Aportes de la arquitectura Dew Computing al internet de las cosas: comparaciones entre implementaciones piloto de ambas arquitecturas
Dew computing ó la computación de rocío o lágrima ha despertado gran interés en la academia, debido a la separación de los procesos de computación distribuida; donde se encuentran las capas de cloud Computing (computación en la nube), Fog Computing (computación de niebla), Edge Computing (computaci...
- Autores:
-
Pinzón Castellanos, Javier
- Tipo de recurso:
- Fecha de publicación:
- 2018
- Institución:
- Universidad Autónoma de Bucaramanga - UNAB
- Repositorio:
- Repositorio UNAB
- Idioma:
- spa
- OAI Identifier:
- oai:repository.unab.edu.co:20.500.12749/3551
- Acceso en línea:
- http://hdl.handle.net/20.500.12749/3551
- Palabra clave:
- Systems engineering
Telematics
Software engineering
Cloud computing
Investigations
Analysis
Dew computing
Fog computing
Internet of things
Ingeniería de sistemas
Telemática
Ingeniería de software
Computación en la nube
Investigaciones
Análisis
Computación de niebla
Computación de rocío
Internet de las cosas
- Rights
- openAccess
- License
- http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id |
UNAB2_54d7bc475fec4b27277a6b6cf725899c |
---|---|
oai_identifier_str |
oai:repository.unab.edu.co:20.500.12749/3551 |
network_acronym_str |
UNAB2 |
network_name_str |
Repositorio UNAB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Aportes de la arquitectura Dew Computing al internet de las cosas: comparaciones entre implementaciones piloto de ambas arquitecturas |
dc.title.translated.eng.fl_str_mv |
Contributions of architecture Dew Computing to the Internet of Things: comparisons between pilot implementations of both architectures |
title |
Aportes de la arquitectura Dew Computing al internet de las cosas: comparaciones entre implementaciones piloto de ambas arquitecturas |
spellingShingle |
Aportes de la arquitectura Dew Computing al internet de las cosas: comparaciones entre implementaciones piloto de ambas arquitecturas Systems engineering Telematics Software engineering Cloud computing Investigations Analysis Dew computing Fog computing Internet of things Ingeniería de sistemas Telemática Ingeniería de software Computación en la nube Investigaciones Análisis Computación de niebla Computación de rocío Internet de las cosas |
title_short |
Aportes de la arquitectura Dew Computing al internet de las cosas: comparaciones entre implementaciones piloto de ambas arquitecturas |
title_full |
Aportes de la arquitectura Dew Computing al internet de las cosas: comparaciones entre implementaciones piloto de ambas arquitecturas |
title_fullStr |
Aportes de la arquitectura Dew Computing al internet de las cosas: comparaciones entre implementaciones piloto de ambas arquitecturas |
title_full_unstemmed |
Aportes de la arquitectura Dew Computing al internet de las cosas: comparaciones entre implementaciones piloto de ambas arquitecturas |
title_sort |
Aportes de la arquitectura Dew Computing al internet de las cosas: comparaciones entre implementaciones piloto de ambas arquitecturas |
dc.creator.fl_str_mv |
Pinzón Castellanos, Javier |
dc.contributor.advisor.spa.fl_str_mv |
Cadena Carter, Miguel Antonio |
dc.contributor.author.spa.fl_str_mv |
Pinzón Castellanos, Javier |
dc.contributor.cvlac.*.fl_str_mv |
https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000068845 |
dc.contributor.cvlac.none.fl_str_mv |
Cadena Carter, Miguel Antonio [0000068845] |
dc.contributor.orcid.*.fl_str_mv |
Cadena Carter, Miguel Antonio [https://orcid.org/0000-0002-0159-4889] |
dc.contributor.linkedin.none.fl_str_mv |
Cadena Carter, Miguel Antonio [miguel-antonio-cadena-carter-17553215] |
dc.subject.keywords.eng.fl_str_mv |
Systems engineering Telematics Software engineering Cloud computing Investigations Analysis Dew computing Fog computing Internet of things |
topic |
Systems engineering Telematics Software engineering Cloud computing Investigations Analysis Dew computing Fog computing Internet of things Ingeniería de sistemas Telemática Ingeniería de software Computación en la nube Investigaciones Análisis Computación de niebla Computación de rocío Internet de las cosas |
dc.subject.lemb.spa.fl_str_mv |
Ingeniería de sistemas Telemática Ingeniería de software Computación en la nube Investigaciones Análisis |
dc.subject.proposal.spa.fl_str_mv |
Computación de niebla Computación de rocío Internet de las cosas |
description |
Dew computing ó la computación de rocío o lágrima ha despertado gran interés en la academia, debido a la separación de los procesos de computación distribuida; donde se encuentran las capas de cloud Computing (computación en la nube), Fog Computing (computación de niebla), Edge Computing (computación de borde) y por último Dew Computing. Estas capas están mencionadas de orden descendente (de mayor a menor) siendo Dew Computing la más cercana al usuario final. Esto se realiza para una mayor comprensión entre las tecnologías y procesos que en ellas se realizan permitiendo su diferenciación. La arquitectura de Internet of Things (IoT) es un paradigma tecnológico que se está formando dentro del ecosistema de computación distribuida, por ende, se requiere resaltar la capa de Dew Computing y su aporte al modelo tecnológico. Es por esto, que se realiza un estado del arte de las arquitecturas Dew Computing e IoT que permitan su comparación con el fin de saber su aporte de forma independiente y en dado caso, cómo podrían integrarse. Se realiza una prueba piloto entre las arquitecturas y una integración de las misma para encontrar los aportes que un modelo del entrega al otro y por último, se plantean posibles escenarios de aplicación que evidencien los beneficios y déficit de la implementación de cada arquitectura en diferentes ámbitos sociales. |
publishDate |
2018 |
dc.date.issued.none.fl_str_mv |
2018 |
dc.date.accessioned.none.fl_str_mv |
2020-06-26T21:35:50Z |
dc.date.available.none.fl_str_mv |
2020-06-26T21:35:50Z |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.local.spa.fl_str_mv |
Tesis |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12749/3551 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Autónoma de Bucaramanga - UNAB |
dc.identifier.reponame.spa.fl_str_mv |
reponame:Repositorio Institucional UNAB |
url |
http://hdl.handle.net/20.500.12749/3551 |
identifier_str_mv |
instname:Universidad Autónoma de Bucaramanga - UNAB reponame:Repositorio Institucional UNAB |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Pinzón Castellanos, Javier (2018). Aportes de la arquitectura dew computing al internet de las cosas. Bucaramanga (Colombia) : Universidad Autónoma de Bucaramanga UNAB AWS Developers. (2017, diciembre 12). AWS Greengrass – Computación de Lambda integrada en dispositivos conectados – Amazon Web Services. Recuperado 12 de diciembre de 2017, a partir de //aws.amazon.com/es/greengrass/ Brezany, P., Ludescher, T., & Feilhauer, T. (2017). Cloud-Dew computing support for automatic data analysis in life sciences. En 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 365-370). https://doi.org/10.23919/MIPRO.2017.7973450 Cabé, B. (2018). Key Trends from the IoT Developer Survey 2018. Recuperado a partir de https://blogs.eclipse.org/post/benjamin-cab%C3%A9/key-trends-iot-developer-survey-2018 Chang, K.-D., Chen, J.-L., Chen, C.-Y., & Chao, H.-C. (2012). IoT operations management and traffic analysis for Future Internet. En Computing, Communications and Applications Conference (ComComAp), 2012 (pp. 138–142). IEEE. Crnko, N. (2017). Distributed Database System as a base for multilanguage support for legacy software. En 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 371-374). https://doi.org/10.23919/MIPRO.2017.7973451 Crook, S., MacGillivray, C., & Turner, V. (2017, julio 1). IDC MarketScape: Worldwide IoT Platforms (Software Vendors) 2017 Vendor Assessment. Recuperado 12 de diciembre de 2017, a partir de http://www.idc.com/getdoc.jsp?containerId=US42033517 Deepti Sharma, P. K. (2015). A Detail Review on Cloud, Fog and Dew Computing. International Journal of Science, Engineering and Technology Research (IJSETR), 5(5), 9. Fernández, P. (1996). Determinación del tamaño muestral. Cad Aten Primaria, 3, 138–141. Frincu, M. (2017). Architecting a hybrid cross layer dew-fog-cloud stack for future data-driven cyber-physical systems. En 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 399-403). https://doi.org/10.23919/MIPRO.2017.7973456 Goleva, R. I., Garcia, N. M., Mavromoustakis, C. X., Dobre, C., Mastorakis, G., & Stainov, R. (2017). Chapter 16 - End-Users Testing of Enhanced Living Environment Platform and Services. En Ambient Assisted Living and Enhanced Living Environments (pp. 427-440). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-12-805195-5.00016-8 Goleva, R. I., Garcia, N. M., Mavromoustakis, C. X., Dobre, C., Mastorakis, G., Stainov, R., … Trajkovik, V. (2017). Chapter 8 - AAL and ELE Platform Architecture. En Ambient Assisted Living and Enhanced Living Environments (pp. 171-209). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-12-805195-5.00008-9 Gordienko, Y., Stirenko, S., Alienin, O., Skala, K., Sojat, Z., Rojbi, A., … Jervan, G. (2017). Augmented Coaching Ecosystem for Non-obtrusive Adaptive Personalized Elderly Care on the basis of Cloud-Fog-Dew computing paradigm. En 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 359-364). https://doi.org/10.23919/MIPRO.2017.7973449 Gremban, K., & Street, C. (2017, noviembre 15). What is Azure IoT Edge. Recuperado 7 de diciembre de 2017, a partir de https://docs.microsoft.com/en-us/azure/iot-edge/how-iot-edge-works Gusev, M. (2017). A dew computing solution for IoT streaming devices. En 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 387-392). https://doi.org/10.23919/MIPRO.2017.7973454 Gusev, M., & Guseva, A. (2017). State-of-the-art of cloud solutions based on ECG sensors. En IEEE EUROCON 2017 -17th International Conference on Smart Technologies (pp. 501-506). https://doi.org/10.1109/EUROCON.2017.8011162 Huang, D., & Wu, H. (2018). Chapter 6 - Edge Clouds – Pushing the Boundary of Mobile Clouds. En Mobile Cloud Computing (pp. 153-176). Morgan Kaufmann. https://doi.org/10.1016/B978-0-12-809641-3.00008-9 Jóźwiak, L. (2017). Advanced mobile and wearable systems. Microprocessors and Microsystems, 50 (Supplement C), 202-221. https://doi.org/10.1016/j.micpro.2017.03.008 Kholod, I., Efimova, M., Rukavitsyn, A., & Andrey, S. (2017). Time Series Distributed Analysis in IoT with ETL and Data Mining Technologies. En Internet of Things, Smart Spaces, and Next Generation Networks and Systems (pp. 97-108). Springer, Cham. https://doi.org/10.1007/978-3-319-67380-6_9 Lorga, M., Feldman, L., Barton, R., Martin, M., Goren, N., & Mahmoudi, C. (2017, septiembre 21). The NIST Definition of Fog Computing. Recuperado 11 de octubre de 2017, a partir de https://csrc.nist.gov/publications/detail/sp/800-191/draft Luchian, E. F., Taut, A., Ivanciu, I. A., Lazar, G., & Dobrota, V. (2017). Mobile wireless sensor network gateway: A raspberry Pi implementation with a VPN backend to OpenStack. En 2017 25th International Conference on Software, Telecommunications and Computer Networks (SoftCOM) (pp. 1-5). https://doi.org/10.23919/SOFTCOM.2017.8115561 Mell, P., & Grance, T. (2011, julio 7). The NIST Definition of Cloud Computing. Recuperado 5 de diciembre de 2017, a partir de https://csrc.nist.gov/publications/detail/sp/800-145/final MSV, J. (2017, septiembre 15). Demystifying Edge Computing -- Device Edge vs. Cloud Edge. Recuperado 12 de octubre de 2017, a partir de https://www.forbes.com/sites/janakirammsv/2017/09/15/demystifying-edge-computing-device-edge-vs-cloud-edge/ Mulay, P., Patel, K., & Gauchia, H. G. (2017). Distributed system implementation based on «ants feeding birds» algorithm: Electronics transformation via animals and human. En Detecting and Mitigating Robotic Cyber Security Risks (pp. 51-85). https://doi.org/10.4018/978-1-5225-2154-9.ch005 Patel, H., Chaudhari, R., R Prajapati, K., & A Patel, A. (2017). The Interdependent Part of Cloud Computing:Dew Computing. Podbojec, D., Herynek, B., Jazbec, D., Cvetko, M., Debevc, M., & Kožuh, I. (2017). 3D-based location positioning using the Dew Computing approach for indoor navigation. En 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 393-398). https://doi.org/10.23919/MIPRO.2017.7973455 Quwaider, M., Al-Alyyoub, M., & Jararweh, Y. (2016). Cloud Support Data Management Infrastructure for Upcoming Smart Cities. Procedia Computer Science, 83, 1232–1237. Ray, P. P. (2017). An Introduction to Dew Computing: Definition, Concept and Implications. IEEE Access, PP(99), 1-1. https://doi.org/10.1109/ACCESS.2017.2775042 Rindos, A., & Wang, Y. (2016). Dew Computing: The Complementary Piece of Cloud Computing. En Big Data and Cloud Computing (BDCloud), Social Computing and Networking (SocialCom), Sustainable Computing and Communications (SustainCom)(BDCloud-SocialCom-SustainCom), 2016 IEEE International Conferences on (pp. 15–20). IEEE. Recuperado a partir de http://ieeexplore.ieee.org/abstract/document/7723668/ Ristov, S., Cvetkov, K., & Gusev, M. (2016). Implementation of a Horizontal Scalable Balancer for Dew Computing Services. Scalable Computing: Practice and Experience, 17(2), 79–90. Skala, K., Davidovic, D., Afgan, E., Sovic, I., & Sojat, Z. (2015). Scalable distributed computing hierarchy: Cloud, fog and dew computing. Open Journal of Cloud Computing (OJCC), 2(1), 16–24. Šojat, Z., & Skala, K. (2016). Views on the role and importance of dew computing in the service and control technology. En 2016 39th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 164-168). https://doi.org/10.1109/MIPRO.2016.7522131 Šojat, Z., & Skala, K. (2017). The dawn of Dew: Dew Computing for advanced living environment. En 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 347-352). https://doi.org/10.23919/MIPRO.2017.7973447 Stojkoska, B. R., Trivodaliev, K., & Davcev, D. (2017). Internet of things framework for home care systems. Wireless Communications and Mobile Computing, 2017. https://doi.org/10.1155/2017/8323646 AWS Developers. (2017, diciembre 12). AWS Greengrass – Computación de Lambda integrada en dispositivos conectados – Amazon Web Services. Recuperado 12 de diciembre de 2017, a partir de //aws.amazon.com/es/greengrass/ Brezany, P., Ludescher, T., & Feilhauer, T. (2017). Cloud-Dew computing support for automatic data analysis in life sciences. En 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 365-370). https://doi.org/10.23919/MIPRO.2017.7973450 Cabé, B. (2018). Key Trends from the IoT Developer Survey 2018. Recuperado a partir de https://blogs.eclipse.org/post/benjamin-cab%C3%A9/key-trends-iot-developer-survey-2018 Chang, K.-D., Chen, J.-L., Chen, C.-Y., & Chao, H.-C. (2012). IoT operations management and traffic analysis for Future Internet. En Computing, Communications and Applications Conference (ComComAp), 2012 (pp. 138–142). IEEE. Crnko, N. (2017). Distributed Database System as a base for multilanguage support for legacy software. En 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 371-374). https://doi.org/10.23919/MIPRO.2017.7973451 Crook, S., MacGillivray, C., & Turner, V. (2017, julio 1). IDC MarketScape: Worldwide IoT Platforms (Software Vendors) 2017 Vendor Assessment. Recuperado 12 de diciembre de 2017, a partir de http://www.idc.com/getdoc.jsp?containerId=US42033517 Deepti Sharma, P. K. (2015). A Detail Review on Cloud, Fog and Dew Computing. International Journal of Science, Engineering and Technology Research (IJSETR), 5(5), 9. Fernández, P. (1996). Determinación del tamaño muestral. Cad Aten Primaria, 3, 138–141. Frincu, M. (2017). Architecting a hybrid cross layer dew-fog-cloud stack for future data-driven cyber-physical systems. En 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 399-403). https://doi.org/10.23919/MIPRO.2017.7973456 Goleva, R. I., Garcia, N. M., Mavromoustakis, C. X., Dobre, C., Mastorakis, G., & Stainov, R. (2017). Chapter 16 - End-Users Testing of Enhanced Living Environment Platform and Services. En Ambient Assisted Living and Enhanced Living Environments (pp. 427-440). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-12-805195-5.00016-8 Goleva, R. I., Garcia, N. M., Mavromoustakis, C. X., Dobre, C., Mastorakis, G., Stainov, R., … Trajkovik, V. (2017). Chapter 8 - AAL and ELE Platform Architecture. En Ambient Assisted Living and Enhanced Living Environments (pp. 171-209). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-12-805195-5.00008-9 Gordienko, Y., Stirenko, S., Alienin, O., Skala, K., Sojat, Z., Rojbi, A., … Jervan, G. (2017). Augmented Coaching Ecosystem for Non-obtrusive Adaptive Personalized Elderly Care on the basis of Cloud-Fog-Dew computing paradigm. En 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 359-364). https://doi.org/10.23919/MIPRO.2017.7973449 Gremban, K., & Street, C. (2017, noviembre 15). What is Azure IoT Edge. Recuperado 7 de diciembre de 2017, a partir de https://docs.microsoft.com/en-us/azure/iot-edge/how-iot-edge-works Gusev, M. (2017). A dew computing solution for IoT streaming devices. En 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 387-392). https://doi.org/10.23919/MIPRO.2017.7973454 Gusev, M., & Guseva, A. (2017). State-of-the-art of cloud solutions based on ECG sensors. En IEEE EUROCON 2017 -17th International Conference on Smart Technologies (pp. 501-506). https://doi.org/10.1109/EUROCON.2017.8011162 Huang, D., & Wu, H. (2018). Chapter 6 - Edge Clouds – Pushing the Boundary of Mobile Clouds. En Mobile Cloud Computing (pp. 153-176). Morgan Kaufmann. https://doi.org/10.1016/B978-0-12-809641-3.00008-9 Jóźwiak, L. (2017). Advanced mobile and wearable systems. Microprocessors and Microsystems, 50 (Supplement C), 202-221. https://doi.org/10.1016/j.micpro.2017.03.008 Kholod, I., Efimova, M., Rukavitsyn, A., & Andrey, S. (2017). Time Series Distributed Analysis in IoT with ETL and Data Mining Technologies. En Internet of Things, Smart Spaces, and Next Generation Networks and Systems (pp. 97-108). Springer, Cham. https://doi.org/10.1007/978-3-319-67380-6_9 Lorga, M., Feldman, L., Barton, R., Martin, M., Goren, N., & Mahmoudi, C. (2017, septiembre 21). The NIST Definition of Fog Computing. Recuperado 11 de octubre de 2017, a partir de https://csrc.nist.gov/publications/detail/sp/800-191/draft Luchian, E. F., Taut, A., Ivanciu, I. A., Lazar, G., & Dobrota, V. (2017). Mobile wireless sensor network gateway: A raspberry Pi implementation with a VPN backend to OpenStack. En 2017 25th International Conference on Software, Telecommunications and Computer Networks (SoftCOM) (pp. 1-5). https://doi.org/10.23919/SOFTCOM.2017.8115561 Mell, P., & Grance, T. (2011, julio 7). The NIST Definition of Cloud Computing. Recuperado 5 de diciembre de 2017, a partir de https://csrc.nist.gov/publications/detail/sp/800-145/final MSV, J. (2017, septiembre 15). Demystifying Edge Computing -- Device Edge vs. Cloud Edge. Recuperado 12 de octubre de 2017, a partir de https://www.forbes.com/sites/janakirammsv/2017/09/15/demystifying-edge-computing-device-edge-vs-cloud-edge/ Mulay, P., Patel, K., & Gauchia, H. G. (2017). Distributed system implementation based on «ants feeding birds» algorithm: Electronics transformation via animals and human. En Detecting and Mitigating Robotic Cyber Security Risks (pp. 51-85). https://doi.org/10.4018/978-1-5225-2154-9.ch005 Patel, H., Chaudhari, R., R Prajapati, K., & A Patel, A. (2017). The Interdependent Part of Cloud Computing:Dew Computing. Podbojec, D., Herynek, B., Jazbec, D., Cvetko, M., Debevc, M., & Kožuh, I. (2017). 3D-based location positioning using the Dew Computing approach for indoor navigation. En 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 393-398). https://doi.org/10.23919/MIPRO.2017.7973455 Quwaider, M., Al-Alyyoub, M., & Jararweh, Y. (2016). Cloud Support Data Management Infrastructure for Upcoming Smart Cities. Procedia Computer Science, 83, 1232–1237. Ray, P. P. (2017). An Introduction to Dew Computing: Definition, Concept and Implications. IEEE Access, PP(99), 1-1. https://doi.org/10.1109/ACCESS.2017.2775042 Rindos, A., & Wang, Y. (2016). Dew Computing: The Complementary Piece of Cloud Computing. En Big Data and Cloud Computing (BDCloud), Social Computing and Networking (SocialCom), Sustainable Computing and Communications (SustainCom)(BDCloud-SocialCom-SustainCom), 2016 IEEE International Conferences on (pp. 15–20). IEEE. Recuperado a partir de http://ieeexplore.ieee.org/abstract/document/7723668/ Ristov, S., Cvetkov, K., & Gusev, M. (2016). Implementation of a Horizontal Scalable Balancer for Dew Computing Services. Scalable Computing: Practice and Experience, 17(2), 79–90. Skala, K., Davidovic, D., Afgan, E., Sovic, I., & Sojat, Z. (2015). Scalable distributed computing hierarchy: Cloud, fog and dew computing. Open Journal of Cloud Computing (OJCC), 2(1), 16–24. Šojat, Z., & Skala, K. (2016). Views on the role and importance of dew computing in the service and control technology. En 2016 39th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 164-168). https://doi.org/10.1109/MIPRO.2016.7522131 Šojat, Z., & Skala, K. (2017). The dawn of Dew: Dew Computing for advanced living environment. En 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 347-352). https://doi.org/10.23919/MIPRO.2017.7973447 Stojkoska, B. R., Trivodaliev, K., & Davcev, D. (2017). Internet of things framework for home care systems. Wireless Communications and Mobile Computing, 2017. https://doi.org/10.1155/2017/8323646 Uehara, M. (2017). Mist Computing: Linking Cloudlet to Fogs. En Computational Science/Intelligence and Applied Informatics (pp. 201-213). Springer, Cham. https://doi.org/10.1007/978-3-319-63618-4_15 Vogels, W. (2017, junio 7). Unlocking the Value of Device Data with AWS Greengrass. [Blog]. Recuperado 21 de febrero de 2018, a partir de https://www.allthingsdistributed.com/2017/06/unlocking-value-device-data-aws-greengrass.html Wang, Y. (2017). The Theory and Applications of Dew Computing. En Proceedings of the 27th Annual International Conference on Computer Science and Software Engineering (pp. 317–317). Riverton, NJ, USA: IBM Corp. Recuperado a partir de http://dl.acm.org.aure.unab.edu.co/citation.cfm?id=3172795.3172843 Wang, Y., & LeBlanc, D. (2016). Integrating SaaS and SaaP with Dew Computing. En Big Data and Cloud Computing (BDCloud), Social Computing and Networking (SocialCom), Sustainable Computing and Communications (SustainCom)(BDCloud-SocialCom-SustainCom), 2016 IEEE International Conferences on (pp. 590–594). IEEE. Recuperado a partir de http://ieeexplore.ieee.org/abstract/document/7723746/ Zhou, Y., Zhang, D., & Xiong, N. (2017). Post-cloud computing paradigms: a survey and comparison. Tsinghua Science and Technology, 22(6), 714-732. https://doi.org/10.23919/TST.2017.8195353 |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
dc.rights.local.spa.fl_str_mv |
Abierto (Texto Completo) |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess http://purl.org/coar/access_right/c_abf2 |
dc.rights.creativecommons.*.fl_str_mv |
Atribución-NoComercial-SinDerivadas 2.5 Colombia |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/2.5/co/ Abierto (Texto Completo) http://purl.org/coar/access_right/c_abf2 Atribución-NoComercial-SinDerivadas 2.5 Colombia |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.spa.fl_str_mv |
Bucaramanga (Colombia) |
dc.coverage.campus.spa.fl_str_mv |
UNAB Campus Bucaramanga |
dc.publisher.grantor.spa.fl_str_mv |
Universidad Autónoma de Bucaramanga UNAB |
dc.publisher.faculty.spa.fl_str_mv |
Facultad Ingeniería |
dc.publisher.program.spa.fl_str_mv |
Maestría en Telemática |
institution |
Universidad Autónoma de Bucaramanga - UNAB |
bitstream.url.fl_str_mv |
https://repository.unab.edu.co/bitstream/20.500.12749/3551/1/2018_Tesis_Pinzon_Castellanos_Javier.pdf https://repository.unab.edu.co/bitstream/20.500.12749/3551/2/2018_Articulo_Pinzon_Castellanos_Javier.pdf https://repository.unab.edu.co/bitstream/20.500.12749/3551/3/2018_Licencia_Pinzon_Castellanos_Javier.pdf https://repository.unab.edu.co/bitstream/20.500.12749/3551/4/2018_Tesis_Pinzon_Castellanos_Javier.pdf.jpg https://repository.unab.edu.co/bitstream/20.500.12749/3551/5/2018_Articulo_Pinzon_Castellanos_Javier.pdf.jpg https://repository.unab.edu.co/bitstream/20.500.12749/3551/6/2018_Licencia_Pinzon_Castellanos_Javier.pdf.jpg |
bitstream.checksum.fl_str_mv |
47df51a7592c285e3a7f3e367f863658 8417ecbae0943ee92c064cfb8f491edc 78e7a9d732fa175e25827d801a093d6a 7e580c9c63fd8d7e1e2a81903adaa38a 0b22ed32ee977a9fa4547d64d9b0f756 caa72e9a6f09300aceaa85ea169c4fa0 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB |
repository.mail.fl_str_mv |
repositorio@unab.edu.co |
_version_ |
1814277349664882688 |
spelling |
Cadena Carter, Miguel Antoniod0eed3ef-f989-41a4-b5bd-6b3470bbd15fPinzón Castellanos, Javier93fe4f90-4771-4041-8d21-2ebbe29e540ahttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000068845Cadena Carter, Miguel Antonio [0000068845]Cadena Carter, Miguel Antonio [https://orcid.org/0000-0002-0159-4889]Cadena Carter, Miguel Antonio [miguel-antonio-cadena-carter-17553215]2020-06-26T21:35:50Z2020-06-26T21:35:50Z2018http://hdl.handle.net/20.500.12749/3551instname:Universidad Autónoma de Bucaramanga - UNABreponame:Repositorio Institucional UNABDew computing ó la computación de rocío o lágrima ha despertado gran interés en la academia, debido a la separación de los procesos de computación distribuida; donde se encuentran las capas de cloud Computing (computación en la nube), Fog Computing (computación de niebla), Edge Computing (computación de borde) y por último Dew Computing. Estas capas están mencionadas de orden descendente (de mayor a menor) siendo Dew Computing la más cercana al usuario final. Esto se realiza para una mayor comprensión entre las tecnologías y procesos que en ellas se realizan permitiendo su diferenciación. La arquitectura de Internet of Things (IoT) es un paradigma tecnológico que se está formando dentro del ecosistema de computación distribuida, por ende, se requiere resaltar la capa de Dew Computing y su aporte al modelo tecnológico. Es por esto, que se realiza un estado del arte de las arquitecturas Dew Computing e IoT que permitan su comparación con el fin de saber su aporte de forma independiente y en dado caso, cómo podrían integrarse. Se realiza una prueba piloto entre las arquitecturas y una integración de las misma para encontrar los aportes que un modelo del entrega al otro y por último, se plantean posibles escenarios de aplicación que evidencien los beneficios y déficit de la implementación de cada arquitectura en diferentes ámbitos sociales.INTRODUCCIÓN 1. PROBLEMA, PREGUNTA E HIPÓTESIS DE INVESTIGACIÓN 11 2. JUSTIFICACIÓN 11 3. OBJETIVOS DEL PROYECTO 13 3.1 OBJETIVO GENERAL 13 3.2 OBJETIVOS ESPECÍFICOS 13 4. MARCO REFERENCIAL 14 4.1 MARCO CONCEPTUAL 14 4.1.1 Internet of Things 15 4.1.2 Cloud Computing 15 4.1.3 Fog Computing 16 4.1.4 Edge Computing 17 4.1.5 Dew Computing 20 4.2 MARCO TEÓRICO 21 4.3 ESTADO DEL ARTE 22 4.3.1 Revisión sistemática de la literatura 22 4.3.2 Análisis estado del arte 28 4.4 MARCO CONTEXTUAL Y ANTECEDENTES 28 4.5 NORMAS Y ESTÁNDARES 29 4.5.1 Normatividad colombiana 29 4.5.2 Estándares y documentos de referencia 30 4.6 EMPRESAS TECNOLÓGICAS 31 4.6.1 Microsoft Azure IoT Edge 31 4.6.2 Amazon IoT GreenGrass 32 5. DESCRIPCIÓN DEL PROCESO INVESTIGATIVO 34 5.1 ENFOQUE Y TIPO DE INVESTIGACIÓN 34 5.2 FASES Y ACTIVIDADES 34 5.2.1 Elaboración del estado del arte de Dew computing 35 5.2.2 Análisis comparativo entre frameworks para Dew Computing 35 5.2.3 Dispositivo para pruebas
36 5.2.4 Pruebas de ambas arquitecturas 40 5.2.5 Análisis de pruebas
45 6. RESULTADOS 48 6.1 REVISIÓN COMPARATIVA DE DEW COMPUTING E IOT 48 6.2 VENTAJAS Y DESVENTAJAS DE DEW COMPUTING CON IOT. 52 6.2.1 Física 53 6.2.2 Economía 54 6.2.3 Ubicación 54 6.3 OPORTUNIDADES QUE BRINDA DEW COMPUTING 55 6.3.1 Manejo de la energía 55 6.3.2 Procesamiento 55 6.3.3 Almacenamiento 55 6.3.4 Protocolos de comunicación 55 6.3.5 Lenguajes de programación 55 6.3.6 Seguridad de los datos 56 6.3.7 Visualización de los datos 56 7. CONCLUSIONES Y RECOMENDACIONES 57 8. REFERENCIAS 58MaestríaDew Computing or the dew or tear computation has aroused considerable interest in the academy, due to the separation of the processes of distributed computing; where are the layers of Cloud Computing (cloud computing), Fog Computing (fog computing), Edge Computing (edge computing) and finally Dew Computing. These layers are mentioned in descending order (from highest to lowest) with Dew Computing being the closest to the end user. This is done for a better understanding of the technologies and processes that are carried out in them, allowing their differentiation.Modalidad Presencialapplication/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial-SinDerivadas 2.5 ColombiaAportes de la arquitectura Dew Computing al internet de las cosas: comparaciones entre implementaciones piloto de ambas arquitecturasContributions of architecture Dew Computing to the Internet of Things: comparisons between pilot implementations of both architecturesMagíster en TelemáticaBucaramanga (Colombia)UNAB Campus BucaramangaUniversidad Autónoma de Bucaramanga UNABFacultad IngenieríaMaestría en Telemáticainfo:eu-repo/semantics/masterThesisTesishttp://purl.org/redcol/resource_type/TMSystems engineeringTelematicsSoftware engineeringCloud computingInvestigationsAnalysisDew computingFog computingInternet of thingsIngeniería de sistemasTelemáticaIngeniería de softwareComputación en la nubeInvestigacionesAnálisisComputación de nieblaComputación de rocíoInternet de las cosasPinzón Castellanos, Javier (2018). Aportes de la arquitectura dew computing al internet de las cosas. Bucaramanga (Colombia) : Universidad Autónoma de Bucaramanga UNABAWS Developers. (2017, diciembre 12). AWS Greengrass – Computación de Lambda integrada en dispositivos conectados – Amazon Web Services. Recuperado 12 de diciembre de 2017, a partir de //aws.amazon.com/es/greengrass/Brezany, P., Ludescher, T., & Feilhauer, T. (2017). Cloud-Dew computing support for automatic data analysis in life sciences. En 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 365-370). https://doi.org/10.23919/MIPRO.2017.7973450Cabé, B. (2018). Key Trends from the IoT Developer Survey 2018. Recuperado a partir de https://blogs.eclipse.org/post/benjamin-cab%C3%A9/key-trends-iot-developer-survey-2018Chang, K.-D., Chen, J.-L., Chen, C.-Y., & Chao, H.-C. (2012). IoT operations management and traffic analysis for Future Internet. En Computing, Communications and Applications Conference (ComComAp), 2012 (pp. 138–142). IEEE.Crnko, N. (2017). Distributed Database System as a base for multilanguage support for legacy software. En 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 371-374). https://doi.org/10.23919/MIPRO.2017.7973451Crook, S., MacGillivray, C., & Turner, V. (2017, julio 1). IDC MarketScape: Worldwide IoT Platforms (Software Vendors) 2017 Vendor Assessment. Recuperado 12 de diciembre de 2017, a partir de http://www.idc.com/getdoc.jsp?containerId=US42033517Deepti Sharma, P. K. (2015). A Detail Review on Cloud, Fog and Dew Computing. International Journal of Science, Engineering and Technology Research (IJSETR), 5(5), 9.Fernández, P. (1996). Determinación del tamaño muestral. Cad Aten Primaria, 3, 138–141.Frincu, M. (2017). Architecting a hybrid cross layer dew-fog-cloud stack for future data-driven cyber-physical systems. En 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 399-403). https://doi.org/10.23919/MIPRO.2017.7973456Goleva, R. I., Garcia, N. M., Mavromoustakis, C. X., Dobre, C., Mastorakis, G., & Stainov, R. (2017). Chapter 16 - End-Users Testing of Enhanced Living Environment Platform and Services. En Ambient Assisted Living and Enhanced Living Environments (pp. 427-440). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-12-805195-5.00016-8Goleva, R. I., Garcia, N. M., Mavromoustakis, C. X., Dobre, C., Mastorakis, G., Stainov, R., … Trajkovik, V. (2017). Chapter 8 - AAL and ELE Platform Architecture. En Ambient Assisted Living and Enhanced Living Environments (pp. 171-209). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-12-805195-5.00008-9Gordienko, Y., Stirenko, S., Alienin, O., Skala, K., Sojat, Z., Rojbi, A., … Jervan, G. (2017). Augmented Coaching Ecosystem for Non-obtrusive Adaptive Personalized Elderly Care on the basis of Cloud-Fog-Dew computing paradigm. En 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 359-364). https://doi.org/10.23919/MIPRO.2017.7973449Gremban, K., & Street, C. (2017, noviembre 15). What is Azure IoT Edge. Recuperado 7 de diciembre de 2017, a partir de https://docs.microsoft.com/en-us/azure/iot-edge/how-iot-edge-worksGusev, M. (2017). A dew computing solution for IoT streaming devices. En 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 387-392). https://doi.org/10.23919/MIPRO.2017.7973454Gusev, M., & Guseva, A. (2017). State-of-the-art of cloud solutions based on ECG sensors. En IEEE EUROCON 2017 -17th International Conference on Smart Technologies (pp. 501-506). https://doi.org/10.1109/EUROCON.2017.8011162Huang, D., & Wu, H. (2018). Chapter 6 - Edge Clouds – Pushing the Boundary of Mobile Clouds. En Mobile Cloud Computing (pp. 153-176). Morgan Kaufmann. https://doi.org/10.1016/B978-0-12-809641-3.00008-9Jóźwiak, L. (2017). Advanced mobile and wearable systems. Microprocessors and Microsystems, 50 (Supplement C), 202-221. https://doi.org/10.1016/j.micpro.2017.03.008Kholod, I., Efimova, M., Rukavitsyn, A., & Andrey, S. (2017). Time Series Distributed Analysis in IoT with ETL and Data Mining Technologies. En Internet of Things, Smart Spaces, and Next Generation Networks and Systems (pp. 97-108). Springer, Cham. https://doi.org/10.1007/978-3-319-67380-6_9Lorga, M., Feldman, L., Barton, R., Martin, M., Goren, N., & Mahmoudi, C. (2017, septiembre 21). The NIST Definition of Fog Computing. Recuperado 11 de octubre de 2017, a partir de https://csrc.nist.gov/publications/detail/sp/800-191/draftLuchian, E. F., Taut, A., Ivanciu, I. A., Lazar, G., & Dobrota, V. (2017). Mobile wireless sensor network gateway: A raspberry Pi implementation with a VPN backend to OpenStack. En 2017 25th International Conference on Software, Telecommunications and Computer Networks (SoftCOM) (pp. 1-5). https://doi.org/10.23919/SOFTCOM.2017.8115561Mell, P., & Grance, T. (2011, julio 7). The NIST Definition of Cloud Computing. Recuperado 5 de diciembre de 2017, a partir de https://csrc.nist.gov/publications/detail/sp/800-145/finalMSV, J. (2017, septiembre 15). Demystifying Edge Computing -- Device Edge vs. Cloud Edge. Recuperado 12 de octubre de 2017, a partir de https://www.forbes.com/sites/janakirammsv/2017/09/15/demystifying-edge-computing-device-edge-vs-cloud-edge/Mulay, P., Patel, K., & Gauchia, H. G. (2017). Distributed system implementation based on «ants feeding birds» algorithm: Electronics transformation via animals and human. En Detecting and Mitigating Robotic Cyber Security Risks (pp. 51-85). https://doi.org/10.4018/978-1-5225-2154-9.ch005Patel, H., Chaudhari, R., R Prajapati, K., & A Patel, A. (2017). The Interdependent Part of Cloud Computing:Dew Computing.Podbojec, D., Herynek, B., Jazbec, D., Cvetko, M., Debevc, M., & Kožuh, I. (2017). 3D-based location positioning using the Dew Computing approach for indoor navigation. En 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 393-398). https://doi.org/10.23919/MIPRO.2017.7973455Quwaider, M., Al-Alyyoub, M., & Jararweh, Y. (2016). Cloud Support Data Management Infrastructure for Upcoming Smart Cities. Procedia Computer Science, 83, 1232–1237.Ray, P. P. (2017). An Introduction to Dew Computing: Definition, Concept and Implications. IEEE Access, PP(99), 1-1. https://doi.org/10.1109/ACCESS.2017.2775042Rindos, A., & Wang, Y. (2016). Dew Computing: The Complementary Piece of Cloud Computing. En Big Data and Cloud Computing (BDCloud), Social Computing and Networking (SocialCom), Sustainable Computing and Communications (SustainCom)(BDCloud-SocialCom-SustainCom), 2016 IEEE International Conferences on (pp. 15–20). IEEE. Recuperado a partir de http://ieeexplore.ieee.org/abstract/document/7723668/Ristov, S., Cvetkov, K., & Gusev, M. (2016). Implementation of a Horizontal Scalable Balancer for Dew Computing Services. Scalable Computing: Practice and Experience, 17(2), 79–90.Skala, K., Davidovic, D., Afgan, E., Sovic, I., & Sojat, Z. (2015). Scalable distributed computing hierarchy: Cloud, fog and dew computing. Open Journal of Cloud Computing (OJCC), 2(1), 16–24.Šojat, Z., & Skala, K. (2016). Views on the role and importance of dew computing in the service and control technology. En 2016 39th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 164-168). https://doi.org/10.1109/MIPRO.2016.7522131Šojat, Z., & Skala, K. (2017). The dawn of Dew: Dew Computing for advanced living environment. En 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 347-352). https://doi.org/10.23919/MIPRO.2017.7973447Stojkoska, B. R., Trivodaliev, K., & Davcev, D. (2017). Internet of things framework for home care systems. Wireless Communications and Mobile Computing, 2017. https://doi.org/10.1155/2017/8323646AWS Developers. (2017, diciembre 12). AWS Greengrass – Computación de Lambda integrada en dispositivos conectados – Amazon Web Services. Recuperado 12 de diciembre de 2017, a partir de //aws.amazon.com/es/greengrass/ Brezany, P., Ludescher, T., & Feilhauer, T. (2017). Cloud-Dew computing support for automatic data analysis in life sciences. En 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 365-370). https://doi.org/10.23919/MIPRO.2017.7973450 Cabé, B. (2018). Key Trends from the IoT Developer Survey 2018. Recuperado a partir de https://blogs.eclipse.org/post/benjamin-cab%C3%A9/key-trends-iot-developer-survey-2018 Chang, K.-D., Chen, J.-L., Chen, C.-Y., & Chao, H.-C. (2012). IoT operations management and traffic analysis for Future Internet. En Computing, Communications and Applications Conference (ComComAp), 2012 (pp. 138–142). IEEE. Crnko, N. (2017). Distributed Database System as a base for multilanguage support for legacy software. En 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 371-374). https://doi.org/10.23919/MIPRO.2017.7973451 Crook, S., MacGillivray, C., & Turner, V. (2017, julio 1). IDC MarketScape: Worldwide IoT Platforms (Software Vendors) 2017 Vendor Assessment. Recuperado 12 de diciembre de 2017, a partir de http://www.idc.com/getdoc.jsp?containerId=US42033517 Deepti Sharma, P. K. (2015). A Detail Review on Cloud, Fog and Dew Computing. International Journal of Science, Engineering and Technology Research (IJSETR), 5(5), 9. Fernández, P. (1996). Determinación del tamaño muestral. Cad Aten Primaria, 3, 138–141. Frincu, M. (2017). Architecting a hybrid cross layer dew-fog-cloud stack for future data-driven cyber-physical systems. En 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 399-403). https://doi.org/10.23919/MIPRO.2017.7973456 Goleva, R. I., Garcia, N. M., Mavromoustakis, C. X., Dobre, C., Mastorakis, G., & Stainov, R. (2017). Chapter 16 - End-Users Testing of Enhanced Living Environment Platform and Services. En Ambient Assisted Living and Enhanced Living Environments (pp. 427-440). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-12-805195-5.00016-8 Goleva, R. I., Garcia, N. M., Mavromoustakis, C. X., Dobre, C., Mastorakis, G., Stainov, R., … Trajkovik, V. (2017). Chapter 8 - AAL and ELE Platform Architecture. En Ambient Assisted Living and Enhanced Living Environments (pp. 171-209). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-12-805195-5.00008-9 Gordienko, Y., Stirenko, S., Alienin, O., Skala, K., Sojat, Z., Rojbi, A., … Jervan, G. (2017). Augmented Coaching Ecosystem for Non-obtrusive Adaptive Personalized Elderly Care on the basis of Cloud-Fog-Dew computing paradigm. En 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 359-364). https://doi.org/10.23919/MIPRO.2017.7973449 Gremban, K., & Street, C. (2017, noviembre 15). What is Azure IoT Edge. Recuperado 7 de diciembre de 2017, a partir de https://docs.microsoft.com/en-us/azure/iot-edge/how-iot-edge-works Gusev, M. (2017). A dew computing solution for IoT streaming devices. En 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 387-392). https://doi.org/10.23919/MIPRO.2017.7973454 Gusev, M., & Guseva, A. (2017). State-of-the-art of cloud solutions based on ECG sensors. En IEEE EUROCON 2017 -17th International Conference on Smart Technologies (pp. 501-506). https://doi.org/10.1109/EUROCON.2017.8011162 Huang, D., & Wu, H. (2018). Chapter 6 - Edge Clouds – Pushing the Boundary of Mobile Clouds. En Mobile Cloud Computing (pp. 153-176). Morgan Kaufmann. https://doi.org/10.1016/B978-0-12-809641-3.00008-9 Jóźwiak, L. (2017). Advanced mobile and wearable systems. Microprocessors and Microsystems, 50 (Supplement C), 202-221. https://doi.org/10.1016/j.micpro.2017.03.008 Kholod, I., Efimova, M., Rukavitsyn, A., & Andrey, S. (2017). Time Series Distributed Analysis in IoT with ETL and Data Mining Technologies. En Internet of Things, Smart Spaces, and Next Generation Networks and Systems (pp. 97-108). Springer, Cham. https://doi.org/10.1007/978-3-319-67380-6_9 Lorga, M., Feldman, L., Barton, R., Martin, M., Goren, N., & Mahmoudi, C. (2017, septiembre 21). The NIST Definition of Fog Computing. Recuperado 11 de octubre de 2017, a partir de https://csrc.nist.gov/publications/detail/sp/800-191/draft Luchian, E. F., Taut, A., Ivanciu, I. A., Lazar, G., & Dobrota, V. (2017). Mobile wireless sensor network gateway: A raspberry Pi implementation with a VPN backend to OpenStack. En 2017 25th International Conference on Software, Telecommunications and Computer Networks (SoftCOM) (pp. 1-5). https://doi.org/10.23919/SOFTCOM.2017.8115561 Mell, P., & Grance, T. (2011, julio 7). The NIST Definition of Cloud Computing. Recuperado 5 de diciembre de 2017, a partir de https://csrc.nist.gov/publications/detail/sp/800-145/final MSV, J. (2017, septiembre 15). Demystifying Edge Computing -- Device Edge vs. Cloud Edge. Recuperado 12 de octubre de 2017, a partir de https://www.forbes.com/sites/janakirammsv/2017/09/15/demystifying-edge-computing-device-edge-vs-cloud-edge/ Mulay, P., Patel, K., & Gauchia, H. G. (2017). Distributed system implementation based on «ants feeding birds» algorithm: Electronics transformation via animals and human. En Detecting and Mitigating Robotic Cyber Security Risks (pp. 51-85). https://doi.org/10.4018/978-1-5225-2154-9.ch005 Patel, H., Chaudhari, R., R Prajapati, K., & A Patel, A. (2017). The Interdependent Part of Cloud Computing:Dew Computing. Podbojec, D., Herynek, B., Jazbec, D., Cvetko, M., Debevc, M., & Kožuh, I. (2017). 3D-based location positioning using the Dew Computing approach for indoor navigation. En 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 393-398). https://doi.org/10.23919/MIPRO.2017.7973455 Quwaider, M., Al-Alyyoub, M., & Jararweh, Y. (2016). Cloud Support Data Management Infrastructure for Upcoming Smart Cities. Procedia Computer Science, 83, 1232–1237. Ray, P. P. (2017). An Introduction to Dew Computing: Definition, Concept and Implications. IEEE Access, PP(99), 1-1. https://doi.org/10.1109/ACCESS.2017.2775042 Rindos, A., & Wang, Y. (2016). Dew Computing: The Complementary Piece of Cloud Computing. En Big Data and Cloud Computing (BDCloud), Social Computing and Networking (SocialCom), Sustainable Computing and Communications (SustainCom)(BDCloud-SocialCom-SustainCom), 2016 IEEE International Conferences on (pp. 15–20). IEEE. Recuperado a partir de http://ieeexplore.ieee.org/abstract/document/7723668/ Ristov, S., Cvetkov, K., & Gusev, M. (2016). Implementation of a Horizontal Scalable Balancer for Dew Computing Services. Scalable Computing: Practice and Experience, 17(2), 79–90. Skala, K., Davidovic, D., Afgan, E., Sovic, I., & Sojat, Z. (2015). Scalable distributed computing hierarchy: Cloud, fog and dew computing. Open Journal of Cloud Computing (OJCC), 2(1), 16–24. Šojat, Z., & Skala, K. (2016). Views on the role and importance of dew computing in the service and control technology. En 2016 39th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 164-168). https://doi.org/10.1109/MIPRO.2016.7522131 Šojat, Z., & Skala, K. (2017). The dawn of Dew: Dew Computing for advanced living environment. En 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 347-352). https://doi.org/10.23919/MIPRO.2017.7973447 Stojkoska, B. R., Trivodaliev, K., & Davcev, D. (2017). Internet of things framework for home care systems. Wireless Communications and Mobile Computing, 2017. https://doi.org/10.1155/2017/8323646 Uehara, M. (2017). Mist Computing: Linking Cloudlet to Fogs. En Computational Science/Intelligence and Applied Informatics (pp. 201-213). Springer, Cham. https://doi.org/10.1007/978-3-319-63618-4_15Vogels, W. (2017, junio 7). Unlocking the Value of Device Data with AWS Greengrass. [Blog]. Recuperado 21 de febrero de 2018, a partir de https://www.allthingsdistributed.com/2017/06/unlocking-value-device-data-aws-greengrass.htmlWang, Y. (2017). The Theory and Applications of Dew Computing. En Proceedings of the 27th Annual International Conference on Computer Science and Software Engineering (pp. 317–317). Riverton, NJ, USA: IBM Corp. Recuperado a partir de http://dl.acm.org.aure.unab.edu.co/citation.cfm?id=3172795.3172843Wang, Y., & LeBlanc, D. (2016). Integrating SaaS and SaaP with Dew Computing. En Big Data and Cloud Computing (BDCloud), Social Computing and Networking (SocialCom), Sustainable Computing and Communications (SustainCom)(BDCloud-SocialCom-SustainCom), 2016 IEEE International Conferences on (pp. 590–594). IEEE. Recuperado a partir de http://ieeexplore.ieee.org/abstract/document/7723746/Zhou, Y., Zhang, D., & Xiong, N. (2017). Post-cloud computing paradigms: a survey and comparison. Tsinghua Science and Technology, 22(6), 714-732. https://doi.org/10.23919/TST.2017.8195353ORIGINAL2018_Tesis_Pinzon_Castellanos_Javier.pdf2018_Tesis_Pinzon_Castellanos_Javier.pdfTesisapplication/pdf2299741https://repository.unab.edu.co/bitstream/20.500.12749/3551/1/2018_Tesis_Pinzon_Castellanos_Javier.pdf47df51a7592c285e3a7f3e367f863658MD51open access2018_Articulo_Pinzon_Castellanos_Javier.pdf2018_Articulo_Pinzon_Castellanos_Javier.pdfArtículoapplication/pdf439054https://repository.unab.edu.co/bitstream/20.500.12749/3551/2/2018_Articulo_Pinzon_Castellanos_Javier.pdf8417ecbae0943ee92c064cfb8f491edcMD52open access2018_Licencia_Pinzon_Castellanos_Javier.pdf2018_Licencia_Pinzon_Castellanos_Javier.pdfLicenciaapplication/pdf143164https://repository.unab.edu.co/bitstream/20.500.12749/3551/3/2018_Licencia_Pinzon_Castellanos_Javier.pdf78e7a9d732fa175e25827d801a093d6aMD53metadata only accessTHUMBNAIL2018_Tesis_Pinzon_Castellanos_Javier.pdf.jpg2018_Tesis_Pinzon_Castellanos_Javier.pdf.jpgIM Thumbnailimage/jpeg5403https://repository.unab.edu.co/bitstream/20.500.12749/3551/4/2018_Tesis_Pinzon_Castellanos_Javier.pdf.jpg7e580c9c63fd8d7e1e2a81903adaa38aMD54open access2018_Articulo_Pinzon_Castellanos_Javier.pdf.jpg2018_Articulo_Pinzon_Castellanos_Javier.pdf.jpgIM Thumbnailimage/jpeg10989https://repository.unab.edu.co/bitstream/20.500.12749/3551/5/2018_Articulo_Pinzon_Castellanos_Javier.pdf.jpg0b22ed32ee977a9fa4547d64d9b0f756MD55open access2018_Licencia_Pinzon_Castellanos_Javier.pdf.jpg2018_Licencia_Pinzon_Castellanos_Javier.pdf.jpgIM Thumbnailimage/jpeg9850https://repository.unab.edu.co/bitstream/20.500.12749/3551/6/2018_Licencia_Pinzon_Castellanos_Javier.pdf.jpgcaa72e9a6f09300aceaa85ea169c4fa0MD56metadata only access20.500.12749/3551oai:repository.unab.edu.co:20.500.12749/35512024-01-11 14:26:22.416open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.co |