Estimación del consumo de combustible mediante la determinación de ciclos de conducción representativos en Bucaramanga, Santander

En la actualidad existe un gran interés en reducir el consumo de combustible y por ende las emisiones vehiculares. Como parte de las estrategias adoptadas por diferentes países, es el establecimiento de límites de emisiones cada vez más estrictos. Por lo que los fabricantes de vehículos deben realiz...

Full description

Autores:
Jiménez Neira, Carlos Mario de León
Tipo de recurso:
Trabajo de grado de pregrado
Fecha de publicación:
2019
Institución:
Universidad Autónoma de Bucaramanga - UNAB
Repositorio:
Repositorio UNAB
Idioma:
spa
OAI Identifier:
oai:repository.unab.edu.co:20.500.12749/7051
Acceso en línea:
http://hdl.handle.net/20.500.12749/7051
Palabra clave:
Driving cycle
OBD
Light vehicles
Energy engineering
Automóviles
Combustibles para motores
Ciclo de conducción
OBD
Vehículos livianos
Ingeniería en energía
Rights
openAccess
License
http://creativecommons.org/licenses/by-nc-nd/2.5/co/
id UNAB2_32b0ebcdc2533be4145421f8c022e87a
oai_identifier_str oai:repository.unab.edu.co:20.500.12749/7051
network_acronym_str UNAB2
network_name_str Repositorio UNAB
repository_id_str
dc.title.spa.fl_str_mv Estimación del consumo de combustible mediante la determinación de ciclos de conducción representativos en Bucaramanga, Santander
dc.title.translated.eng.fl_str_mv Estimation of fuel consumption by determining representative driving cycles in Bucaramanga, Santander
title Estimación del consumo de combustible mediante la determinación de ciclos de conducción representativos en Bucaramanga, Santander
spellingShingle Estimación del consumo de combustible mediante la determinación de ciclos de conducción representativos en Bucaramanga, Santander
Driving cycle
OBD
Light vehicles
Energy engineering
Automóviles
Combustibles para motores
Ciclo de conducción
OBD
Vehículos livianos
Ingeniería en energía
title_short Estimación del consumo de combustible mediante la determinación de ciclos de conducción representativos en Bucaramanga, Santander
title_full Estimación del consumo de combustible mediante la determinación de ciclos de conducción representativos en Bucaramanga, Santander
title_fullStr Estimación del consumo de combustible mediante la determinación de ciclos de conducción representativos en Bucaramanga, Santander
title_full_unstemmed Estimación del consumo de combustible mediante la determinación de ciclos de conducción representativos en Bucaramanga, Santander
title_sort Estimación del consumo de combustible mediante la determinación de ciclos de conducción representativos en Bucaramanga, Santander
dc.creator.fl_str_mv Jiménez Neira, Carlos Mario de León
dc.contributor.advisor.spa.fl_str_mv Pacheco Sandoval, Leonardo Esteban
Maradey Lázaro, Jessica Gissella
dc.contributor.author.spa.fl_str_mv Jiménez Neira, Carlos Mario de León
dc.contributor.cvlac.*.fl_str_mv Pacheco Sandoval, Leonardo Esteban [0001478220]
dc.contributor.googlescholar.*.fl_str_mv Pacheco Sandoval, Leonardo Esteban [yZ1HEiIAAAAJ]
dc.contributor.orcid.*.fl_str_mv Pacheco Sandoval, Leonardo Esteban [0000-0001-7262-382X]
dc.contributor.researchgate.*.fl_str_mv Pacheco Sandoval, Leonardo Esteban [Leonardo-Esteban-Pacheco-Sandoval]
dc.subject.keywords.eng.fl_str_mv Driving cycle
OBD
Light vehicles
Energy engineering
topic Driving cycle
OBD
Light vehicles
Energy engineering
Automóviles
Combustibles para motores
Ciclo de conducción
OBD
Vehículos livianos
Ingeniería en energía
dc.subject.lemb.spa.fl_str_mv Automóviles
Combustibles para motores
dc.subject.proposal.spa.fl_str_mv Ciclo de conducción
OBD
Vehículos livianos
Ingeniería en energía
description En la actualidad existe un gran interés en reducir el consumo de combustible y por ende las emisiones vehiculares. Como parte de las estrategias adoptadas por diferentes países, es el establecimiento de límites de emisiones cada vez más estrictos. Por lo que los fabricantes de vehículos deben realizar pruebas de homologación que certifiquen las nuevas tecnologías que entraran al mercado. Pero las grandes diferencias entre los valores reportados en las pruebas de homologación (FCTA) y bajo condiciones reales de operación (FCreal) de los vehículos pueden llegar a ser superiores al 60%. Dentro de los factores que tienen mayor incidencia en esta discrepancia, es el uso de ciclos de conducción (DCs) que no representan el patrón de conducción de local de las diferentes regiones del mundo. En este trabajo se planteó monitorear el consumo de combustible y los patrones de manejo de una tecnología vehicular en condiciones reales de operación en Bucaramanga, Santander. Para esto, se realizaron mediciones en condiciones reales de operación de 2 vehículos de una entidad pública, utilizados para monitorear las vías de la ciudad en busca de infractores. Se reportaron los patrones de manejo en función de los parámetros características (CPs) y el consumo específico de combustible (SFC) de 0,220  0,0828 L/km para las diferentes condiciones que se presentan en la región de estudio. En busca de la reducción de las diferencias presentadas entre los valores FCTA y FCreal, se propuso un método para construir DCs locales, al combinar las dos corrientes metodológicas (Estocástica y Determinística) utilizadas en el mundo. Se obtuvo que el método Micro-trips Fuel Based Method (MTFBM) logra representar considerablemente el patrón de conducción y el consumo de combustible de la región analizada. Tomando en cuenta que, para evaluar la representatividad del ciclo obtenido, se utilizan un grupo de parámetros característicos que definen el patrón de manejo y describe un ciclo de conducción, se obtuvo que el método propuesto exhibió un 82,5% de los CPs con diferencias relativas por debajo del 20% con respecto a los patrones de manejo de los viajes monitoreados. Además, se estimó la incorporación de estrategias de conducción eficiente que permitan obtener una reducción del 26,46% para los vehículos analizados. En conclusión, es muy importante reducir las diferencias presentadas, debido al impacto que tienen a nivel gubernamental, ambiental y económico
publishDate 2019
dc.date.issued.none.fl_str_mv 2019
dc.date.accessioned.none.fl_str_mv 2020-07-27T19:04:43Z
dc.date.available.none.fl_str_mv 2020-07-27T19:04:43Z
dc.type.driver.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.local.spa.fl_str_mv Trabajo de Grado
dc.type.coar.none.fl_str_mv http://purl.org/coar/resource_type/c_7a1f
dc.type.redcol.none.fl_str_mv http://purl.org/redcol/resource_type/TP
format http://purl.org/coar/resource_type/c_7a1f
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12749/7051
dc.identifier.instname.spa.fl_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
dc.identifier.reponame.spa.fl_str_mv reponame:Repositorio Institucional UNAB
dc.identifier.repourl.spa.fl_str_mv repourl:https://repository.unab.edu.co
url http://hdl.handle.net/20.500.12749/7051
identifier_str_mv instname:Universidad Autónoma de Bucaramanga - UNAB
reponame:Repositorio Institucional UNAB
repourl:https://repository.unab.edu.co
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv A. Ashtari, E. Bibeau and S. Shahidinejad, Using Large Driving Record Samples and a Stochastic Approach for Real-World Driving Cycle Construction: Winnipeg Driving Cycle, 2014, pp. 170-183.
Centro del transporte de la Universidad Andres Bello, "Manual de conducción eficiente," pp. 32, 2014.
DieselNet, "Worldwide Harmonized Light Vehicles Test Cycle (WLTC)," vol. 2019, 2019.
EConcept, "El Sector de Vehículos en Colombia: Características y Propuestas de Mejora a su Régimen Impositivo." 2016.
Escuela de Ingeniería Civil Geomatica, gestión y optimizacion de sistemas, "Plan Maestro de Movilidad, Área Metropolitana de Bucaramanga 2011 - 2030," pp. 202, 2011.
Escuela de Ingeniería Civil, Geomatica, gestión y optimizacion de sistemas, "Plan Maestro de Movilidad, Bucaramanga 2010-2030," pp. 143, 2010.
F. Quinchimbla and J. Solis, "Desarrollo de ciclos de conducción en ciudad, carretera y combinado para evaluar el rendimiento real de combustible de un vehículo con motor de ciclo otto en el distrito metropolitano de Quito." pp. 163, 2017.
G. Amirjamshidi and M.J. Roorda, "Development of simulated driving cycles for light, medium, and heavy duty trucks: Case of the Toronto Waterfront Area," Transportation Research Part D: Transport and Environment, vol. 34, pp. 255-266, 2015.
G. Fontaras, N. Zacharof and B. Ciuffo, "Fuel consumption and CO2 emissions from passenger cars in Europe – Laboratory versus real-world emissions," Progress in Energy and Combustion Science, vol. 60, pp. 97-131, 2017.
G. Kadijk, R.P. Verbeek, R.T.M. Smokers, J.S. Spreen, A.F. Patuleia and M.G.v. Ras, "Supporting Analysis regarding Test Procedure Flexibilities and Technology Deployment for Review of the Light Duty Vehicle CO2 Regulations," European Commission., 2012.
G.O. Duarte, G.A. Gonçalves and T.L. Farias, "Analysis of fuel consumption and pollutant emissions of regulated and alternative driving cycles based on real-world measurements," Transportation Research Part D: Transport and Environment, vol. 44, pp. 43-54, 2016.
Global Fuel Economy Iniciative, "Fuel Economy State of the World 2016 - Time for global action," 2016.
H. Achour and A.G. Olabi, "Driving cycle developments and their impacts on energy consumption of transportation," Journal of Cleaner Production, vol. 112, pp. 1778-1788, 2016.
H. Kato, R. Ando, Y. Kondo, T. Suzuki, K. Matsuhashi and S. Kobayashi, "Comparative measurements of the eco-driving effect between electric and internal combustion engine vehicles," 2013 World Electric Vehicle Symposium and Exhibition, EVS 2014, 2014.
H. Tong and W. Hung, "A Framework for Developing Driving Cycles with On‐Road Driving Data," Transport Reviews, vol. 30, pp. 589-615, 2010.
ICCT, "Quantifying the impact of real-world driving on total CO2 emissions from UK cars and vans: final report for The Committee on Climate Change," 2015.
IDAE, "Cómo conducir de manera eficiente," pp. 30, 2003.
IDAE, "La Conducción Eficiente," pp. 34, 2005.
IDAE, "Manual de conducción eficiente para conductores de vehículos industriales," pp. 80, 2006.
IDAE, "Manual de Conducción Eficiente para Conductores del Parque Móvil del Estado," pp. 39, 2002.
IDEAM, PNUD, MADS, DNP and CANCILLERIA, "Inventario Nacional de Gases de Efecto Invernadero (GEI) de Colombia. Tercera Comunicación Nacional de Cambio Climático de Colombia." pp. 36, 2015.
IEA, "CO2 Emissions From Fuel Combustion: Overview," pp. 14, 2017.
International Energy Agency, "CO2 Emissions from Fuel Combustion: Highlights," pp. 166, 2018.
International Energy Agency, "Energy Efficiency Indicators: Highlights," pp. 191, 2018.
International Energy Agency, "Energy Technology Perspectives 2015," pp. 418, 2015.
International Energy Agency, "International Comparison of Light-Duty Vehicle Fuel Economy 2005-15," pp. 133, 2017.
International Energy Agency, "Market Report Series: Energy efficiency 2017," pp. 143, 2017.
International Energy Agency, "Technology Roadmap - Fuel Economy of Road Vehicles," 2012.
International Energy Agency, "Transport, Energy and CO2," Huss., pp. 418, 2009.
J. Brady and M. O’Mahony, "Development of a driving cycle to evaluate the energy economy of electric vehicles in urban areas," Applied Energy, vol. 177, pp. 165-178, 2016.
J. Huertas, L. Quirama, M. Giraldo and J. Díaz, "Comparison of Three Methods for Constructing Real Driving Cycles," Energies, vol. 12, pp. 665, Feb 19,. 2019.
J. Huertas, M. Giraldo, L. Quirama and J. Díaz, "Driving Cycles Based on Fuel Consumption," Energies, vol. 11, pp. 3064, Nov 7,. 2018.
J. Huertas, M. Giraldo, L. Quirama and J. Díaz-Ramírez, "Driving Cycles Based on Fuel Consumption," Energies, vol. 11, pp. 3064, 2018.
J. Jimenez, P. McClintock, G. McRae, D. Nelson and M. Zahniser, Vehicle Specific Power: A Useful Parameter for Remote Sensing and Emission Studies, San Diego: 1999, pp. 361.
J. Wu, Q. Zhu, J. Chu, H. Liu and L. Liang, "Measuring energy and environmental efficiency of transportation systems in China based on a parallel DEA approach," Transportation Research Part D: Transport and Environment, vol. 48, pp. 460-472, 2016.
J.D.K. Bishop, C.J. Axon and M.D. McCulloch, "A robust, data-driven methodology for real-world driving cycle development," Transportation Research Part D: Transport and Environment, vol. 17, pp. 389-397, 2012.
J.I. Huertas, J. Díaz, M. Giraldo, D. Cordero and L.M. Tabares, "Eco-driving by replicating best driving practices," International Journal of Sustainable Transportation, vol. 12, pp. 107-116, 2018.
J.N. Barkenbus, "Eco-driving: An overlooked climate change initiative," Energy Policy, vol. 38, pp. 762-769, 2010.
L. Ntziachristos, G. Mellios, D. Tsokolis, M. Keller, S. Hausberger, N.E. Ligterink and P. Dilara, "In-use vs. type-approval fuel consumption of current passenger cars in Europe," Energy Policy, vol. 67, pp. 403-411, 2014.
M. Andrejić, N. Bojović and M. Kilibarda, "A framework for measuring transport efficiency in distribution centers," Transport Policy, vol. 45, pp. 99-106, 2016.
M. Giraldo, "Método basado en el consumo de combustible para la construcción de ciclos de conducción que representen patrones locales de manejo," pp. 73, 2018.
M. Rutty, L. Matthews, J. Andrey and T.D. Matto, "Eco-driver training within the City of Calgary’s municipal fleet: Monitoring the impact," Transportation Research Part D: Transport and Environment, vol. 24, pp. 44-51, 2013.
M. Sivak and B. Schoettle, "Eco-driving: Strategic, tactical, and operational decisions of the driver that influence vehicle fuel economy," Transport Policy, vol. 22, pp. 96-99, 2012.
M. Sivak and B. Schoettle, "Eco-driving: Strategic, tactical, and operational decisions of the driver that influence vehicle fuel economy," Transport Policy, vol. 22, pp. 96-99, 2012.
M. Zhou, H. Jin and W. Wang, "A review of vehicle fuel consumption models to evaluate eco-driving and eco-routing," Transportation Research Part D: Transport and Environment, vol. 49, pp. 203-218, 2016.
Ministerio de Minas y Energía, "Plan de Acción Indicativo de Eficiencia Energética 2017 - 2022," pp. 157, 2016.
Ministre de l’environnement de l’énergie et de la mer, "Contrôles des émissions de polluants atmosphériques et de CO2," 2016.
N.E. Ligterink and A.R.A. Eijk, "Update analysis of real-world fuel consumption of business passenger cars based on Travelcard Nederland fuelpass data," Jan 1,. 2014.
N.H. Arun, S. Mahesh, G. Ramadurai and S.M. Shiva Nagendra, "Development of driving cycles for passenger cars and motorcycles in Chennai, India," Sustainable Cities and Society, vol. 32, pp. 508-512, 2017.
P. Pérez and C. Quito, "Determinación de los ciclos de conducción de un vehículo categoría M1 para la ciudad de Cuenca," pp. 132, 2018.
Q. Shi, Y. Zheng, R. Wang and Y. Li, "The study of a new method of driving cycles construction," Procedia Engineering, vol. 16, pp. 79-87, 2011.
Q. Wang, H. Huo, K. He, Z. Yao and Q. Zhang, "Characterization of vehicle driving patterns and development of driving cycles in Chinese cities," Transportation Research Part D: Transport and Environment, vol. 13, pp. 289-297, 2008.
R. Astudillo, "Obtención de ciclos de conducción para la flota de buses urbanos del cantón Cuenca," pp. 115, 2016.
R.A. Simmons, G.M. Shaver, W.E. Tyner and S.V. Garimella, "A benefit-cost assessment of new vehicle technologies and fuel economy in the U.S. market," Applied Energy, vol. 157, pp. 940-952, 2015.
S. Birrell, J. Taylor, A. McGordon, J. Son and P. Jennings, "Analysis of three independent real-world driving studies: A data driven and expert analysis approach to determining parameters affecting fuel economy," Transportation Research Part D: Transport and Environment, vol. 33, pp. 74-86, 2014.
S. Ho, Y. Wong and V.W. Chang, "Developing Singapore Driving Cycle for passenger cars to estimate fuel consumption and vehicular emissions," Atmospheric Environment, vol. 97, pp. 353-362, 2014.
S. Zhang, Y. Wu, H. Liu, R. Huang, P. Un, Y. Zhou, L. Fu and J. Hao, "Real-world fuel consumption and CO2 (carbon dioxide) emissions by driving conditions for light-duty passenger vehicles in China," Energy, vol. 69, pp. 247-257, 2014.
T. Barlow, S. Latham, I. Mccrae and P. Boulter, "A reference book of driving cycles for use in the measurement of road vehicle emissions," TRL Published Project Report., pp. 280, 2009.
T. NUTRAMON and C. SUPACHART, "Influence of driving cycles on exhaust emissions and fuel consumption of gasoline passenger car in Bangkok," Journal of Environmental Sciences, vol. 21, pp. 604-611, 2009.
T.M.I. Mahlia, S. Tohno and T. Tezuka, "A review on fuel economy test procedure for automobiles: Implementation possibilities in Malaysia and lessons for other countries," Renewable and Sustainable Energy Reviews, vol. 16, pp. 4029-4046, 2012.
U. Tietge, N. Zacharov, P. Mock, V. Franco, J. German, A. Bandivadekar, N.E. Ligterink and U. Lambrecht, "From Laboratory to Road. A 2015 update of official and real-world fuel concumption and CO2 values for passenger cars in Europe," International Council on Clean Transportation Europe., 2015.
U. Tietge, P. Mock, J. German, A. Bandivadekar and N. Ligterink, "From Laboratory to Road a 2017 Update of Official and “Real-World” Fuel Consumption and CO2 Values For Passenger Cars in Europe," pp. 62, 2015.
U. Tietge, P. Mock, V. Franco and N. Zacharof, "From laboratory to road: Modeling the divergence between official and real-world fuel consumption and CO2 emission values in the German passenger car market for the years 2001–2014," Energy Policy, vol. 103, pp. 212-222, 2017.
V. Basaric, M. Jambrovic, M. Milicic, T. Savković, D. Basaric and V. Bogdanović, "Positive effects of eco-driving in public transport: A case study of Novi Sad," Thermal Science, vol. 21, pp. 160, 2016.
W.T. Hung, H.Y. Tong, C.P. Lee, K. Ha and L.Y. Pao, "Development of a practical driving cycle construction methodology: A case study in Hong Kong," Transportation Research Part D: Transport and Environment, vol. 12, pp. 115-128, 2007.
World Health Organization, "WHO Global Ambient Air Quality Database (update 2018)," vol. 2019, 2018.
Y. Huang, E.C.Y. Ng, J.L. Zhou, N.C. Surawski, E.F.C. Chan and G. Hong, "Eco-driving technology for sustainable road transport: A review," Renewable and Sustainable Energy Reviews, vol. 93, pp. 596-609, 2018.
Z. Xiao, Z. Dui-Jia and S. Jun-Min, "A Synthesis of Methodologies and Practices for Developing Driving Cycles," Energy Procedia, vol. 16, pp. 1868-1873, 2012.
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
dc.rights.local.spa.fl_str_mv Abierto (Texto Completo)
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
http://purl.org/coar/access_right/c_abf2
dc.rights.creativecommons.*.fl_str_mv Atribución-NoComercial-SinDerivadas 2.5 Colombia
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/co/
Abierto (Texto Completo)
http://purl.org/coar/access_right/c_abf2
Atribución-NoComercial-SinDerivadas 2.5 Colombia
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.spatial.spa.fl_str_mv Bucaramanga (Santander, Colombia)
dc.coverage.temporal.spa.fl_str_mv 2019
dc.publisher.grantor.spa.fl_str_mv Universidad Autónoma de Bucaramanga UNAB
dc.publisher.faculty.spa.fl_str_mv Facultad Ingeniería
dc.publisher.program.spa.fl_str_mv Pregrado Ingeniería Mecatrónica
institution Universidad Autónoma de Bucaramanga - UNAB
bitstream.url.fl_str_mv https://repository.unab.edu.co/bitstream/20.500.12749/7051/1/2019_Tesis_Carlos_Mario_De_Le%c3%b3n_Jim%c3%a9nez_Neira.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/7051/4/2019_Licencia_Carlos_Leon.pdf
https://repository.unab.edu.co/bitstream/20.500.12749/7051/2/license.txt
https://repository.unab.edu.co/bitstream/20.500.12749/7051/3/2019_Tesis_Carlos_Mario_De_Le%c3%b3n_Jim%c3%a9nez_Neira.pdf.jpg
https://repository.unab.edu.co/bitstream/20.500.12749/7051/5/2019_Licencia_Carlos_Leon.pdf.jpg
bitstream.checksum.fl_str_mv e0489fcf03d4c37cea233090c66b4ecc
848a207c777b7fbce0f17154f2dad81c
8a4605be74aa9ea9d79846c1fba20a33
f8eccd234af61224249952774569d319
03ef41d774f6d2ca94c8e8bd911c4cdf
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional | Universidad Autónoma de Bucaramanga - UNAB
repository.mail.fl_str_mv repositorio@unab.edu.co
_version_ 1814277360903520256
spelling Pacheco Sandoval, Leonardo Estebaneffbbb92-dd6f-4c7a-af53-409b4a0a744dMaradey Lázaro, Jessica Gissellad6570851-23e5-44e4-8c29-fd312d351b94Jiménez Neira, Carlos Mario de León807a4bab-1641-4628-abef-b7ae6e3b51d2Pacheco Sandoval, Leonardo Esteban [0001478220]Pacheco Sandoval, Leonardo Esteban [yZ1HEiIAAAAJ]Pacheco Sandoval, Leonardo Esteban [0000-0001-7262-382X]Pacheco Sandoval, Leonardo Esteban [Leonardo-Esteban-Pacheco-Sandoval]Bucaramanga (Santander, Colombia)20192020-07-27T19:04:43Z2020-07-27T19:04:43Z2019http://hdl.handle.net/20.500.12749/7051instname:Universidad Autónoma de Bucaramanga - UNABreponame:Repositorio Institucional UNABrepourl:https://repository.unab.edu.coEn la actualidad existe un gran interés en reducir el consumo de combustible y por ende las emisiones vehiculares. Como parte de las estrategias adoptadas por diferentes países, es el establecimiento de límites de emisiones cada vez más estrictos. Por lo que los fabricantes de vehículos deben realizar pruebas de homologación que certifiquen las nuevas tecnologías que entraran al mercado. Pero las grandes diferencias entre los valores reportados en las pruebas de homologación (FCTA) y bajo condiciones reales de operación (FCreal) de los vehículos pueden llegar a ser superiores al 60%. Dentro de los factores que tienen mayor incidencia en esta discrepancia, es el uso de ciclos de conducción (DCs) que no representan el patrón de conducción de local de las diferentes regiones del mundo. En este trabajo se planteó monitorear el consumo de combustible y los patrones de manejo de una tecnología vehicular en condiciones reales de operación en Bucaramanga, Santander. Para esto, se realizaron mediciones en condiciones reales de operación de 2 vehículos de una entidad pública, utilizados para monitorear las vías de la ciudad en busca de infractores. Se reportaron los patrones de manejo en función de los parámetros características (CPs) y el consumo específico de combustible (SFC) de 0,220  0,0828 L/km para las diferentes condiciones que se presentan en la región de estudio. En busca de la reducción de las diferencias presentadas entre los valores FCTA y FCreal, se propuso un método para construir DCs locales, al combinar las dos corrientes metodológicas (Estocástica y Determinística) utilizadas en el mundo. Se obtuvo que el método Micro-trips Fuel Based Method (MTFBM) logra representar considerablemente el patrón de conducción y el consumo de combustible de la región analizada. Tomando en cuenta que, para evaluar la representatividad del ciclo obtenido, se utilizan un grupo de parámetros característicos que definen el patrón de manejo y describe un ciclo de conducción, se obtuvo que el método propuesto exhibió un 82,5% de los CPs con diferencias relativas por debajo del 20% con respecto a los patrones de manejo de los viajes monitoreados. Además, se estimó la incorporación de estrategias de conducción eficiente que permitan obtener una reducción del 26,46% para los vehículos analizados. En conclusión, es muy importante reducir las diferencias presentadas, debido al impacto que tienen a nivel gubernamental, ambiental y económicoRESUMEN 10 NOMENCLATURA 12 INTRODUCCIÓN 14 1 MARCO REFERENCIAL 16 1.1 CONTAMINACIÓN ATMOSFERICA Y EL SECTOR TRANSPORTE 16 1.2 PRUEBAS DE HOMOLOGACIÓN 20 1.2.1 Diferencias entre el consumo de combustible real y el reportado por los fabricantes 22 1.3 CICLOS DE CONDUCCIÓN 25 1.3.1 Metodologías para la construcción de DC 29 1.4 ESTRATEGIAS DE CONDUCCIÓN EFICIENTE 34 1.4.1 Antes de iniciar el recorrido 35 1.4.2 Inicio de la marcha 37 1.4.3 Durante la marcha 37 1.4.4 Otras circunstancias del tráfico 39 2 OBJETIVOS 41 3 METODOLOGÍA 42 3.1 REGIÓN DE ESTUDIO 42 3.1.1 Localización y área 42 3.1.2 Población 43 3.1.3 Movilidad 44 3.1.4 Vehículos 47 3.2 INSTRUMENTACIÓN 48 3.3 TOMA DE DATOS 49 3.4 ANÁLISIS DE DATOS 51 3.4.1 Ciclo de conducción representativo 57 3.4.2 Estrategias de conducción eficiente 60 4 DESARROLLO 61 4.1 RESULTADOS DE LAS MEDICIONES 61 4.2 DESCRIPCIÓN EL PATRÓN DE MANEJO 62 4.2.1 Ciclo de conducción representativo de Bucaramanga 65 4.2.2 Consumo de combustible 68 4.3 ESTRATEGIAS DE CONDUCCIÓN EFICIENTE 69 5 CONCLUSIONES 73 6 RECOMENDACIONES 74 BIBLIOGRAFÍA 75 ANEXOS 82 ANEXO A 82 ANEXO B 100PregradoAt present, there is a great interest in reducing fuel consumption and therefore vehicle emissions. As part of the strategies adopted by different countries, it is the establishment of increasingly strict emission limits. Therefore, vehicle manufacturers must carry out homologation tests that certify the new technologies that will enter the market. But the big differences between the values reported in the homologation tests (FCTA) and under real operating conditions (FCreal) of the vehicles can be over 60%. Among the factors that have a greater incidence in this discrepancy, is the use of driving cycles (DCs) that do not represent the local driving pattern of the different regions of the world. In this work, it was proposed to monitor the fuel consumption and management patterns of a vehicle technology in real operating conditions in Bucaramanga, Santander. For this, measurements were made in real operating conditions of two vehicles of a public entity, used to monitor the city roads for violators. The management patterns were reported based on the characteristic parameters (CPs) and the specific fuel consumption (SFC) of 0.220  0.0828 L/km for the different conditions that occur in the study region. In search of the reduction of the differences presented between the FCTA and FCreal values, a method was proposed to build local DCs, by combining the two methodological currents (Stochastic and Deterministic) used in the world. It was obtained that the Micro-Trips Fuel Based Method (MTFBM) method considerably represents the driving pattern and the fuel consumption of the analyzed region. Taking into account that, to evaluate the representativeness of the obtained cycle, a group of characteristic parameters that define the driving pattern and describe a driving cycle are used, it was obtained that the proposed method exhibited 82.5% of the CPs with differences relative below 20% with respect to the management patterns of the monitored trips. In addition, the incorporation of efficient driving strategies that allow a reduction of 26.46% for the vehicles analyzed was estimated. In conclusion, it is very important to reduce the differences presented, due to the impact they have at the governmental, environmental and economic level.application/pdfspahttp://creativecommons.org/licenses/by-nc-nd/2.5/co/Abierto (Texto Completo)info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Atribución-NoComercial-SinDerivadas 2.5 ColombiaEstimación del consumo de combustible mediante la determinación de ciclos de conducción representativos en Bucaramanga, SantanderEstimation of fuel consumption by determining representative driving cycles in Bucaramanga, SantanderIngeniero MecatrónicoUniversidad Autónoma de Bucaramanga UNABFacultad IngenieríaPregrado Ingeniería Mecatrónicainfo:eu-repo/semantics/bachelorThesisTrabajo de Gradohttp://purl.org/coar/resource_type/c_7a1fhttp://purl.org/redcol/resource_type/TPDriving cycleOBDLight vehiclesEnergy engineeringAutomóvilesCombustibles para motoresCiclo de conducciónOBDVehículos livianosIngeniería en energíaA. Ashtari, E. Bibeau and S. Shahidinejad, Using Large Driving Record Samples and a Stochastic Approach for Real-World Driving Cycle Construction: Winnipeg Driving Cycle, 2014, pp. 170-183.Centro del transporte de la Universidad Andres Bello, "Manual de conducción eficiente," pp. 32, 2014.DieselNet, "Worldwide Harmonized Light Vehicles Test Cycle (WLTC)," vol. 2019, 2019.EConcept, "El Sector de Vehículos en Colombia: Características y Propuestas de Mejora a su Régimen Impositivo." 2016.Escuela de Ingeniería Civil Geomatica, gestión y optimizacion de sistemas, "Plan Maestro de Movilidad, Área Metropolitana de Bucaramanga 2011 - 2030," pp. 202, 2011.Escuela de Ingeniería Civil, Geomatica, gestión y optimizacion de sistemas, "Plan Maestro de Movilidad, Bucaramanga 2010-2030," pp. 143, 2010.F. Quinchimbla and J. Solis, "Desarrollo de ciclos de conducción en ciudad, carretera y combinado para evaluar el rendimiento real de combustible de un vehículo con motor de ciclo otto en el distrito metropolitano de Quito." pp. 163, 2017.G. Amirjamshidi and M.J. Roorda, "Development of simulated driving cycles for light, medium, and heavy duty trucks: Case of the Toronto Waterfront Area," Transportation Research Part D: Transport and Environment, vol. 34, pp. 255-266, 2015.G. Fontaras, N. Zacharof and B. Ciuffo, "Fuel consumption and CO2 emissions from passenger cars in Europe – Laboratory versus real-world emissions," Progress in Energy and Combustion Science, vol. 60, pp. 97-131, 2017.G. Kadijk, R.P. Verbeek, R.T.M. Smokers, J.S. Spreen, A.F. Patuleia and M.G.v. Ras, "Supporting Analysis regarding Test Procedure Flexibilities and Technology Deployment for Review of the Light Duty Vehicle CO2 Regulations," European Commission., 2012.G.O. Duarte, G.A. Gonçalves and T.L. Farias, "Analysis of fuel consumption and pollutant emissions of regulated and alternative driving cycles based on real-world measurements," Transportation Research Part D: Transport and Environment, vol. 44, pp. 43-54, 2016.Global Fuel Economy Iniciative, "Fuel Economy State of the World 2016 - Time for global action," 2016.H. Achour and A.G. Olabi, "Driving cycle developments and their impacts on energy consumption of transportation," Journal of Cleaner Production, vol. 112, pp. 1778-1788, 2016.H. Kato, R. Ando, Y. Kondo, T. Suzuki, K. Matsuhashi and S. Kobayashi, "Comparative measurements of the eco-driving effect between electric and internal combustion engine vehicles," 2013 World Electric Vehicle Symposium and Exhibition, EVS 2014, 2014.H. Tong and W. Hung, "A Framework for Developing Driving Cycles with On‐Road Driving Data," Transport Reviews, vol. 30, pp. 589-615, 2010.ICCT, "Quantifying the impact of real-world driving on total CO2 emissions from UK cars and vans: final report for The Committee on Climate Change," 2015.IDAE, "Cómo conducir de manera eficiente," pp. 30, 2003.IDAE, "La Conducción Eficiente," pp. 34, 2005.IDAE, "Manual de conducción eficiente para conductores de vehículos industriales," pp. 80, 2006.IDAE, "Manual de Conducción Eficiente para Conductores del Parque Móvil del Estado," pp. 39, 2002.IDEAM, PNUD, MADS, DNP and CANCILLERIA, "Inventario Nacional de Gases de Efecto Invernadero (GEI) de Colombia. Tercera Comunicación Nacional de Cambio Climático de Colombia." pp. 36, 2015.IEA, "CO2 Emissions From Fuel Combustion: Overview," pp. 14, 2017.International Energy Agency, "CO2 Emissions from Fuel Combustion: Highlights," pp. 166, 2018.International Energy Agency, "Energy Efficiency Indicators: Highlights," pp. 191, 2018.International Energy Agency, "Energy Technology Perspectives 2015," pp. 418, 2015.International Energy Agency, "International Comparison of Light-Duty Vehicle Fuel Economy 2005-15," pp. 133, 2017.International Energy Agency, "Market Report Series: Energy efficiency 2017," pp. 143, 2017.International Energy Agency, "Technology Roadmap - Fuel Economy of Road Vehicles," 2012.International Energy Agency, "Transport, Energy and CO2," Huss., pp. 418, 2009.J. Brady and M. O’Mahony, "Development of a driving cycle to evaluate the energy economy of electric vehicles in urban areas," Applied Energy, vol. 177, pp. 165-178, 2016.J. Huertas, L. Quirama, M. Giraldo and J. Díaz, "Comparison of Three Methods for Constructing Real Driving Cycles," Energies, vol. 12, pp. 665, Feb 19,. 2019.J. Huertas, M. Giraldo, L. Quirama and J. Díaz, "Driving Cycles Based on Fuel Consumption," Energies, vol. 11, pp. 3064, Nov 7,. 2018.J. Huertas, M. Giraldo, L. Quirama and J. Díaz-Ramírez, "Driving Cycles Based on Fuel Consumption," Energies, vol. 11, pp. 3064, 2018.J. Jimenez, P. McClintock, G. McRae, D. Nelson and M. Zahniser, Vehicle Specific Power: A Useful Parameter for Remote Sensing and Emission Studies, San Diego: 1999, pp. 361.J. Wu, Q. Zhu, J. Chu, H. Liu and L. Liang, "Measuring energy and environmental efficiency of transportation systems in China based on a parallel DEA approach," Transportation Research Part D: Transport and Environment, vol. 48, pp. 460-472, 2016.J.D.K. Bishop, C.J. Axon and M.D. McCulloch, "A robust, data-driven methodology for real-world driving cycle development," Transportation Research Part D: Transport and Environment, vol. 17, pp. 389-397, 2012.J.I. Huertas, J. Díaz, M. Giraldo, D. Cordero and L.M. Tabares, "Eco-driving by replicating best driving practices," International Journal of Sustainable Transportation, vol. 12, pp. 107-116, 2018.J.N. Barkenbus, "Eco-driving: An overlooked climate change initiative," Energy Policy, vol. 38, pp. 762-769, 2010.L. Ntziachristos, G. Mellios, D. Tsokolis, M. Keller, S. Hausberger, N.E. Ligterink and P. Dilara, "In-use vs. type-approval fuel consumption of current passenger cars in Europe," Energy Policy, vol. 67, pp. 403-411, 2014.M. Andrejić, N. Bojović and M. Kilibarda, "A framework for measuring transport efficiency in distribution centers," Transport Policy, vol. 45, pp. 99-106, 2016.M. Giraldo, "Método basado en el consumo de combustible para la construcción de ciclos de conducción que representen patrones locales de manejo," pp. 73, 2018.M. Rutty, L. Matthews, J. Andrey and T.D. Matto, "Eco-driver training within the City of Calgary’s municipal fleet: Monitoring the impact," Transportation Research Part D: Transport and Environment, vol. 24, pp. 44-51, 2013.M. Sivak and B. Schoettle, "Eco-driving: Strategic, tactical, and operational decisions of the driver that influence vehicle fuel economy," Transport Policy, vol. 22, pp. 96-99, 2012.M. Sivak and B. Schoettle, "Eco-driving: Strategic, tactical, and operational decisions of the driver that influence vehicle fuel economy," Transport Policy, vol. 22, pp. 96-99, 2012.M. Zhou, H. Jin and W. Wang, "A review of vehicle fuel consumption models to evaluate eco-driving and eco-routing," Transportation Research Part D: Transport and Environment, vol. 49, pp. 203-218, 2016.Ministerio de Minas y Energía, "Plan de Acción Indicativo de Eficiencia Energética 2017 - 2022," pp. 157, 2016.Ministre de l’environnement de l’énergie et de la mer, "Contrôles des émissions de polluants atmosphériques et de CO2," 2016.N.E. Ligterink and A.R.A. Eijk, "Update analysis of real-world fuel consumption of business passenger cars based on Travelcard Nederland fuelpass data," Jan 1,. 2014.N.H. Arun, S. Mahesh, G. Ramadurai and S.M. Shiva Nagendra, "Development of driving cycles for passenger cars and motorcycles in Chennai, India," Sustainable Cities and Society, vol. 32, pp. 508-512, 2017.P. Pérez and C. Quito, "Determinación de los ciclos de conducción de un vehículo categoría M1 para la ciudad de Cuenca," pp. 132, 2018.Q. Shi, Y. Zheng, R. Wang and Y. Li, "The study of a new method of driving cycles construction," Procedia Engineering, vol. 16, pp. 79-87, 2011.Q. Wang, H. Huo, K. He, Z. Yao and Q. Zhang, "Characterization of vehicle driving patterns and development of driving cycles in Chinese cities," Transportation Research Part D: Transport and Environment, vol. 13, pp. 289-297, 2008.R. Astudillo, "Obtención de ciclos de conducción para la flota de buses urbanos del cantón Cuenca," pp. 115, 2016.R.A. Simmons, G.M. Shaver, W.E. Tyner and S.V. Garimella, "A benefit-cost assessment of new vehicle technologies and fuel economy in the U.S. market," Applied Energy, vol. 157, pp. 940-952, 2015.S. Birrell, J. Taylor, A. McGordon, J. Son and P. Jennings, "Analysis of three independent real-world driving studies: A data driven and expert analysis approach to determining parameters affecting fuel economy," Transportation Research Part D: Transport and Environment, vol. 33, pp. 74-86, 2014.S. Ho, Y. Wong and V.W. Chang, "Developing Singapore Driving Cycle for passenger cars to estimate fuel consumption and vehicular emissions," Atmospheric Environment, vol. 97, pp. 353-362, 2014.S. Zhang, Y. Wu, H. Liu, R. Huang, P. Un, Y. Zhou, L. Fu and J. Hao, "Real-world fuel consumption and CO2 (carbon dioxide) emissions by driving conditions for light-duty passenger vehicles in China," Energy, vol. 69, pp. 247-257, 2014.T. Barlow, S. Latham, I. Mccrae and P. Boulter, "A reference book of driving cycles for use in the measurement of road vehicle emissions," TRL Published Project Report., pp. 280, 2009.T. NUTRAMON and C. SUPACHART, "Influence of driving cycles on exhaust emissions and fuel consumption of gasoline passenger car in Bangkok," Journal of Environmental Sciences, vol. 21, pp. 604-611, 2009.T.M.I. Mahlia, S. Tohno and T. Tezuka, "A review on fuel economy test procedure for automobiles: Implementation possibilities in Malaysia and lessons for other countries," Renewable and Sustainable Energy Reviews, vol. 16, pp. 4029-4046, 2012.U. Tietge, N. Zacharov, P. Mock, V. Franco, J. German, A. Bandivadekar, N.E. Ligterink and U. Lambrecht, "From Laboratory to Road. A 2015 update of official and real-world fuel concumption and CO2 values for passenger cars in Europe," International Council on Clean Transportation Europe., 2015.U. Tietge, P. Mock, J. German, A. Bandivadekar and N. Ligterink, "From Laboratory to Road a 2017 Update of Official and “Real-World” Fuel Consumption and CO2 Values For Passenger Cars in Europe," pp. 62, 2015.U. Tietge, P. Mock, V. Franco and N. Zacharof, "From laboratory to road: Modeling the divergence between official and real-world fuel consumption and CO2 emission values in the German passenger car market for the years 2001–2014," Energy Policy, vol. 103, pp. 212-222, 2017.V. Basaric, M. Jambrovic, M. Milicic, T. Savković, D. Basaric and V. Bogdanović, "Positive effects of eco-driving in public transport: A case study of Novi Sad," Thermal Science, vol. 21, pp. 160, 2016.W.T. Hung, H.Y. Tong, C.P. Lee, K. Ha and L.Y. Pao, "Development of a practical driving cycle construction methodology: A case study in Hong Kong," Transportation Research Part D: Transport and Environment, vol. 12, pp. 115-128, 2007.World Health Organization, "WHO Global Ambient Air Quality Database (update 2018)," vol. 2019, 2018.Y. Huang, E.C.Y. Ng, J.L. Zhou, N.C. Surawski, E.F.C. Chan and G. Hong, "Eco-driving technology for sustainable road transport: A review," Renewable and Sustainable Energy Reviews, vol. 93, pp. 596-609, 2018.Z. Xiao, Z. Dui-Jia and S. Jun-Min, "A Synthesis of Methodologies and Practices for Developing Driving Cycles," Energy Procedia, vol. 16, pp. 1868-1873, 2012.ORIGINAL2019_Tesis_Carlos_Mario_De_León_Jiménez_Neira.pdf2019_Tesis_Carlos_Mario_De_León_Jiménez_Neira.pdfTesisapplication/pdf3993815https://repository.unab.edu.co/bitstream/20.500.12749/7051/1/2019_Tesis_Carlos_Mario_De_Le%c3%b3n_Jim%c3%a9nez_Neira.pdfe0489fcf03d4c37cea233090c66b4eccMD51open access2019_Licencia_Carlos_Leon.pdf2019_Licencia_Carlos_Leon.pdfLicenciaapplication/pdf284546https://repository.unab.edu.co/bitstream/20.500.12749/7051/4/2019_Licencia_Carlos_Leon.pdf848a207c777b7fbce0f17154f2dad81cMD54metadata only accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repository.unab.edu.co/bitstream/20.500.12749/7051/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52open accessTHUMBNAIL2019_Tesis_Carlos_Mario_De_León_Jiménez_Neira.pdf.jpg2019_Tesis_Carlos_Mario_De_León_Jiménez_Neira.pdf.jpgIM Thumbnailimage/jpeg4504https://repository.unab.edu.co/bitstream/20.500.12749/7051/3/2019_Tesis_Carlos_Mario_De_Le%c3%b3n_Jim%c3%a9nez_Neira.pdf.jpgf8eccd234af61224249952774569d319MD53open access2019_Licencia_Carlos_Leon.pdf.jpg2019_Licencia_Carlos_Leon.pdf.jpgIM Thumbnailimage/jpeg11258https://repository.unab.edu.co/bitstream/20.500.12749/7051/5/2019_Licencia_Carlos_Leon.pdf.jpg03ef41d774f6d2ca94c8e8bd911c4cdfMD55metadata only access20.500.12749/7051oai:repository.unab.edu.co:20.500.12749/70512022-12-12 22:00:25.524open accessRepositorio Institucional | Universidad Autónoma de Bucaramanga - UNABrepositorio@unab.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=