HPC y eficiencia energética con el uso de V-nets
En la era actual de las computadoras a exaescala, la eficiencia energética es más crucial que nunca. Este estudio explora el potencial de las V-nets, inicialmente probadas en computadoras de pequeña escala, para su escalamiento a sistemas de mayor tamaño que admitan paralelismo. Al capturar datos en...
- Autores:
-
Vásquez Capacho, John William
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2024
- Institución:
- Universidad Autónoma de Bucaramanga - UNAB
- Repositorio:
- Repositorio UNAB
- Idioma:
- spa
- OAI Identifier:
- oai:repository.unab.edu.co:20.500.12749/28278
- Palabra clave:
- Sistemas informáticos escalables
V-nets
Rendimiento energético de la Computación de Alto Rendimiento
Industria 4.0, Diagnóstico de Sistemas de Eventos Discretos
Scalable Computing Systems
V-nets
HPC Energy Performance
Industry 4.0, DES Diagnosis
- Rights
- License
- http://purl.org/coar/access_right/c_abf2
id |
UNAB2_4813ec45d9a883aed461fda85d65a233 |
---|---|
oai_identifier_str |
oai:repository.unab.edu.co:20.500.12749/28278 |
network_acronym_str |
UNAB2 |
network_name_str |
Repositorio UNAB |
repository_id_str |
|
dc.title.spa.fl_str_mv |
HPC y eficiencia energética con el uso de V-nets |
dc.title.translated.eng.fl_str_mv |
HPC and energy efficiency using V-nets |
title |
HPC y eficiencia energética con el uso de V-nets |
spellingShingle |
HPC y eficiencia energética con el uso de V-nets Sistemas informáticos escalables V-nets Rendimiento energético de la Computación de Alto Rendimiento Industria 4.0, Diagnóstico de Sistemas de Eventos Discretos Scalable Computing Systems V-nets HPC Energy Performance Industry 4.0, DES Diagnosis |
title_short |
HPC y eficiencia energética con el uso de V-nets |
title_full |
HPC y eficiencia energética con el uso de V-nets |
title_fullStr |
HPC y eficiencia energética con el uso de V-nets |
title_full_unstemmed |
HPC y eficiencia energética con el uso de V-nets |
title_sort |
HPC y eficiencia energética con el uso de V-nets |
dc.creator.fl_str_mv |
Vásquez Capacho, John William |
dc.contributor.author.none.fl_str_mv |
Vásquez Capacho, John William |
dc.contributor.orcid.spa.fl_str_mv |
Vásquez Capacho, John William [0000-0003-3710-1086] |
dc.subject.spa.fl_str_mv |
Sistemas informáticos escalables V-nets Rendimiento energético de la Computación de Alto Rendimiento Industria 4.0, Diagnóstico de Sistemas de Eventos Discretos |
topic |
Sistemas informáticos escalables V-nets Rendimiento energético de la Computación de Alto Rendimiento Industria 4.0, Diagnóstico de Sistemas de Eventos Discretos Scalable Computing Systems V-nets HPC Energy Performance Industry 4.0, DES Diagnosis |
dc.subject.keywords.eng.fl_str_mv |
Scalable Computing Systems V-nets HPC Energy Performance Industry 4.0, DES Diagnosis |
description |
En la era actual de las computadoras a exaescala, la eficiencia energética es más crucial que nunca. Este estudio explora el potencial de las V-nets, inicialmente probadas en computadoras de pequeña escala, para su escalamiento a sistemas de mayor tamaño que admitan paralelismo. Al capturar datos en tiempo real como secuencias de eventos discretos, este proyecto investiga cómo las V-nets pueden analizar eficazmente estas secuencias de eventos para diagnosticar el comportamiento del sistema en sistemas de Computación de Alto Rendimiento (CAR o HPC, en su acrónimo en inglés). La atención se centra en la construcción de patrones temporales para evaluar el rendimiento energético de los sistemas informáticos escalables. Aunque no se prueba ningún sistema específico, el análisis enfatiza la importancia de este innovador formalismo. Muestra la capacidad de las V-nets para identificar eventos simultáneos, detectar secuencias parciales y mitigar los falsos positivos. Esta investigación pretende tender un puente entre el análisis teórico y la aplicación práctica en la Industria 4.0, avanzando en última instancia en la optimización de sistemas informáticos escalables. |
publishDate |
2024 |
dc.date.issued.none.fl_str_mv |
2024-06-18 |
dc.date.accessioned.none.fl_str_mv |
2025-02-13T15:43:05Z |
dc.date.available.none.fl_str_mv |
2025-02-13T15:43:05Z |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.local.spa.fl_str_mv |
Artículo |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.identifier.issn.spa.fl_str_mv |
1657-2831 2539-2115 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12749/28278 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Autónoma de Bucaramanga UNAB |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.unab.edu.co |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.29375/25392115.5273 |
identifier_str_mv |
1657-2831 2539-2115 instname:Universidad Autónoma de Bucaramanga UNAB repourl:https://repository.unab.edu.co |
url |
http://hdl.handle.net/20.500.12749/28278 https://doi.org/10.29375/25392115.5273 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
https://revistas.unab.edu.co/index.php/rcc/article/view/5273/4083 |
dc.relation.uri.spa.fl_str_mv |
https://revistas.unab.edu.co/index.php/rcc/issue/view/303 |
dc.relation.references.none.fl_str_mv |
Abdurachmanov, D., Elmer, P., Eulisse, G., Knight, R., Niemi, T., Nurminen, J. K., . . . Khan, K. (2015). Techniques and tools for measuring energy efficiency of scientific software applications. Journal of Physics: Conference Series, 16th International workshop on Advanced Computing and Analysis Techniques in physics research (ACAT2014) 1–5 September 2014, Prague, Czech Republic, 608, 012032. https://doi.org/10.1088/1742-6596/608/1/012032 Agarwal, M., Biswas, S., & Nandi, S. (2019, May). Discrete event system framework for fault diagnosis with measurement inconsistency: case study of rogue DHCP attack. IEEE/CAA Journal of Automatica Sinica, 6(3), 789-806. https://doi.org/10.1109/JAS.2017.7510379 Ahmad, T., Zhu, H., Zhang, D., Tariq, R., Bassam, A., Ullah, F., . . . Alshamrani, S. S. (2022, November). Energetics Systems and artificial intelligence: Applications of industry 4.0. Energy Reports, 8, 334-361. https://doi.org/10.1016/j.egyr.2021.11.256 Barrios Hernandez, C. J., Sierra, D. A., Varrette, S., & Lopez Pacheco, D. (2011). Energy Efficiency on Scalable Computing Architectures. 2011 IEEE 11th International Conference on Computer and Information Technology (pp. 635-640). Paphos: IEEE. https://doi.org/10.1109/CIT.2011.108 Calinescu, R., & Kikuchi, S. (2011). Formal Methods @ Runtime. In R. Calinescu, & E. Jackson (Eds.), Foundations of Computer Software. Modeling, Development, and Verification of Adaptive Systems. 16th Monterrey Workshop 2010 Redmond, WA, USA, March 31--April 2, Revised Selected Papers. Lecture Notes in Computer Science (Vol. 6662, pp. 122-135). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21292-5_7 Davis, F. D. (1989, September). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319-340. https://doi.org/10.2307/249008 Debouk, R., Lafortune, S., & Teneketzis, D. (2000, January). Coordinated Decentralized Protocols for Failure Diagnosis of Discrete Event Systems. Discrete Event Dynamic Systems, 10(1–2), 33-86. https://doi.org/10.1023/A:1008335115538 Hussai, S. M., Wahid, A., Shah, M. A., Akhunzada, A., Khan, F., Amin, N. U., . . . Ali, I. (2019). Seven Pillars to Achieve Energy Efficiency in High-Performance Computing Data Centers. In M. A. Jan, F. Khan, & M. Alam (Eds.), Recent Trends and Advances in Wireless and IoT-enabled Networks (First ed., pp. 93-105). Springer, Cham. https://doi.org/10.1007/978-3-319-99966-1_9 Irani, S., Singh, G., Shukla, S. K., & Gupta, R. K. (2005, December). An overview of the competitive and adversarial approaches to designing dynamic power management strategies. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 13(12), 1349-1361. https://doi.org/10.1109/TVLSI.2005.862725 Kelechi, A. H., Alsharif, M. H., Bameyi, O. J., Ezra, J. P., Joseph, I. K., Atayero, A.-A., . . . Hong, J. (2020). Artificial Intelligence: An Energy Efficiency Tool for Enhanced High performance computing. Symmetry, 12(6), 1029. https://doi.org/10.3390/sym12061029 Kurose, J. F., & Ross, K. W. (2017). Computer Networking: A Top-Down Approach (Seventh ed.). Hoboken, New Jersey, USA: Pearson Education. Mantovani, F., Garcia-Gasulla, M., Gracia, J., Stafford, E., Banchelli, F., Josep-Fabrego, M., . . . Nachtmann, M. (2020). Performance and energy consumption of HPC workloads on a cluster based on Arm ThunderX2 CPU. Future Generation Computer Systems, 112, 800-818. https://doi.org/10.1016/j.future.2020.06.033 Martyushev, N. V., Malozyomov, B. V., Khalikov, I. H., Kukartsev, V. A., Kukartsev, V. V., Tynchenko, V. S., . . . Qi, M. (2023, January 16). Review of Methods for Improving the Energy Efficiency of Electrified Ground Transport by Optimizing Battery Consumption. Energies, 16(2), 729. https://doi.org/10.3390/en16020729 Petridou, S., Basagiannis, S., & Mamatas, L. (2018, March). Formal Methods for Energy-Efficient EPONs. IEEE Transactions on Green Communications and Networking, 2(1), 246-259. https://doi.org/10.1109/TGCN.2017.2772832 Schöne, R., Treibig, J., Dolz, M. F., Guillen, C., Navarrete, C., Knobloch, M., & Rountree, B. (2014, January). Tools and Methods for Measuring and Tuning the Energy Efficiency of HPC Systems. Scientific Programming, 22, 273-283. https://doi.org/10.3233/SPR-140393 Vásquez Capacho, W. J., Perez Zuñiga, C. G., Muñoz Maldonado, Y. A., & Ospino Castro, A. (2020, July). Simultaneous occurrences and false-positives analysis in discrete event dynamic systems. Journal of Computational Science, 44, 101162. https://doi.org/10.1016/j.jocs.2020.101162 Vásquez-Capacho, J. W. (2020). V-nets, new formalism to manage diagnosis problems in Cyber-Physical Systems (CPS) and industrial applications. (T. Namerikawa, Ed.) IFAC-PapersOnLine, 53(5), 197-202, 3rd IFAC Workshop on Cyber-Physical & Human Systems CPHS 2020, Beijing, China, 3-5 December 2020. https://doi.org/10.1016/j.ifacol.2021.04.224 Wilde, T., Auweter, A., & Shoukourian, H. (2014, August). The 4 Pillar Framework for energy efficient HPC data centers. SICS Software-Intensive Cyber-Physical Systems, 29(3-4), 241-251. https://doi.org/10.1007/s00450-013-0244-6 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Autónoma de Bucaramanga UNAB |
dc.source.spa.fl_str_mv |
Vol. 25 Núm. 2 (2024): Revista Colombiana de Computación (Julio-Diciembre); 12-22 |
institution |
Universidad Autónoma de Bucaramanga - UNAB |
bitstream.url.fl_str_mv |
https://repository.unab.edu.co/bitstream/20.500.12749/28278/1/Articulo%202.pdf https://repository.unab.edu.co/bitstream/20.500.12749/28278/2/license.txt https://repository.unab.edu.co/bitstream/20.500.12749/28278/3/Articulo%202.pdf.jpg |
bitstream.checksum.fl_str_mv |
766b63b1d808ad4dbe0873f3178a3770 855f7d18ea80f5df821f7004dff2f316 4cae50873312e3a7c5265968ed90c2f7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB |
repository.mail.fl_str_mv |
repositorio@unab.edu.co |
_version_ |
1828219949905084416 |
spelling |
Vásquez Capacho, John William80665e38-a709-459a-9091-c9030712019eVásquez Capacho, John William [0000-0003-3710-1086]2025-02-13T15:43:05Z2025-02-13T15:43:05Z2024-06-181657-28312539-2115http://hdl.handle.net/20.500.12749/28278instname:Universidad Autónoma de Bucaramanga UNABrepourl:https://repository.unab.edu.cohttps://doi.org/10.29375/25392115.5273En la era actual de las computadoras a exaescala, la eficiencia energética es más crucial que nunca. Este estudio explora el potencial de las V-nets, inicialmente probadas en computadoras de pequeña escala, para su escalamiento a sistemas de mayor tamaño que admitan paralelismo. Al capturar datos en tiempo real como secuencias de eventos discretos, este proyecto investiga cómo las V-nets pueden analizar eficazmente estas secuencias de eventos para diagnosticar el comportamiento del sistema en sistemas de Computación de Alto Rendimiento (CAR o HPC, en su acrónimo en inglés). La atención se centra en la construcción de patrones temporales para evaluar el rendimiento energético de los sistemas informáticos escalables. Aunque no se prueba ningún sistema específico, el análisis enfatiza la importancia de este innovador formalismo. Muestra la capacidad de las V-nets para identificar eventos simultáneos, detectar secuencias parciales y mitigar los falsos positivos. Esta investigación pretende tender un puente entre el análisis teórico y la aplicación práctica en la Industria 4.0, avanzando en última instancia en la optimización de sistemas informáticos escalables.In today’s era of exascale machines, energy efficiency is more crucial than ever. This study explores the potential of V-nets, initially tested on small-scale machines, to be scaled up for larger systems that support parallelism. By capturing real-time data as sequences of discrete events, this project investigates how V-nets can effectively analyze these event sequences to diagnose system behavior in High-Performance Computing (HPC) systems. The focus is on constructing temporal patterns to assess the energy performance of scalable computing systems. While no specific system is tested, the analysis emphasizes the significance of this innovative formalism. It showcases V-nets ability to identify simultaneous event occurrences, detect partial sequences, and mitigate false positives. This research aims to bridge the gap between theoretical analysis and practical implementation in Industry 4.0, ultimately advancing the optimization of scalable computing systems.application/pdfspaUniversidad Autónoma de Bucaramanga UNABhttps://revistas.unab.edu.co/index.php/rcc/article/view/5273/4083https://revistas.unab.edu.co/index.php/rcc/issue/view/303Abdurachmanov, D., Elmer, P., Eulisse, G., Knight, R., Niemi, T., Nurminen, J. K., . . . Khan, K. (2015). Techniques and tools for measuring energy efficiency of scientific software applications. Journal of Physics: Conference Series, 16th International workshop on Advanced Computing and Analysis Techniques in physics research (ACAT2014) 1–5 September 2014, Prague, Czech Republic, 608, 012032. https://doi.org/10.1088/1742-6596/608/1/012032Agarwal, M., Biswas, S., & Nandi, S. (2019, May). Discrete event system framework for fault diagnosis with measurement inconsistency: case study of rogue DHCP attack. IEEE/CAA Journal of Automatica Sinica, 6(3), 789-806. https://doi.org/10.1109/JAS.2017.7510379Ahmad, T., Zhu, H., Zhang, D., Tariq, R., Bassam, A., Ullah, F., . . . Alshamrani, S. S. (2022, November). Energetics Systems and artificial intelligence: Applications of industry 4.0. Energy Reports, 8, 334-361. https://doi.org/10.1016/j.egyr.2021.11.256Barrios Hernandez, C. J., Sierra, D. A., Varrette, S., & Lopez Pacheco, D. (2011). Energy Efficiency on Scalable Computing Architectures. 2011 IEEE 11th International Conference on Computer and Information Technology (pp. 635-640). Paphos: IEEE. https://doi.org/10.1109/CIT.2011.108Calinescu, R., & Kikuchi, S. (2011). Formal Methods @ Runtime. In R. Calinescu, & E. Jackson (Eds.), Foundations of Computer Software. Modeling, Development, and Verification of Adaptive Systems. 16th Monterrey Workshop 2010 Redmond, WA, USA, March 31--April 2, Revised Selected Papers. Lecture Notes in Computer Science (Vol. 6662, pp. 122-135). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21292-5_7Davis, F. D. (1989, September). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319-340. https://doi.org/10.2307/249008Debouk, R., Lafortune, S., & Teneketzis, D. (2000, January). Coordinated Decentralized Protocols for Failure Diagnosis of Discrete Event Systems. Discrete Event Dynamic Systems, 10(1–2), 33-86. https://doi.org/10.1023/A:1008335115538Hussai, S. M., Wahid, A., Shah, M. A., Akhunzada, A., Khan, F., Amin, N. U., . . . Ali, I. (2019). Seven Pillars to Achieve Energy Efficiency in High-Performance Computing Data Centers. In M. A. Jan, F. Khan, & M. Alam (Eds.), Recent Trends and Advances in Wireless and IoT-enabled Networks (First ed., pp. 93-105). Springer, Cham. https://doi.org/10.1007/978-3-319-99966-1_9Irani, S., Singh, G., Shukla, S. K., & Gupta, R. K. (2005, December). An overview of the competitive and adversarial approaches to designing dynamic power management strategies. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 13(12), 1349-1361. https://doi.org/10.1109/TVLSI.2005.862725Kelechi, A. H., Alsharif, M. H., Bameyi, O. J., Ezra, J. P., Joseph, I. K., Atayero, A.-A., . . . Hong, J. (2020). Artificial Intelligence: An Energy Efficiency Tool for Enhanced High performance computing. Symmetry, 12(6), 1029. https://doi.org/10.3390/sym12061029Kurose, J. F., & Ross, K. W. (2017). Computer Networking: A Top-Down Approach (Seventh ed.). Hoboken, New Jersey, USA: Pearson Education.Mantovani, F., Garcia-Gasulla, M., Gracia, J., Stafford, E., Banchelli, F., Josep-Fabrego, M., . . . Nachtmann, M. (2020). Performance and energy consumption of HPC workloads on a cluster based on Arm ThunderX2 CPU. Future Generation Computer Systems, 112, 800-818. https://doi.org/10.1016/j.future.2020.06.033Martyushev, N. V., Malozyomov, B. V., Khalikov, I. H., Kukartsev, V. A., Kukartsev, V. V., Tynchenko, V. S., . . . Qi, M. (2023, January 16). Review of Methods for Improving the Energy Efficiency of Electrified Ground Transport by Optimizing Battery Consumption. Energies, 16(2), 729. https://doi.org/10.3390/en16020729Petridou, S., Basagiannis, S., & Mamatas, L. (2018, March). Formal Methods for Energy-Efficient EPONs. IEEE Transactions on Green Communications and Networking, 2(1), 246-259. https://doi.org/10.1109/TGCN.2017.2772832Schöne, R., Treibig, J., Dolz, M. F., Guillen, C., Navarrete, C., Knobloch, M., & Rountree, B. (2014, January). Tools and Methods for Measuring and Tuning the Energy Efficiency of HPC Systems. Scientific Programming, 22, 273-283. https://doi.org/10.3233/SPR-140393Vásquez Capacho, W. J., Perez Zuñiga, C. G., Muñoz Maldonado, Y. A., & Ospino Castro, A. (2020, July). Simultaneous occurrences and false-positives analysis in discrete event dynamic systems. Journal of Computational Science, 44, 101162. https://doi.org/10.1016/j.jocs.2020.101162Vásquez-Capacho, J. W. (2020). V-nets, new formalism to manage diagnosis problems in Cyber-Physical Systems (CPS) and industrial applications. (T. Namerikawa, Ed.) IFAC-PapersOnLine, 53(5), 197-202, 3rd IFAC Workshop on Cyber-Physical & Human Systems CPHS 2020, Beijing, China, 3-5 December 2020. https://doi.org/10.1016/j.ifacol.2021.04.224Wilde, T., Auweter, A., & Shoukourian, H. (2014, August). The 4 Pillar Framework for energy efficient HPC data centers. SICS Software-Intensive Cyber-Physical Systems, 29(3-4), 241-251. https://doi.org/10.1007/s00450-013-0244-6Vol. 25 Núm. 2 (2024): Revista Colombiana de Computación (Julio-Diciembre); 12-22Sistemas informáticos escalablesV-netsRendimiento energético de la Computación de Alto RendimientoIndustria 4.0, Diagnóstico de Sistemas de Eventos DiscretosScalable Computing SystemsV-netsHPC Energy PerformanceIndustry 4.0, DES DiagnosisHPC y eficiencia energética con el uso de V-netsHPC and energy efficiency using V-netsinfo:eu-repo/semantics/articleArtículohttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85http://purl.org/coar/access_right/c_abf2ORIGINALArticulo 2.pdfArticulo 2.pdfArtículoapplication/pdf1484866https://repository.unab.edu.co/bitstream/20.500.12749/28278/1/Articulo%202.pdf766b63b1d808ad4dbe0873f3178a3770MD51open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-8347https://repository.unab.edu.co/bitstream/20.500.12749/28278/2/license.txt855f7d18ea80f5df821f7004dff2f316MD52open accessTHUMBNAILArticulo 2.pdf.jpgArticulo 2.pdf.jpgIM Thumbnailimage/jpeg9594https://repository.unab.edu.co/bitstream/20.500.12749/28278/3/Articulo%202.pdf.jpg4cae50873312e3a7c5265968ed90c2f7MD53open access20.500.12749/28278oai:repository.unab.edu.co:20.500.12749/282782025-02-13 22:01:29.164open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.coTGEgUmV2aXN0YSBDb2xvbWJpYW5hIGRlIENvbXB1dGFjacOzbiBlcyBmaW5hbmNpYWRhIHBvciBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgQnVjYXJhbWFuZ2EuIEVzdGEgUmV2aXN0YSBubyBjb2JyYSB0YXNhIGRlIHN1bWlzacOzbiB5IHB1YmxpY2FjacOzbiBkZSBhcnTDrWN1bG9zLiBQcm92ZWUgYWNjZXNvIGxpYnJlIGlubWVkaWF0byBhIHN1IGNvbnRlbmlkbyBiYWpvIGVsIHByaW5jaXBpbyBkZSBxdWUgaGFjZXIgZGlzcG9uaWJsZSBncmF0dWl0YW1lbnRlIGludmVzdGlnYWNpw7NuIGFsIHDDumJsaWNvIGFwb3lhIGEgdW4gbWF5b3IgaW50ZXJjYW1iaW8gZGUgY29ub2NpbWllbnRvIGdsb2JhbC4= |