An Implementation of a Plasma Physics Application for Distributed-memory Supercomputers using a Directive-based Programming Framework
To extract performance from supercomputers, programmers in the High Performance Computing (HPC) community are often required to use a combination of frameworks to take advantage of the multiple levels of parallelism. However, over the years, efforts have been made to simplify this situation by creat...
- Autores:
-
Asch, Christian
Francesquini, Emilio
Meneses, Esteban
- Tipo de recurso:
- Article of investigation
- Fecha de publicación:
- 2024
- Institución:
- Universidad Autónoma de Bucaramanga - UNAB
- Repositorio:
- Repositorio UNAB
- Idioma:
- spa
- OAI Identifier:
- oai:repository.unab.edu.co:20.500.12749/26655
- Palabra clave:
- Parallel Programming
Directive-based Programming
Plasma Physics
- Rights
- License
- http://purl.org/coar/access_right/c_abf2
id |
UNAB2_3a362fe5ecee3d535f634c88b14e65fa |
---|---|
oai_identifier_str |
oai:repository.unab.edu.co:20.500.12749/26655 |
network_acronym_str |
UNAB2 |
network_name_str |
Repositorio UNAB |
repository_id_str |
|
dc.title.eng.fl_str_mv |
An Implementation of a Plasma Physics Application for Distributed-memory Supercomputers using a Directive-based Programming Framework |
title |
An Implementation of a Plasma Physics Application for Distributed-memory Supercomputers using a Directive-based Programming Framework |
spellingShingle |
An Implementation of a Plasma Physics Application for Distributed-memory Supercomputers using a Directive-based Programming Framework Parallel Programming Directive-based Programming Plasma Physics |
title_short |
An Implementation of a Plasma Physics Application for Distributed-memory Supercomputers using a Directive-based Programming Framework |
title_full |
An Implementation of a Plasma Physics Application for Distributed-memory Supercomputers using a Directive-based Programming Framework |
title_fullStr |
An Implementation of a Plasma Physics Application for Distributed-memory Supercomputers using a Directive-based Programming Framework |
title_full_unstemmed |
An Implementation of a Plasma Physics Application for Distributed-memory Supercomputers using a Directive-based Programming Framework |
title_sort |
An Implementation of a Plasma Physics Application for Distributed-memory Supercomputers using a Directive-based Programming Framework |
dc.creator.fl_str_mv |
Asch, Christian Francesquini, Emilio Meneses, Esteban |
dc.contributor.author.none.fl_str_mv |
Asch, Christian Francesquini, Emilio Meneses, Esteban |
dc.contributor.orcid.spa.fl_str_mv |
Asch, Christian [0000-0002-3111-4858] Francesquini, Emilio [0000-0002-5374-2521] Meneses, Esteban [0000-0002-4307-6000] |
dc.subject.keywords.eng.fl_str_mv |
Parallel Programming Directive-based Programming Plasma Physics |
topic |
Parallel Programming Directive-based Programming Plasma Physics |
description |
To extract performance from supercomputers, programmers in the High Performance Computing (HPC) community are often required to use a combination of frameworks to take advantage of the multiple levels of parallelism. However, over the years, efforts have been made to simplify this situation by creating frameworks that can take advantage of multiple levels. This often means that the programmer has to learn a new library. On the other hand, there are frameworks that were created by extending the capabilities of established paradigms. In this paper, we explore one of this libraries, OpenMP Cluster. As its name implies, it extends the OpenMP API, which allows seasoned programmers to take advantage of their experience to use just one API to program in sharedmemory and distributed-memory parallelism. In this paper, we took an existing plasma physics code that was programmed with MPI+OpenMP and ported it over to OpenMP Cluster. We also show that under certain conditions, the performance of OpenMP Cluster is similar to that of the MPI+OpenMP code. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-09-19T21:16:07Z |
dc.date.available.none.fl_str_mv |
2024-09-19T21:16:07Z |
dc.date.issued.none.fl_str_mv |
2024-06-18 |
dc.type.coarversion.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.driver.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.local.spa.fl_str_mv |
Artículo |
dc.type.coar.none.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.redcol.none.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.identifier.issn.spa.fl_str_mv |
ISSN: 1657-2831 e-ISSN: 2539-2115 |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12749/26655 |
dc.identifier.instname.spa.fl_str_mv |
instname:Universidad Autónoma de Bucaramanga UNAB |
dc.identifier.repourl.spa.fl_str_mv |
repourl:https://repository.unab.edu.co |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.29375/25392115.5053 |
identifier_str_mv |
ISSN: 1657-2831 e-ISSN: 2539-2115 instname:Universidad Autónoma de Bucaramanga UNAB repourl:https://repository.unab.edu.co |
url |
http://hdl.handle.net/20.500.12749/26655 https://doi.org/10.29375/25392115.5053 |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
https://revistas.unab.edu.co/index.php/rcc/article/view/5053/3967 |
dc.relation.uri.spa.fl_str_mv |
https://revistas.unab.edu.co/index.php/rcc/issue/view/297 |
dc.relation.references.none.fl_str_mv |
Allmann-Rahn, F., Lautenbach, S., Deisenhofer, M., & Grauer, R. (2024, March). The muphyII Code: Multiphysics Plasma Simulation on Large HPC Systems. Computer Physics Communications, 296, 109064. doi:https://doi.org/10.1016/j.cpc.2023.109064 Choi, J. Y., Chang, C.-S., Dominski, J., Klasky, S., Merlo, G., Suchyta, E., . . . Wood, C. (2018). Coupling Exascale Multiphysics Applications: Methods and Lessons Learned. 2018 IEEE International Conference on e-Science and Grid Computing (pp. 442-452). Amsterdam, Netherlands: IEEE. doi:10.1109/eScience.2018.00133 Coto-Vílchez, F., Vargas, V. I., Solano-Piedra, R., Rojas-Quesada, M. A., Araya-Solano, L. A., Ramírez, A. A., . . . Arias, S. (2020, July 8). Progress on the small modular stellarator SCR-1: new diagnostics and heating scenarios. Journal of Plasma Physics, 86(4), 815860401. doi:10.1017/S0022377820000677 Di Francia Rosso, P. H., & Francesquini, E. (2022). OCFTL: An MPI Implementation-Independent Fault Tolerance Library for Task-Based Applications. In I. Gitler, C. J. Barrios Hernández, & M. Esteban (Ed.), High Performance Computing. 8th Latin American Conference, CARLA 2021, Guadalajara, Mexico, October 6–8, 2021, Revised Selected Papers. 1540, pp. 131-147. Springer, Cham. doi:10.1007/978-3-031-04209-6_10 Jiménez, D., Campos-Duarte, L., Solano-Piedra, R., Araya-Solano, L. A., Meneses, E., & Vargas, I. (2020). BS-SOLCTRA: Towards a Parallel Magnetic Plasma Confinement Simulation Framework for Modular Stellarator Devices. In J. L. Crespo-Mariño, & E. Meneses-Rojas (Ed.), High Performance Computing. 6th Latin American Conference, CARLA 2019, Turrialba, Costa Rica, September 25–27, 2019, Revised Selected Papers. 1087, pp. 33-48. Springer, Cham. doi:10.1007/978-3-030-41005-6_3 Jiménez, D., Herrera-Mora, J., Rampp, M., Laure, E., & Meneses, E. (2022). Implementing a GPU-Portable Field Line Tracing Application with OpenMP Offload. In P. Navaux, C. J. Barrios H, C. Osthoff, & G. Guerrero (Ed.), High Performance Computing. 9th Latin American Conference, CARLA 2022, Porto Alegre, Brazil, September 26–30, 2022, Revised Selected Papers (pp. 31-46). Springer International Publishing. doi:10.1007/978-3-031-23821-5_3 Jiménez, D., Meneses, E., & Vargas, V. I. (2021, July 17). Adaptive Plasma Physics Simulations: Dealing with Load Imbalance using Charm++. PEARC '21: Practice and Experience in Advanced Research Computing. Article No. 3, pp. 1-8. New York, NY, USA: Association for Computing Machinery. doi:10.1145/3437359.3465566 Topcuoglu, H., Hariri, S., & Wu, M.-Y. (2002, March). Performance-effective and low-complexity task scheduling for heterogeneous computing. IEEE Transactions on Parallel and Distributed Systems, 13(3), 260-274. doi:10.1109/71.993206 Yviquel, H., Pereira, M., Francesquini, E., Valarini, G., Leite, G., Rosso, P., . . . Araujo, G. (2023, January). The OpenMP Cluster Programming Model. ICPP Workshops '22: Workshop Proceedings of the 51st International Conference on Parallel Processing. Article No. 17, pp. 1-11. Bordeaux, France: Association for Computing Machinery. doi:10.1145/3547276.3548444 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
rights_invalid_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Autónoma de Bucaramanga UNAB |
dc.source.spa.fl_str_mv |
Vol. 25 Núm. 1 (2024): Revista Colombiana de Computación (Enero-Junio); 39-47 |
institution |
Universidad Autónoma de Bucaramanga - UNAB |
bitstream.url.fl_str_mv |
https://repository.unab.edu.co/bitstream/20.500.12749/26655/2/license.txt https://repository.unab.edu.co/bitstream/20.500.12749/26655/1/Art%c3%adculo.pdf https://repository.unab.edu.co/bitstream/20.500.12749/26655/3/Art%c3%adculo.pdf.jpg |
bitstream.checksum.fl_str_mv |
855f7d18ea80f5df821f7004dff2f316 c124f4cd7c0893c9bdf7c3b592d364e0 a4e73e31d19c38e5c2a50f9e14a762ef |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB |
repository.mail.fl_str_mv |
repositorio@unab.edu.co |
_version_ |
1814278476757204992 |
spelling |
Asch, Christian1ef1e465-993f-4f55-9d03-a82a48d32e35Francesquini, Emilio25958e68-5807-49a8-b67f-ad86258e74d1Meneses, Esteban4a20e5ac-8885-4884-8394-47d2c557f95fAsch, Christian [0000-0002-3111-4858]Francesquini, Emilio [0000-0002-5374-2521]Meneses, Esteban [0000-0002-4307-6000]2024-09-19T21:16:07Z2024-09-19T21:16:07Z2024-06-18ISSN: 1657-2831e-ISSN: 2539-2115http://hdl.handle.net/20.500.12749/26655instname:Universidad Autónoma de Bucaramanga UNABrepourl:https://repository.unab.edu.cohttps://doi.org/10.29375/25392115.5053application/pdfspaUniversidad Autónoma de Bucaramanga UNABhttps://revistas.unab.edu.co/index.php/rcc/article/view/5053/3967https://revistas.unab.edu.co/index.php/rcc/issue/view/297Allmann-Rahn, F., Lautenbach, S., Deisenhofer, M., & Grauer, R. (2024, March). The muphyII Code: Multiphysics Plasma Simulation on Large HPC Systems. Computer Physics Communications, 296, 109064. doi:https://doi.org/10.1016/j.cpc.2023.109064Choi, J. Y., Chang, C.-S., Dominski, J., Klasky, S., Merlo, G., Suchyta, E., . . . Wood, C. (2018). Coupling Exascale Multiphysics Applications: Methods and Lessons Learned. 2018 IEEE International Conference on e-Science and Grid Computing (pp. 442-452). Amsterdam, Netherlands: IEEE. doi:10.1109/eScience.2018.00133Coto-Vílchez, F., Vargas, V. I., Solano-Piedra, R., Rojas-Quesada, M. A., Araya-Solano, L. A., Ramírez, A. A., . . . Arias, S. (2020, July 8). Progress on the small modular stellarator SCR-1: new diagnostics and heating scenarios. Journal of Plasma Physics, 86(4), 815860401. doi:10.1017/S0022377820000677Di Francia Rosso, P. H., & Francesquini, E. (2022). OCFTL: An MPI Implementation-Independent Fault Tolerance Library for Task-Based Applications. In I. Gitler, C. J. Barrios Hernández, & M. Esteban (Ed.), High Performance Computing. 8th Latin American Conference, CARLA 2021, Guadalajara, Mexico, October 6–8, 2021, Revised Selected Papers. 1540, pp. 131-147. Springer, Cham. doi:10.1007/978-3-031-04209-6_10Jiménez, D., Campos-Duarte, L., Solano-Piedra, R., Araya-Solano, L. A., Meneses, E., & Vargas, I. (2020). BS-SOLCTRA: Towards a Parallel Magnetic Plasma Confinement Simulation Framework for Modular Stellarator Devices. In J. L. Crespo-Mariño, & E. Meneses-Rojas (Ed.), High Performance Computing. 6th Latin American Conference, CARLA 2019, Turrialba, Costa Rica, September 25–27, 2019, Revised Selected Papers. 1087, pp. 33-48. Springer, Cham. doi:10.1007/978-3-030-41005-6_3Jiménez, D., Herrera-Mora, J., Rampp, M., Laure, E., & Meneses, E. (2022). Implementing a GPU-Portable Field Line Tracing Application with OpenMP Offload. In P. Navaux, C. J. Barrios H, C. Osthoff, & G. Guerrero (Ed.), High Performance Computing. 9th Latin American Conference, CARLA 2022, Porto Alegre, Brazil, September 26–30, 2022, Revised Selected Papers (pp. 31-46). Springer International Publishing. doi:10.1007/978-3-031-23821-5_3Jiménez, D., Meneses, E., & Vargas, V. I. (2021, July 17). Adaptive Plasma Physics Simulations: Dealing with Load Imbalance using Charm++. PEARC '21: Practice and Experience in Advanced Research Computing. Article No. 3, pp. 1-8. New York, NY, USA: Association for Computing Machinery. doi:10.1145/3437359.3465566Topcuoglu, H., Hariri, S., & Wu, M.-Y. (2002, March). Performance-effective and low-complexity task scheduling for heterogeneous computing. IEEE Transactions on Parallel and Distributed Systems, 13(3), 260-274. doi:10.1109/71.993206Yviquel, H., Pereira, M., Francesquini, E., Valarini, G., Leite, G., Rosso, P., . . . Araujo, G. (2023, January). The OpenMP Cluster Programming Model. ICPP Workshops '22: Workshop Proceedings of the 51st International Conference on Parallel Processing. Article No. 17, pp. 1-11. Bordeaux, France: Association for Computing Machinery. doi:10.1145/3547276.3548444Vol. 25 Núm. 1 (2024): Revista Colombiana de Computación (Enero-Junio); 39-47An Implementation of a Plasma Physics Application for Distributed-memory Supercomputers using a Directive-based Programming Frameworkinfo:eu-repo/semantics/articleArtículohttp://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/redcol/resource_type/ARThttp://purl.org/coar/version/c_970fb48d4fbd8a85Parallel ProgrammingDirective-based ProgrammingPlasma PhysicsTo extract performance from supercomputers, programmers in the High Performance Computing (HPC) community are often required to use a combination of frameworks to take advantage of the multiple levels of parallelism. However, over the years, efforts have been made to simplify this situation by creating frameworks that can take advantage of multiple levels. This often means that the programmer has to learn a new library. On the other hand, there are frameworks that were created by extending the capabilities of established paradigms. In this paper, we explore one of this libraries, OpenMP Cluster. As its name implies, it extends the OpenMP API, which allows seasoned programmers to take advantage of their experience to use just one API to program in sharedmemory and distributed-memory parallelism. In this paper, we took an existing plasma physics code that was programmed with MPI+OpenMP and ported it over to OpenMP Cluster. We also show that under certain conditions, the performance of OpenMP Cluster is similar to that of the MPI+OpenMP code.http://purl.org/coar/access_right/c_abf2LICENSElicense.txtlicense.txttext/plain; charset=utf-8347https://repository.unab.edu.co/bitstream/20.500.12749/26655/2/license.txt855f7d18ea80f5df821f7004dff2f316MD52open accessORIGINALArtículo.pdfArtículo.pdfArtículoapplication/pdf570726https://repository.unab.edu.co/bitstream/20.500.12749/26655/1/Art%c3%adculo.pdfc124f4cd7c0893c9bdf7c3b592d364e0MD51open accessTHUMBNAILArtículo.pdf.jpgArtículo.pdf.jpgIM Thumbnailimage/jpeg10297https://repository.unab.edu.co/bitstream/20.500.12749/26655/3/Art%c3%adculo.pdf.jpga4e73e31d19c38e5c2a50f9e14a762efMD53open access20.500.12749/26655oai:repository.unab.edu.co:20.500.12749/266552024-09-19 22:03:07.219open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.coTGEgUmV2aXN0YSBDb2xvbWJpYW5hIGRlIENvbXB1dGFjacOzbiBlcyBmaW5hbmNpYWRhIHBvciBsYSBVbml2ZXJzaWRhZCBBdXTDs25vbWEgZGUgQnVjYXJhbWFuZ2EuIEVzdGEgUmV2aXN0YSBubyBjb2JyYSB0YXNhIGRlIHN1bWlzacOzbiB5IHB1YmxpY2FjacOzbiBkZSBhcnTDrWN1bG9zLiBQcm92ZWUgYWNjZXNvIGxpYnJlIGlubWVkaWF0byBhIHN1IGNvbnRlbmlkbyBiYWpvIGVsIHByaW5jaXBpbyBkZSBxdWUgaGFjZXIgZGlzcG9uaWJsZSBncmF0dWl0YW1lbnRlIGludmVzdGlnYWNpw7NuIGFsIHDDumJsaWNvIGFwb3lhIGEgdW4gbWF5b3IgaW50ZXJjYW1iaW8gZGUgY29ub2NpbWllbnRvIGdsb2JhbC4= |