Implementación del ataque Wormhole en redes de sensores inalámbricos con dispositivos XBee S2C
Una de las amenazas más peligrosas para las redes de sensores inalámbricos (WSN) son los ataques Wormholedebido a su capacidad de manipular datos de enrutamiento y aplicaciones en tiempo real y causar daños importantes a la integridad, disponibilidad y confidencialidad de los datos de una red. En es...
- Autores:
-
Ramírez Gómez, Julián
Vargas Montoya, Héctor Fernando
León Henao, Álvaro
- Tipo de recurso:
- Trabajo de grado de pregrado
- Fecha de publicación:
- 2019
- Institución:
- Universidad Autónoma de Bucaramanga - UNAB
- Repositorio:
- Repositorio UNAB
- Idioma:
- eng
spa
- OAI Identifier:
- oai:repository.unab.edu.co:20.500.12749/8831
- Acceso en línea:
- http://hdl.handle.net/20.500.12749/8831
- Palabra clave:
- Wormhole attack
ZigBee
IoT
Ciberseguridad
DSR
Wormhole attack
ZigBee
IoT
Cybersecurity
DSR
Technological development
Systems engineer
Research
Technological innovations
Innovaciones tecnológicas
Desarrollo tecnológico
Ingeniero de sistemas
Tecnología de la información y comunicación
Ataque de agujero de gusano
ZigBee
Internet de las cosas
Seguridad cibernética
DSR
- Rights
- License
- Derechos de autor 2019 Revista Colombiana de Computación
id |
UNAB2_60afd43d925d095939f57ea20af0ef37 |
---|---|
oai_identifier_str |
oai:repository.unab.edu.co:20.500.12749/8831 |
network_acronym_str |
UNAB2 |
network_name_str |
Repositorio UNAB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Implementación del ataque Wormhole en redes de sensores inalámbricos con dispositivos XBee S2C |
dc.title.translated.eng.fl_str_mv |
Implementing a Wormhole Attack on Wireless Sensor Networks with XBee S2C Devices |
title |
Implementación del ataque Wormhole en redes de sensores inalámbricos con dispositivos XBee S2C |
spellingShingle |
Implementación del ataque Wormhole en redes de sensores inalámbricos con dispositivos XBee S2C Wormhole attack ZigBee IoT Ciberseguridad DSR Wormhole attack ZigBee IoT Cybersecurity DSR Technological development Systems engineer Research Technological innovations Innovaciones tecnológicas Desarrollo tecnológico Ingeniero de sistemas Tecnología de la información y comunicación Ataque de agujero de gusano ZigBee Internet de las cosas Seguridad cibernética DSR |
title_short |
Implementación del ataque Wormhole en redes de sensores inalámbricos con dispositivos XBee S2C |
title_full |
Implementación del ataque Wormhole en redes de sensores inalámbricos con dispositivos XBee S2C |
title_fullStr |
Implementación del ataque Wormhole en redes de sensores inalámbricos con dispositivos XBee S2C |
title_full_unstemmed |
Implementación del ataque Wormhole en redes de sensores inalámbricos con dispositivos XBee S2C |
title_sort |
Implementación del ataque Wormhole en redes de sensores inalámbricos con dispositivos XBee S2C |
dc.creator.fl_str_mv |
Ramírez Gómez, Julián Vargas Montoya, Héctor Fernando León Henao, Álvaro |
dc.contributor.author.spa.fl_str_mv |
Ramírez Gómez, Julián Vargas Montoya, Héctor Fernando León Henao, Álvaro |
dc.contributor.googlescholar.spa.fl_str_mv |
Vargas Montoya, Héctor Fernando [FTQurlcAAAAJ] |
dc.contributor.orcid.spa.fl_str_mv |
Ramírez Gómez, Julián [0000-0003-1773-322X] Vargas Montoya, Héctor Fernando [0000-0002-0861-2883] León Henao, Álvaro [0000-0002-7022-0944] |
dc.contributor.researchgate.spa.fl_str_mv |
Vargas Montoya, Héctor Fernando [0000-0002-0861-2883] |
dc.subject.none.fl_str_mv |
Wormhole attack ZigBee IoT Ciberseguridad DSR |
topic |
Wormhole attack ZigBee IoT Ciberseguridad DSR Wormhole attack ZigBee IoT Cybersecurity DSR Technological development Systems engineer Research Technological innovations Innovaciones tecnológicas Desarrollo tecnológico Ingeniero de sistemas Tecnología de la información y comunicación Ataque de agujero de gusano ZigBee Internet de las cosas Seguridad cibernética DSR |
dc.subject.keywords.eng.fl_str_mv |
Wormhole attack ZigBee IoT Cybersecurity DSR Technological development Systems engineer Research |
dc.subject.keywords.spa.fl_str_mv |
Technological innovations |
dc.subject.lemb.spa.fl_str_mv |
Innovaciones tecnológicas Desarrollo tecnológico Ingeniero de sistemas Tecnología de la información y comunicación |
dc.subject.proposal.spa.fl_str_mv |
Ataque de agujero de gusano ZigBee Internet de las cosas Seguridad cibernética DSR |
description |
Una de las amenazas más peligrosas para las redes de sensores inalámbricos (WSN) son los ataques Wormholedebido a su capacidad de manipular datos de enrutamiento y aplicaciones en tiempo real y causar daños importantes a la integridad, disponibilidad y confidencialidad de los datos de una red. En este trabajo, se adopta un método empírico para lanzar un ataque de este tipo (que tiene éxito) en dispositivos IEEE 802.15.4/Zigbee con enrutamiento de origen habilitado, con ello encontrar formas para detectar ataques de tipo Wormholeen entornos reales. Se utiliza el framework KillerBeecon algoritmos para la manipulación de paquetes en un nodo malicioso, para capturar e inyectar paquetes maliciosos en los nodos víctimas. Además, se presenta y ejecuta una variante inversa del ataque Wormhole.Para evidenciar la realización de esta amenaza por parte del software atacante, el marco experimental incluye nodos XBee S2C. Los resultados incluyen recomendaciones, firmas de detección y trabajo futuro para enfrentar los ataquesWormholeque involucran protocolos de enrutamiento de fuentes como DSR. |
publishDate |
2019 |
dc.date.issued.none.fl_str_mv |
2019-05-28 |
dc.date.accessioned.none.fl_str_mv |
2020-10-27T00:19:58Z |
dc.date.available.none.fl_str_mv |
2020-10-27T00:19:58Z |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.local.spa.fl_str_mv |
Artículo |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_7a1f |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/CJournalArticle |
format |
http://purl.org/coar/resource_type/c_7a1f |
dc.identifier.issn.none.fl_str_mv |
2539-2115 1657-2831 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12749/8831 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Autónoma de Bucaramanga UNAB |
dc.identifier.repourl.none.fl_str_mv |
repourl:https://repository.unab.edu.co |
dc.identifier.doi.none.fl_str_mv |
10.29375/25392115.3606 |
identifier_str_mv |
2539-2115 1657-2831 instname:Universidad Autónoma de Bucaramanga UNAB repourl:https://repository.unab.edu.co 10.29375/25392115.3606 |
url |
http://hdl.handle.net/20.500.12749/8831 |
dc.language.iso.spa.fl_str_mv |
eng spa |
language |
eng spa |
dc.relation.none.fl_str_mv |
https://revistas.unab.edu.co/index.php/rcc/article/view/3606/3030 Https://revistas.unab.edu.co/index.php/rcc/article/view/3606/3006 |
dc.relation.uri.none.fl_str_mv |
https://revistas.unab.edu.co/index.php/rcc/article/view/3606 |
dc.relation.references.none.fl_str_mv |
Amish, P., & Vaghela, V. B. (2016). Detection and Prevention of Wormhole Attack in Wireless Sensor Network using AOMDV Protocol. Procedia Computer Science, 79, 700–707. https://doi.org/10.1016/j.procs.2016.03.092 Anwar, R. W., Bakhtiari, M., Zainal, A., Abdullah, A. H., & Qureshi, K. N. (2014). Security Issues and Attacks in Wireless Sensor Network. World Applied Sciences Journal, 30(10), 1224–1227. https://doi.org/10.5829/ idosi.wasj.2014.30.10.334 Bhagat, S., & Panse, T. (2016). A detection and prevention of wormhole attack in homogeneous Wireless sensor Network. In 2016 International Conference on ICT in Business Industry & Government (ICTBIG) (pp. 1–6). IEEE. https://doi.org/10.1109/ICTBIG.2016.7892696 Forster, A. (2016). Introduction to Wireless Sensor Networks. John Wiley & Sons. Gaware, A., & Dhonde, S. B. (2016). A Survey on Security Attacks in Wireless Sensor Networks. In 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom) (pp. 536–539). Goyal, S., Bhatia, T., & Verma, A. K. (2015). Wormhole and Sybil attack in WSN: A review. In 2015 2nd International Conference on Computing for Sustainable Global Development (INDIACom) (pp.1463– 1468). International Organization for Standardization. (2013). ISO/IEC 27001:2013. Retrieved January 17, 2019, from https://www.iso.org/obp/ui/#iso:std:iso-iec:27001:ed-2:v1:en Ioannou, C., & Vassiliou, V. (2016). The Impact of Network Layer Attacks in Wireless Sensor Networks. In 2016 International Workshop on Secure Internet of Things (SIoT) (pp. 20–28). IEEE. https://doi.org/10.1109/ SIoT.2016.009 Jao, M.-H., Hsieh, M.-H., He, K.-H., Liu, D.-H., Kuo, S.-Y., Chu, T.-H., & Chou, Y.-H. (2015). A Wormhole Attacks Detection Using a QTS Algorithm with MA in WSN. In 2015 IEEE International Conference on Systems, Man, and Cybernetics (pp. 20–25). IEEE. https://doi.org/10.1109/SMC.2015.17 Johnson, D. B. (2003). The dynamic source routing protocol for mobile ad hoc networks (DSR). Marian, S., & Mircea, P. (2015). Sybil attack type detection in Wireless Sensor networks based on received signal strength indicator detection scheme. In 2015 IEEE 10th Jubilee International Symposium on Applied Computational Intelligence and Informatics (pp. 121–124). IEEE. https://doi.org/10.1109/ SACI.2015.7208183 Patel, A., Patel, N., & Patel, R. (2015). Defending against Wormhole Attack in MANET. In 2015 Fifth International Conference on Communication Systems and Network Technologies (pp. 674–678). IEEE. https://doi. org/10.1109/CSNT.2015.253 Patle, A., & Gupta, N. (2016). Vulnerabilities, attack effect and different security scheme in WSN: A survey. In 2016 International Conference on ICT in Business Industry & Government (ICTBIG) (pp. 1–6). IEEE. https:// doi.org/10.1109/ICTBIG.2016.7892724 Purohit, R., & Sidhu, N. (2015). Wireless sensor network: Routing protocols and attacks- a survey. In 2015 2nd International Conference on Computing for Sustainable Global Development (INDIACom) (pp. 2130– 2135). Qazi, S., Raad, R., Mu, Y., & Susilo, W. (2013). Securing DSR against wormhole attacks in multirate ad hoc networks. Journal of Network and Computer Applications, 36(2), 582–592. https://doi.org/10.1016/j. jnca.2012.12.019 Rani, A., & Kumar, S. (2017). A survey of security in wireless sensor networks. In 2017 3rd International Conference on Computational Intelligence & Communication Technology (CICT) (pp. 1–5). IEEE. https://doi. org/10.1109/CIACT.2017.7977334 Sahmim, S., & Gharsellaoui, H. (2017). Privacy and Security in Internet-based Computing: Cloud Computing, Internet of Things, Cloud of Things: a review. Procedia Computer Science, 112, 1516–1522. https://doi. org/10.1016/j.procs.2017.08.050 Tomic, I., & McCann, J. A. (2017). A Survey of Potential Security Issues in Existing Wireless Sensor Network Protocols. IEEE Internet of Things Journal, 4(6), 1910–1923. https://doi.org/10.1109/JIOT.2017.2749883 Yang, S.-H. (2014). Wireless Sensor Networks. Principles, Design and Applications. London: Springer London. https://doi.org/10.1007/978-1-4471-5505-8 Yih-Chun Hu, Perrig, A., & Johnson, D. B. (2006). Wormhole attacks in wireless networks. IEEE Journal on Selected Areas in Communications, 24(2), 370–380. https://doi.org/10.1109/JSAC.2005.861394 Zheng, J., Qian, H., & Wang, L. (2015). Defense Technology of Wormhole Attacks Based on Node Connectivity. In 2015 IEEE International Conference on Smart City/SocialCom/SustainCom (SmartCity) (pp. 421–425). IEEE. https://doi.org/10.1109/SmartCity.2015.107 Zhu, C., Leung, V. C. M., Shu, L., & Ngai, E. C.-H. (2015). Green Internet of Things for Smart World. IEEE Access, 3, 2151–2162. https://doi.org/10.1109/ACCESS.2015.2497312 Zigbee Alliance. (2014). Standards: ZigBee Specification. Retrieved January 17, 2019, from https://www.zigbee.org/ download/standards-zigbee-specification/ |
dc.rights.none.fl_str_mv |
Derechos de autor 2019 Revista Colombiana de Computación |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.creativecommons.*.fl_str_mv |
Attribution-NonCommercial-ShareAlike 4.0 International |
rights_invalid_str_mv |
Derechos de autor 2019 Revista Colombiana de Computación http://creativecommons.org/licenses/by-nc-sa/4.0/ http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Attribution-NonCommercial-ShareAlike 4.0 International http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf Text/html |
dc.publisher.none.fl_str_mv |
Universidad Autónoma de Bucaramanga UNAB |
publisher.none.fl_str_mv |
Universidad Autónoma de Bucaramanga UNAB |
dc.source.none.fl_str_mv |
Revista Colombiana de Computación; Vol. 20 Núm. 1 (2019): Revista Colombiana de Computación; 41-58 |
institution |
Universidad Autónoma de Bucaramanga - UNAB |
bitstream.url.fl_str_mv |
https://repository.unab.edu.co/bitstream/20.500.12749/8831/1/2019_Articulo_Implementaci%c3%b3n%20del%20ataque%20Wormhole%20en%20redes%20de%20sensores%20inalambricos%20con%20dispositivos%20XBee%20S2C.pdf https://repository.unab.edu.co/bitstream/20.500.12749/8831/2/2019_Articulo_Implementaci%c3%b3n%20del%20ataque%20Wormhole%20en%20redes%20de%20sensores%20inalambricos%20con%20dispositivos%20XBee%20S2C.pdf.jpg |
bitstream.checksum.fl_str_mv |
a7990855e33ad8a75df22f732cc66dda 4a503daae139cb767c8bf53eb0c8e4c4 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB |
repository.mail.fl_str_mv |
repositorio@unab.edu.co |
_version_ |
1814278425003687936 |
spelling |
Ramírez Gómez, Juliánccbbeb12-5066-4419-956b-c0bd40588bb5Vargas Montoya, Héctor Fernandoadde759c-f12a-4cb9-8cab-a41a37c6a696León Henao, Álvaro71938621-7710-4815-95e0-5de2661e0e77Vargas Montoya, Héctor Fernando [FTQurlcAAAAJ]Ramírez Gómez, Julián [0000-0003-1773-322X]Vargas Montoya, Héctor Fernando [0000-0002-0861-2883]León Henao, Álvaro [0000-0002-7022-0944]Vargas Montoya, Héctor Fernando [0000-0002-0861-2883]2020-10-27T00:19:58Z2020-10-27T00:19:58Z2019-05-282539-21151657-2831http://hdl.handle.net/20.500.12749/8831instname:Universidad Autónoma de Bucaramanga UNABrepourl:https://repository.unab.edu.co10.29375/25392115.3606Una de las amenazas más peligrosas para las redes de sensores inalámbricos (WSN) son los ataques Wormholedebido a su capacidad de manipular datos de enrutamiento y aplicaciones en tiempo real y causar daños importantes a la integridad, disponibilidad y confidencialidad de los datos de una red. En este trabajo, se adopta un método empírico para lanzar un ataque de este tipo (que tiene éxito) en dispositivos IEEE 802.15.4/Zigbee con enrutamiento de origen habilitado, con ello encontrar formas para detectar ataques de tipo Wormholeen entornos reales. Se utiliza el framework KillerBeecon algoritmos para la manipulación de paquetes en un nodo malicioso, para capturar e inyectar paquetes maliciosos en los nodos víctimas. Además, se presenta y ejecuta una variante inversa del ataque Wormhole.Para evidenciar la realización de esta amenaza por parte del software atacante, el marco experimental incluye nodos XBee S2C. Los resultados incluyen recomendaciones, firmas de detección y trabajo futuro para enfrentar los ataquesWormholeque involucran protocolos de enrutamiento de fuentes como DSR.One of the most dangerous threats to Wireless Sensor Networks (WSN) are wormhole attacks, due to their capacity to manipulate routing and application data in real time and cause important damages to the integrity, availability, and confidentiality of network data. An empirical method to launch a successful attack on IEEE 802.15.4/Zigbee devices with source routing enabled is adopted in this work to find signatures for detecting wormhole attacks in real environments. It uses the KillerBee framework with algorithms for packet manipulation through a malicious node to capture and inject malicious packets in victim nodes. Besides, a reverse variant of wormhole attack is presented and executed. To evidence the realization of this threat by the attacking software, the experimental framework includes XBee S2C nodes. The results include recommendations, detection signatures and future work to face wormhole attacks involving source routing protocols like DSR.application/pdfText/htmlengspaUniversidad Autónoma de Bucaramanga UNABhttps://revistas.unab.edu.co/index.php/rcc/article/view/3606/3030Https://revistas.unab.edu.co/index.php/rcc/article/view/3606/3006https://revistas.unab.edu.co/index.php/rcc/article/view/3606Amish, P., & Vaghela, V. B. (2016). Detection and Prevention of Wormhole Attack in Wireless Sensor Network using AOMDV Protocol. Procedia Computer Science, 79, 700–707. https://doi.org/10.1016/j.procs.2016.03.092Anwar, R. W., Bakhtiari, M., Zainal, A., Abdullah, A. H., & Qureshi, K. N. (2014). Security Issues and Attacks in Wireless Sensor Network. World Applied Sciences Journal, 30(10), 1224–1227. https://doi.org/10.5829/ idosi.wasj.2014.30.10.334Bhagat, S., & Panse, T. (2016). A detection and prevention of wormhole attack in homogeneous Wireless sensor Network. In 2016 International Conference on ICT in Business Industry & Government (ICTBIG) (pp. 1–6). IEEE. https://doi.org/10.1109/ICTBIG.2016.7892696Forster, A. (2016). Introduction to Wireless Sensor Networks. John Wiley & Sons.Gaware, A., & Dhonde, S. B. (2016). A Survey on Security Attacks in Wireless Sensor Networks. In 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom) (pp. 536–539).Goyal, S., Bhatia, T., & Verma, A. K. (2015). Wormhole and Sybil attack in WSN: A review. In 2015 2nd International Conference on Computing for Sustainable Global Development (INDIACom) (pp.1463– 1468).International Organization for Standardization. (2013). ISO/IEC 27001:2013. Retrieved January 17, 2019, from https://www.iso.org/obp/ui/#iso:std:iso-iec:27001:ed-2:v1:enIoannou, C., & Vassiliou, V. (2016). The Impact of Network Layer Attacks in Wireless Sensor Networks. In 2016 International Workshop on Secure Internet of Things (SIoT) (pp. 20–28). IEEE. https://doi.org/10.1109/ SIoT.2016.009Jao, M.-H., Hsieh, M.-H., He, K.-H., Liu, D.-H., Kuo, S.-Y., Chu, T.-H., & Chou, Y.-H. (2015). A Wormhole Attacks Detection Using a QTS Algorithm with MA in WSN. In 2015 IEEE International Conference on Systems, Man, and Cybernetics (pp. 20–25). IEEE. https://doi.org/10.1109/SMC.2015.17Johnson, D. B. (2003). The dynamic source routing protocol for mobile ad hoc networks (DSR).Marian, S., & Mircea, P. (2015). Sybil attack type detection in Wireless Sensor networks based on received signal strength indicator detection scheme. In 2015 IEEE 10th Jubilee International Symposium on Applied Computational Intelligence and Informatics (pp. 121–124). IEEE. https://doi.org/10.1109/ SACI.2015.7208183Patel, A., Patel, N., & Patel, R. (2015). Defending against Wormhole Attack in MANET. In 2015 Fifth International Conference on Communication Systems and Network Technologies (pp. 674–678). IEEE. https://doi. org/10.1109/CSNT.2015.253Patle, A., & Gupta, N. (2016). Vulnerabilities, attack effect and different security scheme in WSN: A survey. In 2016 International Conference on ICT in Business Industry & Government (ICTBIG) (pp. 1–6). IEEE. https:// doi.org/10.1109/ICTBIG.2016.7892724Purohit, R., & Sidhu, N. (2015). Wireless sensor network: Routing protocols and attacks- a survey. In 2015 2nd International Conference on Computing for Sustainable Global Development (INDIACom) (pp. 2130– 2135).Qazi, S., Raad, R., Mu, Y., & Susilo, W. (2013). Securing DSR against wormhole attacks in multirate ad hoc networks. Journal of Network and Computer Applications, 36(2), 582–592. https://doi.org/10.1016/j. jnca.2012.12.019Rani, A., & Kumar, S. (2017). A survey of security in wireless sensor networks. In 2017 3rd International Conference on Computational Intelligence & Communication Technology (CICT) (pp. 1–5). IEEE. https://doi. org/10.1109/CIACT.2017.7977334Sahmim, S., & Gharsellaoui, H. (2017). Privacy and Security in Internet-based Computing: Cloud Computing, Internet of Things, Cloud of Things: a review. Procedia Computer Science, 112, 1516–1522. https://doi. org/10.1016/j.procs.2017.08.050Tomic, I., & McCann, J. A. (2017). A Survey of Potential Security Issues in Existing Wireless Sensor Network Protocols. IEEE Internet of Things Journal, 4(6), 1910–1923. https://doi.org/10.1109/JIOT.2017.2749883Yang, S.-H. (2014). Wireless Sensor Networks. Principles, Design and Applications. London: Springer London. https://doi.org/10.1007/978-1-4471-5505-8Yih-Chun Hu, Perrig, A., & Johnson, D. B. (2006). Wormhole attacks in wireless networks. IEEE Journal on Selected Areas in Communications, 24(2), 370–380. https://doi.org/10.1109/JSAC.2005.861394Zheng, J., Qian, H., & Wang, L. (2015). Defense Technology of Wormhole Attacks Based on Node Connectivity. In 2015 IEEE International Conference on Smart City/SocialCom/SustainCom (SmartCity) (pp. 421–425). IEEE. https://doi.org/10.1109/SmartCity.2015.107Zhu, C., Leung, V. C. M., Shu, L., & Ngai, E. C.-H. (2015). Green Internet of Things for Smart World. IEEE Access, 3, 2151–2162. https://doi.org/10.1109/ACCESS.2015.2497312Zigbee Alliance. (2014). Standards: ZigBee Specification. Retrieved January 17, 2019, from https://www.zigbee.org/ download/standards-zigbee-specification/Derechos de autor 2019 Revista Colombiana de Computaciónhttp://creativecommons.org/licenses/by-nc-sa/4.0/http://creativecommons.org/licenses/by-nc-nd/2.5/co/Attribution-NonCommercial-ShareAlike 4.0 Internationalhttp://purl.org/coar/access_right/c_abf2Revista Colombiana de Computación; Vol. 20 Núm. 1 (2019): Revista Colombiana de Computación; 41-58Wormhole attackZigBeeIoTCiberseguridadDSRWormhole attackZigBeeIoTCybersecurityDSRTechnological developmentSystems engineerResearchTechnological innovationsInnovaciones tecnológicasDesarrollo tecnológicoIngeniero de sistemasTecnología de la información y comunicaciónAtaque de agujero de gusanoZigBeeInternet de las cosasSeguridad cibernéticaDSRImplementación del ataque Wormhole en redes de sensores inalámbricos con dispositivos XBee S2CImplementing a Wormhole Attack on Wireless Sensor Networks with XBee S2C Devicesinfo:eu-repo/semantics/articleArtículohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/redcol/resource_type/CJournalArticlehttp://purl.org/coar/version/c_970fb48d4fbd8a85ORIGINAL2019_Articulo_Implementación del ataque Wormhole en redes de sensores inalambricos con dispositivos XBee S2C.pdf2019_Articulo_Implementación del ataque Wormhole en redes de sensores inalambricos con dispositivos XBee S2C.pdfArtículoapplication/pdf1348126https://repository.unab.edu.co/bitstream/20.500.12749/8831/1/2019_Articulo_Implementaci%c3%b3n%20del%20ataque%20Wormhole%20en%20redes%20de%20sensores%20inalambricos%20con%20dispositivos%20XBee%20S2C.pdfa7990855e33ad8a75df22f732cc66ddaMD51open accessTHUMBNAIL2019_Articulo_Implementación del ataque Wormhole en redes de sensores inalambricos con dispositivos XBee S2C.pdf.jpg2019_Articulo_Implementación del ataque Wormhole en redes de sensores inalambricos con dispositivos XBee S2C.pdf.jpgIM Thumbnailimage/jpeg13359https://repository.unab.edu.co/bitstream/20.500.12749/8831/2/2019_Articulo_Implementaci%c3%b3n%20del%20ataque%20Wormhole%20en%20redes%20de%20sensores%20inalambricos%20con%20dispositivos%20XBee%20S2C.pdf.jpg4a503daae139cb767c8bf53eb0c8e4c4MD52open access20.500.12749/8831oai:repository.unab.edu.co:20.500.12749/88312022-11-28 16:46:21.36open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.co |