HPC y eficiencia energética con el uso de V-nets

En la era actual de las computadoras a exaescala, la eficiencia energética es más crucial que nunca. Este estudio explora el potencial de las V-nets, inicialmente probadas en computadoras de pequeña escala, para su escalamiento a sistemas de mayor tamaño que admitan paralelismo. Al capturar datos en...

Full description

Autores:
Vásquez Capacho, John William
Tipo de recurso:
Article of investigation
Fecha de publicación:
2024
Institución:
Universidad Autónoma de Bucaramanga - UNAB
Repositorio:
Repositorio UNAB
Idioma:
spa
OAI Identifier:
oai:repository.unab.edu.co:20.500.12749/28278
Acceso en línea:
http://hdl.handle.net/20.500.12749/28278
https://doi.org/10.29375/25392115.5273
Palabra clave:
Sistemas informáticos escalables
V-nets
Rendimiento energético de la Computación de Alto Rendimiento
Industria 4.0, Diagnóstico de Sistemas de Eventos Discretos
Scalable Computing Systems
V-nets
HPC Energy Performance
Industry 4.0, DES Diagnosis
Rights
License
http://purl.org/coar/access_right/c_abf2
id UNAB2_4813ec45d9a883aed461fda85d65a233
oai_identifier_str oai:repository.unab.edu.co:20.500.12749/28278
network_acronym_str UNAB2
network_name_str Repositorio UNAB
repository_id_str
dc.title.spa.fl_str_mv HPC y eficiencia energética con el uso de V-nets
dc.title.translated.eng.fl_str_mv HPC and energy efficiency using V-nets
title HPC y eficiencia energética con el uso de V-nets
spellingShingle HPC y eficiencia energética con el uso de V-nets
Sistemas informáticos escalables
V-nets
Rendimiento energético de la Computación de Alto Rendimiento
Industria 4.0, Diagnóstico de Sistemas de Eventos Discretos
Scalable Computing Systems
V-nets
HPC Energy Performance
Industry 4.0, DES Diagnosis
title_short HPC y eficiencia energética con el uso de V-nets
title_full HPC y eficiencia energética con el uso de V-nets
title_fullStr HPC y eficiencia energética con el uso de V-nets
title_full_unstemmed HPC y eficiencia energética con el uso de V-nets
title_sort HPC y eficiencia energética con el uso de V-nets
dc.creator.fl_str_mv Vásquez Capacho, John William
dc.contributor.author.none.fl_str_mv Vásquez Capacho, John William
dc.contributor.orcid.spa.fl_str_mv Vásquez Capacho, John William [0000-0003-3710-1086]
dc.subject.spa.fl_str_mv Sistemas informáticos escalables
V-nets
Rendimiento energético de la Computación de Alto Rendimiento
Industria 4.0, Diagnóstico de Sistemas de Eventos Discretos
topic Sistemas informáticos escalables
V-nets
Rendimiento energético de la Computación de Alto Rendimiento
Industria 4.0, Diagnóstico de Sistemas de Eventos Discretos
Scalable Computing Systems
V-nets
HPC Energy Performance
Industry 4.0, DES Diagnosis
dc.subject.keywords.eng.fl_str_mv Scalable Computing Systems
V-nets
HPC Energy Performance
Industry 4.0, DES Diagnosis
description En la era actual de las computadoras a exaescala, la eficiencia energética es más crucial que nunca. Este estudio explora el potencial de las V-nets, inicialmente probadas en computadoras de pequeña escala, para su escalamiento a sistemas de mayor tamaño que admitan paralelismo. Al capturar datos en tiempo real como secuencias de eventos discretos, este proyecto investiga cómo las V-nets pueden analizar eficazmente estas secuencias de eventos para diagnosticar el comportamiento del sistema en sistemas de Computación de Alto Rendimiento (CAR o HPC, en su acrónimo en inglés). La atención se centra en la construcción de patrones temporales para evaluar el rendimiento energético de los sistemas informáticos escalables. Aunque no se prueba ningún sistema específico, el análisis enfatiza la importancia de este innovador formalismo. Muestra la capacidad de las V-nets para identificar eventos simultáneos, detectar secuencias parciales y mitigar los falsos positivos. Esta investigación pretende tender un puente entre el análisis teórico y la aplicación práctica en la Industria 4.0, avanzando en última instancia en la optimización de sistemas informáticos escalables.
publishDate 2024
dc.date.issued.none.fl_str_mv 2024-06-18
dc.date.accessioned.none.fl_str_mv 2025-02-13T15:43:05Z
dc.date.available.none.fl_str_mv 2025-02-13T15:43:05Z
dc.type.coarversion.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/article
dc.type.local.spa.fl_str_mv Artículo
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_2df8fbb1
dc.identifier.issn.spa.fl_str_mv 1657-2831
2539-2115
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12749/28278
dc.identifier.instname.spa.fl_str_mv instname:Universidad Autónoma de Bucaramanga UNAB
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.unab.edu.co
dc.identifier.doi.none.fl_str_mv https://doi.org/10.29375/25392115.5273
identifier_str_mv 1657-2831
2539-2115
instname:Universidad Autónoma de Bucaramanga UNAB
repourl:https://repository.unab.edu.co
url http://hdl.handle.net/20.500.12749/28278
https://doi.org/10.29375/25392115.5273
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv https://revistas.unab.edu.co/index.php/rcc/article/view/5273/4083
dc.relation.uri.spa.fl_str_mv https://revistas.unab.edu.co/index.php/rcc/issue/view/303
dc.relation.references.none.fl_str_mv Abdurachmanov, D., Elmer, P., Eulisse, G., Knight, R., Niemi, T., Nurminen, J. K., . . . Khan, K. (2015). Techniques and tools for measuring energy efficiency of scientific software applications. Journal of Physics: Conference Series, 16th International workshop on Advanced Computing and Analysis Techniques in physics research (ACAT2014) 1–5 September 2014, Prague, Czech Republic, 608, 012032. https://doi.org/10.1088/1742-6596/608/1/012032
Agarwal, M., Biswas, S., & Nandi, S. (2019, May). Discrete event system framework for fault diagnosis with measurement inconsistency: case study of rogue DHCP attack. IEEE/CAA Journal of Automatica Sinica, 6(3), 789-806. https://doi.org/10.1109/JAS.2017.7510379
Ahmad, T., Zhu, H., Zhang, D., Tariq, R., Bassam, A., Ullah, F., . . . Alshamrani, S. S. (2022, November). Energetics Systems and artificial intelligence: Applications of industry 4.0. Energy Reports, 8, 334-361. https://doi.org/10.1016/j.egyr.2021.11.256
Barrios Hernandez, C. J., Sierra, D. A., Varrette, S., & Lopez Pacheco, D. (2011). Energy Efficiency on Scalable Computing Architectures. 2011 IEEE 11th International Conference on Computer and Information Technology (pp. 635-640). Paphos: IEEE. https://doi.org/10.1109/CIT.2011.108
Calinescu, R., & Kikuchi, S. (2011). Formal Methods @ Runtime. In R. Calinescu, & E. Jackson (Eds.), Foundations of Computer Software. Modeling, Development, and Verification of Adaptive Systems. 16th Monterrey Workshop 2010 Redmond, WA, USA, March 31--April 2, Revised Selected Papers. Lecture Notes in Computer Science (Vol. 6662, pp. 122-135). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21292-5_7
Davis, F. D. (1989, September). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319-340. https://doi.org/10.2307/249008
Debouk, R., Lafortune, S., & Teneketzis, D. (2000, January). Coordinated Decentralized Protocols for Failure Diagnosis of Discrete Event Systems. Discrete Event Dynamic Systems, 10(1–2), 33-86. https://doi.org/10.1023/A:1008335115538
Hussai, S. M., Wahid, A., Shah, M. A., Akhunzada, A., Khan, F., Amin, N. U., . . . Ali, I. (2019). Seven Pillars to Achieve Energy Efficiency in High-Performance Computing Data Centers. In M. A. Jan, F. Khan, & M. Alam (Eds.), Recent Trends and Advances in Wireless and IoT-enabled Networks (First ed., pp. 93-105). Springer, Cham. https://doi.org/10.1007/978-3-319-99966-1_9
Irani, S., Singh, G., Shukla, S. K., & Gupta, R. K. (2005, December). An overview of the competitive and adversarial approaches to designing dynamic power management strategies. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 13(12), 1349-1361. https://doi.org/10.1109/TVLSI.2005.862725
Kelechi, A. H., Alsharif, M. H., Bameyi, O. J., Ezra, J. P., Joseph, I. K., Atayero, A.-A., . . . Hong, J. (2020). Artificial Intelligence: An Energy Efficiency Tool for Enhanced High performance computing. Symmetry, 12(6), 1029. https://doi.org/10.3390/sym12061029
Kurose, J. F., & Ross, K. W. (2017). Computer Networking: A Top-Down Approach (Seventh ed.). Hoboken, New Jersey, USA: Pearson Education.
Mantovani, F., Garcia-Gasulla, M., Gracia, J., Stafford, E., Banchelli, F., Josep-Fabrego, M., . . . Nachtmann, M. (2020). Performance and energy consumption of HPC workloads on a cluster based on Arm ThunderX2 CPU. Future Generation Computer Systems, 112, 800-818. https://doi.org/10.1016/j.future.2020.06.033
Martyushev, N. V., Malozyomov, B. V., Khalikov, I. H., Kukartsev, V. A., Kukartsev, V. V., Tynchenko, V. S., . . . Qi, M. (2023, January 16). Review of Methods for Improving the Energy Efficiency of Electrified Ground Transport by Optimizing Battery Consumption. Energies, 16(2), 729. https://doi.org/10.3390/en16020729
Petridou, S., Basagiannis, S., & Mamatas, L. (2018, March). Formal Methods for Energy-Efficient EPONs. IEEE Transactions on Green Communications and Networking, 2(1), 246-259. https://doi.org/10.1109/TGCN.2017.2772832
Schöne, R., Treibig, J., Dolz, M. F., Guillen, C., Navarrete, C., Knobloch, M., & Rountree, B. (2014, January). Tools and Methods for Measuring and Tuning the Energy Efficiency of HPC Systems. Scientific Programming, 22, 273-283. https://doi.org/10.3233/SPR-140393
Vásquez Capacho, W. J., Perez Zuñiga, C. G., Muñoz Maldonado, Y. A., & Ospino Castro, A. (2020, July). Simultaneous occurrences and false-positives analysis in discrete event dynamic systems. Journal of Computational Science, 44, 101162. https://doi.org/10.1016/j.jocs.2020.101162
Vásquez-Capacho, J. W. (2020). V-nets, new formalism to manage diagnosis problems in Cyber-Physical Systems (CPS) and industrial applications. (T. Namerikawa, Ed.) IFAC-PapersOnLine, 53(5), 197-202, 3rd IFAC Workshop on Cyber-Physical & Human Systems CPHS 2020, Beijing, China, 3-5 December 2020. https://doi.org/10.1016/j.ifacol.2021.04.224
Wilde, T., Auweter, A., & Shoukourian, H. (2014, August). The 4 Pillar Framework for energy efficient HPC data centers. SICS Software-Intensive Cyber-Physical Systems, 29(3-4), 241-251. https://doi.org/10.1007/s00450-013-0244-6
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
rights_invalid_str_mv http://purl.org/coar/access_right/c_abf2
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Autónoma de Bucaramanga UNAB
dc.source.spa.fl_str_mv Vol. 25 Núm. 2 (2024): Revista Colombiana de Computación (Julio-Diciembre); 12-22
institution Universidad Autónoma de Bucaramanga - UNAB
bitstream.url.fl_str_mv https://repository.unab.edu.co/bitstream/20.500.12749/28278/1/Articulo%202.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/28278/2/license.txt
https://repository.unab.edu.co/bitstream/20.500.12749/28278/3/Articulo%202.pdf.jpg
bitstream.checksum.fl_str_mv 766b63b1d808ad4dbe0873f3178a3770
855f7d18ea80f5df821f7004dff2f316
4cae50873312e3a7c5265968ed90c2f7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB
repository.mail.fl_str_mv repositorio@unab.edu.co
_version_ 1828219949905084416
spelling Vásquez Capacho, John William80665e38-a709-459a-9091-c9030712019eVásquez Capacho, John William [0000-0003-3710-1086]2025-02-13T15:43:05Z2025-02-13T15:43:05Z2024-06-181657-28312539-2115http://hdl.handle.net/20.500.12749/28278instname:Universidad Autónoma de Bucaramanga UNABrepourl:https://repository.unab.edu.cohttps://doi.org/10.29375/25392115.5273En la era actual de las computadoras a exaescala, la eficiencia energética es más crucial que nunca. Este estudio explora el potencial de las V-nets, inicialmente probadas en computadoras de pequeña escala, para su escalamiento a sistemas de mayor tamaño que admitan paralelismo. Al capturar datos en tiempo real como secuencias de eventos discretos, este proyecto investiga cómo las V-nets pueden analizar eficazmente estas secuencias de eventos para diagnosticar el comportamiento del sistema en sistemas de Computación de Alto Rendimiento (CAR o HPC, en su acrónimo en inglés). La atención se centra en la construcción de patrones temporales para evaluar el rendimiento energético de los sistemas informáticos escalables. Aunque no se prueba ningún sistema específico, el análisis enfatiza la importancia de este innovador formalismo. Muestra la capacidad de las V-nets para identificar eventos simultáneos, detectar secuencias parciales y mitigar los falsos positivos. Esta investigación pretende tender un puente entre el análisis teórico y la aplicación práctica en la Industria 4.0, avanzando en última instancia en la optimización de sistemas informáticos escalables.In today’s era of exascale machines, energy efficiency is more crucial than ever. This study explores the potential of V-nets, initially tested on small-scale machines, to be scaled up for larger systems that support parallelism. By capturing real-time data as sequences of discrete events, this project investigates how V-nets can effectively analyze these event sequences to diagnose system behavior in High-Performance Computing (HPC) systems. The focus is on constructing temporal patterns to assess the energy performance of scalable computing systems. While no specific system is tested, the analysis emphasizes the significance of this innovative formalism. It showcases V-nets ability to identify simultaneous event occurrences, detect partial sequences, and mitigate false positives. This research aims to bridge the gap between theoretical analysis and practical implementation in Industry 4.0, ultimately advancing the optimization of scalable computing systems.application/pdfspaUniversidad Autónoma de Bucaramanga UNABhttps://revistas.unab.edu.co/index.php/rcc/article/view/5273/4083https://revistas.unab.edu.co/index.php/rcc/issue/view/303Abdurachmanov, D., Elmer, P., Eulisse, G., Knight, R., Niemi, T., Nurminen, J. K., . . . Khan, K. (2015). Techniques and tools for measuring energy efficiency of scientific software applications. Journal of Physics: Conference Series, 16th International workshop on Advanced Computing and Analysis Techniques in physics research (ACAT2014) 1–5 September 2014, Prague, Czech Republic, 608, 012032. https://doi.org/10.1088/1742-6596/608/1/012032Agarwal, M., Biswas, S., & Nandi, S. (2019, May). Discrete event system framework for fault diagnosis with measurement inconsistency: case study of rogue DHCP attack. IEEE/CAA Journal of Automatica Sinica, 6(3), 789-806. https://doi.org/10.1109/JAS.2017.7510379Ahmad, T., Zhu, H., Zhang, D., Tariq, R., Bassam, A., Ullah, F., . . . Alshamrani, S. S. (2022, November). Energetics Systems and artificial intelligence: Applications of industry 4.0. Energy Reports, 8, 334-361. https://doi.org/10.1016/j.egyr.2021.11.256Barrios Hernandez, C. J., Sierra, D. A., Varrette, S., & Lopez Pacheco, D. (2011). Energy Efficiency on Scalable Computing Architectures. 2011 IEEE 11th International Conference on Computer and Information Technology (pp. 635-640). Paphos: IEEE. https://doi.org/10.1109/CIT.2011.108Calinescu, R., & Kikuchi, S. (2011). Formal Methods @ Runtime. In R. Calinescu, & E. Jackson (Eds.), Foundations of Computer Software. Modeling, Development, and Verification of Adaptive Systems. 16th Monterrey Workshop 2010 Redmond, WA, USA, March 31--April 2, Revised Selected Papers. Lecture Notes in Computer Science (Vol. 6662, pp. 122-135). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21292-5_7Davis, F. D. (1989, September). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319-340. https://doi.org/10.2307/249008Debouk, R., Lafortune, S., & Teneketzis, D. (2000, January). Coordinated Decentralized Protocols for Failure Diagnosis of Discrete Event Systems. Discrete Event Dynamic Systems, 10(1–2), 33-86. https://doi.org/10.1023/A:1008335115538Hussai, S. M., Wahid, A., Shah, M. A., Akhunzada, A., Khan, F., Amin, N. U., . . . Ali, I. (2019). Seven Pillars to Achieve Energy Efficiency in High-Performance Computing Data Centers. In M. A. Jan, F. Khan, & M. Alam (Eds.), Recent Trends and Advances in Wireless and IoT-enabled Networks (First ed., pp. 93-105). Springer, Cham. https://doi.org/10.1007/978-3-319-99966-1_9Irani, S., Singh, G., Shukla, S. K., & Gupta, R. K. (2005, December). An overview of the competitive and adversarial approaches to designing dynamic power management strategies. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 13(12), 1349-1361. https://doi.org/10.1109/TVLSI.2005.862725Kelechi, A. H., Alsharif, M. H., Bameyi, O. J., Ezra, J. P., Joseph, I. K., Atayero, A.-A., . . . Hong, J. (2020). Artificial Intelligence: An Energy Efficiency Tool for Enhanced High performance computing. Symmetry, 12(6), 1029. https://doi.org/10.3390/sym12061029Kurose, J. F., & Ross, K. W. (2017). Computer Networking: A Top-Down Approach (Seventh ed.). Hoboken, New Jersey, USA: Pearson Education.Mantovani, F., Garcia-Gasulla, M., Gracia, J., Stafford, E., Banchelli, F., Josep-Fabrego, M., . . . Nachtmann, M. (2020). Performance and energy consumption of HPC workloads on a cluster based on Arm ThunderX2 CPU. Future Generation Computer Systems, 112, 800-818. https://doi.org/10.1016/j.future.2020.06.033Martyushev, N. V., Malozyomov, B. V., Khalikov, I. H., Kukartsev, V. A., Kukartsev, V. V., Tynchenko, V. S., . . . Qi, M. (2023, January 16). Review of Methods for Improving the Energy Efficiency of Electrified Ground Transport by Optimizing Battery Consumption. Energies, 16(2), 729. https://doi.org/10.3390/en16020729Petridou, S., Basagiannis, S., & Mamatas, L. (2018, March). Formal Methods for Energy-Efficient EPONs. IEEE Transactions on Green Communications and Networking, 2(1), 246-259. https://doi.org/10.1109/TGCN.2017.2772832Schöne, R., Treibig, J., Dolz, M. F., Guillen, C., Navarrete, C., Knobloch, M., & Rountree, B. (2014, January). Tools and Methods for Measuring and Tuning the Energy Efficiency of HPC Systems. Scientific Programming, 22, 273-283. https://doi.org/10.3233/SPR-140393Vásquez Capacho, W. J., Perez Zuñiga, C. G., Muñoz Maldonado, Y. A., & Ospino Castro, A. (2020, July). Simultaneous occurrences and false-positives analysis in discrete event dynamic systems. Journal of Computational Science, 44, 101162. https://doi.org/10.1016/j.jocs.2020.101162Vásquez-Capacho, J. W. (2020). V-nets, new formalism to manage diagnosis problems in Cyber-Physical Systems (CPS) and industrial applications. (T. Namerikawa, Ed.) IFAC-PapersOnLine, 53(5), 197-202, 3rd IFAC Workshop on Cyber-Physical & Human Systems CPHS 2020, Beijing, China, 3-5 December 2020. https://doi.org/10.1016/j.ifacol.2021.04.224Wilde, T., Auweter, A., & Shoukourian, H. (2014, August). The 4 Pillar Framework for energy efficient HPC data centers. SICS Software-Intensive Cyber-Physical Systems, 29(3-4), 241-251. https://doi.org/10.1007/s00450-013-0244-6Vol. 25 Núm. 2 (2024): Revista Colombiana de Computación (Julio-Diciembre); 12-22Sistemas informáticos escalablesV-netsRendimiento energético de la Computación de Alto RendimientoIndustria 4.0, Diagnóstico de Sistemas de Eventos DiscretosScalable Computing SystemsV-netsHPC Energy PerformanceIndustry 4.0, DES DiagnosisHPC y eficiencia energética con el uso de V-netsHPC and energy efficiency using V-netsinfo:eu-repo/semantics/articleArtículohttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/access_right/c_abf2ORIGINALArticulo 2.pdfArticulo 2.pdfArtículoapplication/pdf1484866https://repository.unab.edu.co/bitstream/20.500.12749/28278/1/Articulo%202.pdf766b63b1d808ad4dbe0873f3178a3770MD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8347https://repository.unab.edu.co/bitstream/20.500.12749/28278/2/license.txt855f7d18ea80f5df821f7004dff2f316MD52open accessTHUMBNAILArticulo 2.pdf.jpgArticulo 2.pdf.jpgIM Thumbnailimage/jpeg9594https://repository.unab.edu.co/bitstream/20.500.12749/28278/3/Articulo%202.pdf.jpg4cae50873312e3a7c5265968ed90c2f7MD53open access20.500.12749/28278oai:repository.unab.edu.co:20.500.12749/282782025-02-13 22:01:29.164open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.coTGEgUmV2aXN0YSBDb2xvbWJpYW5hIGRlIENvbXB1dGFjacOzbiBlcyBmaW5hbmNpYWRhIHBvciBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgQnVjYXJhbWFuZ2EuIEVzdGEgUmV2aXN0YSBubyBjb2JyYSB0YXNhIGRlIHN1bWlzacOzbiB5IHB1YmxpY2FjacOzbiBkZSBhcnTDrWN1bG9zLiBQcm92ZWUgYWNjZXNvIGxpYnJlIGlubWVkaWF0byBhIHN1IGNvbnRlbmlkbyBiYWpvIGVsIHByaW5jaXBpbyBkZSBxdWUgaGFjZXIgZGlzcG9uaWJsZSBncmF0dWl0YW1lbnRlIGludmVzdGlnYWNpw7NuIGFsIHDDumJsaWNvIGFwb3lhIGEgdW4gbWF5b3IgaW50ZXJjYW1iaW8gZGUgY29ub2NpbWllbnRvIGdsb2JhbC4=