, England). 2013 Mar 19,;17(2):213.76. Jardin F, Fourme T, Page B, Loubières Y, Vieillard-Baron A, Beauchet A, et al. Persistent preload defect in severe sepsis despite fluid loading: A longitudinal echocardiographic study in patients with septic shock. Chest. 1999 Nov;116(5):1354.77. Poelaert J, Declerck C, Vogelaers D, Colardyn F, Visser CA. Left ventricular systolic and diastolic function in septic shock. Intensive Care Med. 1997;23(5):553- 60.78. Rajaram SS, Desai NK, Kalra A, Gajera M, Cavanaugh SK, Brampton W, et al. Pulmonary artery catheters for adult patients in intensive care. Cochrane Database of Systematic Reviews. 2013 Feb 28,;2018(12):CD003408.79. Sandham JD, Douglas R, Hull D. A randomized, controlled trial of the use of pulmonary-artery catheters in high-risk surgical patients. ACC Current Journal Review. 2003;12(2):17.80. The National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Pulmonary-Artery versus Central Venous Catheter to Guide Treatment of Acute Lung Injury. The New England Journal of Medicine. 2006 May 25,;354(21):2213-24.81. Phua J, Lim T, Lee K. B-type natriuretic peptide: Issues for the intensivist and pulmonologist. Critical Care Medicine. 2005 Sep;33(9):2094-13.82. Wang F, Wu Y, Tang L, Zhu W, Chen F, Xu T, et al. Brain natriuretic peptide for prediction of mortality in patients with sepsis: a systematic review and meta- analysis. Critical care (London, England). 2012 May 6,;16(3):R74.83. Brett J, Gerlach H, Nawroth P, Steinberg S, Godman G, Stern D. Tumor necrosis factor/cachectin increases permeability of endothelial cell monolayers by a mechanism involving regulatory G proteins. The Journal of experimental medicine. 1989 Jun 1,;169(6):1977-91.84. Bessière F, Khenifer S, Dubourg J, Durieu I, Lega J. Prognostic value of troponins in sepsis: a meta-analysis. Intensive Care Med. 2013 Jul;39(7):1181-9.85. ver Elst KM, Spapen HD, Nguyen DN, Garbar C, Huyghens LP, Gorus FK. Cardiac Troponins I and T Are Biological Markers of Left Ventricular Dysfunction in Septic Shock. Clinical Chemistry. 2000 May 1,;46(5):650-7.86. Mehta NJ, Khan IA, Gupta V, Jani K, Gowda RM, Smith PR. Cardiac troponin I predicts myocardial dysfunction and adverse outcome in septic shock. International Journal of Cardiology. 2004;95(1):13-7.87. Arlati S, Brenna S, Prencipe L, Marocchi A, Casella GP, Lanzani M, et al. Myocardial necrosis in ICU patients with acute non-cardiac disease: a prospective study. Intensive Care Med. 2000 Jan;26(1):31-7.88. Turner A, Tsamitros M, Bellomo R. Myocardial cell injury in septic shock. Crit Care Med. 1775 1999;27(9):-80.89. Landesberg G, Jaffe A, Gilon D, Levin P, Goodman S, Abu-Baih A, et al. Troponin Elevation in Severe Sepsis and Septic Shock: The Role of Left Ventricular Diastolic Dysfunction and Right Ventricular Dilatation. Critical Care Medicine. 2014 Apr;42(4):790-800.90. Landesberg G, Gilon D, Meroz Y, Georgieva M, Levin PD, Goodman S, et al. Diastolic dysfunction and mortality in severe sepsis and septic shock. European heart journal. 2012 Apr;33(7):895-903.91. Hestenes S, Halvorsen P, Skulstad H, Remme E, Espinoza A, Hyler S, et al. Advantages of Strain Echocardiography in Assessment of Myocardial Function in Severe Sepsis: An Experimental Study. Critical Care Medicine. 2014 Jun;42(6):e432-40.92. Werdan K, Oelke A, Hettwer S, Nuding S, Bubel S, Hoke R, et al. Septic cardiomyopathy: hemodynamic quantification, occurrence, and prognostic implications. Clin Res Cardiol. 2011 Aug;100(8):661-8.93. Brown S, Pittman J, Hirshberg E, Jones J, Lanspa M, Kuttler K, et al. Diastolic dysfunction and mortality in early severe sepsis and septic shock: a prospective, observational echocardiography study. Crit Ultrasound J. 2012 Dec;4(1):1-9.94. Bouhemad B, Nicolas-Robin A, Benois A, Lemaire S, Goarin J, Rouby J. Echocardiographic Doppler Assessment of Pulmonary Capillary Wedge Pressure in Surgical Patients with Postoperative Circulatory Shock and Acute Lung Injury. Anesthesiology. 2003 May;98(5):1091-100.95. Laski ME. Structure-Function Relationships in Aquaporins. Seminars in Nephrology. 2006;26(3):189-99.96. Cardiac aquaporin expression in humans, rats, and mice. American journal of physiology. Heart and circulatory physiology. 2006 Aug 1,;291(2):H705-13.97. Mehlhorn U, Geissler HJ, Laine GA, Allen SJ. Myocardial fluid balance. Eur J Cardiothorac Surg. 2001 Dec;20(6):1220-30.98. Hasler U, Vinciguerra M, Vandewalle A, Martin P, Féraille E. Dual Effects of Hypertonicity on Aquaporin-2 Expression in Cultured Renal Collecting Duct Principal Cells. Journal of the American Society of Nephrology : JASN. 2005 Jun;16(6):1571-82.99. Wright AR, Rees SA. Cardiac Cell Volume: Crystal Clear or Murky Waters? A Comparison with Other Cell Types. Pharmacology and Therapeutics. 1998;80(1):89-121.100. Chapter J. Homeostasis hídrica: vasopresina y acuaporinas.101. Bergmann L, Nowak H, Siffert W, Peters J, Adamzik M, Koos B, et al. Major Adverse Kidney Events Are Associated with the Aquaporin 5 -1364A/C Promoter Polymorphism in Sepsis: A Prospective Validation Study. Cells. 2020 Apr 7,;9(4):904.102. Article S. Biotipos genotipos y genotipos ¿De qué tipos somos?103. Niño-Mantilla ME, Hormiga-Sánchez CM, Ordoñez IT, Villarreal-Ibarra VP, Ardila-Acuña L, Torres-Dueñas D. Mortalidad por sepsis e infecciones complicadas en el departamento de Santander, Colombia. Universidad y Salud. 2014 Dec 1,;16(2):139-49.104. Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. The Lancet. 2020 Jan 18,;395(10219):200-11.105. Sinapidis D, Kosmas V, Vittoros V, Koutelidakis IM, Pantazi A, Stefos A, et al. Progression into sepsis: an individualized process varying by the interaction of comorbidities with the underlying infection. BMC infectious diseases. 2018 May 29,;18(1):242.106. Vincent J, Sakr Y, Sprung C, Ranieri V, Reinhart K, Gerlach H, et al. Sepsis in European intensive care units: Results of the SOAP study. Critical Care Medicine. 2006 Feb;34(2):344-53.107. Vieillard-Baron A, Cecconi M. Understanding cardiac failure in sepsis. Intensive Care Med. 2014 Oct;40(10):1560-3.108. Kakoullis L, Giannopoulou E, Papachristodoulou E, Pantzaris N, Karamouzos V, Kounis NG, et al. The utility of brain natriuretic peptides in septic shock as markers for mortality and cardiac dysfunction: A systematic review. International Journal of Clinical Practice. 2019 Jul;73(7):e13374,n/a.109. Castillo JR, Zagler A, Carrillo-Jimenez R, Hennekens CH. Brain natriuretic peptide: a potential marker for mortality in septic shock. International Journal of Infectious Diseases. 2004;8(5):271-4.110. Papanikolaou J, Makris D, Mpaka M, Palli E, Zygoulis P, Zakynthinos E. New insights into the mechanisms involved in B-type natriuretic peptide elevation and its prognostic value in septic patients. Critical care (London, England). 2014 May 9,;18(3):R94.111. Turner, Krista L., MD, FACS, Moore, Laura J., MD, FACS, Todd, S. Rob, MD, FACS, Sucher, Joseph F., MD, FACS, Jones SA, MD, McKinley BA, PhD, et al. Identification of Cardiac Dysfunction in Sepsis with B-Type Natriuretic Peptide. Journal of the American College of Surgeons. 2011;213(1):139-46.112. Landesberg G, Gilon D, Meroz Y, Georgieva M, Levin PD, Goodman S, et al. Diastolic dysfunction and mortality in severe sepsis and septic shock. European heart journal. 2012 Apr;33(7):895-903.113. Rump K, Unterberg M, Dahlke A, Nowak H, Koos B, Bergmann L, et al. DNA methylation of a NF-κB binding site in the aquaporin 5 promoter impacts on mortality in sepsis. Scientific reports. 2019 Dec 6,;9(1):18511-11.114. Nomura J, Hisatsune A, Miyata T, Isohama Y. The role of CpG methylation in cell type-specific expression of the aquaporin-5 gene. Biochemical and Biophysical Research Communications. 2007;353(4):1017-22.LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.unab.edu.co/bitstream/20.500.12749/7193/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53open accessTHUMBNAIL2020_Tesis_David_Fernando_Correa_Gomez.pdf.jpg2020_Tesis_David_Fernando_Correa_Gomez.pdf.jpgIM Thumbnailimage/jpeg5197https://repository.unab.edu.co/bitstream/20.500.12749/7193/4/2020_Tesis_David_Fernando_Correa_Gomez.pdf.jpg399431f7ff6e2272ff93da084dccbf6aMD54open access2020_Licencia_David_Fernando_Correa_Gomez.pdf.jpg2020_Licencia_David_Fernando_Correa_Gomez.pdf.jpgIM Thumbnailimage/jpeg6969https://repository.unab.edu.co/bitstream/20.500.12749/7193/5/2020_Licencia_David_Fernando_Correa_Gomez.pdf.jpg877f68b8f0f9b2e77964acaee102a5bbMD55metadata only accessORIGINAL2020_Tesis_David_Fernando_Correa_Gomez.pdf2020_Tesis_David_Fernando_Correa_Gomez.pdfTesisapplication/pdf1406327https://repository.unab.edu.co/bitstream/20.500.12749/7193/1/2020_Tesis_David_Fernando_Correa_Gomez.pdffeac0ecf17561e7203e06da618aa31c6MD51open access2020_Licencia_David_Fernando_Correa_Gomez.pdf2020_Licencia_David_Fernando_Correa_Gomez.pdfLicenciaapplication/pdf330109https://repository.unab.edu.co/bitstream/20.500.12749/7193/2/2020_Licencia_David_Fernando_Correa_Gomez.pdf430d8f7ee14ebc3e2ea7f3bc7f30e862MD52metadata only access20.500.12749/7193oai:repository.unab.edu.co:20.500.12749/71932022-11-20 06:47:10.388open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |