Switch: un middleware para el desarrollo de aplicaciones IOT con interfaces basadas en voz

Internet se está desarrollando como un nuevo paradigma conocido como Internet de las Cosas (en inglés, Internet of Things - IoT) donde las personas y cosas cotidianas se conectan a Internet. Las cosas necesitan de interfaces digitales para facilitar la comunicación entre humanos y maquinas. Las inte...

Full description

Autores:
Manrique Hernández, Johana Andrea
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Autónoma de Bucaramanga - UNAB
Repositorio:
Repositorio UNAB
Idioma:
spa
OAI Identifier:
oai:repository.unab.edu.co:20.500.12749/3547
Acceso en línea:
http://hdl.handle.net/20.500.12749/3547
Palabra clave:
Voice processing systems
Automatic voice recognition
Systems engineering
Telematics
Investigations
New technologies
Internet of things
Speech recognition
Ubiquitous computing
Sistemas de procesamiento de voz
Reconocimiento automático de la voz
Ingeniería de sistemas
Telemática
Investigaciones
Nuevas tecnologías
Internet de las cosas
Middleware
Reconocimiento del habla
Computación ubicua
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UNAB2_5d1db4257df88a1abaffc94c8a189e3e
oai_identifier_str oai:repository.unab.edu.co:20.500.12749/3547
network_acronym_str UNAB2
network_name_str Repositorio UNAB
repository_id_str
dc.title.spa.fl_str_mv Switch: un middleware para el desarrollo de aplicaciones IOT con interfaces basadas en voz
dc.title.translated.eng.fl_str_mv Switch: a middleware for the development of IOT applications with voice-based interfaces
title Switch: un middleware para el desarrollo de aplicaciones IOT con interfaces basadas en voz
spellingShingle Switch: un middleware para el desarrollo de aplicaciones IOT con interfaces basadas en voz
Voice processing systems
Automatic voice recognition
Systems engineering
Telematics
Investigations
New technologies
Internet of things
Speech recognition
Ubiquitous computing
Sistemas de procesamiento de voz
Reconocimiento automático de la voz
Ingeniería de sistemas
Telemática
Investigaciones
Nuevas tecnologías
Internet de las cosas
Middleware
Reconocimiento del habla
Computación ubicua
title_short Switch: un middleware para el desarrollo de aplicaciones IOT con interfaces basadas en voz
title_full Switch: un middleware para el desarrollo de aplicaciones IOT con interfaces basadas en voz
title_fullStr Switch: un middleware para el desarrollo de aplicaciones IOT con interfaces basadas en voz
title_full_unstemmed Switch: un middleware para el desarrollo de aplicaciones IOT con interfaces basadas en voz
title_sort Switch: un middleware para el desarrollo de aplicaciones IOT con interfaces basadas en voz
dc.creator.fl_str_mv Manrique Hernández, Johana Andrea
dc.contributor.advisor.spa.fl_str_mv Talavera Portocarrero, Jesús Martín
Cabrera Cruz, José Daniel
dc.contributor.author.spa.fl_str_mv Manrique Hernández, Johana Andrea
dc.contributor.cvlac.none.fl_str_mv Cabrera Cruz, José Daniel [0000069035]
dc.contributor.googlescholar.none.fl_str_mv Cabrera Cruz, José Daniel [0000069035]
dc.contributor.orcid.none.fl_str_mv Cabrera Cruz, José Daniel [0000-0002-1815-5057]
dc.contributor.researchgate.none.fl_str_mv Cabrera Cruz, José Daniel [Jose_Cabrera_Cruz]
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación Pensamiento Sistémico - GPS
Grupo de Investigaciones Clínicas
dc.contributor.apolounab.none.fl_str_mv Cabrera Cruz, José Daniel [josé-daniel-cabrera-cruz]
dc.contributor.linkedin.none.fl_str_mv Cabrera Cruz, José Daniel [josé-daniel-cabrera-cruz-23900b10]
dc.subject.keywords.eng.fl_str_mv Voice processing systems
Automatic voice recognition
Systems engineering
Telematics
Investigations
New technologies
Internet of things
Speech recognition
Ubiquitous computing
topic Voice processing systems
Automatic voice recognition
Systems engineering
Telematics
Investigations
New technologies
Internet of things
Speech recognition
Ubiquitous computing
Sistemas de procesamiento de voz
Reconocimiento automático de la voz
Ingeniería de sistemas
Telemática
Investigaciones
Nuevas tecnologías
Internet de las cosas
Middleware
Reconocimiento del habla
Computación ubicua
dc.subject.lemb.spa.fl_str_mv Sistemas de procesamiento de voz
Reconocimiento automático de la voz
Ingeniería de sistemas
Telemática
Investigaciones
Nuevas tecnologías
dc.subject.proposal.spa.fl_str_mv Internet de las cosas
Middleware
Reconocimiento del habla
Computación ubicua
description Internet se está desarrollando como un nuevo paradigma conocido como Internet de las Cosas (en inglés, Internet of Things - IoT) donde las personas y cosas cotidianas se conectan a Internet. Las cosas necesitan de interfaces digitales para facilitar la comunicación entre humanos y maquinas. Las interfaces (mundo virtual) se deben proporcionar haciendo uso de una amplia gama de aplicaciones que abordan necesidades específicas de los diferentes dominios de aplicación. Sin embargo, al ser IoT un paradigma complejo, el desarrollo de estas aplicaciones se convierte en un desafío tecnológico. Actualmente, IoT está impactando la forma como se vive, pero la interacción entre hombre-máquina y máquina-máquina todavía está lejos de ser no intrusiva para el ser humano debido a que no se relacionan de manera natural. Para lograr esto, es necesario hacer uso de las capacidades básicas humanas como por ejemplo la voz, la cual ocurre naturalmente, pero aún no es ampliamente utilizada como parte del paradigma IoT. Con base en lo anterior, se propuso el diseño de SWITCH, una plataforma middleware con potencial de investigación que oculta la complejidad en el desarrollo de aplicaciones IoT, abordando los requisitos funcionales y no funcionales básicos que IoT demanda. SWITCH contiene módulos para el reconocimiento del habla, los cuales a través de las aplicaciones proveen interfaces de voz a los usuarios para facilitar la interacción natural con las cosas cotidianas.
publishDate 2018
dc.date.issued.none.fl_str_mv 2018
dc.date.accessioned.none.fl_str_mv 2020-06-26T21:35:50Z
dc.date.available.none.fl_str_mv 2020-06-26T21:35:50Z
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.local.spa.fl_str_mv Tesis
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TM
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12749/3547
dc.identifier.instname.spa.fl_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UNAB
url http://hdl.handle.net/20.500.12749/3547
identifier_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
reponame:Repositorio Institucional UNAB
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Manrique Hernández, Johana Andrea (2018). Switch: un Middleware para el desarrollo de aplicaciones IOT con interfaces basadas en voz. Bucaramanga (Colombia) : Universidad Autónoma de Bucaramanga UNAB
Abdmeziem, M. R., Tandjaoui, D., & Romdhani, I. (2016). Architecting the internet of things: state of the art. In Robots and Sensor Clouds (pp. 55–75). Springer.
Abreu, D. P., Velasquez, K., Curado, M., & Monteiro, E. (2017). A resilient Internet of Things architecture for smart cities. Annals of Telecommunications, 72(1–2), 19–30.
Adams, K. (2015). Non-functional Requirements in Systems Analysis and Design. Springer.
Addo, I. D., Ahamed, S. I., Yau, S. S., & Buduru, A. (2014). A reference architecture for improving security and privacy in Internet of Things applications. In Mobile Services (MS), 2014 IEEE International Conference on (pp. 108–115).
Afonso, S., Laranjo, I., Braga, J., Alves, V., & Neves, J. (2015). Multilingual Voice Control for Endoscopic Procedures. In Internet of Things. User-Centric IoT (pp. 229–235). Springer.
Akash, S. A., Menon, A., Gupta, A., Wakeel, M. W., Praveen, M. N., & Meena, P. (2014). A novel strategy for controlling the movement of a smart wheelchair using internet of things. In Global Humanitarian Technology Conference-South Asia Satellite (GHTC-SAS), 2014 IEEE (pp. 154–158).
Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys & Tutorials, 17(4), 2347–2376.
Al-Jaroodi, J., Aziz, J., & Mohamed, N. (2009). Middleware for RFID systems: An overview. In Computer Software and Applications Conference, 2009. COMPSAC’09. 33rd Annual IEEE International (Vol. 2, pp. 154–159).
Aldosari, H. M. (2015). A Proposed Security Layer for the Internet of Things Communication Reference Model. Procedia Computer Science, 65, 95–98.
Alhamedi, A. H., Snasel, V., Aldosari, H. M., & Abraham, A. (2014). Internet of things communication reference model. In Computational Aspects of Social Networks (CASoN), 2014 6th International Conference on (pp. 61–66).
Association for computing machinery ACM. (2012). CCS 2012.
Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer Networks, 54(15), 2787–2805. http://doi.org/doi.org/10.1016/j.comnet.2010.05.010
Baccaglini, E., Gavelli, M., Morello, M., & Vergori, P. (2015). A multimodal user interface using the webinos platform to connect a smart input device to the Web of Things. In Pervasive and Embedded Computing and Communication Systems (PECCS), 2015 International Conference on (pp. 1–5).
Bai, J. G., Wei, J. G., Chen, L., He, Y. Q., Wang, J. R., & Dang, J. W. (2013). Design and Implementation of a Housekeeper System. In Applied Mechanics and Materials (Vol. 437, pp. 394–398).
Banda, G., Chaitanya, K., & Mohan, H. (2015). An IoT protocol and framework for OEMs to make IoT-enabled devices forward compatible. In Signal-Image Technology & Internet-Based Systems (SITIS), 2015 11th International Conference on (pp. 824–832).
Bandyopadhyay, S., Sengupta, M., Maiti, S., & Dutta, S. (2011). A Survey of Middleware for Internet of Things. In A. Özcan, J. Zizka, & D. Nagamalai (Eds.), Recent Trends in Wireless and Mobile Networks: Third International Conferences, WiMo 2011 and CoNeCo 2011, Ankara, Turkey, June 26-28, 2011. Proceedings (pp. 288–296). Berlin, Heidelberg: Springer Berlin Heidelberg. http://doi.org/10.1007/978-3-642-21937-5_27
Bassi, A., Bauer, M., Fiedler, M., Kramp, T., van Kranenburg, R., Lange, S., & Meissner, S. (Eds.). (2013). Enabling Things to Talk. Berlin, Heidelberg: Springer Berlin Heidelberg. http://doi.org/10.1007/978-3-642-40403-0
Bell, A. G. (1881). The production of sound by radiant energy. Science, 2(48), 242– 253.
Bernabe, J. B., Hernández, J. L., Moreno, M. V., & Gomez, A. F. S. (2014). Privacypreserving security framework for a social-aware internet of things. In International conference on ubiquitous computing and ambient intelligence (pp. 408–415).
Berners-Lee, T., Cailliau, R., Groff, J.-R., & Pollermann, B. (1992). World-Wide Web: The Information Universe. Electronic Networking: Research, Applications and Policy, 2(1), 52–58.
Besacier, L., Barnard, E., Karpov, A., & Schultz, T. (2014). Automatic speech recognition for under-resourced languages: A survey. Speech Communication, 56, 85–100.
Blackstock, M., & Lea, R. (2016). FRED: A Hosted Data Flow Platform for the IoT. In Proceedings of the 1st International Workshop on Mashups of Things and APIs (p. 2:1--2:5). New York, NY, USA: ACM. http://doi.org/10.1145/3007203.3007214
Bochmann, G. V. (1990). Protocol specification for OSI. Computer Networks and ISDN Systems, 18(3), 167–184.
Borgia, E. (2014). The Internet of Things vision: Key features, applications and open issues. Computer Communications, 54, 1–31.
Bouraoui, H., Jerad, C., Chattopadhyay, A., & Hadj-Alouane, N. Ben. (2017). Hardware Architectures for Embedded Speaker Recognition Applications: A Survey. ACM Transactions on Embedded Computing Systems (TECS), 16(3), 78.
Boussard, M., Meissner, S., Nettsträter, A., Olivereau, A., Segura, A. S., Thoma, M.,& Walewski, J. W. (2013). A Process for Generating Concrete Architectures. In Enabling Things to Talk (pp. 45–111). Springer.
Brown, A. (2016). The role of voice in IoT applications. Retrieved from https://www.strategyanalytics.com/strategy-analytics/blogs/iot/2016/02/19/therole- of-voice-in-the-internet-of-things#.WD3wMPkrLcc
Buyya, R., & Dastjerdi, A. V. (2016). Internet of Things: Principles and paradigms. Elsevier.
Cavalcante, E., Alves, M. P., Batista, T., Delicato, F. C., & Pires, P. F. (2015). An analysis of reference architectures for the internet of things. In Proceedings of the 1st International Workshop on Exploring Component-based Techniques for Constructing Reference Architectures (pp. 13–16). Ccori, P. C., De Biase, L. C. C., Zuffo, M. K., & da Silva, F. S. C. (2016). Device discovery strategies for the IoT. In Consumer Electronics (ISCE), 2016 IEEE International Symposium on (pp. 97–98).
Chaqfeh, M. A., & Mohamed, N. (2012). Challenges in middleware solutions for the internet of things. In Collaboration Technologies and Systems (CTS), 2012 International Conference on (pp. 21–26).
Chelloug, S. A., & El-Zawawy, M. A. (2017). Middleware for Internet of Things: Survey and Challenges. Intelligent Automation & Soft Computing, 0(0), 1–9. http://doi.org/10.1080/10798587.2017.1290328
CISCO. (2014). The Internet of Things Reference Model. San José, California. Retrieved from http://cdn.iotwf.com/resources/71/IoT_Reference_Model_White_Paper_June_ 4_2014.pdf
CISCO. (2016). Internet of Things at a Glance. Retrieved from https://www.cisco.com/c/dam/en/us/products/collateral/se/internet-of-things/ata- glance-c45-731471.pdf
Colciencias. (2016). Tipología de proyectos calificados como de carácter cientifíco, tecnológico e innovación (Vol. 4).
Costa, N., Pereira, A., & Serodio, C. (2007). Virtual Machines Applied to WSN’s: The state-of-the-art and classification. In Systems and Networks Communications, 2007. ICSNC 2007. Second International Conference on (p. 50).
Coulouris, G. F., Dollimore, J., & Kindberg, T. (2005). Distributed systems: concepts and design (Fifth edit). Pearson education.
Davis, K. H., Biddulph, R., & Balashek, S. (1952). Automatic recognition of spoken digits. The Journal of the Acoustical Society of America, 24(6), 637–642.
De, S., Carrez, F., Reetz, E., Tönjes, R., & Wang, W. (2013). Test-enabled architecture for IoT service creation and provisioning. In The Future Internet Assembly (pp. 233–245).
Delicato, F. C., Pires, P. F., & Batista, T. (2017). The Resource Management Challenge in IoT. In Resource Management for Internet of Things (pp. 7–18). Springer.
Dino, J. (2008). Ames Technology Capabilities and Facilities. Retrieved January 5, 2017, from https://www.nasa.gov/centers/ames/research/technologyonepagers/ hc-computing.html
Eisenhauer, M., Rosengren, P., & Antolin, P. (2010). HYDRA: A Development Platform for Integrating Wireless Devices and Sensors into Ambient Intelligence Systems. In D. Giusto, A. Iera, G. Morabito, & L. Atzori (Eds.), The Internet of Things: 20th Tyrrhenian Workshop on Digital Communications (pp. 367–373). New York, NY: Springer New York. http://doi.org/10.1007/978-1-4419-1674- 7_36
European Lighthouse Integrated Project. (2016). Internet of things Architecture IoTA. Retrieved November 1, 2016, from http://www.iota. eu/public/requirements/copy_of_requirements
Evans, D. (2011). The Internet of Things: How the next evolution of the internet is changing everything. Retrieved from http://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FIN AL.pdf
EY. (2016). Internet of Things: Human machine interactions that unlock possibilities. United Kingdom. Retrieved from http://www.ey.com/Publication/vwLUAssets/ey-m-e-internet-ofthings/$ FILE/ey-m-e-internet-of-things.pdf
Fernandes, J., Nati, M., Loumis, N. S., Nikoletseas, S., Raptis, T. P., Krco, S., … Ziegler, S. (2015). IoT Lab: Towards co-design and IoT solution testing using the crowd. In Recent Advances in Internet of Things (RIoT), 2015 International Conference on (pp. 1–6).
Ferreira, H. G. C., Canedo, E. D., & de Sousa, R. T. (2013). IoT architecture to enable intercommunication through REST API and UPnP using IP, ZigBee and arduino. In 2013 IEEE 9th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob) (pp. 53–60). http://doi.org/10.1109/WiMOB.2013.6673340
Ferreira, H. G., & Sousa Junior, R. T. (2017). Security Analysis of a Proposed Internet of Things Middleware. Cluster Computing, 20(1), 651–660. http://doi.org/10.1007/s10586-017-0729-3
Formisano, C., Pavia, D., Gurgen, L., Yonezawa, T., Galache, J. A., Doguchi, K., & Matranga, I. (2015). The advantages of IoT and cloud applied to smart cities. In Future Internet of Things and Cloud (FiCloud), 2015 3rd International Conference on (pp. 325–332).
Fremantle, P. (2015). A reference architecture for Internet of Things. Sri Lanka. Retrieved from https://wso2.com/whitepapers/a-reference-architecture-for-theinternet- of-things/
Gartner Inc. (2014). IT Glossary. Retrieved January 4, 2017, from http://www.gartner.com/it-glossary/telematics/
Gartner Inc. (2016). Hype Cycle for Emerging Technologies, 2016.
Gartnet Inc. (2017). Hype Cycle for Emerging Technologies, 2017. USA.
Gilchrist, A. (2016). IIoT Reference Architecture. In Industry 4.0 (pp. 65–86). Springer.
Gluhak, A., Hauswirth, M., Krco, S., Stojanovic, N., Bauer, M., Nielsen, R. H., … Corcho, O. (2011). An Architectural Blueprint for a Real-World Internet. In Future Internet Assembly (pp. 67–80).
Gluhak, A., Munoz, L., Sotres, P., Sanchez, L., Roux, P., Sanchez, B., … Hernandez, A. L. (2013). Third Cycle Architecture Specification.
Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645–1660. http://doi.org/10.1016/j.future.2013.01.010
Guo, B., Zhang, D., Wang, Z., Yu, Z., & Zhou, X. (2013). Opportunistic IoT: exploring the harmonious interaction between human and the internet of things. Journal of Network and Computer Applications, 36(6), 1531–1539.
Hadim, S., & Mohamed, N. (2006). Middleware: Middleware challenges and approaches for wireless sensor networks. IEEE Distributed Systems Online, 7(3), 1.
Han, X., & Rashid, M. A. (2016). Gesture and voice control of Internet of Things. In Industrial Electronics and Applications (ICIEA), 2016 IEEE 11th Conference on (pp. 1791–1795).
Haridas, A. V., Marimuthu, R., & Sivakumar, V. G. (2018). A critical review and analysis on techniques of speech recognition: The road ahead. International Journal of Knowledge-Based and Intelligent Engineering Systems, 22(1), 39– 57.
Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, P. (2010). Metodología de la investigación. McGraw-Hill (Quinta Edi). México DF.
Höller, J., Tsiatsis, V., Mulligan, C., Karnouskos, S., Avesand, S., & Boyle, D. (2014a). Architecture Reference Model. In From Machine-To-Machine to the Internet of Things (pp. 167–197). Elsevier. http://doi.org/10.1016/B978-0-12- 407684-6.00007-3
Höller, J., Tsiatsis, V., Mulligan, C., Karnouskos, S., Avesand, S., & Boyle, D. (2014b). IoT Architecture – State of the Art. In From Machine-To-Machine to the Internet of Things (pp. 145–165). Elsevier. http://doi.org/10.1016/B978-0-12- 407684-6.00006-1
Höller, J., Tsiatsis, V., Mulligan, C., Karnouskos, S., Avesand, S., & Boyle, D. (2014c). IoT Reference Architecture. In From Machine-To-Machine to the Internet of Things (pp. 199–223). Elsevier. http://doi.org/10.1016/B978-0-12- 407684-6.00008-5
Hollosi, D., Nagy, G., Rodigast, R., Goetze, S., & Cousin, P. (2013). Enhancing wireless sensor networks with acoustic sensing technology: use cases, applications & experiments. In Green Computing and Communications (GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom), IEEE International Conference on and IEEE Cyber, Physical and Social Computing (pp. 335–342).
Huang, Z., Lin, K. J., & Shih, C. S. (2016). Supporting Edge Intelligence in Service- Oriented Smart IoT Applications. In 2016 IEEE International Conference on Computer and Information Technology (CIT) (pp. 492–499). Nadi, Fiji: IEEE. http://doi.org/10.1109/CIT.2016.40
Huang, Z., Tsai, B. L., Chou, J. J., Chen, C. Y., Chen, C. H., Chuang, C. C., … Shih, C. S. (2015). Context and user behavior aware intelligent home control using WuKong middleware. In 2015 IEEE International Conference on Consumer Electronics - Taiwan (pp. 302–303). Taipei, Taiwan: IEEE. http://doi.org/10.1109/ICCE-TW.2015.7216911
Hui, G. (2014). How the Internet of Things changes Business Models. Retrieved from https://hbr.org/2014/07/how-the-internet-of-things-changes-business-models
IEEE. (1990). IEEE Standard Glossary of Software Engineering Terminology.
IEEE Computer Society. (2014). Guide to the Software Engineering - Body of Knowledge. (P. Bourque & R. E. Fairley, Eds.)IEEE Computer Society (V3 ed.). http://doi.org/10.1234/12345678
Igure, V. M., Laughter, S. A., & Williams, R. D. (2006). Security issues in SCADA networks. Computers & Security, 25(7), 498–506.
International Organization for Standardization - ISO. Software product quality, 1 ISO/IEC 25010 34 (2011).
International Telecommunication Union - ITU. (2012). Recommendation ITU-T Y.2060: Overview of the Internet of things. Series Y: Global information infrastructure, internet protocol aspects and next-generation networks - Frameworks and functional architecture models. Retrieved from https://www.itu.int/rec/T-REC-Y.2060-201206-I
International Telecomunication Union - ITU. (2005). The Internet of Things. ITU Internet Reports.
Internet Society. (2015). The Internet of Things (IoT): An Overview. Geneva, Switzerland. Retrieved from https://www.internetsociety.org/doc/iot-overview
IoT-A Project. (2016). Requirements — IOT-A: Internet of Things Architecture.
IoT Analytics. (2016). IoT Platforms: Market Report 2015-2021. Hamburg, Germany. Retrieved from https://iot-analytics.com/product/iot-platforms-market-report- 2015-2021-3/
ISO/IEC/IEEE. (2010). ISO/IEC/IEEE 24765:2010 Systems and software engineering - Vocabulary.
ISO/IEC JTC 1. (2009). Study on Sensor Networks (Version 3).
ISO, & IEEE. Systems and software engineering - Vocabulary, ISO/IEC/IEEE 24765:2010(E) 1–418 (2010). http://doi.org/10.1109/IEEESTD.2010.5733835
Issarny, V., Georgantas, N., Hachem, S., Zarras, A., Vassiliadist, P., Autili, M., … Hamida, A. Ben. (2011). Service-oriented middleware for the Future Internet: state of the art and research directions. Journal of Internet Services and Applications, 2(1), 23–45. http://doi.org/10.1007/s13174-011-0021-3
Itakura, F. (1975). Minimum prediction residual principle applied to speech recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 23(1), 67–72.
Jelinek, F., Bahl, L., & Mercer, R. (1975). Design of a linguistic statistical decoder for the recognition of continuous speech. IEEE Transactions on Information Theory, 21(3), 250–256.
Juang, B.-H., Hou, W., & Lee, C.-H. (1997). Minimum classification error rate methods for speech recognition. IEEE Transactions on Speech and Audio Processing, 5(3), 257–265.
Juang, B.-H., & Rabiner, L. R. (2005). Automatic speech recognition-a brief history of the technology development. Elsevier Encyclopedia of Language and Linguistics, 1, 24.
Kaneko, M., Arima, K., Usami, M., Sugimura, H., Isshiki, M., & Koh, K. (2015). Development of information living integrated by home appliances and web services. In Consumer Electronics (GCCE), 2015 IEEE 4th Global Conference on (pp. 311–312).
Keh, H.-C., Shih, C.-C., Chou, K.-Y., Cheng, Y.-C., Ho, H.-K., Yu, P.-Y., & Huang, N.-C. (2014). Integrating unified communications and internet of m-health things with micro wireless physiological sensors, 17(3), 319–328.
Khurana, T. (2017). IPv6 Enables Global Mobile IoT Innovation and Proliferation. Retrieved February 26, 2017, from https://goo.gl/B1E1eF
Kim, J., Lee, J., Kim, J., & Yun, J. (2014). M2M service platforms: survey, issues, and enabling technologies. IEEE Communications Surveys & Tutorials, 16(1), 61–76.
Kostelnik, P., Sarnovsk, M., & Furdik, K. (2011). The semantic middleware for networked embedded systems applied in the internet of things and services domain. Scalable Computing: Practice and Experience, 12(3), 307–316.
Krco, S., Pokric, B., & Carrez, F. (2014). Designing IoT architecture (s): A European perspective. In Internet of Things (WF-IoT), 2014 IEEE World Forum on (pp. 79–84).
Kubitza, T. (2016). Using Speech for End User Programming of Smart Environments in the Internet of Thing. Germany.
Kubitza, T., & Schmidt, A. (2016). Rapid Interweaving of Smart Things with the meSchup IoT Platform. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct (pp. 313–316). New York, NY, USA: ACM. http://doi.org/10.1145/2968219.2971379
Kubitza, T., & Schmidt, A. (2017). meSchup: A Platform for Programming Interconnected Smart Things. Computer, 50(11), 38–49.
Kumar, A., Mishra, A., Makula, P., Karan, K., & Mittal, V. K. (2015). Smart Robotic Assistant. In Region 10 Symposium (TENSYMP), 2015 IEEE (pp. 25–28).
Lee, G. M., Crespi, N., Choi, J. K., & Boussard, M. (2013). Internet of things. In Evolution of Telecommunication Services (pp. 257–282). Springer.
Lee, I., & Lee, K. (2015). The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Business Horizons, 58(4), 431–440.
Lin, K. J., Reijers, N., Wang, Y. C., Shih, C. S., & Hsu, J. Y. (2013). Building Smart M2M Applications Using the WuKong Profile Framework. In 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing (pp. 1175–1180). Beijing, China: IEEE. http://doi.org/10.1109/GreenCom-iThings- CPSCom.2013.204
Loucopoulus, P., & Karakostas, V. (1995). System Requirements Engineering. McGraw-Hill, Inc.
Ma, M., Wang, P., & Chu, C.-H. (2013). Data management for internet of things: challenges, approaches and opportunities. In Green Computing and Communications (GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom), IEEE International Conference on and IEEE Cyber, Physical and Social Computing (pp. 1144–1151).
MacGillivray, C. (2016). Worldwide Internet of Things Forecast Update, 2015-2019.
Mamei, M., & Zambonelli, F. (2006). Field-based coordination for pervasive multiagent systems. Springer Science & Business Media.
Manrique, J. ., Rueda-Rueda, J., & Portocarrero, J. . (2016). Contrasting Internet of Things and Wireless Sensor Network from a conceptual overview. In 2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) (p. 6). IEEE Computer Society. http://doi.org/978-1-5090-5880-8/16
Marulli, F., Pareschi, R., & Baldacci, D. (2016). The internet of speaking things and its applications to Cultural Heritage. In Proceedings of IoTBD2016 Conference, SCITEPRESS.
McCulloch, W. S., & Pitts, W. (1990). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biology, 52(1), 99–115.
Meier, R., & Cahill, V. (2002). Steam: Event-based middleware for wireless ad hoc networks. In Distributed Computing Systems Workshops, 2002. Proceedings. 22nd International Conference on (pp. 639–644).
Mineraud, J., Mazhelis, O., Su, X., & Tarkoma, S. (2016). A gap analysis of Internetof-Things platforms. Computer Communications, 89, 5–16.
Miranda, J., Mäkitalo, N., Garcia-Alonso, J., Berrocal, J., Mikkonen, T., Canal, C., & Murillo, J. M. (2015). From the Internet of Things to the Internet of People. IEEE Internet Computing, 19(2), 40–47.
Mittal, Y., Toshniwal, P., Sharma, S., Singhal, D., Gupta, R., & Mittal, V. K. (2015). A voice-controlled multi-functional Smart Home Automation System. In India Conference (INDICON), 2015 Annual IEEE (pp. 1–6).
Monteiro, C., Oliveira, M., Bastos, J., Ramrekha, T., & Rodriguez, J. (2014). Social Networks and Internet of Things, an Overview of the SITAC Project. In International Wireless Internet Conference (pp. 191–196).
Mottola, L., Murphy, A. L., & Picco, G. Pietro. (2006). Pervasive games in a moteenabled virtual world using tuple space middleware. In Proceedings of 5th ACM SIGCOMM workshop on Network and system support for games (p. 29).
Nagata, K., Kato, Y., & Chiba, S. (1964). Spoken digit recognizer for Japanese language. In Audio Engineering Society Convention 16.
Nakagawa, E. Y., Oquendo, F., & Becker, M. (2012). Ramodel: A reference model for reference architectures. In Software Architecture (WICSA) and European Conference on Software Architecture (ECSA), 2012 Joint Working IEEE/IFIP Conference on (pp. 297–301).
Ngu, A. H., Gutierrez, M., Metsis, V., Nepal, S., & Sheng, Q. Z. (2017). IoT middleware: A survey on issues and enabling technologies. IEEE Internet of Things Journal, 4(1), 1–20.
Nia, A. M., & Jha, N. K. (2016). A comprehensive study of security of internet-ofthings. IEEE Transactions on Emerging Topics in Computing.
Nitti, M., Pilloni, V., Colistra, G., & Atzori, L. (2016). The virtual object as a major element of the internet of things: a survey. IEEE Communications Surveys & Tutorials, 18(2), 1228–1240.
Nuance Communications. (2016). Majority of Consumers Want Intelligent, Personalized Dialogue with Customer Service. Retrieved February 27, 2017, from https://www.nuance.com/about-us/newsroom/press-releases/opusintelligent- assistants-and-authentication-conference-2016.html
Papazoglou, M. P., Traverso, P., Dustdar, S., & Leymann, F. (2007). Service- Oriented Computing: State of the Art and Research Challenges. Computer, 40(11), 38–45. http://doi.org/10.1109/MC.2007.400
Park, K.-J., Zheng, R., & Liu, X. (2012). Cyber-physical systems: Milestones and research challenges. Computer Communications, 36(1), 1–7.
Patel, P., & Cassou, D. (2015). Enabling high-level application development for the Internet of Things. Journal of Systems and Software, 103, 62–84.
Payne, G. (2014). The Internet of Things brings a new era of connectivity… and a talking fridge. Retrieved February 27, 2017, from http://whatsnext.nuance.com/connected-living/the-internet-of-thingsconnectivity/
Petrolo, R., Mitton, N., Soldatos, J., Hauswirth, M., & Schiele, G. (2014). Integrating wireless sensor networks within a city cloud. In 2014 Eleventh Annual IEEE International Conference on Sensing, Communication, and Networking Workshops (SECON Workshops) (pp. 24–27). http://doi.org/10.1109/SECONW.2014.6979700
Pressman, R. (2010). Ingeniería del software: un enfoque práctico (Séptima Ed). México DF: McGraw-Hill Interamericana.
Rabiner, L., Levinson, S., Rosenberg, A., & Wilpon, J. (1979). Speaker-independent recognition of isolated words using clustering techniques. IEEE Transactions on Acoustics, Speech, and Signal Processing, 27(4), 336–349.
Rabiner, L. R., & Juang, B. H. (2004). Statistical methods for the recognition and understanding of speech. Encyclopedia of language and linguistics.
Ratkowski, A. (2016). Architecture for Internet of Things Analytical Ecosystem. In Dependability Engineering and Complex Systems (pp. 385–393). Springer.
Raveendran, V., Sanjeev, M. R., Paul, N., & Jijina, K. P. (2016). Speech only interface approach for personal computing environment. In Engineering and Technology (ICETECH), 2016 IEEE International Conference on (pp. 372–377).
Razzaque, M. A., Milojevic-Jevric, M., Palade, A., & Clarke, S. (2016). Middleware for internet of things: a survey. IEEE Internet of Things Journal, 3(1), 70–95.
Richards, M. (2015). Software architecture patterns. O’Reilly Media, Incorporated.
Robles, T., Alcarria, R., de Andrés, D. M., Navarro, M., Calero, R., Iglesias, S., & López, M. (2015). An IoT based reference architecture for smart water management processes. JoWUA, 6(1), 4–23.
Sakai, T., & Doshita, S. (1962). The Phonetic Typewriter. In IFIP Congress (Vol. 445, p. 449).
Sanchez, L., Muñoz, L., Galache, J. A., Sotres, P., Santana, J. R., Gutierrez, V., … others. (2014). SmartSantander: IoT experimentation over a smart city testbed. Computer Networks, 61, 217–238.
Sanchez, S., Angel Sicilia, M., & Rodriguez, D. (2012). Ingeniería del Sofware. Un enfoque desde la guía SWEBOK. Alfaomega.
Santos, J. F. M., Guessi, M., Galster, M., Feitosa, D., & Nakagawa, E. Y. (2013). A Checklist for Evaluation of Reference Architectures of Embedded Systems. In SEKE (Vol. 13, pp. 1–4).
Sarma, S., Brock, D., & Engels, D. (2001). Radio Frequency Identification and the Electronic Product Code. IEEE Micro, 21(6), 50–54. http://doi.org/10.1109/40.977758
Schauer, P., & Debita, G. (2015). Internet of Things Service Systems Architecture.
Seo, S., Kim, J., Yun, S., Huh, J., & Maeng, S. (2015). HePA: Hexagonal Platform Architecture for Smart Home Things. In Parallel and Distributed Systems (ICPADS), 2015 IEEE 21st International Conference on (pp. 181–189).
Shen, S., & Carugi, M. (2014). Standardizing the Internet of Things in an evolutionary way. In ITU Kaleidoscope Academic Conference: Living in a converged world- Impossible without standards?, Proceedings of the 2014 (pp. 249–254).
Shih, C. S., Lin, K. J., Chou, J. J., & Chuang, C. C. (2014). Autonomous Service Management for Location and Context Aware Service. In 2014 IEEE 7th International Conference on Service-Oriented Computing and Applications (pp. 246–251). Matsue, Japan: IEEE. http://doi.org/10.1109/SOCA.2014.10
Shin, D.-G., & Jun, M.-S. (2015). Home IoT device certification through speaker recognition. In Advanced Communication Technology (ICACT), 2015 17th International Conference on (pp. 600–603).
Shrouf, F., Ordieres, J., & Miragliotta, G. (2014). Smart factories in Industry 4.0: A review of the concept and of energy management approached in production based on the Internet of Things paradigm. In Industrial Engineering and Engineering Management (IEEM), 2014 IEEE International Conference on (pp. 697–701).
Singh, S., & Singh, N. (2015). Internet of Things (IoT): Security challenges, business opportunities & reference architecture for E-commerce. In Green Computing and Internet of Things (ICGCIoT), 2015 International Conference on (pp. 1577– 1581).
Sinha, S., Agrawal, S. S., & Jain, A. (2013). Continuous density Hidden Markov Model for context dependent Hindi speech recognition. In Advances in Computing, Communications and Informatics (ICACCI), 2013 International Conference on (pp. 1953–1958).
Soldatos, J., Kefalakis, N., Hauswirth, M., Serrano, M., Calbimonte, J.-P., Riahi, M., … Herzog, R. (2015). OpenIoT: Open Source Internet-of-Things in the Cloud. In I. Podnar Žarko, K. Pripužić, & M. Serrano (Eds.), Interoperability and Open- Source Solutions for the Internet of Things: International Workshop, FP7 OpenIoT Project, Held in Conjunction with SoftCOM 2014, Split, Croatia,September 18, 2014, Invited Papers (pp. 13–25). Cham: Springer International Publishing. http://doi.org/10.1007/978-3-319-16546-2_3
Sommerville, I. (2011). Ingeniería del Software. PEARSON.
Souza, R., & Cardozo, E. (2016). A Resource-Oriented Architecture for the Internet of Things (IoT). In Connectivity Frameworks for Smart Devices (pp. 99–116). Springer.
Stravoskoufos, K., Sotiriadis, S., & Petrakis, E. (2016). IoT-A and FIWARE: bridging the barriers between the cloud and IoT systems design and implementation. In Proc. 6th Int’l Conf. Cloud Computing and Services Science (pp. 146–153).
Sundmaeker, H., Guillemin, P., Friess, P., & Woelfflé, S. (2010). Vision and challenges for realising the Internet of Things. (Cluster of European research projects on the Internet of Things, Ed.)European Commision.
Suzuki, J., & Nakata, K. (1961). Recognition of Japanese vowels - Preliminary to the recognition of speech. Journal of the Radio Research Laboratory, 8(37), 193– 212.
Talavera Portocarrero, J. M. (2016). RAMSES: Reference Architectue of Self- Adaptative Middleware for Wireless Sensor Networks. Universidade Federal fo Rio de Janeiro.
Techopedia. (2017). What is Modeling Language?
The Institute of Electrical and Electronics Engineers. (2014). 2014 IEEE Thesaurus. Retrieved from http://www.ieee.org/documents/ieee_thesaurus_2013.pdf
Turck, M. (2018). Growing Pains: The 2018 Internet of Things Landscape. Retrieved April 2, 2018, from http://mattturck.com/iot2018/
United Nations Educational Scientific and Cultural Organization. (2016). UNESCO Thesaurus. Retrieved August 29, 2016, from http://vocabularies.unesco.org/
United Nations Educational Scientific and Cultural Organization (UNESCO). (2016). UNESCO Thesaurus. Retrieved April 11, 2016, from http://vocabularies.unesco.org/browser/thesaurus/en/
Unnibhavi, A. H., & Jangamshetti, D. S. (2016). A survey of speech recognition on south Indian Languages. In Signal Processing, Communication, Power and Embedded System (SCOPES), 2016 International Conference on (pp. 1122– 1126).
Usländer, T., & Epple, U. (2015). Reference model of industrie 4.0 service architectures. At-Automatisierungstechnik, 63(10), 858–866.
Verdouw, C. N., Robbemond, R. M., Verwaart, T., Wolfert, J., & Beulens, A. J. M. (2015). A reference architecture for IoT-based logistic information systems in agri-food supply chains. Enterprise Information Systems, 1–25.
Wang, M.-M., Cao, J.-N., Li, J., & Dasi, S. K. (2008). Middleware for wireless sensor networks: A survey. Journal of Computer Science and Technology, 23(3), 305– 326.
Weiser, M. (1991). The computer for the 21st century. Scientific American, 265(3), 94–104.
Weyrich, M., & Ebert, C. (2016). Reference architectures for the internet of things. IEEE Software, 33(1), 112–116.
Whittaker, E. W. D. (2000). Statistical language modelling for automatic speech recognition of Russian and English. University of Cambridge.
Wiener, N. (1961). Cybernetics or Control and Communication in the Animal and the Machine (Vol. 25). MIT press.
Wortmann, F., Flüchter, K., & others. (2015). Internet of things. Business & Information Systems Engineering, 57(3), 221–224. http://doi.org/10.1007/s12599-015-0383-3
Xu, B., Zhang, D., & Yang, W. (2012). Research on architecture of the Internet of Things for grain monitoring in storage. In Internet of Things (pp. 431–438). Springer.
Zhong, N., Ma, J., Huang, R., Liu, J., Yao, Y., Zhang, Y., & Chen, J. (2016). Research challenges and perspectives on Wisdom Web of Things (W2T). In Wisdom Web of Things (pp. 3–26). Springer.
Zhou, S., Liu, G., & Lin, C. (2012). An Embedded Voice Inquiry Experimental Platform for Temperature and Humidity Measurement on the Internet of Things. In Emerging Computation and Information teChnologies for Education (pp. 533– 539). Springer.
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
Atribución-NoComercial-SinDerivadas 2.5 Colombia
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spa.fl_str_mv Bucaramanga (Colombia)
dc.coverage.campus.spa.fl_str_mv UNAB Campus Bucaramanga
dc.publisher.grantor.spa.fl_str_mv Universidad Autónoma de Bucaramanga UNAB
dc.publisher.faculty.spa.fl_str_mv Facultad Ingeniería
dc.publisher.program.spa.fl_str_mv Maestría en Telemática
institution Universidad Autónoma de Bucaramanga - UNAB
bitstream.url.fl_str_mv https://repository.unab.edu.co/bitstream/20.500.12749/3547/1/2018_Tesis_Manrique_Hernandez_Johana_Andrea.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/3547/2/2018_Articulo_Manrique_Hernandez_Johana_Andrea.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/3547/3/Anexos.zip
https://repository.unab.edu.co/bitstream/20.500.12749/3547/4/2018_Licencia_Manrique_Hernandez_Johana_Andrea.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/3547/5/2018_Tesis_Manrique_Hernandez_Johana_Andrea.pdf.jpg
https://repository.unab.edu.co/bitstream/20.500.12749/3547/6/2018_Articulo_Manrique_Hernandez_Johana_Andrea.pdf.jpg
https://repository.unab.edu.co/bitstream/20.500.12749/3547/7/2018_Licencia_Manrique_Hernandez_Johana_Andrea.pdf.jpg
bitstream.checksum.fl_str_mv 3a6efc241bde87cc790eb0128767fba9
abe3ba4affc667e8da2a96969f707e44
6e6361ef5f0073c9a2dc5e599477e914
2055888903abbd35889b959bb4e0e90b
9558848de816001de35c7852c68531ae
badd6adc93308f2a9f2ea928a28e85f9
defe4fcfc73f80a0054b3331fcc00437
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB
repository.mail.fl_str_mv repositorio@unab.edu.co
_version_ 1814278001949409280
spelling Talavera Portocarrero, Jesús Martínf210e4ef-3f25-4517-8c74-c0d4c40188f9-1Cabrera Cruz, José Daniel15e242b3-32d0-4e32-95f6-2b6ca1abd623-1Manrique Hernández, Johana Andrea22b06d99-9e9c-4a4c-bb02-39e60bfeca45-1Cabrera Cruz, José Daniel [0000069035]Cabrera Cruz, José Daniel [0000069035]Cabrera Cruz, José Daniel [0000-0002-1815-5057]Cabrera Cruz, José Daniel [Jose_Cabrera_Cruz]Grupo de Investigación Pensamiento Sistémico - GPSGrupo de Investigaciones ClínicasCabrera Cruz, José Daniel [josé-daniel-cabrera-cruz]Cabrera Cruz, José Daniel [josé-daniel-cabrera-cruz-23900b10]2020-06-26T21:35:50Z2020-06-26T21:35:50Z2018http://hdl.handle.net/20.500.12749/3547instname:Universidad Autónoma de Bucaramanga - UNABreponame:Repositorio Institucional UNABInternet se está desarrollando como un nuevo paradigma conocido como Internet de las Cosas (en inglés, Internet of Things - IoT) donde las personas y cosas cotidianas se conectan a Internet. Las cosas necesitan de interfaces digitales para facilitar la comunicación entre humanos y maquinas. Las interfaces (mundo virtual) se deben proporcionar haciendo uso de una amplia gama de aplicaciones que abordan necesidades específicas de los diferentes dominios de aplicación. Sin embargo, al ser IoT un paradigma complejo, el desarrollo de estas aplicaciones se convierte en un desafío tecnológico. Actualmente, IoT está impactando la forma como se vive, pero la interacción entre hombre-máquina y máquina-máquina todavía está lejos de ser no intrusiva para el ser humano debido a que no se relacionan de manera natural. Para lograr esto, es necesario hacer uso de las capacidades básicas humanas como por ejemplo la voz, la cual ocurre naturalmente, pero aún no es ampliamente utilizada como parte del paradigma IoT. Con base en lo anterior, se propuso el diseño de SWITCH, una plataforma middleware con potencial de investigación que oculta la complejidad en el desarrollo de aplicaciones IoT, abordando los requisitos funcionales y no funcionales básicos que IoT demanda. SWITCH contiene módulos para el reconocimiento del habla, los cuales a través de las aplicaciones proveen interfaces de voz a los usuarios para facilitar la interacción natural con las cosas cotidianas.1. INTRODUCCIÓN 15 1.1 PROBLEMA DE INVESTIGACIÓN 20 1.1.1 Complejidad en el desarrollo de aplicaciones IoT 20 1.1.2 Las cosas no tienen interfaces digitales 21 1.2 MOTIVACIÓN 21 1.3 PREGUNTA E HIPÓTESIS DE INVESTIGACIÓN 24 1.4 OBJETIVOS 24 1.5 ORGANIZACIÓN DEL DOCUMENTO 25 2 MARCO REFERENCIAL 26 2.1 MARCO CONCEPTUAL 26 2.2 MARCO TEÓRICO 28 2.2.1 Ingeniería del software 29 2.2.2 Internet de las Cosas 30 2.2.3 Middleware 32 2.2.4 Reconocimiento del habla 32 2.3 ESTADO DEL ARTE 35 2.3.1 Planeación. 35 2.3.2 Conducción. 36 2.3.3 Reporte. 37 2.4 MARCO CONTEXTUAL 46 2.5 MARCO LEGAL Y POLÍTICO 47 2.5.1 ISO/IEC/IEEE 24765:2010(E) 47 2.5.2 ISO/IEC 25010:2011 48 2.6 CONSIDERACIONES FINALES DEL CAPÍTULO 48 3 ASPECTOS METODOLÓGICOS 50 3.1 TIPO Y ENFOQUE DE INVESTIGACIÓN 50 3.2 TÉCNICAS E INSTRUMENTOS DE RECOLECCIÓN DE INFORMACIÓN 50 3.3 FASES Y ACTIVIDADES 51 3.3.1 Fase 1: Análisis 51 3.3.2 Fase 2: Modelado 52 3.3.3 Fase 3: Evaluación 53 4 ANÁLISIS DE REQUISITOS 54 4.1 ARQUITECTURAS DE REFERENCIA PARA IOT 54 4.1.1 Planeación 54 4.1.2 Conducción. 55 4.1.3 Reporte 60 4.1.4 Conclusiones de las arquitecturas de referencia para IoT 72 4.2 ARQUITECTURAS MIDDLEWARE PARA IOT 73 4.2.1 Middleware basado en eventos 73 4.2.2 Middleware orientado a servicios 74 4.2.3 Middleware basado en agentes 74 4.2.4 Middleware basado en la nube 75 4.2.5 Middleware basado en actores 76 4.2.6 Conclusiones de las arquitecturas de referencia para IoT 76 4.3 SISTEMAS PARA EL RECONOCIMIENTO DEL HABLA - ASR 77 4.3.1 Planeación. 77 4.3.2 Conducción 78 4.3.3 Reporte 78 4.3.4 Conclusiones de los sistemas para el reconocimiento del habla 85 4.4 REQUISITOS FUNCIONALES Y NO FUNCIONALES DE UN MIDDLEWARE GENÉRICO PARA IOT 87 4.4.1 Requisitos funcionales 87 4.4.2 Requisitos no funcionales 89 4.5 REQUISITOS FUNCIONALES Y NO FUNCIONALES DEL MIDDLEWARE SWITCH 93 5 MODELADO DE LOS REQUISITOS DE SWITCH 97 5.1 MODELADO DEL DOMINIO DE SWITCH 97 5.1.1 Conceptos del modelado del dominio 98 5.1.2 Relaciones del modelado del dominio 99 5.2 ARQUITECTURA DE SWITCH 101 5.3 MODELADO DE LOS COMPONENTES DEL SOFTWARE 103 5.3.1 Vista funcional de SWITCH 103 5.3.2 Vista de servicios de SWITCH 107 5.3.3 Vista de procesos de SWITCH 109 5.3.4 Interfaz gráfica de usuario 113 5.4 MODELADO DE LOS COMPONENTES DEL HARDWARE 117 6 EVALUACIÓN DEL DISEÑO DE SWITCH 119 6.1 PRUEBA DE CONCEPTO 119 6.2 ANÁLISIS COMPARATIVO 122 6.3 INSTRUMENTO DE EVALUACIÓN 124 7. CONCLUSIONES 131 7.1 CONTRIBUCIONES REALIZADAS 132 7.2 TRABAJO FUTURO 133 REFERENCIAS 134MaestríaInternet is being developed as a new paradigm known as Internet of things where people and daily things are connecting to Internet. Things need digital interfaces to facilitate communication between human-machine. The interfaces (virtual world) must be provided making use of a wide range of applications that address specific needs for different domains. However, since IoT is a complex paradigm, the development of these applications becomes a challenging task. Currently, IoT is impacting the way how we live but the interaction between humanmachine and machine-machine is still far from being non-intrusive for people because they are not related in a natural way. To achieve this concern, it is necessary to make use of basic human capabilities such as voice, which occurs naturally, but is not yet widely used as part of the IoT paradigm. Based on the above, the SWITCH design was proposed, a middleware platform with research potential for hiding the complexity in the development of IoT applications, addressing the basic functional and non-functional requirements that IoT demands. SWITCH contains modules for speech recognition for providing voice interfaces to facilitate natural interaction with things.Modalidad Presencialapplication/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial-SinDerivadas 2.5 ColombiaSwitch: un middleware para el desarrollo de aplicaciones IOT con interfaces basadas en vozSwitch: a middleware for the development of IOT applications with voice-based interfacesMagíster en TelemáticaBucaramanga (Colombia)UNAB Campus BucaramangaUniversidad Autónoma de Bucaramanga UNABFacultad IngenieríaMaestría en Telemáticainfo:eu-repo/semantics/masterThesisTesishttp://purl.org/redcol/resource_type/TMVoice processing systemsAutomatic voice recognitionSystems engineeringTelematicsInvestigationsNew technologiesInternet of thingsSpeech recognitionUbiquitous computingSistemas de procesamiento de vozReconocimiento automático de la vozIngeniería de sistemasTelemáticaInvestigacionesNuevas tecnologíasInternet de las cosasMiddlewareReconocimiento del hablaComputación ubicuaManrique Hernández, Johana Andrea (2018). Switch: un Middleware para el desarrollo de aplicaciones IOT con interfaces basadas en voz. Bucaramanga (Colombia) : Universidad Autónoma de Bucaramanga UNABAbdmeziem, M. R., Tandjaoui, D., & Romdhani, I. (2016). Architecting the internet of things: state of the art. In Robots and Sensor Clouds (pp. 55–75). Springer.Abreu, D. P., Velasquez, K., Curado, M., & Monteiro, E. (2017). A resilient Internet of Things architecture for smart cities. Annals of Telecommunications, 72(1–2), 19–30.Adams, K. (2015). Non-functional Requirements in Systems Analysis and Design. Springer.Addo, I. D., Ahamed, S. I., Yau, S. S., & Buduru, A. (2014). A reference architecture for improving security and privacy in Internet of Things applications. In Mobile Services (MS), 2014 IEEE International Conference on (pp. 108–115).Afonso, S., Laranjo, I., Braga, J., Alves, V., & Neves, J. (2015). Multilingual Voice Control for Endoscopic Procedures. In Internet of Things. User-Centric IoT (pp. 229–235). Springer.Akash, S. A., Menon, A., Gupta, A., Wakeel, M. W., Praveen, M. N., & Meena, P. (2014). A novel strategy for controlling the movement of a smart wheelchair using internet of things. In Global Humanitarian Technology Conference-South Asia Satellite (GHTC-SAS), 2014 IEEE (pp. 154–158).Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys & Tutorials, 17(4), 2347–2376.Al-Jaroodi, J., Aziz, J., & Mohamed, N. (2009). Middleware for RFID systems: An overview. In Computer Software and Applications Conference, 2009. COMPSAC’09. 33rd Annual IEEE International (Vol. 2, pp. 154–159).Aldosari, H. M. (2015). A Proposed Security Layer for the Internet of Things Communication Reference Model. Procedia Computer Science, 65, 95–98.Alhamedi, A. H., Snasel, V., Aldosari, H. M., & Abraham, A. (2014). Internet of things communication reference model. In Computational Aspects of Social Networks (CASoN), 2014 6th International Conference on (pp. 61–66).Association for computing machinery ACM. (2012). CCS 2012.Atzori, L., Iera, A., & Morabito, G. (2010). The internet of things: A survey. Computer Networks, 54(15), 2787–2805. http://doi.org/doi.org/10.1016/j.comnet.2010.05.010Baccaglini, E., Gavelli, M., Morello, M., & Vergori, P. (2015). A multimodal user interface using the webinos platform to connect a smart input device to the Web of Things. In Pervasive and Embedded Computing and Communication Systems (PECCS), 2015 International Conference on (pp. 1–5).Bai, J. G., Wei, J. G., Chen, L., He, Y. Q., Wang, J. R., & Dang, J. W. (2013). Design and Implementation of a Housekeeper System. In Applied Mechanics and Materials (Vol. 437, pp. 394–398).Banda, G., Chaitanya, K., & Mohan, H. (2015). An IoT protocol and framework for OEMs to make IoT-enabled devices forward compatible. In Signal-Image Technology & Internet-Based Systems (SITIS), 2015 11th International Conference on (pp. 824–832).Bandyopadhyay, S., Sengupta, M., Maiti, S., & Dutta, S. (2011). A Survey of Middleware for Internet of Things. In A. Özcan, J. Zizka, & D. Nagamalai (Eds.), Recent Trends in Wireless and Mobile Networks: Third International Conferences, WiMo 2011 and CoNeCo 2011, Ankara, Turkey, June 26-28, 2011. Proceedings (pp. 288–296). Berlin, Heidelberg: Springer Berlin Heidelberg. http://doi.org/10.1007/978-3-642-21937-5_27Bassi, A., Bauer, M., Fiedler, M., Kramp, T., van Kranenburg, R., Lange, S., & Meissner, S. (Eds.). (2013). Enabling Things to Talk. Berlin, Heidelberg: Springer Berlin Heidelberg. http://doi.org/10.1007/978-3-642-40403-0Bell, A. G. (1881). The production of sound by radiant energy. Science, 2(48), 242– 253.Bernabe, J. B., Hernández, J. L., Moreno, M. V., & Gomez, A. F. S. (2014). Privacypreserving security framework for a social-aware internet of things. In International conference on ubiquitous computing and ambient intelligence (pp. 408–415).Berners-Lee, T., Cailliau, R., Groff, J.-R., & Pollermann, B. (1992). World-Wide Web: The Information Universe. Electronic Networking: Research, Applications and Policy, 2(1), 52–58.Besacier, L., Barnard, E., Karpov, A., & Schultz, T. (2014). Automatic speech recognition for under-resourced languages: A survey. Speech Communication, 56, 85–100.Blackstock, M., & Lea, R. (2016). FRED: A Hosted Data Flow Platform for the IoT. In Proceedings of the 1st International Workshop on Mashups of Things and APIs (p. 2:1--2:5). New York, NY, USA: ACM. http://doi.org/10.1145/3007203.3007214Bochmann, G. V. (1990). Protocol specification for OSI. Computer Networks and ISDN Systems, 18(3), 167–184.Borgia, E. (2014). The Internet of Things vision: Key features, applications and open issues. Computer Communications, 54, 1–31.Bouraoui, H., Jerad, C., Chattopadhyay, A., & Hadj-Alouane, N. Ben. (2017). Hardware Architectures for Embedded Speaker Recognition Applications: A Survey. ACM Transactions on Embedded Computing Systems (TECS), 16(3), 78.Boussard, M., Meissner, S., Nettsträter, A., Olivereau, A., Segura, A. S., Thoma, M.,& Walewski, J. W. (2013). A Process for Generating Concrete Architectures. In Enabling Things to Talk (pp. 45–111). Springer.Brown, A. (2016). The role of voice in IoT applications. Retrieved from https://www.strategyanalytics.com/strategy-analytics/blogs/iot/2016/02/19/therole- of-voice-in-the-internet-of-things#.WD3wMPkrLccBuyya, R., & Dastjerdi, A. V. (2016). Internet of Things: Principles and paradigms. Elsevier.Cavalcante, E., Alves, M. P., Batista, T., Delicato, F. C., & Pires, P. F. (2015). An analysis of reference architectures for the internet of things. In Proceedings of the 1st International Workshop on Exploring Component-based Techniques for Constructing Reference Architectures (pp. 13–16). Ccori, P. C., De Biase, L. C. C., Zuffo, M. K., & da Silva, F. S. C. (2016). Device discovery strategies for the IoT. In Consumer Electronics (ISCE), 2016 IEEE International Symposium on (pp. 97–98).Chaqfeh, M. A., & Mohamed, N. (2012). Challenges in middleware solutions for the internet of things. In Collaboration Technologies and Systems (CTS), 2012 International Conference on (pp. 21–26).Chelloug, S. A., & El-Zawawy, M. A. (2017). Middleware for Internet of Things: Survey and Challenges. Intelligent Automation & Soft Computing, 0(0), 1–9. http://doi.org/10.1080/10798587.2017.1290328CISCO. (2014). The Internet of Things Reference Model. San José, California. Retrieved from http://cdn.iotwf.com/resources/71/IoT_Reference_Model_White_Paper_June_ 4_2014.pdfCISCO. (2016). Internet of Things at a Glance. Retrieved from https://www.cisco.com/c/dam/en/us/products/collateral/se/internet-of-things/ata- glance-c45-731471.pdfColciencias. (2016). Tipología de proyectos calificados como de carácter cientifíco, tecnológico e innovación (Vol. 4).Costa, N., Pereira, A., & Serodio, C. (2007). Virtual Machines Applied to WSN’s: The state-of-the-art and classification. In Systems and Networks Communications, 2007. ICSNC 2007. Second International Conference on (p. 50).Coulouris, G. F., Dollimore, J., & Kindberg, T. (2005). Distributed systems: concepts and design (Fifth edit). Pearson education.Davis, K. H., Biddulph, R., & Balashek, S. (1952). Automatic recognition of spoken digits. The Journal of the Acoustical Society of America, 24(6), 637–642.De, S., Carrez, F., Reetz, E., Tönjes, R., & Wang, W. (2013). Test-enabled architecture for IoT service creation and provisioning. In The Future Internet Assembly (pp. 233–245).Delicato, F. C., Pires, P. F., & Batista, T. (2017). The Resource Management Challenge in IoT. In Resource Management for Internet of Things (pp. 7–18). Springer.Dino, J. (2008). Ames Technology Capabilities and Facilities. Retrieved January 5, 2017, from https://www.nasa.gov/centers/ames/research/technologyonepagers/ hc-computing.htmlEisenhauer, M., Rosengren, P., & Antolin, P. (2010). HYDRA: A Development Platform for Integrating Wireless Devices and Sensors into Ambient Intelligence Systems. In D. Giusto, A. Iera, G. Morabito, & L. Atzori (Eds.), The Internet of Things: 20th Tyrrhenian Workshop on Digital Communications (pp. 367–373). New York, NY: Springer New York. http://doi.org/10.1007/978-1-4419-1674- 7_36European Lighthouse Integrated Project. (2016). Internet of things Architecture IoTA. Retrieved November 1, 2016, from http://www.iota. eu/public/requirements/copy_of_requirementsEvans, D. (2011). The Internet of Things: How the next evolution of the internet is changing everything. Retrieved from http://www.cisco.com/c/dam/en_us/about/ac79/docs/innov/IoT_IBSG_0411FIN AL.pdfEY. (2016). Internet of Things: Human machine interactions that unlock possibilities. United Kingdom. Retrieved from http://www.ey.com/Publication/vwLUAssets/ey-m-e-internet-ofthings/$ FILE/ey-m-e-internet-of-things.pdfFernandes, J., Nati, M., Loumis, N. S., Nikoletseas, S., Raptis, T. P., Krco, S., … Ziegler, S. (2015). IoT Lab: Towards co-design and IoT solution testing using the crowd. In Recent Advances in Internet of Things (RIoT), 2015 International Conference on (pp. 1–6).Ferreira, H. G. C., Canedo, E. D., & de Sousa, R. T. (2013). IoT architecture to enable intercommunication through REST API and UPnP using IP, ZigBee and arduino. In 2013 IEEE 9th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob) (pp. 53–60). http://doi.org/10.1109/WiMOB.2013.6673340Ferreira, H. G., & Sousa Junior, R. T. (2017). Security Analysis of a Proposed Internet of Things Middleware. Cluster Computing, 20(1), 651–660. http://doi.org/10.1007/s10586-017-0729-3Formisano, C., Pavia, D., Gurgen, L., Yonezawa, T., Galache, J. A., Doguchi, K., & Matranga, I. (2015). The advantages of IoT and cloud applied to smart cities. In Future Internet of Things and Cloud (FiCloud), 2015 3rd International Conference on (pp. 325–332).Fremantle, P. (2015). A reference architecture for Internet of Things. Sri Lanka. Retrieved from https://wso2.com/whitepapers/a-reference-architecture-for-theinternet- of-things/Gartner Inc. (2014). IT Glossary. Retrieved January 4, 2017, from http://www.gartner.com/it-glossary/telematics/Gartner Inc. (2016). Hype Cycle for Emerging Technologies, 2016.Gartnet Inc. (2017). Hype Cycle for Emerging Technologies, 2017. USA.Gilchrist, A. (2016). IIoT Reference Architecture. In Industry 4.0 (pp. 65–86). Springer.Gluhak, A., Hauswirth, M., Krco, S., Stojanovic, N., Bauer, M., Nielsen, R. H., … Corcho, O. (2011). An Architectural Blueprint for a Real-World Internet. In Future Internet Assembly (pp. 67–80).Gluhak, A., Munoz, L., Sotres, P., Sanchez, L., Roux, P., Sanchez, B., … Hernandez, A. L. (2013). Third Cycle Architecture Specification.Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems, 29(7), 1645–1660. http://doi.org/10.1016/j.future.2013.01.010Guo, B., Zhang, D., Wang, Z., Yu, Z., & Zhou, X. (2013). Opportunistic IoT: exploring the harmonious interaction between human and the internet of things. Journal of Network and Computer Applications, 36(6), 1531–1539.Hadim, S., & Mohamed, N. (2006). Middleware: Middleware challenges and approaches for wireless sensor networks. IEEE Distributed Systems Online, 7(3), 1.Han, X., & Rashid, M. A. (2016). Gesture and voice control of Internet of Things. In Industrial Electronics and Applications (ICIEA), 2016 IEEE 11th Conference on (pp. 1791–1795).Haridas, A. V., Marimuthu, R., & Sivakumar, V. G. (2018). A critical review and analysis on techniques of speech recognition: The road ahead. International Journal of Knowledge-Based and Intelligent Engineering Systems, 22(1), 39– 57.Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, P. (2010). Metodología de la investigación. McGraw-Hill (Quinta Edi). México DF.Höller, J., Tsiatsis, V., Mulligan, C., Karnouskos, S., Avesand, S., & Boyle, D. (2014a). Architecture Reference Model. In From Machine-To-Machine to the Internet of Things (pp. 167–197). Elsevier. http://doi.org/10.1016/B978-0-12- 407684-6.00007-3Höller, J., Tsiatsis, V., Mulligan, C., Karnouskos, S., Avesand, S., & Boyle, D. (2014b). IoT Architecture – State of the Art. In From Machine-To-Machine to the Internet of Things (pp. 145–165). Elsevier. http://doi.org/10.1016/B978-0-12- 407684-6.00006-1Höller, J., Tsiatsis, V., Mulligan, C., Karnouskos, S., Avesand, S., & Boyle, D. (2014c). IoT Reference Architecture. In From Machine-To-Machine to the Internet of Things (pp. 199–223). Elsevier. http://doi.org/10.1016/B978-0-12- 407684-6.00008-5Hollosi, D., Nagy, G., Rodigast, R., Goetze, S., & Cousin, P. (2013). Enhancing wireless sensor networks with acoustic sensing technology: use cases, applications & experiments. In Green Computing and Communications (GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom), IEEE International Conference on and IEEE Cyber, Physical and Social Computing (pp. 335–342).Huang, Z., Lin, K. J., & Shih, C. S. (2016). Supporting Edge Intelligence in Service- Oriented Smart IoT Applications. In 2016 IEEE International Conference on Computer and Information Technology (CIT) (pp. 492–499). Nadi, Fiji: IEEE. http://doi.org/10.1109/CIT.2016.40Huang, Z., Tsai, B. L., Chou, J. J., Chen, C. Y., Chen, C. H., Chuang, C. C., … Shih, C. S. (2015). Context and user behavior aware intelligent home control using WuKong middleware. In 2015 IEEE International Conference on Consumer Electronics - Taiwan (pp. 302–303). Taipei, Taiwan: IEEE. http://doi.org/10.1109/ICCE-TW.2015.7216911Hui, G. (2014). How the Internet of Things changes Business Models. Retrieved from https://hbr.org/2014/07/how-the-internet-of-things-changes-business-modelsIEEE. (1990). IEEE Standard Glossary of Software Engineering Terminology.IEEE Computer Society. (2014). Guide to the Software Engineering - Body of Knowledge. (P. Bourque & R. E. Fairley, Eds.)IEEE Computer Society (V3 ed.). http://doi.org/10.1234/12345678Igure, V. M., Laughter, S. A., & Williams, R. D. (2006). Security issues in SCADA networks. Computers & Security, 25(7), 498–506.International Organization for Standardization - ISO. Software product quality, 1 ISO/IEC 25010 34 (2011).International Telecommunication Union - ITU. (2012). Recommendation ITU-T Y.2060: Overview of the Internet of things. Series Y: Global information infrastructure, internet protocol aspects and next-generation networks - Frameworks and functional architecture models. Retrieved from https://www.itu.int/rec/T-REC-Y.2060-201206-IInternational Telecomunication Union - ITU. (2005). The Internet of Things. ITU Internet Reports.Internet Society. (2015). The Internet of Things (IoT): An Overview. Geneva, Switzerland. Retrieved from https://www.internetsociety.org/doc/iot-overviewIoT-A Project. (2016). Requirements — IOT-A: Internet of Things Architecture.IoT Analytics. (2016). IoT Platforms: Market Report 2015-2021. Hamburg, Germany. Retrieved from https://iot-analytics.com/product/iot-platforms-market-report- 2015-2021-3/ISO/IEC/IEEE. (2010). ISO/IEC/IEEE 24765:2010 Systems and software engineering - Vocabulary.ISO/IEC JTC 1. (2009). Study on Sensor Networks (Version 3).ISO, & IEEE. Systems and software engineering - Vocabulary, ISO/IEC/IEEE 24765:2010(E) 1–418 (2010). http://doi.org/10.1109/IEEESTD.2010.5733835Issarny, V., Georgantas, N., Hachem, S., Zarras, A., Vassiliadist, P., Autili, M., … Hamida, A. Ben. (2011). Service-oriented middleware for the Future Internet: state of the art and research directions. Journal of Internet Services and Applications, 2(1), 23–45. http://doi.org/10.1007/s13174-011-0021-3Itakura, F. (1975). Minimum prediction residual principle applied to speech recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 23(1), 67–72.Jelinek, F., Bahl, L., & Mercer, R. (1975). Design of a linguistic statistical decoder for the recognition of continuous speech. IEEE Transactions on Information Theory, 21(3), 250–256.Juang, B.-H., Hou, W., & Lee, C.-H. (1997). Minimum classification error rate methods for speech recognition. IEEE Transactions on Speech and Audio Processing, 5(3), 257–265.Juang, B.-H., & Rabiner, L. R. (2005). Automatic speech recognition-a brief history of the technology development. Elsevier Encyclopedia of Language and Linguistics, 1, 24.Kaneko, M., Arima, K., Usami, M., Sugimura, H., Isshiki, M., & Koh, K. (2015). Development of information living integrated by home appliances and web services. In Consumer Electronics (GCCE), 2015 IEEE 4th Global Conference on (pp. 311–312).Keh, H.-C., Shih, C.-C., Chou, K.-Y., Cheng, Y.-C., Ho, H.-K., Yu, P.-Y., & Huang, N.-C. (2014). Integrating unified communications and internet of m-health things with micro wireless physiological sensors, 17(3), 319–328.Khurana, T. (2017). IPv6 Enables Global Mobile IoT Innovation and Proliferation. Retrieved February 26, 2017, from https://goo.gl/B1E1eFKim, J., Lee, J., Kim, J., & Yun, J. (2014). M2M service platforms: survey, issues, and enabling technologies. IEEE Communications Surveys & Tutorials, 16(1), 61–76.Kostelnik, P., Sarnovsk, M., & Furdik, K. (2011). The semantic middleware for networked embedded systems applied in the internet of things and services domain. Scalable Computing: Practice and Experience, 12(3), 307–316.Krco, S., Pokric, B., & Carrez, F. (2014). Designing IoT architecture (s): A European perspective. In Internet of Things (WF-IoT), 2014 IEEE World Forum on (pp. 79–84).Kubitza, T. (2016). Using Speech for End User Programming of Smart Environments in the Internet of Thing. Germany.Kubitza, T., & Schmidt, A. (2016). Rapid Interweaving of Smart Things with the meSchup IoT Platform. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct (pp. 313–316). New York, NY, USA: ACM. http://doi.org/10.1145/2968219.2971379Kubitza, T., & Schmidt, A. (2017). meSchup: A Platform for Programming Interconnected Smart Things. Computer, 50(11), 38–49.Kumar, A., Mishra, A., Makula, P., Karan, K., & Mittal, V. K. (2015). Smart Robotic Assistant. In Region 10 Symposium (TENSYMP), 2015 IEEE (pp. 25–28).Lee, G. M., Crespi, N., Choi, J. K., & Boussard, M. (2013). Internet of things. In Evolution of Telecommunication Services (pp. 257–282). Springer.Lee, I., & Lee, K. (2015). The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Business Horizons, 58(4), 431–440.Lin, K. J., Reijers, N., Wang, Y. C., Shih, C. S., & Hsu, J. Y. (2013). Building Smart M2M Applications Using the WuKong Profile Framework. In 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing (pp. 1175–1180). Beijing, China: IEEE. http://doi.org/10.1109/GreenCom-iThings- CPSCom.2013.204Loucopoulus, P., & Karakostas, V. (1995). System Requirements Engineering. McGraw-Hill, Inc.Ma, M., Wang, P., & Chu, C.-H. (2013). Data management for internet of things: challenges, approaches and opportunities. In Green Computing and Communications (GreenCom), 2013 IEEE and Internet of Things (iThings/CPSCom), IEEE International Conference on and IEEE Cyber, Physical and Social Computing (pp. 1144–1151).MacGillivray, C. (2016). Worldwide Internet of Things Forecast Update, 2015-2019.Mamei, M., & Zambonelli, F. (2006). Field-based coordination for pervasive multiagent systems. Springer Science & Business Media.Manrique, J. ., Rueda-Rueda, J., & Portocarrero, J. . (2016). Contrasting Internet of Things and Wireless Sensor Network from a conceptual overview. In 2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) (p. 6). IEEE Computer Society. http://doi.org/978-1-5090-5880-8/16Marulli, F., Pareschi, R., & Baldacci, D. (2016). The internet of speaking things and its applications to Cultural Heritage. In Proceedings of IoTBD2016 Conference, SCITEPRESS.McCulloch, W. S., & Pitts, W. (1990). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biology, 52(1), 99–115.Meier, R., & Cahill, V. (2002). Steam: Event-based middleware for wireless ad hoc networks. In Distributed Computing Systems Workshops, 2002. Proceedings. 22nd International Conference on (pp. 639–644).Mineraud, J., Mazhelis, O., Su, X., & Tarkoma, S. (2016). A gap analysis of Internetof-Things platforms. Computer Communications, 89, 5–16.Miranda, J., Mäkitalo, N., Garcia-Alonso, J., Berrocal, J., Mikkonen, T., Canal, C., & Murillo, J. M. (2015). From the Internet of Things to the Internet of People. IEEE Internet Computing, 19(2), 40–47.Mittal, Y., Toshniwal, P., Sharma, S., Singhal, D., Gupta, R., & Mittal, V. K. (2015). A voice-controlled multi-functional Smart Home Automation System. In India Conference (INDICON), 2015 Annual IEEE (pp. 1–6).Monteiro, C., Oliveira, M., Bastos, J., Ramrekha, T., & Rodriguez, J. (2014). Social Networks and Internet of Things, an Overview of the SITAC Project. In International Wireless Internet Conference (pp. 191–196).Mottola, L., Murphy, A. L., & Picco, G. Pietro. (2006). Pervasive games in a moteenabled virtual world using tuple space middleware. In Proceedings of 5th ACM SIGCOMM workshop on Network and system support for games (p. 29).Nagata, K., Kato, Y., & Chiba, S. (1964). Spoken digit recognizer for Japanese language. In Audio Engineering Society Convention 16.Nakagawa, E. Y., Oquendo, F., & Becker, M. (2012). Ramodel: A reference model for reference architectures. In Software Architecture (WICSA) and European Conference on Software Architecture (ECSA), 2012 Joint Working IEEE/IFIP Conference on (pp. 297–301).Ngu, A. H., Gutierrez, M., Metsis, V., Nepal, S., & Sheng, Q. Z. (2017). IoT middleware: A survey on issues and enabling technologies. IEEE Internet of Things Journal, 4(1), 1–20.Nia, A. M., & Jha, N. K. (2016). A comprehensive study of security of internet-ofthings. IEEE Transactions on Emerging Topics in Computing.Nitti, M., Pilloni, V., Colistra, G., & Atzori, L. (2016). The virtual object as a major element of the internet of things: a survey. IEEE Communications Surveys & Tutorials, 18(2), 1228–1240.Nuance Communications. (2016). Majority of Consumers Want Intelligent, Personalized Dialogue with Customer Service. Retrieved February 27, 2017, from https://www.nuance.com/about-us/newsroom/press-releases/opusintelligent- assistants-and-authentication-conference-2016.htmlPapazoglou, M. P., Traverso, P., Dustdar, S., & Leymann, F. (2007). Service- Oriented Computing: State of the Art and Research Challenges. Computer, 40(11), 38–45. http://doi.org/10.1109/MC.2007.400Park, K.-J., Zheng, R., & Liu, X. (2012). Cyber-physical systems: Milestones and research challenges. Computer Communications, 36(1), 1–7.Patel, P., & Cassou, D. (2015). Enabling high-level application development for the Internet of Things. Journal of Systems and Software, 103, 62–84.Payne, G. (2014). The Internet of Things brings a new era of connectivity… and a talking fridge. Retrieved February 27, 2017, from http://whatsnext.nuance.com/connected-living/the-internet-of-thingsconnectivity/Petrolo, R., Mitton, N., Soldatos, J., Hauswirth, M., & Schiele, G. (2014). Integrating wireless sensor networks within a city cloud. In 2014 Eleventh Annual IEEE International Conference on Sensing, Communication, and Networking Workshops (SECON Workshops) (pp. 24–27). http://doi.org/10.1109/SECONW.2014.6979700Pressman, R. (2010). Ingeniería del software: un enfoque práctico (Séptima Ed). México DF: McGraw-Hill Interamericana.Rabiner, L., Levinson, S., Rosenberg, A., & Wilpon, J. (1979). Speaker-independent recognition of isolated words using clustering techniques. IEEE Transactions on Acoustics, Speech, and Signal Processing, 27(4), 336–349.Rabiner, L. R., & Juang, B. H. (2004). Statistical methods for the recognition and understanding of speech. Encyclopedia of language and linguistics.Ratkowski, A. (2016). Architecture for Internet of Things Analytical Ecosystem. In Dependability Engineering and Complex Systems (pp. 385–393). Springer.Raveendran, V., Sanjeev, M. R., Paul, N., & Jijina, K. P. (2016). Speech only interface approach for personal computing environment. In Engineering and Technology (ICETECH), 2016 IEEE International Conference on (pp. 372–377).Razzaque, M. A., Milojevic-Jevric, M., Palade, A., & Clarke, S. (2016). Middleware for internet of things: a survey. IEEE Internet of Things Journal, 3(1), 70–95.Richards, M. (2015). Software architecture patterns. O’Reilly Media, Incorporated.Robles, T., Alcarria, R., de Andrés, D. M., Navarro, M., Calero, R., Iglesias, S., & López, M. (2015). An IoT based reference architecture for smart water management processes. JoWUA, 6(1), 4–23.Sakai, T., & Doshita, S. (1962). The Phonetic Typewriter. In IFIP Congress (Vol. 445, p. 449).Sanchez, L., Muñoz, L., Galache, J. A., Sotres, P., Santana, J. R., Gutierrez, V., … others. (2014). SmartSantander: IoT experimentation over a smart city testbed. Computer Networks, 61, 217–238.Sanchez, S., Angel Sicilia, M., & Rodriguez, D. (2012). Ingeniería del Sofware. Un enfoque desde la guía SWEBOK. Alfaomega.Santos, J. F. M., Guessi, M., Galster, M., Feitosa, D., & Nakagawa, E. Y. (2013). A Checklist for Evaluation of Reference Architectures of Embedded Systems. In SEKE (Vol. 13, pp. 1–4).Sarma, S., Brock, D., & Engels, D. (2001). Radio Frequency Identification and the Electronic Product Code. IEEE Micro, 21(6), 50–54. http://doi.org/10.1109/40.977758Schauer, P., & Debita, G. (2015). Internet of Things Service Systems Architecture.Seo, S., Kim, J., Yun, S., Huh, J., & Maeng, S. (2015). HePA: Hexagonal Platform Architecture for Smart Home Things. In Parallel and Distributed Systems (ICPADS), 2015 IEEE 21st International Conference on (pp. 181–189).Shen, S., & Carugi, M. (2014). Standardizing the Internet of Things in an evolutionary way. In ITU Kaleidoscope Academic Conference: Living in a converged world- Impossible without standards?, Proceedings of the 2014 (pp. 249–254).Shih, C. S., Lin, K. J., Chou, J. J., & Chuang, C. C. (2014). Autonomous Service Management for Location and Context Aware Service. In 2014 IEEE 7th International Conference on Service-Oriented Computing and Applications (pp. 246–251). Matsue, Japan: IEEE. http://doi.org/10.1109/SOCA.2014.10Shin, D.-G., & Jun, M.-S. (2015). Home IoT device certification through speaker recognition. In Advanced Communication Technology (ICACT), 2015 17th International Conference on (pp. 600–603).Shrouf, F., Ordieres, J., & Miragliotta, G. (2014). Smart factories in Industry 4.0: A review of the concept and of energy management approached in production based on the Internet of Things paradigm. In Industrial Engineering and Engineering Management (IEEM), 2014 IEEE International Conference on (pp. 697–701).Singh, S., & Singh, N. (2015). Internet of Things (IoT): Security challenges, business opportunities & reference architecture for E-commerce. In Green Computing and Internet of Things (ICGCIoT), 2015 International Conference on (pp. 1577– 1581).Sinha, S., Agrawal, S. S., & Jain, A. (2013). Continuous density Hidden Markov Model for context dependent Hindi speech recognition. In Advances in Computing, Communications and Informatics (ICACCI), 2013 International Conference on (pp. 1953–1958).Soldatos, J., Kefalakis, N., Hauswirth, M., Serrano, M., Calbimonte, J.-P., Riahi, M., … Herzog, R. (2015). OpenIoT: Open Source Internet-of-Things in the Cloud. In I. Podnar Žarko, K. Pripužić, & M. Serrano (Eds.), Interoperability and Open- Source Solutions for the Internet of Things: International Workshop, FP7 OpenIoT Project, Held in Conjunction with SoftCOM 2014, Split, Croatia,September 18, 2014, Invited Papers (pp. 13–25). Cham: Springer International Publishing. http://doi.org/10.1007/978-3-319-16546-2_3Sommerville, I. (2011). Ingeniería del Software. PEARSON.Souza, R., & Cardozo, E. (2016). A Resource-Oriented Architecture for the Internet of Things (IoT). In Connectivity Frameworks for Smart Devices (pp. 99–116). Springer.Stravoskoufos, K., Sotiriadis, S., & Petrakis, E. (2016). IoT-A and FIWARE: bridging the barriers between the cloud and IoT systems design and implementation. In Proc. 6th Int’l Conf. Cloud Computing and Services Science (pp. 146–153).Sundmaeker, H., Guillemin, P., Friess, P., & Woelfflé, S. (2010). Vision and challenges for realising the Internet of Things. (Cluster of European research projects on the Internet of Things, Ed.)European Commision.Suzuki, J., & Nakata, K. (1961). Recognition of Japanese vowels - Preliminary to the recognition of speech. Journal of the Radio Research Laboratory, 8(37), 193– 212.Talavera Portocarrero, J. M. (2016). RAMSES: Reference Architectue of Self- Adaptative Middleware for Wireless Sensor Networks. Universidade Federal fo Rio de Janeiro.Techopedia. (2017). What is Modeling Language?The Institute of Electrical and Electronics Engineers. (2014). 2014 IEEE Thesaurus. Retrieved from http://www.ieee.org/documents/ieee_thesaurus_2013.pdfTurck, M. (2018). Growing Pains: The 2018 Internet of Things Landscape. Retrieved April 2, 2018, from http://mattturck.com/iot2018/United Nations Educational Scientific and Cultural Organization. (2016). UNESCO Thesaurus. Retrieved August 29, 2016, from http://vocabularies.unesco.org/United Nations Educational Scientific and Cultural Organization (UNESCO). (2016). UNESCO Thesaurus. Retrieved April 11, 2016, from http://vocabularies.unesco.org/browser/thesaurus/en/Unnibhavi, A. H., & Jangamshetti, D. S. (2016). A survey of speech recognition on south Indian Languages. In Signal Processing, Communication, Power and Embedded System (SCOPES), 2016 International Conference on (pp. 1122– 1126).Usländer, T., & Epple, U. (2015). Reference model of industrie 4.0 service architectures. At-Automatisierungstechnik, 63(10), 858–866.Verdouw, C. N., Robbemond, R. M., Verwaart, T., Wolfert, J., & Beulens, A. J. M. (2015). A reference architecture for IoT-based logistic information systems in agri-food supply chains. Enterprise Information Systems, 1–25.Wang, M.-M., Cao, J.-N., Li, J., & Dasi, S. K. (2008). Middleware for wireless sensor networks: A survey. Journal of Computer Science and Technology, 23(3), 305– 326.Weiser, M. (1991). The computer for the 21st century. Scientific American, 265(3), 94–104.Weyrich, M., & Ebert, C. (2016). Reference architectures for the internet of things. IEEE Software, 33(1), 112–116.Whittaker, E. W. D. (2000). Statistical language modelling for automatic speech recognition of Russian and English. University of Cambridge.Wiener, N. (1961). Cybernetics or Control and Communication in the Animal and the Machine (Vol. 25). MIT press.Wortmann, F., Flüchter, K., & others. (2015). Internet of things. Business & Information Systems Engineering, 57(3), 221–224. http://doi.org/10.1007/s12599-015-0383-3Xu, B., Zhang, D., & Yang, W. (2012). Research on architecture of the Internet of Things for grain monitoring in storage. In Internet of Things (pp. 431–438). Springer.Zhong, N., Ma, J., Huang, R., Liu, J., Yao, Y., Zhang, Y., & Chen, J. (2016). Research challenges and perspectives on Wisdom Web of Things (W2T). In Wisdom Web of Things (pp. 3–26). Springer.Zhou, S., Liu, G., & Lin, C. (2012). An Embedded Voice Inquiry Experimental Platform for Temperature and Humidity Measurement on the Internet of Things. In Emerging Computation and Information teChnologies for Education (pp. 533– 539). Springer.ORIGINAL2018_Tesis_Manrique_Hernandez_Johana_Andrea.pdf2018_Tesis_Manrique_Hernandez_Johana_Andrea.pdfTesisapplication/pdf2419233https://repository.unab.edu.co/bitstream/20.500.12749/3547/1/2018_Tesis_Manrique_Hernandez_Johana_Andrea.pdf3a6efc241bde87cc790eb0128767fba9MD51open access2018_Articulo_Manrique_Hernandez_Johana_Andrea.pdf2018_Articulo_Manrique_Hernandez_Johana_Andrea.pdfArtículoapplication/pdf282756https://repository.unab.edu.co/bitstream/20.500.12749/3547/2/2018_Articulo_Manrique_Hernandez_Johana_Andrea.pdfabe3ba4affc667e8da2a96969f707e44MD52open accessAnexos.zipAnexos.zipAnexosapplication/octet-stream22480293https://repository.unab.edu.co/bitstream/20.500.12749/3547/3/Anexos.zip6e6361ef5f0073c9a2dc5e599477e914MD53open access2018_Licencia_Manrique_Hernandez_Johana_Andrea.pdf2018_Licencia_Manrique_Hernandez_Johana_Andrea.pdfLicenciaapplication/pdf214281https://repository.unab.edu.co/bitstream/20.500.12749/3547/4/2018_Licencia_Manrique_Hernandez_Johana_Andrea.pdf2055888903abbd35889b959bb4e0e90bMD54metadata only accessTHUMBNAIL2018_Tesis_Manrique_Hernandez_Johana_Andrea.pdf.jpg2018_Tesis_Manrique_Hernandez_Johana_Andrea.pdf.jpgIM Thumbnailimage/jpeg5039https://repository.unab.edu.co/bitstream/20.500.12749/3547/5/2018_Tesis_Manrique_Hernandez_Johana_Andrea.pdf.jpg9558848de816001de35c7852c68531aeMD55open access2018_Articulo_Manrique_Hernandez_Johana_Andrea.pdf.jpg2018_Articulo_Manrique_Hernandez_Johana_Andrea.pdf.jpgIM Thumbnailimage/jpeg10802https://repository.unab.edu.co/bitstream/20.500.12749/3547/6/2018_Articulo_Manrique_Hernandez_Johana_Andrea.pdf.jpgbadd6adc93308f2a9f2ea928a28e85f9MD56open access2018_Licencia_Manrique_Hernandez_Johana_Andrea.pdf.jpg2018_Licencia_Manrique_Hernandez_Johana_Andrea.pdf.jpgIM Thumbnailimage/jpeg9430https://repository.unab.edu.co/bitstream/20.500.12749/3547/7/2018_Licencia_Manrique_Hernandez_Johana_Andrea.pdf.jpgdefe4fcfc73f80a0054b3331fcc00437MD57metadata only access20.500.12749/3547oai:repository.unab.edu.co:20.500.12749/35472024-01-19 19:05:33.996open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.co