Desarrollo metodológico de una tinta de biomaterial a base de pegda, dirigido al diseño de apósitos para úlceras crónicas de pie diabético

Actualmente los apósitos tipo hidrogel usados para el tratamiento de úlceras crónicas de pie diabético favorecen de manera limitada procesos de regeneración al ser apósitos bidimensionales, que sumado al potencial del PEGDA como biomaterial versátil en el campo de la ingeniería de tejidos, conviene...

Full description

Autores:
Galeano Blanco, Marly Judith
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2021
Institución:
Universidad Autónoma de Bucaramanga - UNAB
Repositorio:
Repositorio UNAB
Idioma:
spa
OAI Identifier:
oai:repository.unab.edu.co:20.500.12749/12431
Acceso en línea:
http://hdl.handle.net/20.500.12749/12431
Palabra clave:
Biomedical engineering
Engineering
Medical electronics
Biological physics
Bioengineering
Medical instruments and apparatus
Medicine
3D bioprinting
Diacrylated polyethylene glycol
Printability
Ulcers
Foot diseases
Clinical engineering
Diabetic foot
Ingeniería biomédica
Ingeniería
Biofísica
Bioingeniería
Medicina
Úlceras
Enfermedades de los pies
Pie diabético
Ingeniería clínica
Electrónica médica
Instrumentos y aparatos médicos
Biompresión 3D
Polietilenglicol diacrilado
Imprimibilidad
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UNAB2_58e0c3ef4dbfe858f578ade1b4dc9ccf
oai_identifier_str oai:repository.unab.edu.co:20.500.12749/12431
network_acronym_str UNAB2
network_name_str Repositorio UNAB
repository_id_str
dc.title.spa.fl_str_mv Desarrollo metodológico de una tinta de biomaterial a base de pegda, dirigido al diseño de apósitos para úlceras crónicas de pie diabético
dc.title.translated.spa.fl_str_mv Methodological development of a pegda-based biomaterial ink, aimed at the design of dressings for chronic diabetic foot ulcers
title Desarrollo metodológico de una tinta de biomaterial a base de pegda, dirigido al diseño de apósitos para úlceras crónicas de pie diabético
spellingShingle Desarrollo metodológico de una tinta de biomaterial a base de pegda, dirigido al diseño de apósitos para úlceras crónicas de pie diabético
Biomedical engineering
Engineering
Medical electronics
Biological physics
Bioengineering
Medical instruments and apparatus
Medicine
3D bioprinting
Diacrylated polyethylene glycol
Printability
Ulcers
Foot diseases
Clinical engineering
Diabetic foot
Ingeniería biomédica
Ingeniería
Biofísica
Bioingeniería
Medicina
Úlceras
Enfermedades de los pies
Pie diabético
Ingeniería clínica
Electrónica médica
Instrumentos y aparatos médicos
Biompresión 3D
Polietilenglicol diacrilado
Imprimibilidad
title_short Desarrollo metodológico de una tinta de biomaterial a base de pegda, dirigido al diseño de apósitos para úlceras crónicas de pie diabético
title_full Desarrollo metodológico de una tinta de biomaterial a base de pegda, dirigido al diseño de apósitos para úlceras crónicas de pie diabético
title_fullStr Desarrollo metodológico de una tinta de biomaterial a base de pegda, dirigido al diseño de apósitos para úlceras crónicas de pie diabético
title_full_unstemmed Desarrollo metodológico de una tinta de biomaterial a base de pegda, dirigido al diseño de apósitos para úlceras crónicas de pie diabético
title_sort Desarrollo metodológico de una tinta de biomaterial a base de pegda, dirigido al diseño de apósitos para úlceras crónicas de pie diabético
dc.creator.fl_str_mv Galeano Blanco, Marly Judith
dc.contributor.advisor.spa.fl_str_mv Solarte David, Víctor Alfonso
Becerra Bayona, Silvia Milena
dc.contributor.author.spa.fl_str_mv Galeano Blanco, Marly Judith
dc.contributor.cvlac.*.fl_str_mv https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001329391
dc.contributor.cvlac.none.fl_str_mv Becerra Bayona, Silvia Milena [0001568861]
dc.contributor.googlescholar.none.fl_str_mv Becerra Bayona, Silvia Milena [5wr21EQAAAAJ]
dc.contributor.orcid.*.fl_str_mv https://orcid.org/0000-0002-9856-1484
dc.contributor.orcid.none.fl_str_mv Becerra Bayona, Silvia Milena [0000-0002-4499-5885]
dc.contributor.scopus.none.fl_str_mv Becerra Bayona, Silvia Milena [36522328100]
dc.contributor.researchgate.none.fl_str_mv Becerra Bayona, Silvia Milena [Silvia-Becerra-Bayona]
dc.contributor.apolounab.none.fl_str_mv Becerra Bayona, Silvia Milena [silvia-milena-becerra-bayona]
dc.contributor.linkedin.none.fl_str_mv Becerra Bayona, Silvia Milena [silvia-becerra-3174455a]
dc.subject.keywords.eng.fl_str_mv Biomedical engineering
Engineering
Medical electronics
Biological physics
Bioengineering
Medical instruments and apparatus
Medicine
3D bioprinting
Diacrylated polyethylene glycol
Printability
Ulcers
Foot diseases
Clinical engineering
Diabetic foot
topic Biomedical engineering
Engineering
Medical electronics
Biological physics
Bioengineering
Medical instruments and apparatus
Medicine
3D bioprinting
Diacrylated polyethylene glycol
Printability
Ulcers
Foot diseases
Clinical engineering
Diabetic foot
Ingeniería biomédica
Ingeniería
Biofísica
Bioingeniería
Medicina
Úlceras
Enfermedades de los pies
Pie diabético
Ingeniería clínica
Electrónica médica
Instrumentos y aparatos médicos
Biompresión 3D
Polietilenglicol diacrilado
Imprimibilidad
dc.subject.lemb.spa.fl_str_mv Ingeniería biomédica
Ingeniería
Biofísica
Bioingeniería
Medicina
Úlceras
Enfermedades de los pies
Pie diabético
dc.subject.proposal.spa.fl_str_mv Ingeniería clínica
Electrónica médica
Instrumentos y aparatos médicos
Biompresión 3D
Polietilenglicol diacrilado
Imprimibilidad
description Actualmente los apósitos tipo hidrogel usados para el tratamiento de úlceras crónicas de pie diabético favorecen de manera limitada procesos de regeneración al ser apósitos bidimensionales, que sumado al potencial del PEGDA como biomaterial versátil en el campo de la ingeniería de tejidos, conviene desarrollar apósitos tridimensionales a base de PEGDA, lo que es posible mediante la bioimpresión 3D. De ahí que en esta investigación se evaluó la imprimibilidad de tinta de biomaterial a base de PEGDA usada en extrusión y fotopolimerización in-situ, con el fin de fabricar hidrogeles utilizando al Irgacure 2959 como fotoiniciador. Con este fin, se investigó el efecto que tiene la concentración de la solución precursora, además de los parámetros de bioimpresión tales como la velocidad de impresión, el flujo de material extruido y la altura de capa de impresión en la imprimibilidad. Sim embargo, pese al establecimiento de los mejores parámetros de bioimpresión: velocidad de impresión de 1 mm/s, altura de capa de 0.1 mm y flujo de 100%, los resultados demuestran que la viscosidad de la tinta de biomaterial a base de PEGDA requiere ser incrementada, para lograr la deposición de un filamento cilíndrico con una difusión de material mínima. Adicionalmente se llegó a la conclusión de que la intensidad de la luz ultravioleta de la bioimpresora debe ser mayor, para garantizar una polimerización eficiente y homogénea. La metodología desarrollada en este trabajo permite establecer las pautas de la fabricación de andamios a base de PEGDA, con el potencial uso en el diseño de matrices que lleven al desarrollo de alternativas terapéuticas tipo apósito, para el tratamiento de las úlceras crónicas de pie diabético, considerando la profundidad y la topografía de la úlcera.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-03-16T18:42:22Z
dc.date.available.none.fl_str_mv 2021-03-16T18:42:22Z
dc.date.issued.none.fl_str_mv 2021
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.local.spa.fl_str_mv Trabajo de Grado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12749/12431
dc.identifier.instname.spa.fl_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UNAB
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.unab.edu.co
url http://hdl.handle.net/20.500.12749/12431
identifier_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
reponame:Repositorio Institucional UNAB
repourl:https://repository.unab.edu.co
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Aycan, D., & Alemdar, N. (2018). Development of pH-responsive chitosan-based hydrogel modified with bone ash for controlled release of amoxicillin. Carbohydrate Polymers, 184, 401-407. https://doi.org/10.1016/j.carbpol.2017.12.023
Bian, S., Zheng, Z., Liu, Y., Ruan, C., Pan, H., & Zhao, X. (2019). A shear-thinning adhesive hydrogel reinforced by photo-initiated crosslinking as a fit-to-shape tissue sealant. Journal of Materials Chemistry.B, 7(42), 6488-6499. https://doi.org/10.1039/c9tb01521c
Burmeister, D. M., Roy, D. C., Becerra, S. C., Natesan, S., & Christy, R. J. (2017). In situ delivery of fibrin-based hydrogels prevents contraction and reduces inflammation. Journal of Burn Care and Research, 39(1), 40-53. https://doi.org/10.1097/BCR.0000000000000576
Choi, J. R., Yong, K. W., Choi, J. Y., & Cowie, A. C. (2019). Recent advances in photo-crosslinkable hydrogels for biomedical applications. BioTechniques, 66(1), 40-53. https://doi.org/10.2144/btn-2018-0083
Clark, E. A., Alexander, M. R., Irvine, D. J., Roberts, C. J., Wallace, M. J., Sharpe, S., . . . Wildman, R. D. (2017). 3D printing of tablets using inkjet with UV photoinitiation. International Journal of Pharmaceutics, 529(1-2), 523-530. https://doi.org/10.1016/j.ijpharm.2017.06.085
DeRosa, R. L., Schader, P. A., & Shelby, J. E. (2003). Hydrophilic nature of silicate glass surfaces as a function of exposure condition. Journal of Non-Crystalline Solids, 331(1-3), 32-40. https://doi.org/10.1016/j.jnoncrysol.2003.08.078
Dirección de Epidemiología y Demografía. (2019). Análisis de situación de salud (ASIS). Colombia, 2018.
Dubbin, K., Tabet, A., & Heilshorn, S. C. (2017). Quantitative criteria to benchmark new and existing bio-inks for cell compatibility. Biofabrication, 9(4), 044102. https://doi.org/10.1088/1758-5090/aa869f
Gao, T., Gillispie, G. J., Copus, J. S., Pr, A. K., Seol, Y., Atala, A., . . . Lee, S. J. (2018). Optimization of gelatin-alginate composite bioink printability using rheological parameters: A systematic approach. Biofabrication, 10(3), 034106. https://doi.org/10.1088/1758-5090/aacdc7
Gillispie, G., Prim, P., Copus, J., Fisher, J., Mikos, A. G., Yoo, J. J., . . . Lee, S. J. (2020). Assessment methodologies for extrusion-based bioink printability. Biofabrication, 12(2), 022003. https://doi.org/10.1088/1758-5090/ab6f0d
Giuseppe, M. D., Law, N., Webb, B., A. Macrae, R., Liew, L. J., Sercombe, T. B., . . . Doyle, B. J. (2018). Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting. Journal of the Mechanical Behavior of Biomedical Materials, 79, 150-157. https://doi.org/10.1016/j.jmbbm.2017.12.018
Groll, J., Boland, T., Blunk, T., Burdick, J. A., Cho, D. -., Dalton, P. D., . . . Malda, J. (2016). Biofabrication: Reappraising the definition of an evolving field. Biofabrication, 8(1), 013001. https://doi.org/10.1088/1758-5090/8/1/013001
Groll, J., Burdick, J. A., Cho, D. -., Derby, B., Gelinsky, M., Heilshorn, S. C., . . . Woodfield, T. B. F. (2019). A definition of bioinks and their distinction from biomaterial inks. Biofabrication, 11(1), 013001. https://doi.org/10.1088/1758-5090/aaec52
Guarino, V., Alvarez-Perez, M. A., Borriello, A., Napolitano, T., & Ambrosio, L. (2013). Conductive PANi/PEGDA macroporous hydrogels for nerve regeneration. Advanced Healthcare Materials, 2(1), 218-227. https://doi.org/10.1002/adhm.201200152
Habib, A., Sathish, V., Mallik, S., & Khoda, B. (2018). 3D printability of alginate-carboxymethyl cellulose hydrogel. Materials, 11(3), 454. https://doi.org/10.3390/ma11030454
Hassan, W., Dong, Y., & Wang, W. (2013). Encapsulation and 3D culture of human adipose-derived stem cells in an in-situ crosslinked hybrid hydrogel composed of PEG-based hyperbranched copolymer and hyaluronic acid. Stem Cell Research and Therapy, 4(2). https://doi.org/10.1186/scrt182
Hockaday, L. A., Kang, K. H., Colangelo, N. W., Cheung, P. Y. C., Duan, B., Malone, E., . . . Butcher, J. T. (2012). Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication, 4(3), 035005. https://doi.org/10.1088/1758-5082/4/3/035005
Hong, S., Sycks, D., Chan, H. F., Lin, S., Lopez, G. P., Guilak, F., . . . Zhao, X. (2015). 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Advanced Materials, 27(27), 4035-4040. https://doi.org/10.1002/adma.201501099
Huang, L., Zhu, Z., Wu, D., Gan, W., Zhu, S., Li, W., . . . Lu, L. (2019). Antibacterial poly (ethylene glycol) diacrylate/chitosan hydrogels enhance mechanical adhesiveness and promote skin regeneration. Carbohydrate Polymers, 225. https://doi.org/10.1016/j.carbpol.2019.115110
International Diabetes Federation. (2019). IDF diabetes atlas (9th ed.)
Jabbari, E., Sarvestani, S. K., Daneshian, L., & Moeinzadeh, S. (2015). Optimum 3D matrix stiffness for maintenance of cancer stem cells is dependent on tissue origin of cancer cells. PLoS ONE, 10(7). https://doi.org/10.1371/journal.pone.0132377
Kahn, R. (1999). Consensus development conference on diabetic foot wound care: 7-8 april 1999, boston, massachusetts. Diabetes Care, 22(8), 1354-1360. https://doi.org/10.2337/diacare.22.8.1354
Kim, M. K., Jeong, W., Lee, S. M., Kim, J. B., Jin, S., & Kang, H. -. (2020). Decellularized extracellular matrix-based bio-ink with enhanced 3D printability and mechanical properties. Biofabrication, 12(2), 025003. https://doi.org/10.1088/1758-5090/ab5d80
Lee, J. M., Ng, W. L., & Yeong, W. Y. (2019). Resolution and shape in bioprinting: Strategizing towards complex tissue and organ printing. Applied Physics Reviews, 6(1) https://doi.org/10.1063/1.5053909
Lee, J. M., Sing, S. L., Zhou, M., & Yeong, W. Y. (2018). 3D bioprinting processes: A perspective on classification and terminology. International Journal of Bioprinting, 4(2). https://doi.org/10.18063/IJB.v4i2.151
Li, Y., Meng, H., Liu, Y., & Lee, B. P. (2015). Fibrin gel as an injectable biodegradable scaffold and cell carrier for tissue engineering. Scientific World Journal, 2015. https://doi.org/10.1155/2015/685690
Liu, S., Yeo, D. C., Wiraja, C., Tey, H. L., Mrksich, M., & Xu, C. (2017). Peptide delivery with poly(ethylene glycol) diacrylate microneedles through swelling effect. Bioengineering & Translational Medicine, 2(3), 258-267. https://doi.org/10.1002/btm2.10070
Ma, Y., Ji, Y., Zhong, T., Wan, W., Yang, Q., Li, A., . . . Lin, M. (2017). Bioprinting-based PDLSC-ECM screening for in vivo repair of alveolar bone defect using cell-laden, injectable and photocrosslinkable hydrogels. ACS Biomaterials Science and Engineering, 3(12), 3534-3545. https://doi.org/10.1021/acsbiomaterials.7b00601
Mancha Sánchez, E., Gómez-Blanco, J. C., López Nieto, E., Casado, J. G., Macías-García, A., Díaz Díez, M. A., . . . Pagador, J. B. (2020). Hydrogels for bioprinting: A systematic review of hydrogels synthesis, bioprinting parameters, and bioprinted structures behavior. Frontiers in Bioengineering and Biotechnology, 8, 776. https://doi.org/10.3389/fbioe.2020.00776
Marinel, J., & Verdu, J. (2018). Conferencia nacional de consenso sobre las úlceras de la extremidad inferior (C:O.N.U.E.I.). Documento de consenso 2018. Madrid: Ergon
McMahon, S., Kennedy, R., Duffy, P., Vasquez, J. M., Wall, J. G., Tai, H., & Wang, W. (2016). Poly(ethylene glycol)-based hyperbranched polymer from RAFT and its application as a silver-sulfadiazine-loaded antibacterial hydrogel in wound care. ACS Applied Materials and Interfaces, 8(40), 26648-26656. https://doi.org/10.1021/acsami.6b11371
Moroni, L., Boland, T., Burdick, J. A., De Maria, C., Derby, B., Forgacs, G., . . . Vozzi, G. (2018). Biofabrication: A guide to technology and terminology. Trends in Biotechnology, 36(4), 384-402. https://doi.org/10.1016/j.tibtech.2017.10.015
Munoz-Pinto, D. J., Jimenez-Vergara, A. C., Gharat, T. P., & Hahn, M. S. (2015). Characterization of sequential collagen-poly(ethylene glycol) diacrylate interpenetrating networks and initial assessment of their potential for vascular tissue engineering. Biomaterials, 40, 32-42. https://doi.org/10.1016/j.biomaterials.2014.10.051
Murphy, S. V., & Atala, A. (2014). 3D bioprinting of tissues and organs. Nature Biotechnology, 32(8), 773-785. https://doi.org/10.1038/nbt.2958
Nachlas, A. L. Y., Li, S., Jha, R., Singh, M., Xu, C., & Davis, M. E. (2018). Human iPSC-derived mesenchymal stem cells matured into valve interstitial-like cells using PEGDA hydrogels. Acta Biomaterialia, 71, 235-246. https://doi.org/10.1016/j.actbio.2018.02.025
Naseri, E., Butler, H., MacNevin, W., Ahmed, M., & Ahmadi, A. (2020). Low-temperature solvent-based 3D printing of PLGA: A parametric printability study. Drug Development and Industrial Pharmacy, 46(2), 173-178. https://doi.org/10.1080/03639045.2019.1711389
Ng, W. L., Lee, J. M., Yeong, W. Y., & Win Naing, M. (2017). Microvalve-based bioprinting - process, bio-inks and applications. Biomaterials Science, 5(4), 632-647. https://doi.org/10.1039/c6bm00861e
Ouyang, L., Highley, C. B., Sun, W., & Burdick, J. A. (2017). A generalizable strategy for the 3D bioprinting of hydrogels from nonviscous photo-crosslinkable inks. Advanced Materials, 29(8). https://doi.org/10.1002/adma.201604983
Ouyang, L., Yao, R., Zhao, Y., & Sun, W. (2016). Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication, 8(3), 035020. https://doi.org/10.1088/1758-5090/8/3/035020
Paxton, N., Smolan, W., Böck, T., Melchels, F., Groll, J., & Jungst, T. (2017). Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Biofabrication, 9(4), 044107. https://doi.org/10.1088/1758-5090/aa8dd8
Prompers, L., Huijberts, M., Apelqvist, J., Jude, E., Piaggesi, A., Bakker, K., . . . Schaper, N. (2007). High prevalence of ischaemia, infection and serious comorbidity in patients with diabetic foot disease in europe. baseline results from the eurodiale study. Diabetologia, 50(1), 18-25. https://doi.org/10.1007/s00125-006-0491-1
Salehi-Abari, M., Koupaei, N., & Hassanzadeh-Tabrizi, S. (2020). Synthesis and characterisation of semi-interpenetrating network of polycaprolactone/polyethylene glycol diacrylate/zeolite-CuO as wound dressing. Mater Technol, 35(5), 290-299. https://doi.org/10.1080/10667857.2019.1678088.
Shohatee, D., Keifer, J., Schimmel, N., Mohanty, S., & Ghosh, G. (2018). Hydrogel-based suspension array for biomarker detection using horseradish peroxidase-mediated silver precipitation. Analytica Chimica Acta, 999, 132-138. https://doi.org/10.1016/j.aca.2017.10.033
Son, K. J., Gheibi, P., Stybayeva, G., Rahimian, A., & Revzin, A. (2017). Detecting cell-secreted growth factors in microfluidic devices using bead-based biosensors. Microsystems and Nanoengineering, 3. https://doi.org/10.1038/micronano.2017.25
Subdirección de enfermedades no transmisibles. (2017). Día mundial de la diabetes mellitus 2017 ficha técnica para referentes territoriales
Tian, F., Lyu, J., Shi, J., Tan, F., & Yang, M. (2016). A polymeric microfluidic device integrated with nanoporous alumina membranes for simultaneous detection of multiple foodborne pathogens. Sensors and Actuators, B: Chemical, 225, 312-318. https://doi.org/10.1016/j.snb.2015.11.059
Uyar, T., & Kny, E. (2017). Electrospun materials for tissue engineering and biomedical applications: Research, design and commercialization. Electrospun materials for tissue engineering and biomedical applications: Research, design and commercialization (pp. 1-428) Elsevier Inc. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-85031905939&partnerID=40&md5=3f6e47117f7b85651f648bf8b61c96f3
Valentin, T. M., Dubois, E. M., Machnicki, C. E., Bhaskar, D., Cui, F. R., & Wong, I. Y. (2019). 3D printed self-adhesive PEGDA-PAA hydrogels as modular components for soft actuators and microfluidics. Polymer Chemistry, 10(16), 2015-2028. https://doi.org/10.1039/c9py00211a
Wang, Z., Abdulla, R., Parker, B., Samanipour, R., Ghosh, S., & Kim, K. (2015). A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication, 7(4), 45009. https://doi.org/10.1088/1758-5090/7/4/045009
Webb, B., & Doyle, B. J. (2017). Parameter optimization for 3D bioprinting of hydrogels. Bioprinting, 8, 8-12. https://doi.org/10.1016/j.bprint.2017.09.001
Wu, D., Yu, Y., Tan, J., Huang, L., Luo, B., Lu, L., & Zhou, C. (2018). 3D bioprinting of gellan gum and poly (ethylene glycol) diacrylate based hydrogels to produce human-scale constructs with high-fidelity. Materials and Design, 160, 486-495. https://doi.org/10.1016/j.matdes.2018.09.040
Xie, Z., Aphale, N. V., Kadapure, T. D., Wadajkar, A. S., Orr, S., Gyawali, D., . . . Yang, J. (2015). Design of antimicrobial peptides conjugated biodegradable citric acid derived hydrogels for wound healing. Journal of Biomedical Materials Research - Part A, 103(12), 3907-3918. https://doi.org/10.1002/jbm.a.35512
Yang, W., Yu, H., Liang, W., Wang, Y., & Liu, L. (2015). Rapid fabrication of hydrogel microstructures using UV-induced projection printing. Micromachines, 6(12), 1903-1913. https://doi.org/10.3390/mi6121464
Zhang, B., Cristescu, R., Chrisey, D. B., & Narayan, R. J. (2020). Solvent-based extrusion 3D printing for the fabrication of tissue engineering scaffolds. International Journal of Bioprinting, 6(1), 28-42. https://doi.org/10.18063/ijb.v6i1.211
Zhou, X., Nowicki, M., Cui, H., Zhu, W., Fang, X., Miao, S., . . . Zhang, L. G. (2017). 3D bioprinted graphene oxide-incorporated matrix for promoting chondrogenic differentiation of human bone marrow mesenchymal stem cells. Carbon, 116, 615-624. https://doi.org/10.1016/j.carbon.2017.02.049
Zhu, W., George, J. K., Sorger, V. J., & Grace Zhang, L. (2017). 3D printing scaffold coupled with low level light therapy for neural tissue regeneration. Biofabrication, 9(2), 025002. https://doi.org/10.1088/1758-5090/aa6999
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
Atribución-NoComercial-SinDerivadas 2.5 Colombia
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.spa.fl_str_mv Colombia
dc.coverage.campus.spa.fl_str_mv UNAB Campus Bucaramanga
dc.publisher.grantor.spa.fl_str_mv Universidad Autónoma de Bucaramanga UNAB
dc.publisher.faculty.spa.fl_str_mv Facultad Ingeniería
dc.publisher.program.spa.fl_str_mv Pregrado Ingeniería Biomédica
institution Universidad Autónoma de Bucaramanga - UNAB
bitstream.url.fl_str_mv https://repository.unab.edu.co/bitstream/20.500.12749/12431/3/license.txt
https://repository.unab.edu.co/bitstream/20.500.12749/12431/4/2021_Tesis_Marly_Galeano_Blanco.pdf.jpg
https://repository.unab.edu.co/bitstream/20.500.12749/12431/5/2021_Licencia_Marly_Galeano_Blanco.pdf.jpg
https://repository.unab.edu.co/bitstream/20.500.12749/12431/1/2021_Tesis_Marly_Galeano_Blanco.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/12431/2/2021_Licencia_Marly_Galeano_Blanco.pdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
da47d74a30fa7d798b5e9c79c371ad5c
618fd9c438227b0c80bf4cbbd4365f96
7ab6e8a271d275737c7af97740baf003
7e8ee62619024c0e73e086c5daef624d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB
repository.mail.fl_str_mv repositorio@unab.edu.co
_version_ 1828219840481984512
spelling Solarte David, Víctor Alfonso54590e96-eda3-4b43-9ffa-14bd35ed7d08-1Becerra Bayona, Silvia Milenaf59fde3b-924f-4fcc-96e9-5fd6250b2dae-1Galeano Blanco, Marly Judith243f328b-7a64-4443-9c83-06f85b02d9dd-1https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001329391Becerra Bayona, Silvia Milena [0001568861]Becerra Bayona, Silvia Milena [5wr21EQAAAAJ]https://orcid.org/0000-0002-9856-1484Becerra Bayona, Silvia Milena [0000-0002-4499-5885]Becerra Bayona, Silvia Milena [36522328100]Becerra Bayona, Silvia Milena [Silvia-Becerra-Bayona]Becerra Bayona, Silvia Milena [silvia-milena-becerra-bayona]Becerra Bayona, Silvia Milena [silvia-becerra-3174455a]ColombiaUNAB Campus Bucaramanga2021-03-16T18:42:22Z2021-03-16T18:42:22Z2021http://hdl.handle.net/20.500.12749/12431instname:Universidad Autónoma de Bucaramanga - UNABreponame:Repositorio Institucional UNABrepourl:https://repository.unab.edu.coActualmente los apósitos tipo hidrogel usados para el tratamiento de úlceras crónicas de pie diabético favorecen de manera limitada procesos de regeneración al ser apósitos bidimensionales, que sumado al potencial del PEGDA como biomaterial versátil en el campo de la ingeniería de tejidos, conviene desarrollar apósitos tridimensionales a base de PEGDA, lo que es posible mediante la bioimpresión 3D. De ahí que en esta investigación se evaluó la imprimibilidad de tinta de biomaterial a base de PEGDA usada en extrusión y fotopolimerización in-situ, con el fin de fabricar hidrogeles utilizando al Irgacure 2959 como fotoiniciador. Con este fin, se investigó el efecto que tiene la concentración de la solución precursora, además de los parámetros de bioimpresión tales como la velocidad de impresión, el flujo de material extruido y la altura de capa de impresión en la imprimibilidad. Sim embargo, pese al establecimiento de los mejores parámetros de bioimpresión: velocidad de impresión de 1 mm/s, altura de capa de 0.1 mm y flujo de 100%, los resultados demuestran que la viscosidad de la tinta de biomaterial a base de PEGDA requiere ser incrementada, para lograr la deposición de un filamento cilíndrico con una difusión de material mínima. Adicionalmente se llegó a la conclusión de que la intensidad de la luz ultravioleta de la bioimpresora debe ser mayor, para garantizar una polimerización eficiente y homogénea. La metodología desarrollada en este trabajo permite establecer las pautas de la fabricación de andamios a base de PEGDA, con el potencial uso en el diseño de matrices que lleven al desarrollo de alternativas terapéuticas tipo apósito, para el tratamiento de las úlceras crónicas de pie diabético, considerando la profundidad y la topografía de la úlcera.Capítulo 1. Problema u Oportunidad ................................................................................. 8 Introducción .................................................................................................................... 8 Planteamiento del Problema ............................................................................................ 9 Justificación ................................................................................................................... 11 Pregunta Problema ........................................................................................................ 12 Objetivo General ........................................................................................................... 12 Objetivos Específicos .................................................................................................... 12 Limitaciones y Delimitaciones ...................................................................................... 13 Capítulo 2. Marco Teórico ................................................................................................ 14 Hidrogeles de PEDGA: Características del PEDGA y Polimerización ........................ 14 Bioimpresión: Tipos de Bioimpresión .......................................................................... 16 Parámetros de Biompresión en Extrusión 3D ........................................................... 17 Biotintas: Definición y su Distinción de Tinta de Biomaterial ..................................... 20 Requerimientos del Material de Bioimpresión.............................................................. 20 Capítulo 3. Estado del Arte ............................................................................................... 22 Aplicaciones en la Liberación de Fármacos .................................................................. 22 Aplicaciones en la Ingeniería de Tejidos ...................................................................... 23 Aplicaciones en el Área de Biosensado ........................................................................ 24 Aplicaciones del PEGDA en la Regeneración de Heridas ............................................ 25 Bioimpresión 3D e Hidrogeles PEGDA........................................................................ 26 Composición del Hidrogel de PEGDA ..................................................................... 26 Evaluación de la Impribilidad de Tintas de Biomaterial en Extrusión 3D ............... 28 Capítulo 4. Metodología ................................................................................................... 33 Preparación de las Soluciones Precursoras de PEGDA. ............................................... 33 Impresión de Hidrogeles de PEGDA ............................................................................ 33 Evaluación de la Morfología del Filamento .................................................................. 36 Evaluación de la Fidelidad de la Forma ........................................................................ 39 Análisis Estadísticos ...................................................................................................... 41 Capítulo 5. Resultados y Análisis de Resultados .............................................................. 43 Resultados ..................................................................................................................... 43 Impresión de Hidrogeles de PEGDA ........................................................................ 43 Evaluación de la Morfología del Filamento.............................................................. 50 Evaluación de la Fidelidad de la Forma .................................................................... 53 Análisis de Resultados .................................................................................................. 59 Capítulo 6. Conclusiones y Recomendaciones ................................................................. 63 Referencias ........................................................................................................................ 64PregradoCurrently the hydrogel-type dressings used for the treatment of chronic diabetic foot ulcers favor regeneration processes in a limited way as they are two-dimensional dressings, which added to the potential of PEGDA as a versatile biomaterial in the field of tissue engineering, it is convenient to develop three-dimensional dressings to PEGDA base, which is made possible by 3D bioprinting. Hence, in this research, the printability of PEGDA-based biomaterial ink used in extrusion and in-situ photopolymerization was evaluated, in order to manufacture hydrogels using Irgacure 2959 as a photoinitiator. To this end, the effect of precursor solution concentration, in addition to bioprinting parameters such as print speed, extrudate flow, and print layer height, on printability was investigated. However, despite the establishment of the best bioprinting parameters: printing speed of 1 mm / s, layer height of 0.1 mm and flow of 100%, the results show that the viscosity of the PEGDA-based biomaterial ink requires be increased, to achieve the deposition of a cylindrical filament with minimal material diffusion. Additionally, it was concluded that the intensity of the ultraviolet light from the bioprinter must be greater, to guarantee an efficient and homogeneous polymerization. The methodology developed in this work allows establishing the guidelines for the manufacture of PEGDA-based scaffolds, with the potential use in the design of matrices that lead to the development of dressing-type therapeutic alternatives for the treatment of chronic diabetic foot ulcers. considering the depth and topography of the ulcer.Modalidad Presencialapplication/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial-SinDerivadas 2.5 ColombiaDesarrollo metodológico de una tinta de biomaterial a base de pegda, dirigido al diseño de apósitos para úlceras crónicas de pie diabéticoMethodological development of a pegda-based biomaterial ink, aimed at the design of dressings for chronic diabetic foot ulcersIngeniero BiomédicoUniversidad Autónoma de Bucaramanga UNABFacultad IngenieríaPregrado Ingeniería Biomédicainfo:eu-repo/semantics/bachelorThesisTrabajo de Gradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/redcol/resource_type/TPBiomedical engineeringEngineeringMedical electronicsBiological physicsBioengineeringMedical instruments and apparatusMedicine3D bioprintingDiacrylated polyethylene glycolPrintabilityUlcersFoot diseasesClinical engineeringDiabetic footIngeniería biomédicaIngenieríaBiofísicaBioingenieríaMedicinaÚlcerasEnfermedades de los piesPie diabéticoIngeniería clínicaElectrónica médicaInstrumentos y aparatos médicosBiompresión 3DPolietilenglicol diacriladoImprimibilidadAycan, D., & Alemdar, N. (2018). Development of pH-responsive chitosan-based hydrogel modified with bone ash for controlled release of amoxicillin. Carbohydrate Polymers, 184, 401-407. https://doi.org/10.1016/j.carbpol.2017.12.023Bian, S., Zheng, Z., Liu, Y., Ruan, C., Pan, H., & Zhao, X. (2019). A shear-thinning adhesive hydrogel reinforced by photo-initiated crosslinking as a fit-to-shape tissue sealant. Journal of Materials Chemistry.B, 7(42), 6488-6499. https://doi.org/10.1039/c9tb01521cBurmeister, D. M., Roy, D. C., Becerra, S. C., Natesan, S., & Christy, R. J. (2017). In situ delivery of fibrin-based hydrogels prevents contraction and reduces inflammation. Journal of Burn Care and Research, 39(1), 40-53. https://doi.org/10.1097/BCR.0000000000000576Choi, J. R., Yong, K. W., Choi, J. Y., & Cowie, A. C. (2019). Recent advances in photo-crosslinkable hydrogels for biomedical applications. BioTechniques, 66(1), 40-53. https://doi.org/10.2144/btn-2018-0083Clark, E. A., Alexander, M. R., Irvine, D. J., Roberts, C. J., Wallace, M. J., Sharpe, S., . . . Wildman, R. D. (2017). 3D printing of tablets using inkjet with UV photoinitiation. International Journal of Pharmaceutics, 529(1-2), 523-530. https://doi.org/10.1016/j.ijpharm.2017.06.085DeRosa, R. L., Schader, P. A., & Shelby, J. E. (2003). Hydrophilic nature of silicate glass surfaces as a function of exposure condition. Journal of Non-Crystalline Solids, 331(1-3), 32-40. https://doi.org/10.1016/j.jnoncrysol.2003.08.078Dirección de Epidemiología y Demografía. (2019). Análisis de situación de salud (ASIS). Colombia, 2018.Dubbin, K., Tabet, A., & Heilshorn, S. C. (2017). Quantitative criteria to benchmark new and existing bio-inks for cell compatibility. Biofabrication, 9(4), 044102. https://doi.org/10.1088/1758-5090/aa869fGao, T., Gillispie, G. J., Copus, J. S., Pr, A. K., Seol, Y., Atala, A., . . . Lee, S. J. (2018). Optimization of gelatin-alginate composite bioink printability using rheological parameters: A systematic approach. Biofabrication, 10(3), 034106. https://doi.org/10.1088/1758-5090/aacdc7Gillispie, G., Prim, P., Copus, J., Fisher, J., Mikos, A. G., Yoo, J. J., . . . Lee, S. J. (2020). Assessment methodologies for extrusion-based bioink printability. Biofabrication, 12(2), 022003. https://doi.org/10.1088/1758-5090/ab6f0dGiuseppe, M. D., Law, N., Webb, B., A. Macrae, R., Liew, L. J., Sercombe, T. B., . . . Doyle, B. J. (2018). Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting. Journal of the Mechanical Behavior of Biomedical Materials, 79, 150-157. https://doi.org/10.1016/j.jmbbm.2017.12.018Groll, J., Boland, T., Blunk, T., Burdick, J. A., Cho, D. -., Dalton, P. D., . . . Malda, J. (2016). Biofabrication: Reappraising the definition of an evolving field. Biofabrication, 8(1), 013001. https://doi.org/10.1088/1758-5090/8/1/013001Groll, J., Burdick, J. A., Cho, D. -., Derby, B., Gelinsky, M., Heilshorn, S. C., . . . Woodfield, T. B. F. (2019). A definition of bioinks and their distinction from biomaterial inks. Biofabrication, 11(1), 013001. https://doi.org/10.1088/1758-5090/aaec52Guarino, V., Alvarez-Perez, M. A., Borriello, A., Napolitano, T., & Ambrosio, L. (2013). Conductive PANi/PEGDA macroporous hydrogels for nerve regeneration. Advanced Healthcare Materials, 2(1), 218-227. https://doi.org/10.1002/adhm.201200152Habib, A., Sathish, V., Mallik, S., & Khoda, B. (2018). 3D printability of alginate-carboxymethyl cellulose hydrogel. Materials, 11(3), 454. https://doi.org/10.3390/ma11030454Hassan, W., Dong, Y., & Wang, W. (2013). Encapsulation and 3D culture of human adipose-derived stem cells in an in-situ crosslinked hybrid hydrogel composed of PEG-based hyperbranched copolymer and hyaluronic acid. Stem Cell Research and Therapy, 4(2). https://doi.org/10.1186/scrt182Hockaday, L. A., Kang, K. H., Colangelo, N. W., Cheung, P. Y. C., Duan, B., Malone, E., . . . Butcher, J. T. (2012). Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication, 4(3), 035005. https://doi.org/10.1088/1758-5082/4/3/035005Hong, S., Sycks, D., Chan, H. F., Lin, S., Lopez, G. P., Guilak, F., . . . Zhao, X. (2015). 3D printing of highly stretchable and tough hydrogels into complex, cellularized structures. Advanced Materials, 27(27), 4035-4040. https://doi.org/10.1002/adma.201501099Huang, L., Zhu, Z., Wu, D., Gan, W., Zhu, S., Li, W., . . . Lu, L. (2019). Antibacterial poly (ethylene glycol) diacrylate/chitosan hydrogels enhance mechanical adhesiveness and promote skin regeneration. Carbohydrate Polymers, 225. https://doi.org/10.1016/j.carbpol.2019.115110International Diabetes Federation. (2019). IDF diabetes atlas (9th ed.)Jabbari, E., Sarvestani, S. K., Daneshian, L., & Moeinzadeh, S. (2015). Optimum 3D matrix stiffness for maintenance of cancer stem cells is dependent on tissue origin of cancer cells. PLoS ONE, 10(7). https://doi.org/10.1371/journal.pone.0132377Kahn, R. (1999). Consensus development conference on diabetic foot wound care: 7-8 april 1999, boston, massachusetts. Diabetes Care, 22(8), 1354-1360. https://doi.org/10.2337/diacare.22.8.1354Kim, M. K., Jeong, W., Lee, S. M., Kim, J. B., Jin, S., & Kang, H. -. (2020). Decellularized extracellular matrix-based bio-ink with enhanced 3D printability and mechanical properties. Biofabrication, 12(2), 025003. https://doi.org/10.1088/1758-5090/ab5d80Lee, J. M., Ng, W. L., & Yeong, W. Y. (2019). Resolution and shape in bioprinting: Strategizing towards complex tissue and organ printing. Applied Physics Reviews, 6(1) https://doi.org/10.1063/1.5053909Lee, J. M., Sing, S. L., Zhou, M., & Yeong, W. Y. (2018). 3D bioprinting processes: A perspective on classification and terminology. International Journal of Bioprinting, 4(2). https://doi.org/10.18063/IJB.v4i2.151Li, Y., Meng, H., Liu, Y., & Lee, B. P. (2015). Fibrin gel as an injectable biodegradable scaffold and cell carrier for tissue engineering. Scientific World Journal, 2015. https://doi.org/10.1155/2015/685690Liu, S., Yeo, D. C., Wiraja, C., Tey, H. L., Mrksich, M., & Xu, C. (2017). Peptide delivery with poly(ethylene glycol) diacrylate microneedles through swelling effect. Bioengineering & Translational Medicine, 2(3), 258-267. https://doi.org/10.1002/btm2.10070Ma, Y., Ji, Y., Zhong, T., Wan, W., Yang, Q., Li, A., . . . Lin, M. (2017). Bioprinting-based PDLSC-ECM screening for in vivo repair of alveolar bone defect using cell-laden, injectable and photocrosslinkable hydrogels. ACS Biomaterials Science and Engineering, 3(12), 3534-3545. https://doi.org/10.1021/acsbiomaterials.7b00601Mancha Sánchez, E., Gómez-Blanco, J. C., López Nieto, E., Casado, J. G., Macías-García, A., Díaz Díez, M. A., . . . Pagador, J. B. (2020). Hydrogels for bioprinting: A systematic review of hydrogels synthesis, bioprinting parameters, and bioprinted structures behavior. Frontiers in Bioengineering and Biotechnology, 8, 776. https://doi.org/10.3389/fbioe.2020.00776Marinel, J., & Verdu, J. (2018). Conferencia nacional de consenso sobre las úlceras de la extremidad inferior (C:O.N.U.E.I.). Documento de consenso 2018. Madrid: ErgonMcMahon, S., Kennedy, R., Duffy, P., Vasquez, J. M., Wall, J. G., Tai, H., & Wang, W. (2016). Poly(ethylene glycol)-based hyperbranched polymer from RAFT and its application as a silver-sulfadiazine-loaded antibacterial hydrogel in wound care. ACS Applied Materials and Interfaces, 8(40), 26648-26656. https://doi.org/10.1021/acsami.6b11371Moroni, L., Boland, T., Burdick, J. A., De Maria, C., Derby, B., Forgacs, G., . . . Vozzi, G. (2018). Biofabrication: A guide to technology and terminology. Trends in Biotechnology, 36(4), 384-402. https://doi.org/10.1016/j.tibtech.2017.10.015Munoz-Pinto, D. J., Jimenez-Vergara, A. C., Gharat, T. P., & Hahn, M. S. (2015). Characterization of sequential collagen-poly(ethylene glycol) diacrylate interpenetrating networks and initial assessment of their potential for vascular tissue engineering. Biomaterials, 40, 32-42. https://doi.org/10.1016/j.biomaterials.2014.10.051Murphy, S. V., & Atala, A. (2014). 3D bioprinting of tissues and organs. Nature Biotechnology, 32(8), 773-785. https://doi.org/10.1038/nbt.2958Nachlas, A. L. Y., Li, S., Jha, R., Singh, M., Xu, C., & Davis, M. E. (2018). Human iPSC-derived mesenchymal stem cells matured into valve interstitial-like cells using PEGDA hydrogels. Acta Biomaterialia, 71, 235-246. https://doi.org/10.1016/j.actbio.2018.02.025Naseri, E., Butler, H., MacNevin, W., Ahmed, M., & Ahmadi, A. (2020). Low-temperature solvent-based 3D printing of PLGA: A parametric printability study. Drug Development and Industrial Pharmacy, 46(2), 173-178. https://doi.org/10.1080/03639045.2019.1711389Ng, W. L., Lee, J. M., Yeong, W. Y., & Win Naing, M. (2017). Microvalve-based bioprinting - process, bio-inks and applications. Biomaterials Science, 5(4), 632-647. https://doi.org/10.1039/c6bm00861eOuyang, L., Highley, C. B., Sun, W., & Burdick, J. A. (2017). A generalizable strategy for the 3D bioprinting of hydrogels from nonviscous photo-crosslinkable inks. Advanced Materials, 29(8). https://doi.org/10.1002/adma.201604983Ouyang, L., Yao, R., Zhao, Y., & Sun, W. (2016). Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication, 8(3), 035020. https://doi.org/10.1088/1758-5090/8/3/035020Paxton, N., Smolan, W., Böck, T., Melchels, F., Groll, J., & Jungst, T. (2017). Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Biofabrication, 9(4), 044107. https://doi.org/10.1088/1758-5090/aa8dd8Prompers, L., Huijberts, M., Apelqvist, J., Jude, E., Piaggesi, A., Bakker, K., . . . Schaper, N. (2007). High prevalence of ischaemia, infection and serious comorbidity in patients with diabetic foot disease in europe. baseline results from the eurodiale study. Diabetologia, 50(1), 18-25. https://doi.org/10.1007/s00125-006-0491-1Salehi-Abari, M., Koupaei, N., & Hassanzadeh-Tabrizi, S. (2020). Synthesis and characterisation of semi-interpenetrating network of polycaprolactone/polyethylene glycol diacrylate/zeolite-CuO as wound dressing. Mater Technol, 35(5), 290-299. https://doi.org/10.1080/10667857.2019.1678088.Shohatee, D., Keifer, J., Schimmel, N., Mohanty, S., & Ghosh, G. (2018). Hydrogel-based suspension array for biomarker detection using horseradish peroxidase-mediated silver precipitation. Analytica Chimica Acta, 999, 132-138. https://doi.org/10.1016/j.aca.2017.10.033Son, K. J., Gheibi, P., Stybayeva, G., Rahimian, A., & Revzin, A. (2017). Detecting cell-secreted growth factors in microfluidic devices using bead-based biosensors. Microsystems and Nanoengineering, 3. https://doi.org/10.1038/micronano.2017.25Subdirección de enfermedades no transmisibles. (2017). Día mundial de la diabetes mellitus 2017 ficha técnica para referentes territorialesTian, F., Lyu, J., Shi, J., Tan, F., & Yang, M. (2016). A polymeric microfluidic device integrated with nanoporous alumina membranes for simultaneous detection of multiple foodborne pathogens. Sensors and Actuators, B: Chemical, 225, 312-318. https://doi.org/10.1016/j.snb.2015.11.059Uyar, T., & Kny, E. (2017). Electrospun materials for tissue engineering and biomedical applications: Research, design and commercialization. Electrospun materials for tissue engineering and biomedical applications: Research, design and commercialization (pp. 1-428) Elsevier Inc. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-85031905939&partnerID=40&md5=3f6e47117f7b85651f648bf8b61c96f3Valentin, T. M., Dubois, E. M., Machnicki, C. E., Bhaskar, D., Cui, F. R., & Wong, I. Y. (2019). 3D printed self-adhesive PEGDA-PAA hydrogels as modular components for soft actuators and microfluidics. Polymer Chemistry, 10(16), 2015-2028. https://doi.org/10.1039/c9py00211aWang, Z., Abdulla, R., Parker, B., Samanipour, R., Ghosh, S., & Kim, K. (2015). A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication, 7(4), 45009. https://doi.org/10.1088/1758-5090/7/4/045009Webb, B., & Doyle, B. J. (2017). Parameter optimization for 3D bioprinting of hydrogels. Bioprinting, 8, 8-12. https://doi.org/10.1016/j.bprint.2017.09.001Wu, D., Yu, Y., Tan, J., Huang, L., Luo, B., Lu, L., & Zhou, C. (2018). 3D bioprinting of gellan gum and poly (ethylene glycol) diacrylate based hydrogels to produce human-scale constructs with high-fidelity. Materials and Design, 160, 486-495. https://doi.org/10.1016/j.matdes.2018.09.040Xie, Z., Aphale, N. V., Kadapure, T. D., Wadajkar, A. S., Orr, S., Gyawali, D., . . . Yang, J. (2015). Design of antimicrobial peptides conjugated biodegradable citric acid derived hydrogels for wound healing. Journal of Biomedical Materials Research - Part A, 103(12), 3907-3918. https://doi.org/10.1002/jbm.a.35512Yang, W., Yu, H., Liang, W., Wang, Y., & Liu, L. (2015). Rapid fabrication of hydrogel microstructures using UV-induced projection printing. Micromachines, 6(12), 1903-1913. https://doi.org/10.3390/mi6121464Zhang, B., Cristescu, R., Chrisey, D. B., & Narayan, R. J. (2020). Solvent-based extrusion 3D printing for the fabrication of tissue engineering scaffolds. International Journal of Bioprinting, 6(1), 28-42. https://doi.org/10.18063/ijb.v6i1.211Zhou, X., Nowicki, M., Cui, H., Zhu, W., Fang, X., Miao, S., . . . Zhang, L. G. (2017). 3D bioprinted graphene oxide-incorporated matrix for promoting chondrogenic differentiation of human bone marrow mesenchymal stem cells. Carbon, 116, 615-624. https://doi.org/10.1016/j.carbon.2017.02.049Zhu, W., George, J. K., Sorger, V. J., & Grace Zhang, L. (2017). 3D printing scaffold coupled with low level light therapy for neural tissue regeneration. Biofabrication, 9(2), 025002. https://doi.org/10.1088/1758-5090/aa6999LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.unab.edu.co/bitstream/20.500.12749/12431/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53open accessTHUMBNAIL2021_Tesis_Marly_Galeano_Blanco.pdf.jpg2021_Tesis_Marly_Galeano_Blanco.pdf.jpgIM Thumbnailimage/jpeg5293https://repository.unab.edu.co/bitstream/20.500.12749/12431/4/2021_Tesis_Marly_Galeano_Blanco.pdf.jpgda47d74a30fa7d798b5e9c79c371ad5cMD54open access2021_Licencia_Marly_Galeano_Blanco.pdf.jpg2021_Licencia_Marly_Galeano_Blanco.pdf.jpgIM Thumbnailimage/jpeg8601https://repository.unab.edu.co/bitstream/20.500.12749/12431/5/2021_Licencia_Marly_Galeano_Blanco.pdf.jpg618fd9c438227b0c80bf4cbbd4365f96MD55metadata only accessORIGINAL2021_Tesis_Marly_Galeano_Blanco.pdf2021_Tesis_Marly_Galeano_Blanco.pdfTesisapplication/pdf1683346https://repository.unab.edu.co/bitstream/20.500.12749/12431/1/2021_Tesis_Marly_Galeano_Blanco.pdf7ab6e8a271d275737c7af97740baf003MD51open access2021_Licencia_Marly_Galeano_Blanco.pdf2021_Licencia_Marly_Galeano_Blanco.pdfLicenciaapplication/pdf125065https://repository.unab.edu.co/bitstream/20.500.12749/12431/2/2021_Licencia_Marly_Galeano_Blanco.pdf7e8ee62619024c0e73e086c5daef624dMD52metadata only access20.500.12749/12431oai:repository.unab.edu.co:20.500.12749/124312023-11-25 04:08:46.634open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=